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Abstract - Each year a growing number of wind farms are being
added to power grids to generate sustainable energy. The power
curve of a wind turbine, which exhibits the relationship between
generated power and wind speed, plays a major role in assessing the
performance of a wind farm. Neural networks have been used for
power curve estimation. However, they do not produce a confidence
measure for their output, unless computationally prohibitive
Bayesian methods are used. In this paper, a probabilistic neural
network with Monte Carlo dropout is considered to quantify the
model or epistemic uncertainty of the power curve estimation. This
approach offers a minimal increase in computational complexity and
thus evaluation time. Furthermore, by adding a probabilistic loss
function, the noise or aleatoric uncertainty in the data is estimated.
The developed network captures both model and noise uncertainty
which are found to be useful tools in assessing performance. Also,
the developed network is compared with the existing ones across a
public domain dataset showing superior performance in terms of
prediction accuracy. The results obtained indicate that the
developed network provides the quantification of uncertainty
while maintaining accurate power estimation.

Index Terms - wind energy, uncertainty quantification of wind
turbine power curve, probabilistic neural network.

I. INTRODUCTION
ind energy is considered to be a sustainable source of

energy. The use of wind energy has been growing steadily

in the last decade. In fact, the capacity of wind-produced
electricity throughout the world has doubled from 2013 to 2018
[1]. A wind turbine power curve denotes a mathematical
representation of its generated power as a function of wind speed.
This curve is provided by wind turbine manufacturers and is used
to estimate the annual energy production (AEP). The wind power
curve is used for various purposes: obtaining a forecast of the
generated power and assessing the potential of using wind in an
area based on the wind speed profile of that area [2]. It can also
be used by the operator to identify a faulty behavior or abnormal
operation of a turbine by comparing the actual generated power
with the power curve [3]. In practice, however, the actual power
generated by a wind turbine deviates from its nominal power
curve as there are variations and uncertainties associated with
wind speed under real-world operating conditions. Hence,
considering the role that the power curve plays in the scenarios
mentioned above, its continuous accurate estimation is of
importance.

Several methods have been previously proposed for estimating
a power curve. These methods can be categorized into parametric
and non-parametric models. Parametric models involve a few
well-defined parameters. Piecewise linear regression, nonlinear
regression, and piecewise splines are examples of parametric
models applied to the power curve estimation problem [4, 5].
Examples of nonparametric models include support vector
machine (SVM), k-nearest neighbor (KNN), random forest (RF),
gradient boosting (GB), and neural network (NN) [2, 6, 7]. The
power curve estimation methods can also be grouped into
deterministic and stochastic ones. Deterministic methods involve
point prediction of the output while stochastic methods seek a
probability distribution of the output [2, 8]. Due to the random
nature of atmospheric variables, as well as various factors
affecting a wind turbine, there is uncertainty associated with the
power curve estimation [9]. It is therefore beneficial to quantify
this uncertainty which can then be utilized in the operation of
wind turbines. The estimated uncertainty can help planners and
wind farm operation engineers to have a better view of the validity
of the wind power curves, hence enhancing their ability to make
decisions accordingly. Stochastic methods attempt to provide a
probability distribution associated with the output power. The
Gaussian Process Regression (GPR) method has been previously
used to acquire uncertainty in the power curve [10-14].
Resampling methods such as bootstrapping and bagging have
been used to obtain uncertainty in terms of confidence intervals
[15]. Uncertainty propagation methods have been considered to
construct a probability density function based on the uncertainty
of input variables via curve fitting [16].

A shortcoming of deterministic methods is that they do not take
into consideration the distribution associated with the input
variables and the output is found as a single point or value. In
other words, one does not know the uncertainty associated with
an output given an input. Although stochastic methods attempt to
address this issue, they have limitations. The GPR method
performs well for small to medium size datasets, its performance
degrades for large datasets due to the computation of the
covariance kernel that is needed for all the dataset samples.
Among the aforementioned methods, neural networks are being
increasingly used for power curve estimation due to their ability
to estimate the nonlinearities involved [7, 17]. In [18], it is shown
that neural networks perform better than conventional methods,
such as polynomial regression, logistic regression, and KNN, for
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the power curve estimation problem. Neural networks, in their
basic form, are deterministic models. To take into consideration
the uncertainty associated with the estimated output power, the
Bayesian approach can be deployed. However, the use of the
Bayesian approach is computationally intensive and time-
consuming [19]. It is worth noting here that there is a difference
between the probability computed by logits and the epistemic
uncertainty carried out in this work as the former indicates the
probability of a certain class computed by the model but the latter
indicates the model confidence level.

This paper addresses the uncertainty associated with the power
curve estimation. For this purpose, a probabilistic neural network
model based on the Bayesian approach is developed in order to
obtain the uncertainty associated with the inevitable modeling
error, which is called epistemic uncertainty, in a computationally
efficient manner. The high computational demand of the Bayesian
approach is mitigated here by using the method of Monte Carlo
dropout. Furthermore, by modifying the loss function of the
network, the aleatoric uncertainty associated with data noise is
estimated. The overall uncertainty is then determined by
combining these two types of uncertainty. The -calculated
uncertainty helps developers in two way. The epistemic
uncertainty shows the quality of the model development process
including the goodness of the training dataset and sufficiency in
the complexity of the implemented model. This quantity can be
used to improve the model training process. On the other hand,
the aleatoric uncertainty helps quantify the noise level in the data.
The proposed model is trained and tested on an actual dataset
from a wind farm. Both the accuracy and the uncertainty aspects
of the output power estimation are examined by carrying out a
comparison with existing methods. In the first section of this
work, a brief introduction to the topic is provided along with the
research question addressed in this paper. Then, the method,
dataset, and training process are explained. This description is
followed by the results section. In the final section, the findings
are summarized and a path for further research is proposed.

II. DEVELOPED PROBABILISTIC NEURAL NETWORK MODEL

This section discusses the mathematical aspects of the developed
neural network model, and the dataset used for training and
testing the model.

A. Mathematical Framework

This section covers our methodology to estimate the probability
distribution of wind power curves using measurements from a
typical wind plant SCADA system. Two sources of uncertainty
are identified in statistical learning problems. The first one, called
model or epistemic uncertainty, arises from the lack of knowledge
in the model regarding the actual nature of the model subject.
Lack of enough data in certain areas of the feature space is the
root cause of this uncertainty in machine learning models. The
model uncertainty can be mitigated by providing more data for
training the model to cover all the possible behaviors of the
model. Of course, it comes at a price that is longer training time
and more complex models to learn those data. The next source of
uncertainty is the presence of noise in measurements. This type of

uncertainty, called aleatoric uncertainty, can be reduced by using
better measurement sensors. It can partly be done by appropriate
post processing (e.g., de-noising) of the dataset. Note that
modification of sensors on a complex system, such as wind
turbines, can be a prohibitive task. A comprehensive probabilistic
model is considered here to quantify these uncertainties [20, 21].
Neural networks are shown to provide an effective estimation
model. Due to their flexible structure, they can estimate any
nonlinear function by having adequate numbers of neurons and
layers. They can handle a large number of samples in training
datasets as well as high-dimensional datasets [17]. However,
implementing a probabilistic approach is not trivial for a neural
network model. The reason is the large number of parameters
involved and also the highly nonlinear structure of these models,
which make both analytical and numerical manipulation a
demanding task for finding posterior distributions.

Recently, there have been several proposals for simplifying the
development of probabilistic neural networks. Among them, the
Monte Carlo Dropout method is applied to several applications
due to its accuracy in determining output distributions and also
convenient implementation. In its original form, this method is an
approximation for a Bayesian posterior of the parameters in a
neural network model. A summary of this method is given next.

A probabilistic model aims to estimate the posterior predictive
function which is defined as follows [17, 22]:

p(ynew"D):J.p(ynew‘D’W)p(W‘D)dW (1)

where y,.» denotes the model prediction, D = (X, Y) is the training
dataset, and W represents the model parameters. To obtain the
above integral, one should have the posterior distribution of the
parameters given the training data. By using the Bayes theorem,
one could rewrite this distribution as follows [22]:

p(DW)p(W) )
p(D)
Given the large number of parameters in a multilayer neural
network model and the nonlinear relationship due to the existence
of activation function, computing the above equations is
demanding. In this method, the posterior pdf of the model
parameters is approximated by variational inference through
minimizing the Kullback-Leibler (KL) divergence between an
approximate distribution g¢(W), parametrized by a latent variable
6, and the actual posterior distribution of p(WID) [23, 24]. Using
the definition of KL divergence, one can minimize the following
function with respect to 8 to get go(W) as an approximation of

p(WIX),

p(W|D)=

L(6) =—jq9 (W)log p(Y 1 X,W)dW +KL(ge (W)l p(W)) 3)

The integral in (3) is still intractable and as an approximate
solution, the Monte-Carlo integration can be adopted. At each
step of minimization, the network output is evaluated using a
sample drawn from gg¢(W). Repeating this process in the training
phase optimizes the loss function.
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The key concept for establishing g is to convert the variational
variable in the gs pdf into a random variable. For this purpose,
dropout layers are considered. Dropout is a method of setting a
certain number of network weights to zero at each training epoch
via sampling from a Bernoulli distribution [25].

FIGURE 1. A feedforward neural network (left) versus its dropout processing unit
version indicated by crosses (right) with a 0.4 dropout probability.

It is assumed that g4 can be factorized over layers, that is:

a9(W) =H619, (W) 4)

where i denotes the layer number. For each layer, gy is
parametrized to be the mean value of the weight matrix multiplied
by a diagonal matrix consisting of 0 and 1 sampled from a
Bernoulli distribution with a probability of p;. Hence, some of the
weights are randomly set to zero. As a result, the argmax of
equation (3) becomes the mean value of the weights minimizing
the loss function. In [26], it has been shown that the KL
divergence can be estimated via the following equation:

12

Do (1-p) ®)

KL(q(W) 1l p(W;)) o<
where [ denotes the characteristic length (a hyperparameter), k is
the number of processing elements at i layer, H is the entropy of
the Bernoulli distribution with probability p;, and the subscript i
denotes the layer number. Therefore, a loss function for the
network is established which consists of the log-likelihood of the
training samples and the regulator term of (5) to keep gy close to
the true posterior pdf of p(WID). As the gradient of (3) is needed
for minimization, the problem with the discontinuity of the
Bernoulli distribution, appearing in the entropy term of (5), needs
to be addressed. For this purpose, a continuous approximation of
the Bernoulli distribution is adopted [27]. This way, by
minimizing the loss function of the network, the best probability
of the dropout Bernoulli distribution is found [26].

With an assumption of the Gaussian distribution of the noise,
the aleatoric uncertainty can be estimated through the training
process via modifying the loss function [28, 29]. The logarithm
of this term is substituted in (3) in place of log p(Y1X, W),

P LIl N PETIY ©)
2 2 a 1

where the subscript @ indicates aleatoric uncertainty. We use the
loss function of (6) as the kernel for integrating (3).

The predictive probability of (1) can be approximated by a
sampling of W and feedforward predictions of the network. The
mean value of this feedforward evaluation is computed as
follows:

M=

2% )A)i (xnew’W) (7)

~<|

1

i

where B denotes the number of feedforward evaluations and y; the
output of the model at i evaluation. The corresponding variance
is computed as stated below.

B 2
O—e2=*2(5’i (xnew’ws)_j’

i=1

®)

_

oy |-

The above variance is an indicator of the epistemic uncertainty,
denoted by subscript e, and it arises from the uncertainty in the
model parameters updated by a training dataset, i.e. p(WID).

B. Network Architecture

Dropout + Dense 1

Dropout + Dense 2

Dropout + Dense 3

Dropout + Dense 4

Log(variance)

FIGURE 2. Architecture of the probabilistic neural network model used

Dropout

A multi-layer neural network is used here by stacking four fully
connected layers each consisting of 1024 processing units and two
parallel layers with 1 processing element for the mean and
aleatoric variance outputs at the network end. The input is also
feedforwarded to the fourth layer. The architecture of the network
is illustrated in FIGURE 2. The activation function tanh(:) is
used for the first four layers and linear activation functions are
implemented for the last layers. Dropouts are placed between the
layers with the Bernoulli distribution probability set by the
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optimization algorithm. The mean absolute error (MAE) is used
for evaluating the performance of the model. This metric gives an
indication of how a model performs over a dataset and is defined
as follows: [22]

©))

1Y .
MAE(S)=EZ\>’,- -3
i=1

where N is the number of dataset samples, S is the test dataset, y;
is the true output of the i sample and ; is the model output for
the same sample.

The Adam optimizer algorithm is chosen for minimizing the
loss function in equation (3) with a learning rate scheduling plan
starting from 1E-3 and ending at 1E-5. After the training phase,
the estimation is done for the test set having no overlap with the
training set. For evaluating the epistemic uncertainty distribution,
the feedforward output evaluation is repeated for each input
sample and the results are recorded. Then, the mean value of the
distribution is taken as the estimated power value and the standard
deviation is considered to be the epistemic uncertainty. The
logarithm of the variance, computed by the log(variance) layer of
FIGURE 2, is a measure of aleatoric uncertainty. The code is
written in Python using the utility Keras with TensorFlow 2.0
backend. The PC used for running the code has a 64 GB of RAM,
a i7-7700K CPU operating at 4200 GHz, and a Quadro P4000
GPU.

C. Datasets

In this section, the datasets used are described. These datasets are
from the wind turbines in La Haute, France [2], which are publicly
available and are called Supervisory Control and Data
Acquisition (SCADA) which consist of 5 years of data of 4 wind
turbines. The data are aggregated for every 10 minutes and the
mean, standard deviation, minimum, and maximum values are
provided as time series. The turbines are MMS82 and their
specifications are shown in TABLE 1. The nominal power curve
of the turbine furnished by the manufacturer is used as the
baseline to examine performance.

TABLE I
Specifications of MM82 wind turbine [32]

Datasheet SENVION MMS82

Nominal Power 2050 [kW]
Rotor Diameter 82 [m]
Blades Length 40 [m]
Cut-in Wind Speed 3.5 [m/s]
Cut-out Wind Speed 20 [m/s]
Rated Wind Speed 14.5 [m/s]

A list of measurements and their description can be found on
the website mentioned on the host website [33]. The wind speed
was directly measured by two anemometers on the tower at
different heights. As illustrated in FIGURE 3 (top), the joint
distribution of the generated power and the wind speed is shown
for a sample time interval. The two marginal distributions are
shown on the top and right sides of the scatterplot for the wind

speed and power, respectively. As indicated in this figure, the
wind speed average is 6 m/s, and the power average lies around
450 KW.

2000
1500

1000

Power (kW)
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0.0 25 50 7.5 10.0 12,5 15.0 17.5 20.0

Wind Speed (m/s)

FIGURE 3. Joint distribution of wind speed and wind power for a typical wind
turbine.

Wind speed is the primary predictor of wind power. However,
other atmospheric variables such as air temperature have been
found to contribute to the generated power [34]. The wind
direction plays a role in the generated power, particularly if there
is yaw misalignment. Here, the direction angle is transformed by
sinusoidal functions and used as independent variables. The
nacelle angle of the turbine is also reported in the datasets. The
pitch angle of the blades affects the power output as well. These
parameters are included in the wind power prediction. The wind
turbulence intensity has an impact on the amount of energy a
turbine can harvest. An increase in the turbulence intensity causes
the generated power to deviate from the nominal curve. Thus, for
accurate power estimation, it is important to consider this quantity
[35, 36]. Turbulence intensity is defined as follows:

<\‘<Q

(10)

where v denotes the average wind velocity and o, the standard
deviation of the wind speed on a given time interval. The other
quantity affecting the output power is wind shear, which is
defined as the ratio of wind speed at different heights [36]. The
definition of wind shear is given by:

fof2]

where v denotes the velocity at height z and vy the velocity at
height zo. Due to the unknown height of the anemometers, the
ratio of v to vy is taken here to serve as the indicator of the wind
shear. The wind gust factor G is another quantity that may impact
power generation. It is an indicator of how large the magnitude of
the wind bursts are compared to the average wind speed in a given
time interval [36],

o= (12)
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The following values are used to form the input of the neural
network:10 minutes average wind speed, ambient temperature,
wind direction, blades pitch angle, nacelle angle, wind turbulence
intensity, wind gust, and wind shear. The effect of each one is
investigated in the results and discussion section. The statistics of
these inputs are listed in TABLE II.

TABLE II.
Typical input values to the neural network model.

Variable Mean STD
Wind Speed (m/s) 6.449 2.909
Temperature (°C) 4.953 3.456
Wind Direction (deg) 173.93 87.93
Turbulence Int. 0.133 0.096
Gust Factor 1.381 0.0317
Wind Speed Ratio 1.042 0.069
Pitch Angle (deg) 9.72 24.51
Nacelle Angle (deg) 174.46 88.44

III. RESULTS AND DISCUSSION

In this section, the results of the developed model for estimating
the wind power curve are presented. The model is evaluated in
two ways. First, its effectiveness in evaluating uncertainty is
studied. Noting that the main predictor of wind power is wind
speed, for better visualization, the discussion focuses on the wind
speed distribution rather than the overall joint input set
distribution.

In FIGURE 4 the epistemic uncertainty of the test dataset is
depicted. Each dot in the figure shows the mean wind power
computed according to (7) and its hue indicates the corresponding
variance obtained from (8). As illustrated in this figure, the
uncertainty is the lowest in the region with wind speeds between
5 m/s and 8 m/s. This region corresponds to the highest
probability region shown in FIGURE 3. The uncertainty of the
model increases at the two extremes ends of the wind speed,
particularly at higher speeds. This implies that the model
estimation capability is capped as a result of fewer data points in
those regions. Also, the data points, which are farther than the
main body of the dataset, exhibit larger epistemic uncertainty.
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FIGURE 4. Model uncertainty for the Mont Carlo dropout neural network. Darker
hue shows higher uncertainty as the data in the training dataset is more scarce
compared to the lighter region corresponding to areas having more training data.

Next, the variation of the epistemic uncertainty with the relative
frequency of the wind speed distribution in the training set and

then the total number of samples used for training. In FIGURE 5
the samples are binned into fixed intervals of wind speed and then
the average epistemic uncertainty for each bin is plotted against
the frequency of the same bin. This figure shows that the
epistemic uncertainty decreases with the frequency of the samples
in the input dataset.
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FIGURE 5. Epistemic standard deviation of generated power vs. frequency of
wind speed magnitude in the dataset examined

The next study shows the performance of the model in
evaluating the aleatoric uncertainty. This is the direct output of
the model from the definition of the loss function. FIGURE 6
illustrates this quantity for the test dataset. The computed
aleatoric uncertainty is seen higher for the samples with lower
joint input-output probability. The algorithm treats these samples
as noise and adjusts the standard deviation in the loss function to
a higher value to reduce their effect on the output. Almost all the
high uncertainty points are from data points far from the main
body of the power curve. The opposite in the epistemic
uncertainty plot is observed as the algorithm assigns low
uncertainty to the points with wind speed between 4 m/s and 6
m/s and power of around 500 kW where they have the largest
aleatoric uncertainty.
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FIGURE 6. Aleatoric uncertainty for the test dataset. The standard deviation is
higher for the samples located further from the concentration region.

The rest of this section is dedicated to examining the accuracy
of the developed model in determining wind power, regardless of
its ability to determine the uncertainty. First, the effect of each
input on the accuracy of the power estimation is examined. The
wind speed is taken as the main predictor of power and the
percentage improvement in the accuracy in terms of MAE of the
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developed model is reported when adding inputs. In FIGURE 7
the mean absolute error for the model trained with different input
variables is shown. For each case, the model was trained on three
separate datasets and the results are averaged for the plot shown
in this figure.
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FIGURE 7. Mean absolute error (MAE) of the developed Monte Carlo dropout
neural network model for different sets of inputs; the highest accuracy is achieved
when all the inputs are considered. (WS: wind speed, TI: turbulence Intensity, BA:
blade angle, T: temperature, G: gust)

TABLE I provides the performance comparison of different
models on four datasets in terms of mean absolute error (MAE)
in power estimation. The Gradient Boosting (GB), Random
Forest (RF), and Gaussian Process Regression (GPR) models
were examined in addition to a deterministic Neural Network
(NN) for comparison with our developed MC dropout NN model.
The results show that the developed model outperforms the other
models across all the datasets.

TABLE III.
Comparison of the mean absolute error of the developed model with the other
models consisting of gradient boosting (GB), random forest (RF), Gaussian
process regression (GPR), deterministic deep learning (Vanilla NN). The
estimations for the RF and GB methods are found through a grid search for the
best mean absolute error on the validation dataset.

Dataset Vanilla ~ MC Dropout
Number GB RF GPR NN NN

1 24.01 24.09 32.03 32.61 22.83

2 24.82 23.49 32.01 24.86 21.11

3 17.48 21.03 27.12 26.00 17.23

4 25.03 28.04 35.97 33.17 25.00

Dataset 1: 2017 Summer

Dataset 2: 2016 Winter

Dataset 3: 2014 All Seasons

Dataset 4: 2014 and 2015 All Seasons

FIGURE 8 shows the distribution of generated power predicted
by the developed model along with the distribution of the actual
power from the test dataset for the same inputs. Also, the power
predicted by the manufacturer curve for the corresponding wind
bin center is shown by black solid lines. Note that the developed
model successfully constructs the distribution of the power for the
unseen input data.

Finally, the percentage of improvement compared to power
determination using only the nominal power curve is reported. In
FIGURE 9, the nominal curve provided by the company and
actual data are displayed on the top and the percentage

improvement in mean absolute error on a dataset comparing to the
nominal curve are displayed on the bottom.
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FIGURE 8. Distribution of the generated power from the test dataset and
calculated by the model shows a good prediction power..
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FIGURE 9. Turbine nominal curve and actual data (left), and percentage
improvement in the mean absolute error of power estimation with MC dropout
neural network model compared to the nominal curve (right) for each dataset.

IV. CONCLUSION

In this paper, a method for determining the uncertainty of wind
power estimation has been presented. Both epistemic and
aleatoric uncertainties are obtained. For the epistemic uncertainty,
the Monte Carlo dropout method is deployed as part of a
regression neural network model to obtain the uncertainty of the
model parameters. Then, by modifying the loss function of the
network, the aleatoric uncertainty is found in the form of the
output variance. The developed method combines the strength of
neural networks with the advantages of Bayesian probability
inference without suffering from the prohibitive computational
complexity of the latter. Due to the dropout layers, this model is
mostly immune to overfitting. The performance of the model was
tested on four datasets from an actual wind farm. The epistemic
uncertainty was found to be mostly due to the lack of enough
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information in the training datasets as the model showed less
confidence in its output for samples from sparse input space
regions. It was further shown that increasing the number of
training samples, reduced the epistemic uncertainty. On the other
hand, the aleatoric uncertainty, which originates from the noise in
data samples, was seen to be able to identify outliers towards
assigning higher uncertainty to those samples. The model
performance was compared to four other machine learning
algorithms and the results showed the higher accuracy of the
Monte Carlo dropout method in terms of the mean absolute error
in the output power.

As future works, there is room for further exploitation of
Bayesian neural networks. For instance, using the proposed
method for the prediction problem in the wind energy field can
provide confidence intervals for the predicted power towards
more reliable planning as it provides a tool for assessing annual
power prediction with associated uncertainty. Also, the ability of
this method in identifying outliers can be used for anomaly
detection, fault detection, and condition monitoring of wind
power systems.
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