
Impact of signal clusters in wide-band searches
for continuous gravitational waves

Lorenzo Pierini ,1,2 Pia Astone ,2 Cristiano Palomba ,2 Aidan Nyquist,3 Simone Dall’Osso ,2 Sabrina D’Antonio ,4

Sergio Frasca,2 Iuri La Rosa ,1,2,5 Paola Leaci ,1,2 Federico Muciaccia,2 Ornella J. Piccinni ,6 and Luca Rei7
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In this paper we present a study of some relevant steps of the hierarchical frequency-Hough (FH)
pipeline, used within the LIGO and Virgo Collaborations for wide-parameter space searches of continuous
gravitational waves (CWs) emitted, for instance, by spinning neutron stars (NSs). Because of their weak
expected amplitudes, CWs have not been still detected so far. These steps, namely the spectral estimation,
the peakmap construction and the procedure to select candidates in the FH plane, are critical as they
contribute to determine the final search sensitivity. Here, we are interested in investigating their behavior in
the (presently quite) extreme case of signal clusters, due to many and strong CW sources, emitting
gravitational waves (GWs) within a small (i.e., <1 Hz wide) frequency range. This could happen for some
kinds of CW sources detectable by next generation detectors, like LISA, Einstein Telescope, and Cosmic
Explorer. Moreover, this possibility has been recently raised even for current Earth-based detectors, in some
scenarios of CW emission from ultralight boson clouds around stellar mass black holes (BHs). We
quantitatively evaluate the robustness of the FH analysis procedure, designed to minimize the loss of single
CW signals, under the unusual situation of signal clusters. Results depend mainly on how strong in
amplitude and dense in frequency the signals are, and on the range of frequency they cover. We show that
indeed a small sensitivity loss may happen in presence of a very high mean signal density affecting a
frequency range of the order of one Hertz, while when the signal cluster covers a frequency range of one
tenth of Hertz, or less, we may actually have a sensitivity gain. Overall, we demonstrate the FH to be robust
even in presence of moderate-to-large signal clusters.

DOI: 10.1103/PhysRevD.106.042009

I. INTRODUCTION

Searches for continuous gravitational waves (CWs),
emitted for instance by rapidly rotating neutron stars
(NSs), either isolated or binary systems (see [1,2] for
reviews of sources and possible emission mechanisms), are
among the highest priorities of the LIGO-Virgo-KAGRA
Collaboration [3]. The third scientific run of the LIGO-
Virgo advanced detectors (O3) took place from April 1,
2019 to the end of March 2020. CW signals have a duration
that is longer than the typical run time of the detectors and
contain important information on the nature and dynamics
of the source. Presently, no CW source has been detected,
due to the weakness of this kind of GWemission, compared
to that of compact binaries coalescence [4–7].
CW sources we are looking for fall into five broad

categories [3]: (1) nonaccreting known pulsars for which

timing data are available; (2) other known or suspected
isolated neutron stars, with known sky location but limited
or absent timing information; (3) unknown isolated NSs in
any direction; (4) accreting stars in known/unknown binary
systems; (5) long-transients (with duration of hours/days/
months), due for example to a postmerger newborn NS, to
r-mode instabilities or to newborn highly magnetized NSs
(magnetars) [8,9]. Moreover, recently a growing interest
has been focused on boson clouds forming around spinning
BHs, as potential CWsources [10]. The data analysismethod
used is different for each of these targets. For unknown
sources, i.e.,when the source parameters (namely, position in
the sky, GW frequency, frequency time variation) are not
known, fully coherent searches are computationally unfea-
sible. For this reason, hierarchical procedures (which alter-
nate coherent and incoherent analysis steps) have been set up.
Recent results on all-sky CW searches using data of the

PHYSICAL REVIEW D 106, 042009 (2022)

2470-0010=2022=106(4)=042009(12) 042009-1 © 2022 American Physical Society

https://orcid.org/0000-0003-0945-2196
https://orcid.org/0000-0003-4981-4120
https://orcid.org/0000-0002-4450-9883
https://orcid.org/0000-0003-4366-8265
https://orcid.org/0000-0003-0898-6030
https://orcid.org/0000-0003-0107-1540
https://orcid.org/0000-0002-3997-5046
https://orcid.org/0000-0001-5478-3950
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.042009&domain=pdf&date_stamp=2022-08-25
https://doi.org/10.1103/PhysRevD.106.042009
https://doi.org/10.1103/PhysRevD.106.042009
https://doi.org/10.1103/PhysRevD.106.042009
https://doi.org/10.1103/PhysRevD.106.042009


second and third scientific run of the LIGO and Virgo
detectors (O2 and O3) have been reported in [11–13]. A
short review of the main LIGO-Virgo all-sky CW search
methods is also presented in [14].
One of the standard search methods for all-sky searches

is the frequency-Hough (FH) pipeline, described in detail in
[15]. The FH pipeline is a hierarchical procedure that aims
at identifying the most significant CW candidates in a wide
parameter space. A follow-up procedure, described in [11],
is then applied to these candidates, in order to confirm or
reject them. Recently, a GPU implementation of the FH
was run to analyze the highest, and computationally
demanding, part of the O3 all-sky search, showing a
computational gain of more than one order of magnitude
[16]. The FH hierarchical procedure strongly reduces the
computational cost with respect to a fully coherent search,
but at the price of a sensitivity loss. In particular, some
thresholds and selection criteria are applied at various
stages of the analysis. Any possible signal lost during
one of these steps will not be recoverable by later steps. For
this reason, each step of the procedure is designed to reduce
as much as possible the loss of possible CW signals, which
could be hidden by the presence of strong disturbances or
even by other superposing signals.
In this paper we review the procedures for spectral

estimation, peakmap (PM) construction and candidate
selection applied on recent LIGO-Virgo data, with the
aim of testing their effectiveness when clusters of signals
are present. All these steps play a relevant role in determin-
ing the signal detectability and may bring to unwanted
sensitivity losses if not properly addressed. In particular, by
adding simulated signals to O2 data, we demonstrate the
robustness of the FH pipeline in presence of signal clusters,
quantifying the very qualitative claims reported in [17].
The paper is organized as follows. In Sec. II we briefly

remind the main steps of the FH pipeline. In Sec. III we
discuss the main issue this paper deals with, i.e., the
possibility that some steps of the FH analysis are negatively
affected by the presence of several concurrent large
CW signals confined in a very small frequency range.
Section IV is devoted to describe in detail two relevant
analysis steps, i.e., spectral estimation and construction of
the time-frequency PM, which could be affected by the
presence of dense clusters of signals. Sections Vand VI are
the core of the paper and are focused on the detailed studies
we have done, by means of software simulated signals
added to O2 data, to quantify the effect on the detection
efficiency of dense clusters of signals. We end with a
discussion on the results in Sec. VIII.

II. THE FH SEARCH PROCEDURE

A scheme of the FH pipeline is given in Fig. 1 and is
briefly described in the following.

(i) [A] Creation of the short fast Fourier transform
(FFT) database (SFDB).

Detector calibrated data are split into chunks
of duration 8192, 4096, 2048, and 1024 seconds.
Each chunk is then Fourier transformed, using the
FFT algorithm, obtaining four different sets of
frequency domain data covering, respectively, the
range [0-128] Hz, [128-512] Hz, [512-1024] Hz, and
[1024-2048] Hz. At each FFT chunk are also
associated additional data, such as position and
velocity of the detector at the chosen reference time.
There is a work in progress to make this step in a
more flexible way, making use of the “band sampled
data” (BSD) [18] framework.

(ii) [B] Autoregressive (AR) spectral estimation.
An AR algorithm, described in [19], is used to

smooth the noise spectral density of each chunk of
data in such a way to preserve possible CW signals,
which in a single FFTwould be confined within one
single frequency bin, and at the same time to be able
to follow slower spectral variations. The filtering is
usually done backwards through the frequency bins,
that is from higher to smaller frequencies, to better
adapt recursion to the noise behavior of the detectors,
which shows much higher and rapidly varying values
in the low frequency band, i.e., below ≈30 Hz.

(iii) [C] PM creation.
For each FFT, local maxima above a given thresh-

old, called peaks, are selected in the ratioR among the
periodogram (squaremodulus of the FFT) and theAR
spectrum estimation. The PM is the collection of all
the peaks, each identified by a value of the frequency
and a time (the middle time of the corresponding
FFT), both measured at the detector. AR spectral
estimation and PM construction have been used since
many years for these analyses and their mathematics
(and statistics) is described in [19].

(iv) [D] FH transform.
For each sky position, the peaks in the PM are

shifted in frequency to remove the Doppler effect for

FIG. 1. Scheme of the hierarchical FH procedure, in the case of
data from 2 detectors. See Sec. II for a short description of the
steps of the procedure.
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that position at the peak time. The shifted peaks are
fed to the Hough transform, which maps the time
frequency peaks to the source frequency and spin-
down plane.

(v) [E] Candidate selection and coincidence analysis.
Candidates are selected in the FH plane by

finding, for each sky position, the points with
highest number count in each frequency and spin-
down subinterval. Candidates from the analysis of a
given data set are clustered together, and cross-
checked against candidates found in the analysis of
another data set (of the same detector or of a
different detector) by means of coincidences in
the signal parameter space.

(vi) [F] Candidates follow-up and verification.
A deeper analysis is done on those candidates

which survive the coincidence step, in order to check
their astrophysical origin or demonstrate they are
compatible with noise or due to detector artifacts.
The standard follow-up approach consists in rerun-
ning the search starting from longer duration FFTs,
in a limited portion of the parameter space around
each candidate. In case of no detection, upper limits
(UL) on the signal strain amplitude are computed as
a function of the frequency.

III. BOSON CLOUDS CONSTRAINTS
FROM FH SEARCH ON O2 DATA

Recent results obtained for the O2 all-sky CW search
[20] have also been used to derive constraints for a class of
CWs emitters different from spinning NSs, namely
“clouds” of ultralight bosons around black holes (BHs).
Such clouds are expected to emit CWs at a frequency which
depends at first order on the boson mass and at second order
on the product of the boson mass and BH mass (as
explained in [20] and references therein). Even if more
specific methods have been developed to search for this
kind of signals, see for example [21,22], it is possible to
map the results of a standard all-sky CW search into
exclusions limits in a plane defined by the mass of the
scalar boson field and the mass of the BH, as discussed in
[20]. The basic assumption is that all the steps of the
hierarchical FH procedure, especially designed and tested
for the weak and rare CW signals emittted by isolated NSs,
are compatible with the characteristics of the boson cloud
population. In particular, we need to verify if the sensitivity
is degraded when the emitted signals are clustered in
frequency. Such scenario could arise under optimistic
assumptions about the number of stellar mass BHs present
in our Galaxy [23,24]: if we assume that the boson clouds
formation mechanism affects a significant fraction of
galactic BHs, we could have a large number of concurrent
CW emitters. These signals would have proper frequency
centered at a value corresponding to the boson mass (which
reasonably takes just one value), with a spread due to the

BH mass distribution. If many signals are concentrated in a
small frequency range and the signals are “strong” enough,1

it could happen that the stronger signals hide the weaker
ones or that there is some degradation of sensitivity due to
the fact that signals mix, making it difficult to separately
identify them. Such possible complication might happen
especially in future GW detectors, like Cosmic Explorer
[25] and the Einstein Telescope [26], which will be the first
pan-European ground-based GW antenna [27]. These 3G
ground-based detectors will achieve one order of magni-
tude better sensitivities with respect to the existing detec-
tors. On the other side, the space-based detector LISA [28]
will give us access to the mHz frequency band.
In a recent publication [17], the impact of signal clusters

on the spectral estimation used in the FH approach has been
very qualitatively discussed. Specifically, plots suggesting
the AR procedure cancels signal peaks have been shown,
when the signals are concentrated in such a way to produce
bumps in the detector noise, thus reducing the search
sensitivity. We will demonstrate these conclusions are
wrong in most cases.
We quantify these qualitative predictions, studying how

spectral estimation, PM construction and candidate selec-
tion behave in this situation. In fact, these are the steps of
the procedure that might suffer from problems related to the
presence of many strong signals. We inject fake CW signals
into O2 data to mimic this effect and to see if, and at which
level of density and strength of the signals, we might need
to apply modifications to the procedure. For simplicity, this
study is done using one week of data, which is enough to
evaluate possible problems and sensitivity losses. In fact,
by analyzing a longer data set the discriminatory power of
the Doppler modulation, see Sec. V, would be even stronger
making our robustness tests conservative.

IV. SPECTRAL AR ESTIMATION
AND PM CONSTRUCTION

The first important step with an impact on the sensitivity
of the hierarchical FH procedure is the estimation of the
average power spectral density. The procedure is described
in details in [19] and we briefly remind the reader here its
basic aspects, and give some examples using O2 data. A
nearly monochromatic wave with enough high amplitude
will produce a delta spike above the noise floor in the
periodogram. That peak will be included into the PM only
if its power is greater than the corresponding point in the
AR estimation by a fixed factor. So, if the AR estimator
follow that peak, its chances to be selected in the PM
decrease. So, a good spectral estimator for CW searches
should have the following properties:

1There are presently estimations which give quite different
results, depending on the basic assumptions. See for example
[23,24].
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(i) If narrow peaks in the frequency domain are present,
the estimator should not be affected by that peaks.
This should be as much as possible independent on
the signal-to-noise ratio (SNR) of the peak.

(ii) If the noise level varies, either slowly or rapidly, the
estimator should be able to follow the noise var-
iations.

Let xi be the data samples of the FFT. The amplitude
spectral density is estimated from an AR estimation, as
shown in the equations below:

yi ¼ xi þ w · yi−1

w ¼ e−δν=τf

where yi are the samples of the not normalized AR mean,
obtained using w as weight, with δν being the FFT
resolution and τf the memory of the AR mean (with
dimensions of a frequency). The values of the normalized
AR estimations are given by

μi ¼
yi
Zi

;

where the normalization constant is Zi ¼ 1þ w · Zi−1.
Besides this, in order to have a “clean” estimator, that is
not affected by spectral peaks, we define a threshold Vmax
and an age Amax. While r ¼ xi

μi−1
is lower than (or equal to)

the threshold, the new datum xi is used to evaluate the
actual mean and the age of the estimator is set to zero
(expressed in number of samples).
When r ¼ xi

μi−1
is larger than the threshold, the new datum

is not used to evaluate the actual mean and the age of the
estimator is incremented by 1 bin (that is by a frequency

equal to the resolution). This eliminates or at least reduces
the effect of peaks from the estimation.
If the estimator becomes too old, i.e., if the age becomes

greater than the maximum age we have set, we deduce that
we are not in presence of a peak (and thus of a possible
signal), but only that the noise characteristics have
changed. We thus go back by a number of samples
n ¼ A, and begin a new evaluation of the mean, restarting
from zero at the sample i − A. This is needed to deal with
all those situations when the noise is highly non-stationary.
Figure 2 shows an example, where the AR estimation is
plotted together with the absolute value of the correspond-
ing FFT. From the plots on the left and from the zoom on
the right it is possible to note how, when narrow peaks are
present in the FFT, they do not appear, or appear signifi-
cantly reduced, in the AR estimation, and so are not (or
only slightly) suppressed in the PM.
More examples are given in Sec. V, where we show the

results after adding fake CW signals to the O2 data.

V. SIGNAL CLUSTERS: PRELIMINARY
CONSIDERATIONS

As anticipated, we want to study the robustness of our
method. In the following, we will focus on the AR spectral
estimation and PM characterization steps, showing how
they behave in presence of many CWs.

A. Qualitative effect on AR estimation

In what follows, we have generated and injected several
CW signals, with randomly chosen sky localization, nearby
source frequencies and, for simplicity, without spin-down.
The range of signal amplitudes we have considered is
2 × 10−25 − 10−24, which is above the ULs found in O2
[20] at the chosen frequencies, and corresponding to the

FIG. 2. An example of one FFT (green dots, blue lines), of duration 8192 s, done using LIGO Livingston O2 data [29], and the
corresponding AR amplitude spectral density estimation (red). Here, for comparison, the FFT has been normalized to represent the
amplitude spectral density and we show the absolute value. The left plot covers the band [5-512] Hz and the second plot is a zoom in
the frequency region from 11 Hz up to 23 Hz. It is possible to appreciate that the AR estimation follows sharp changes on noise floor,
like those around 14 Hz and 17 Hz. On the other side, narrow peaks like those at 13.15 Hz, 14.85 Hz, 17.25 Hz and 19.65 Hz do not
appear in the AR estimation, as required.
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range predicted in [17] for the detectable galactic boson
clouds/BHs population. Please note that the signal ampli-
tude is well above the noise level: if the signals were
weaker, the cumulative effect on AR estimation and on the
overall procedure would be even lower.
Figure 3 shows what happens to the AR estimation

inside a single FFT, in 4 different injection configurations.
The FFTs are built using 4096 seconds of LIGO Livingston
O2 data [29], so their frequency resolution (as well as for
the AR estimation) is δν ¼ 1=4096 s ≃ 2.44 · 10−4 Hz. All
added signals have their proper frequencies f0 within few
frequency bins, but because of their randomly distributed
sky position they are further spread by Doppler modulation.
In details, the configurations are in Table I.
By looking at the AR estimation (red curve in Fig. 3), it

is clear that generally it is negligibly affected by the
presence of an ensemble of signals at low densities: the
only case when it is affected is when we add 50 strong
signals with f0 within 5 bins, which means within

1.23 mHz. In this case, the ratio R obtained on the central
peaks is reduced by ∼30%. This fact obviously motivates a
further investigation. However, as it will be shown in the
next subsection, this amplitude reduction does not auto-
matically affect the sensitivity of the search, as

(i) it is not affecting all the peaks and, most of all, not
always the same peaks when their time evolution is
considered;

FIG. 3. Plots of the 4 different injections listed in Table I made on one FFT calculated using 4096 s of LIGO Livingston O2 data [29].
Top left, top right, bottom left, bottom right show the configurations respectively of label 1, 2, 3 and 4. Blue lines and black dots
represent the absolute value of one normalized FFT, in a 3 Hz band, around 338.5 Hz. The red line is the corresponding AR amplitude
spectral density estimation. The effect of the signal peaks in the AR estimation is negligible in the first two cases, very small in the last
case, while it reduces the contribution of some of the strongest peaks in the third case (50 strong signals, with source frequency f0
within 5 bins).

TABLE I. Parameters used to simulate CWs in different density
configurations, labeled from 1 to 4.

Label n.sig f0 range [Hz] h0

1 10 ½338.5; 333.5þ δν$ 1 × 10−24

2 20 ½338.5; 333.5þ 2δν$ 1 × 10−24

3 50 ½338.5; 333.5þ 5δν$ 1 × 10−24

4 50 ½338.5; 333.5þ 5δν$ 6 × 10−25
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(ii) the amplitude of the peaks is never used in the
analysis, so what matters is only the limit posed by
the threshold used in the PM creation.

These aspects are discussed in more detail in the following
subsection.

B. Peakmap characterization

As anticipated, it is important not to lose possible signal
peaks at this level, as they cannot be recovered after. We
also notice that in order to build the PM, first the ratioR of
the periodogram (square modulus of the FFT) to the AR
power spectrum estimation is computed. Then, local
maxima of R above a given threshold are selected. In fact
the actual value of R for the selected peaks is not used in
the analysis. This choice allows us to reduce the impact of
large noise spectral disturbances.

A very relevant point is the role of Doppler correction.
This is done by properly shifting the peaks frequency in the
input PM, for each sky position for which we are running
the search. As shown in Fig. 4, even in the case of multiple
signals belonging to the same frequency bin at a given time,
the Doppler correction, which is different for each sky
position, permits to clearly distinguish the various signals.
This is a very powerful feature as, moreover, it enhances the
SNR of CW signals with respect to noise lines. The first
plot in Fig. 4 shows a zoom of a PM with 10 injected
signals. The signals have been generated with the same
intrinsic frequency f0, that is within the same frequency
bin, but with randomly chosen sky positions, so that their
frequencies at the detector appear separated, due to the
Doppler effect which introduces a maximum frequency
shift of

FIG. 4. The top left plot shows a zoom on a PM of LIGO Livingston O2 data [29], where different fake CW signals are added. Those
signals have all the same proper frequency, f0 ¼ 338.5 Hz, but different sky positions. They are strong enough to produce patterns
visible by eye: each one follows a different time-frequency trajectory, having different Doppler modulations. In the other plots (top right,
bottom left and bottom right) the Doppler correction is applied respectively for one of the signals sky direction. When the Doppler
correction matches the sky localization of a signal source, its corresponding trajectory becomes a straight line confined on f0. On the
other side, the other signals trajectories get further distortion.
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Δfdop ≃ 2f0

!!!!
v⃗ · n̂
c

!!!! ≃ 2f0 × 10−4; ð1Þ

where v⃗ is the detector velocity vector and n̂ is the versor
identifying the source position in the sky. When the
Doppler effect is removed correctly for each of these
signals, we can see the injected signal as a sequence of
peaks along a straight line at the right f0 frequency. This is
shown from the second to the fourth plots of Fig. 4. It is
possible to note here that there is only one straight line,
which corresponds to the properly Doppler corrected peaks.
In conclusion, these results show that, even if signals are
clustered in frequency, the presence of the Doppler modu-
lation gives a powerful tool to distinguish them. Thus, in all
analyses where candidates are selected separately for each
sky position, as in the case of the FH pipeline, the presence of
signal clusters does not blind the search. Clearly, the
resolving power is limited by the resolution of the sky
grid used, which depends on the frequency resolution.
The candidate separation effect is clearly stronger as the
observing time improves, and it is maximum for one year of
data, when the Doppler annual modulation completes
one cycle.

VI. EFFICIENCY STUDY: FREQUENCY-HOUGH
CAN HANDLE MULTIPLE SIGNALS

This section is devoted to properly quantify the effect
of multiple signals and their impact on the pipeline
performances. In order to do this, we need to define an
observable. We consider signals that, after the Doppler
correction are monochromatic, meaning they are repre-
sented in the PM by a straight line at the constant emission
frequency f0. So, after the proper corrections, we construct
an histogram of the number of peaks as a function of the
frequency, using the same frequency resolution of the
search. We then expect to find an excess of counts in
the histogram bin associated to the source frequency f0. We
define the efficiency as

η ¼
nsig − n̄noise

nFFT
; ð2Þ

where nsig is the histogram number count at the frequency
f0, n̄noise is the average number of counts at all the other
frequencies except for f0, and nFFT is the number of FFTs
used to construct the PM. Figure 5 shows an example of
efficiency versus frequency, having injected a signal at
f0 ¼ 338.5 Hz, constructed the PM and removed the
Doppler effect. We need to underline that the detection
efficiency η defined here does not determine the full
sensitivity of the FH procedure, even if the two concepts
are strictly related. The expected value of η is the difference
between the probability of selecting a peak when a signal
with normalized spectral amplitude λ is present, namely pλ,
and the probability of selecting a peak when only Gaussian
noise is present, that is p0 [15]:

E½η$ ¼ pλ − p0: ð3Þ

In the following, we will estimate η in different situa-
tions. We use one week of data,2 selected from the LIGO
Livingston O2 run [29], starting from GPS ¼ 1186606177.
The efficiency is computed as a function of the density of
signals in given frequency intervals. We call Δf0 the
interval in which the source-frame frequencies are ran-
domly generated. Because of the random sky localization
of the sources, the detector-frame observed frequency will
be unevenly distributed into a frequency range given by

Δf ¼ Δf0 ' Δfdop: ð4Þ

where Δfdop is the spread of the signal frequency at the
detector frame due to the Doppler effect, given by Eq. (1).
In this way we can establish how many signals to inject in a
given frequency interval by tuning f0 andΔf0. The number
of frequency bins covered by the signals is

nbin ¼
Δf
δν

ð5Þ

and we can refer to the resulting mean density of signals-
per-frequency-bin as

ρsig ¼
Nsig

nbin
: ð6Þ

FIG. 5. Example of efficiency calculation from full PM after
Doppler correction. A histogram of the peaks is built using the
frequency resolution as bin width. Here an excess of counts is
clearly visible at the frequency 338.5 Hz, where a signal has
been injected into nFFT ¼ 1000 discrete FFTs. The red line
represents the theoretically calculated expected noise counts,
E½n̄noise$ ¼ p0 · nFFT.

2We use only one week of data in order to limit the computa-
tional cost of the study, as the goal of the paper is a comparison of
different situations on the same data set.
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In the following subsections we will quantify the results in
terms of estimates of detection efficiency, first adding
signals with the same amplitude and then with uniformly
distributed amplitudes.

A. Constant amplitude signals

As a first case study, we consider a rather extreme
scenario. In what follows 50 signals, all with the same very
large amplitude, are simulated with proper frequency in a
band respectively 5δν and 10 Hz wide. The injection
parameters are listed in Table II. Figure 6 shows all the
obtained efficiencies in both cases, together with mean
values, median and standard deviation of the results.
Estimations of the overall efficiency, also with the sig-
nal-per-bin densities, are reported in Table II.
The mean efficiency loss (for the case of nearby signals

with respect to the case of widely spaced signals) is ∼19%.
In other words, in that extreme situation we recover in
average the 81% of pixels per signal with respect to the
widely spaced one. In Sec. VII much higher densities than
ρsig ∼ 0.15 will be explored, but very different efficiency
losses will be obtained. The reason is that the constant
signal amplitudes well above the noise floor strongly
impact the AR estimation. Anyway, we note that the
presence of only strong signals seems to be so unrealistic
in the context of CWs from boson clouds. We could have a

similar scenario in future signal-dominated detectors, like
LISA. In the following, we simulate signals with randomly
distributed amplitudes.

B. Uniform amplitude signals with low densities

In this subsection we present the results of multiple
injections in a more realistic regime in which signal
amplitudes are not constant, as in the previous case, but
uniformly distributed. In order to get a complete under-
standing, we cover the whole frequency region where the
detectors have the best sensitivity, [70–512] Hz. The
signals have been simulated with source frequencies around
12 different values in that interval and with source positions
randomly chosen. For each one of that 12 central frequen-
cies, 10 signals have been injected with proper frequencies
distributed in six different ranges Δf0. The choice is done
in order to search for evidence of a decreasing efficiency
when the signals are concentrated in a smaller region. All
the chosen parameters are reported below:

h0 ∈ ½2 × 10−25; 1 × 10−24$

f0 ∈ f70.5; 105.5; 120.5; 170.5; 205.5; 220.5;
270.5; 330.5; 380.5; 420.5; 442.5; 492.5g Hz

Δf0 ∈ fδν; 10δν; 20δν; 50δν; 100δν; 10 Hzg

Thus, the signal densities ρsig explored in this section are in
the range [0.001–0.1]. We can refer to this part as a “low
density” regime.
Figure 7 shows bar plots of median values of the

obtained efficiencies. They are grouped according to
the different Δf0 (represented by different colors), for
the different injection frequencies. The efficiency values do
not show any systematic decrease when going toward the

FIG. 6. Efficiency η in the two cases of: 50 injected signals with h0 ¼ 10−24 distributed in Δf0 ¼ 5δν ∼ 1.2 mHz—left plot—and
widely spaced (over 10 Hz)—right plot. Mean, median, and standard deviation of the efficiency are also shown.

TABLE II. Parameters used to simulate CWs in two different
density configurations, labeled as 5δν and 10 Hz, the obtained
signal densities ρsig and efficiency estimations.

Label Δf0 h0 ρsig E½η$ ' ση

5δν ½338.5; 338.5þ 5δν$ 1 × 10−24 ∼0.15 0.58' 0.09
10 Hz [333.5, 343.5] 1 × 10−24 ∼10−3 0.72' 0.09
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smaller Δf0, instead they seem more random. In Fig. 8 the
bar plots are combined together and the average efficiencies
(with respect to the injection frequency), together with
standard deviations, are shown as a function of Δf0. The
highest standard deviation in the case of signals injected in
10 Hz is due to the fact that within a so large band it is more
likely to find strong narrow disturbances that worsen the
detection efficiency in that band. Also in this plot, there is
no clear effect on efficiencies due to the clustering of source
frequencies. We can conclude that in the low density

regime there is not efficiency reduction and the procedure
is able to recover all the signals.

VII. SIMULATION OF SIGNALS CLUSTERS
FROM BOSON CLOUDS

In this section, we simulate situations that are expected in
the most extreme cases of CWs emitted by boson clouds
around galactic BHs. In the simulations proposed in [17], it
has been suggested that the most extreme BHs—namely,
those with spins close to the maximum allowed value—
could potentially produce up to thousands of signals with
amplitude above the O2 ULs at the detectors. Depending on
galactic BH population and the boson mass, those signals
could cluster into a frequency region having a width that
spans from ∼0.01 Hz to ∼1 Hz. Based on these indica-
tions, we reproduced two scenarios, namely one with
signals clustered into a [0.04–0.06] Hz band and another
with signals in an order of magnitude larger 0.8 Hz band.
Also in these cases we repeated the simulations centering
on different frequencies in the range [70, 512] Hz. Over
4,000 signals were generated with random parameters and
amplitude in the range ½1 − 20$ × 10−25, following a power
law distribution such to mimic the ratio of detectable
signals below and above the UL as found in [17].
In Fig. 9 the results of the simulation are shown. The

plotted quantity is the ratio between the detection efficiency
of signals in the clustered configuration and the efficiency

FIG. 7. Bar plots of the simulation done in Sec. VI B. The bars show the median efficiency computed for 10 signals with source
frequency within respectively Nδν bins (N ¼ 1, 10, 20, 50, 100) and 10 Hz (40960δν bins). The color code is: 10 signals in 1 (red) 10
(green) 20 (cyan) 50 (yellow) 100 (magenta) bins and 10 Hz (black). On the bottom of each box the central source frequency of the
injected signals is shown. Signal amplitudes have been generated from a uniform distribution in the range h0 ¼ 2 × 10−25 − 1 × 10−24.
Those plots show that there is not an evident efficiency loss when signals are concentrated in smaller Δf0.

FIG. 8. Error plot of the simulation done in Sec. VI B, in the
“low-density” regime. Differently from Fig. 7, efficiencies are
combined together grouping for the different 12 frequency
injections. Average efficiency η (stars) and standard deviation
(bars) are shown as function of Δf0.
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of the same signals, when injected alone. This is done in
order to compare efficiency variations at different frequen-
cies and on signals with different amplitudes, which have
different detection efficiencies. This efficiency ratio is
plotted as function of the mean signal density. Colored
areas span from minimum to maximum values of the mean
ratio obtained from injections around different frequencies,
in the range [100,400] Hz, in clean bands. The blue area
represents the ratio for the whole ensemble of injected
signals, whereas the green and red belts refer to the subsets
of signals with h0 respectively above and below O2 ULs.
Looking at the different regimes, we recognize qualitatively
different behaviors.
1) In the case of signals injected into a ∼0.06 Hz band

(Fig. 9, left plot), for signals with amplitude above O2 ULs,
the efficiency loss ratio is of few percents at the most. After
a minimum of ≈0.9 reached between ρsig ≈ 1–2, the ratio
grows up to 1. On the other side, for signals with amplitude
below O2 ULs the efficiency ratio increases for growing
signal densities, which means their detection efficiency
increases—i.e., we recover more pixels belonging to those
signals. On the whole set of signals, the result is a global
efficiency gain in the range [1, 2.2], the highest reached at
the highest signal densities. An analogous reinforcement
effect is used in [30,31], where the contributions of multiple
subthreshold CWs are combined to enhance their detection
chances in the context of targeted searches. Consequently,
in this configuration there is no overall efficiency loss and,
moreover, also weak signals have a growing probability to
be recovered. Since also stronger signals do not suffer a

significant efficiency loss, we conclude that both detection
efficiency and evaluation of ULs are not affected.
2) The case of signals injected into a ∼0.8 Hz wide band

(Fig. 9, right plot) corresponds to the most extreme
situation depicted in [17]. In this case the behavior of
the efficiency ratio changes significantly. First of all, the
two distinct signal subsets have no opposite dynamics as
they show both an efficiency loss as the signals density
increases. While the efficiency ratio of signals with
amplitude below O2 ULs stops decreasing at a signal
density ρsig ≈ 1 (with a corresponding efficiency ratio of
∼0.8' 0.05), the efficiency ratio for the subset of signals
with amplitude above the UL continues decreasing, reach-
ing values around 0.6 for signal densities ρsig ≈ 2. For the
whole set of signals, values in the range 0.75' 0.05 are
reached. Since the detection efficiency is directly related to
the individual probability pλ to select a peak if a signal is
present, and given that the overall search sensitivity is
proportional to the square root of that probability [15], we
conclude that in the most extreme—and probably very
unrealistic—cases the search procedure could lose up to
∼15% of the “optimal” search sensitivity (i.e., that with no
superposition of signals). As discussed in the following, a
mean signal density of two is much larger than predicted
in [17].
Both the described dynamics have a clear explanation in

the way the AR spectral estimator works. When the signal
density is such to produce a wide excess power in
frequency, the answer of the AR estimator depends on
how wide the bump is with respect to the AR memory τf

FIG. 9. Injections in the “high-density” regime. Mean values of the ratio between detection efficiencies in the case of signals clustered
together (Eff) and in the case of each of those signals taken alone (Eff0), as function of the signals-per-bin density (bottom x axis) and
number of injected signals (top x axis). The signals are injected around 170 Hz, 240 Hz, 338 Hz, 380 Hz: colored areas span from
minimum to maximum values obtained at the different frequencies. The blue area shows the overall efficiency ratio for the whole signal
ensemble, whereas green and red areas refer to signals that are respectively above and below O2 ULs. Left plot shows the result when
signals are clustered in a wide 0.06 Hz frequency range. Right plot shows the result when signals are clustered in a wide 0.8 Hz
frequency range.
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defined in Sec. IV. The chosen value for AR memory is
typically fixed for each frequency band. In the present
case, in the frequency range [128-512] Hz, it is used
τf ¼ 0.02 Hz. In case (1), the signal cluster covers a wide
0.06 Hz frequency range, which is the same order of τf.
Consequently, AR estimate is not fast enough to adapt to
the increased noise (plus signal) level. When ρsig ≥ 1, every
frequency bin has an expected occupation of 1 signal. After
that, any added signal would superpose to signals already
present in the same bin, thus increasing its power content.
The result is that the signal power in all bins of interest
increases with respect to the noise floor. If the AR
estimation is not fast enough to adapt, it will be below
the most part of bins power, so that also weaker signals get
more detection chances. This explains the observed grow-
ing efficiency in case (1). On the other hand, in case (2) the
signal cluster covers a wide 0.8 Hz frequency range, which
is one order of magnitude bigger than τf. In this case, even
if signals continue to accumulate in the same frequency
bins at ρsig ≥ 1 and their power content increases, the AR
estimation is able to adapt to the changed level. Thus, weak
signals remain below the AR level, while strong signals are
weakened with respect to the previous noise level.
We note two important considerations. First, the loss

happens when we have actually high numbers of detectable
signals (i.e., above the upper limit), while it affect much
less the estimation of ULs. Second, we plot the efficiency
loss as a function of the mean signal density. For instance, a
density of two signals per bin, means that on average in all
bins of the injection band (e.g., 0.8 Hz in 9, right plot) we
have such density. Looking at the results of [17], in one of
their “worst” situations—see [17] figure 40, left panel—
where BH spins up to an unrealistically large value of 1 are
considered, the signal density above the UL can reach
values as large as 5 in a very few bins, while in the vast
majority of bins is below 2 (and, actually, is zero in most
bins). The average density is difficult to estimate, but it is
quite likely well below 0.5. As a consequence, the
sensitivity loss is likely of the order or smaller than 5%,
as the impact on the AR estimation would be smaller.

VIII. DISCUSSION

In this paper, mainly inspired by the claims of [17], we
have studied in detail how the basic steps of the FH
algorithm for CW searches could be affected by the
presence of clusters of signals. Two regimes, of “low-
density” (with up to ∼0.1 signals per frequency bin) and
“high-density” signals (with up to 10 signals per frequency
bin), have been considered. In particular we have evaluated
the impact of signal clusters in the estimation of the average
spectrum, and on the construction of the PMs, finding them
very robust. We have found that the procedure used to
estimate the average spectrum, needed to normalize the
FFTs and then to construct the PMs, is robust with respect
to the presence of ensemble of signals and works even in

the most extreme situations. The small signal peak ampli-
tude loss is compensated by the fact that signals do have a
different evolution in time (due to their position in the sky)
and then through the proper Doppler correction each signal
can be properly reconstructed. In addition to this, in the
case of homogeneous high density of signals across a small
frequency band, we have shown that when the signals are
spread in a frequency interval smaller than ∼0.1 Hz, the
overall efficiency increases thanks to the presence of signal
clusters, as the probability to select a peak at a given time is
enhanced. When the signals are spread on a much larger
frequency range of ∼0.8 Hz, we find an efficiency loss of
up to ∼15%, when the mean signal density approaches a
value of two, due to the impact the signals have in the AR
estimation of the average power spectrum. On the other
hand, the “worst” cases considered in [17] correspond to a
mean signal density significantly smaller than two, so that
the corresponding sensitivity loss is reduced to a few
percent at the most.
We conclude that the frequency Hough procedure is

robust with respect to the presence of signal ensembles,
with negligible losses even in extreme cases.
The results reported here are relevant also in view of

searches using the next generation detectors. The expected
improved sensitivity of Einstein Telescope [26] with respect
to current detectors, especially in the band 3–20 Hz, could
make the issue of signal ensembles important. In particular, it
could play a role not only for the case of emission fromboson
clouds around Kerr BHs, but especially for the early inspiral
of NS binary systems, that would produce long duration
signals and could be searched adapting techniques derived
from standard CW searches. Something similar is expected
for the LISA detector [32]. Our result shows that the basic
elements of FrequencyHough algorithm could be used to
resolve most of these sources, exploiting their different sky
position and the algorithm robustness with respect to the
presence of signal ensembles.
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