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Abstract 

Humans appear to intuitively grasp definitions foundational to formal geometry, like definitions 

that describe points as infinitely small and lines as infinitely long. Nevertheless, previous studies 

exploring human’s intuitive natural geometry have consistently focused on geometric principles 

in planar Euclidean contexts and thus may not comprehensively characterize humans’ capacity 

for geometric reasoning. The present study explores whether children and adults can reason 

about linearity in spherical contexts. We showed 48 6- to 8-year-old children and 48 adults from 

the Northeast United States two different paths between the same two points on pictures of 

spheres and asked them to judge which path was the most efficient for an actor to get from a 

starting point to a goal object. In one kind of trial, both paths looked curved in the pictures, and 

in another kind of trial, the correct curved-looking path was paired with an incorrect straight-

looking path. Adults were successful on both kinds of trials, and although children often chose 

the incorrect straight-looking path, they were surprisingly successful at identifying the efficient 

path when comparing two that were curved. Children thus may build on a natural geometry that 

gives us humans intuitions that are not limited to the formal axioms of Euclidean geometry or 

even to the Euclidean plane.  
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Public Significance Statement: Children and adults succeed in judgements of spherical 

linearity, i.e., identifying a “line” on a sphere as the most efficient path between two points. 

Children’s seemingly advanced judgments about spherical geometry suggest the possibility of 

effective geometry pedagogies that go beyond planar contexts.  
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Introduction 

 Before surfaces, there are lines, at least according to Euclid’s Elements. Definitions 2 and 

4 of the Elements, historically among the most important texts in all of formal mathematics, 

introduce a line as infinitely thin and a straight line as lying evenly with its points (Euclid, 

2007/300BCE). (Earlier definitions—1 and 3—introduce points, and later definitions—5 through 

7—introduce surfaces.) This definition of a straight line is innovative and curious upon reflection 

(Trudeau, 2001), but we intuitively grasp it as picking out the shortest, most efficient path 

between two points. For example, imagine taking a string by its ends: It does not form a straight 

line until you pull it taut so that it lies evenly with its ends. Euclid may have thus intended to 

exclude any curve, and this is the meaning of Definition 4 on a plane. But is our identification of 

straight lines, like their definition, prior to and perhaps not limited to any particular kind of 

geometric surface? On a sphere, for example, a taut string becomes a curved geodesic. Are our 

intuitions strictly Euclidean or are they more flexible, allowing us to identify such lines on 

surfaces that are not planar, like spherical surfaces? 

Prior work investigating humans’ ability to identify and reason about such foundational 

definitions, principles, and figures of formal geometry has consistently focused on geometric 

intuitions that align with planar Euclidean geometry. For example, recent research relying on 

cross-species, cross-cultural, developmental, and computational approaches suggests that from 

childhood and regardless of formal schooling, humans, but not non-human primates, are 

spontaneously attuned to foundational principles of planar Euclidean geometry (e.g., lines, 

length, parallelism, perpendicularity, and symmetry) such that humans uniquely are able to 

mentally compose these Euclidean principles with an algorithmic-like “language of thought” for 

geometry (Amalric et al., 2017; Sablé-Meyer et al., 2021). Other research relying on these same 
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broad approaches suggests that separate cognitive systems for geometry inherited by humans 

through evolution—one system that prioritizes distance and directional information to support 

navigation and one system that prioritizes length and angle information to support visual form 

recognition—provide complementary geometric sensitivities that get productively combined 

through human development to form an intuitive natural geometry consistent with planar 

Euclidean geometry (Dillon et al., 2013; Dillon & Spelke, 2018; Spelke et al., 2010). Even 

studies that have probed humans’ both planar and spherical geometric intuitions have 

nevertheless emphasized that intuitive geometry reflects planar Euclidean principles. For 

example, Izard et al. (2011) investigated the geometric intuitions of adults and children from the 

Unites States, France, and from an Amazonian village, in which there is no formal schooling in 

geometry. Participants were asked to reason about the properties of points and lines described in 

the context of a planar surface and, for a subset of questions, a spherical surface (e.g., “Can two 

lines never intersect?”). Older children and adults across cultures performed well on the 

questions presented in the planar context and changed their answers as needed when the same 

questions were presented in the spherical context. Younger children showed less sensitivity to 

context but also produced fewer correct planar responses. Izard et al. (2011) concluded that 

humans are cognitively prepared to reason about planar surfaces and that planar geometric 

intuitions spontaneously develop in all humans and are reinforced by everyday experiences (e.g., 

navigation) and formal education. Because of the small sample sizes (an inherent limitation to 

testing the Amazonian population) and because of the relatively few questions presented in the 

spherical context, this study nevertheless could not support any strong developmental 

conclusions about participants’ spherical intuitions. 
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The present work does not adjudicate among the cognitive theories outlining human’s 

intuitive natural geometry described above or refute the idea that humans may develop geometric 

intuitions that support reasoning about planar Euclidean geometry. Rather, the present work 

suggests that in its sole focus on planar contexts, prior work falls short in comprehensively 

describing human’s intuitive geometry as both a central cognitive achievement of the human 

mind and as a foundation for humans’ capacity to understand formal geometries more generally, 

both Euclidean and non-Euclidean. While different formal geometries describe different 

surfaces, they nevertheless adopt the same principle of a line as the shortest, most efficient path 

between two points. In investigating children’s and adults’ intuitions about lines on spherical 

surfaces in the present study, we thus explore the possibility that children and adults have 

geometric intuitions that go beyond planar contexts, allowing us to provide a more complete 

picture of human intuitive natural geometry. 

 

Methods 

Participants 

 Sample sizes and exclusion criteria were specified in advance of data collection and were 

preregistered on the Open Science Framework (OSF; osf.io/thbpv/). Forty-eight 6- to 8-year-old 

English-speaking children (Mage 7y7m; range 6y1m–8y11m; 27 girls) participated. One 

additional child was excluded because they had participated in a pilot version of the study. 

Participants were recruited from the National Museum of Mathematics in New York City and 

New York University’s child participant database and were given a small thank-you gift. Forty-

eight English-speaking adults (Mage 19y; range 18-22y; 34 women) also participated. An 

additional 6 adults were excluded because of: failure to follow task directions (3); choosing the 
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response on one side of the screen over 90% of the time (1); or experimenter error (2). Adults 

were recruited from New York University’s participant study pool and were given course credit 

or payment. The use of human participants for this study was approved by the Institutional 

Review Board at New York University. 

Materials, Design, and Procedure 

The stimuli consisted of 90 2D pictures of 3D spheres generated by custom code in 

Mathematica (version 11). Each sphere depicted a purple point and an orange point, connected 

by a thin black path. The path could either be the shortest path between the points, i.e., it could 

be a geodesic (which, if the path continued around the whole sphere, would be a great-circle and 

cut the sphere in half; Fig. 1), or it could not be the shortest path between the two points, i.e., it 

could be an arc (which, if the path continued around the whole sphere, would not cut the sphere 

in half). Because each picture captured the sphere from only one point of view, the 2D geometric 

properties of how the paths looked varied. In particular, both geodesics and arcs could look 

straight or curved in the picture. By varying the point of view at which the spheres were 

presented, we could therefore vary both spherical linearity (i.e., whether the path was a geodesic 

or arc) and planar linearity (i.e., whether the path looked straight or curved on the 2D picture 

plane). 
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Fig. 1. Examples of spherical and planar linearity. Geodesics only look straight in a picture when 

they circumscribe the sphere’s equatorial plane or are rotated only around the front-back axis 

(A); they look curved when shown from another point of view (B). Arcs, in contrast, can look 

either straight (C) or curved when shown at a point of view other than one intersecting the 

equator; they look curved when they intersect the equator (D). Participants in this experiment 

compared curved geodesics (B) to straight arcs (C) and curved arcs (D). For illustrative 

purposes, we show straight geodesics (A) here, but these paths were not included in the 

experiment. We also show here (but not in the experiment) the continuation of the depicted paths 

with dotted lines beyond the purple and orange end points to illustrate that, while geodesics will 

cut spheres in half, arcs will not. 

 

On each trial, participants saw a pair of sphere pictures (Fig. 2) presented using PsychoPy 

(version 1.90.3) on a 13” laptop screen by an experimenter in a quiet testing room. The distance 
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between the two depicted points on the spheres and their heights on the spheres were always 

matched across pictures in the same trial but varied across trials, with 5 possible distances and 3 

possible heights above or below the equator. Curved paths varied in curvature in a semi-

continuous way based on a geodesic’s true curvature. Paths farther from the equator appeared 

more curved than paths nearer to the equator since geodesics appear straight at the equator (see 

Fig. 1); and, for paths at the same height on the sphere, those whose endpoints were farther apart 

versus closer together appeared more curved since paths with more distant points cover more of 

the sphere’s curved surface. 

In 2 blocks of 30 trials each, participants were asked to evaluate which of the two 

depicted paths was the “easiest,” most efficient path from one point to the other on the sphere 

(Fig. 2A). In one trial type (the curved arc condition), participants compared curved geodesics to 

curved arcs (Fig. 2B). The curved arcs were generated in Photoshop (CC 2015.5 version 17.0.0) 

by reflecting the curved geodesics across the principal axis between the two points. For these 

trials, participants thus compared two paths that matched in their depicted length and curvature. 

In the other trial type (the straight arc condition), participants compared curved geodesics of the 

same length and curvature as those in the curved arc condition to straight arcs (Fig. 2C). The 

straight arcs depicted what looked like a straight path in the picture between the two points, and 

so for these trials, participants compared two paths that did not match either in their depicted 

length or in their curvature. Curved geodesics were the correct responses in both conditions. 

Trial types were mixed within each block, trial order within each block was randomized 

across participants, and curved geodesics appeared 50% of the time on each side of the screen. 

To protect against any effects of path orientation on performance, paths were not presented 

within 10° of the horizontal. They also varied in orientation across trials and across participants 
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(whole-degree values: 10°-170°; 190°-350°) but were matched across the two pictures in each 

trial. 

 

 

Fig. 2. A child participant (A) and screen shots of example trials. In the curved arc condition (B), 

participants compared curved arcs (incorrect; left) to curved geodesics (correct; right). In the 

straight arc condition (C), participants compared curved geodesics (correct; left) of the same 

length and curvature as those in the curved arc condition to straight arcs (incorrect; right). The 

curved geodesics were presented at different orientations across conditions. 

 

The task was designed to probe participants’ intuitions of a line as the most efficient path 

between two points on a sphere without requiring their knowledge of any formal definitions. 

Prior to completing the test trials, participants completed practice trials, in which they were 

introduced to a “very lazy” purple snail, who always took the most efficient path from a starting 

point to an orange mushroom, a favorite food. Across five practice trials, participants were asked 



RUNNING HEAD: MIND-BENDING GEOMETRY 

 11 

to judge, e.g., whether the snail would push two blocks (correct) or three blocks (incorrect) out of 

the way to get to the mushroom. Participants received corrective feedback on the practice trials. 

Participants were then shown a picture of a purple point and an orange point on an otherwise 

blank screen and were told that the snail would look like the purple point, and the mushroom 

would look like the orange point. Finally, they were shown a large picture of sphere (with no 

points or paths) and were told that the snail and mushroom would be on a “perfectly round land” 

shaped like a “really big ball.” For each test trial, participants saw two pictures of spheres, one 

on each side of the screen and each presenting a path. The experimenter asked which path was 

the easiest path the snail could take to the mushroom and recorded with a button press to which 

picture participants pointed. Participants received no corrective feedback on the test trials. 

 

Results 

 Results with 6- to 8-year-old children 

Children’s responses are presented in Fig. 3. All analyses were specified prior to data 

collection and preregistered on the OSF (osf.io/thbpv/). We focused on the accuracy and 

consistency of participants’ responses. A binomial mixed-model logistic regression found that 

children performed significantly below chance overall (P = 0.455, 95% CI = [0.426, 0.485], p = 

.003). An additional regression with accuracy as the dependent variable, condition as a fixed 

effect, and random intercepts for participants revealed a main effect of condition (Wald Test, 

χ2(1) = 568.44, p < .001), with children performing above chance in the condition comparing 

curved geodesics to curved arcs (P = 0.695, 95% CI = [0.658, 0.730], p < .001) but below 

chance in the condition comparing curved geodesics to straight arcs (P = 0.216, 95% CI = 

[0.187, 0.248], p < .001). A third regression that added curvature as a fixed effect revealed an 
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effect of condition (Wald Test, χ2(1) = 133.11, p < .001), curvature (Wald Test, χ2(1) = 24.99, p 

< .001), and an interaction between condition and curvature (Wald Test, χ2(1) = 35.34, p < .001). 

Curvature had a significant effect on accuracy in both conditions (curved arc condition: P = 

0.888, 95% CI = [0.779, 0.947], p < .001; straight arc condition: P = 0.167, 95% CI = [.076, 

0.330], p < .001): In the curved arc condition, children performed better with greater curvature, 

but in the straight arc condition, children performed worse with greater curvature. 

 

 

Fig. 3. The proportion of geodesic and arc responses across all trials and participants in the 

curved arc and straight arc conditions for both children and adults. The curved geodesics were 

always the correct response, and chance responding was 50%; see text for statistical analyses. 

 

We next examined the consistency of children’s responses by evaluating whether an 

individual’s correct response to a geodesic curve in the straight arc condition predicted their 

correct response to a geodesic curve of the same length and curvature in the curved arc 
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condition. A binomial mixed-model logistic regression with responses to curved geodesics in the 

curved arc condition as the dependent variable, responses to curved geodesics in the straight arc 

condition and curvature as fixed effects, and random intercepts for the particular geodesic 

queried and for participants revealed that children’s responses in the straight arc condition did 

not predict their responses in the curved arc condition (Wald Test, χ2(1) = 0.27, p = .604). There 

was a main effect of curvature (Wald Test, χ2(1) = 19.54, p < .001), and there was no effect of 

the interaction term (Wald Test, χ2(1)= 0.51, p = .476). 

Results with adults 

Adults’ responses are presented in Fig. 3. All analyses were specified prior to data 

collection, preregistered on the OSF (osf.io/thbpv/), and were identical to those run on the 

children’s data. Adults performed above chance overall (P = 0.870, 95% CI = [0.789, 0.923], p < 

.001), and while their performance differed by condition (Wald Test, χ2(1) = 253.95, p < .001), it 

was nevertheless above chance in both conditions (curved arc condition: P = 0.959, 95% CI = 

[0.923, 0.979], p < .001; straight arc condition: P = 0.763, 95% CI = [0.644, 0.881], p < .001). In 

the model with curvature as an additional fixed effect, there was a main effect of condition 

(Wald Test, χ2(1) = 87.95, p < .001), curvature (Wald Test, χ2(1) = 9.90, p = .002), and an 

interaction between condition and curvature (Wald Test, χ2(1) = 6.24, p = .012): Adults 

performed better when the paths were more curved in the curved arc condition (P = 0.883, 95% 

CI = [0.681, 0.963], p = .002), but curvature did not affect their accuracy in the straight arc 

condition (P = 0.509, 95% CI = [0.293, 0.721], p = .940). 

Finally, adults’ responses in the straight arc condition predicted their responses in the 

curved arc condition (Wald Test, χ2(1) = 4.15, p = .042). In this regression, there was no main 



RUNNING HEAD: MIND-BENDING GEOMETRY 

 14 

effect of curvature (Wald Test, χ2(1) = .92, p = .337), and there was no effect of the interaction 

term (Wald Test, χ2(1) = 2.70, p = .101). 

Exploratory Results 

An unplanned analysis investigating the effects of age (treated as a continuous variable) 

and condition on accuracy in the child sample found a main effect of condition (Wald Test, χ2(1) 

= 566.54, p = < .001), with better performance in the curved arc condition, a main effect of age 

(Wald Test, χ2(1) = 7.21, p = .007), with older children performing better than younger children, 

and an interaction between condition and age (Wald Test, χ2(1) = 12.67, p < .001). Older 

children performed better than younger children in the curved arc condition (P = 0.500, 95% CI 

= [0.500, 0.500], p = .007), but not in the straight arc condition (P = 0.500, 95% CI = [0.500, 

0.500], p = .442). Younger children (median split) nevertheless still performed above chance in 

the curved arc condition (P = 0.640, 95% CI = [0.559, 0.731], p < .001). 

Additional unplanned analyses investigated the effects of age group (treated as a 

categorical variable) on accuracy and consistency across children and adults. The accuracy 

analysis revealed a main effect of condition (Wald Test, χ2(1) = 246.59, p < .001), with better 

performance in the curved arc condition, and a main effect of age group (Wald Test, χ2(1) = 

42.54, p < .001), with adults performing better than children. The interaction term further 

characterized these results (Wald Test, χ2(1) = 2.85, p = .091). The consistency analysis revealed 

a main effect of age (Wald Test, χ2(1) = 22.62, p < .001), with adults performing better than 

children, but responses in the straight arc condition did not predict responses in the curved arc 

condition (Wald Test, χ2(1) = .08, p = .774), and the interaction was not significant (Wald Test, 

χ2(1) = .33, p = .566). 
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Discussion 

 Children and adults were shown paths between two points on 2D pictures of 3D spheres 

and were asked to judge which paths were the most efficient for an actor to get from a starting 

point to a goal object. Six- to 8-year-old children answered below chance when comparing 

curved geodesics to straight arcs, but they answered above chance when comparing curved 

geodesics to curved arcs. Like children, adults performed better when curved geodesics were 

compared to curved versus straight arcs, but unlike children, they succeeded in both conditions. 

Moreover, adults’ responses across the two conditions showed some internal consistency: Those 

adults who responded correctly to curved geodesics in the straight arc condition were also more 

likely to respond correctly to curved geodesics in the curved arc condition. Finally, from 6 to 8 

years, children improve in their identification of curved geodesics versus curved arcs. 

The difference between children’s and adults’ performance when comparing curved 

geodesics with curved arcs versus straight arcs and children’s worse performance with more-

curved geodesics compared with straight arcs suggests that both children and adults are biased to 

judge the most efficient path between two points based on planar linearity, consistent with prior 

work (Izard et al., 2011). Strikingly, however, our results also show that adults recognize 

spherical linearity (i.e., geodesics) despite this bias and that both children and adults succeed in 

identifying spherical linearity when there is no conflicting planar linearity. 

Children and adults’ success in identifying curved geodesics in pictures of spheres is 

particularly surprising given that even adults are rarely taught the principles of spherical 

geometry (Lénárt, 2003; Sinclair et al., 2017) and prior work had suggested a strong and growing 

planar bias in children’s and adults’ geometric reasoning about spheres across development, 
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especially in children and adults from formally educated societies (Izard et al., 2011). Human 

intuitions about the shortest paths between two points in space in general may thus be flexible 

beyond the Euclidean plane to include spherical surfaces. In addition, children’s seemingly 

advanced judgments about spherical geometry suggest the possibility of effective geometry 

pedagogies that go beyond planar contexts. 

The present study may even underestimate this ability. For example, in the straight arc 

condition, the locations of the start and end points of the paths were matched between curved 

geodesics and straight arcs. Controlling for these start- and end-point locations meant that the 

depicted curved geodesics were longer in the picture than the depicted straight arcs, which may 

have interfered with participants’ judgements instead of, or in addition to, the interference from 

planar linearity. Future studies might investigate how matching the depicted path lengths by 

moving the start and end points closer together for the curved geodesics might affect 

performance. Second, participants saw 2D pictures of 3D surfaces, as they might see them in a 

formal geometry textbook. But, using 2D pictures may have made any intuitions about 3D 

geometry harder to access, especially intuitions about straight arcs, which appear straight from 

only one viewpoint of the sphere. Paths presented on real 3D objects or on real or animated 3D 

objects, in which an actor’s movement along paths unfolds over time, might facilitate 

performance (e.g., Hart et al., 2022; Joh et al., 2011; Smith et al., 2018). Future studies could 

thus evaluate how the dimensionality and dynamics of experimental displays might differentially 

engage participants’ intuitions about 3D geometry and explore whether simulation versus rule-

based reasoning supports accurate judgments about spherical linearity. 

Our design also relied on eliciting participants’ judgments in contexts that may have 

enhanced their performance. In particular, questions about spherical linearity were posed in the 



RUNNING HEAD: MIND-BENDING GEOMETRY 

 17 

context of judgments about an agent’s navigation and efficient action. Evidence from studies 

with humans and non-human animals suggest flexibility with geometry for navigation, including 

use of slopes and curvature (Jeffery et al., 2013; Nardi et al., 2011; Widdowson & Wang, 2022), 

although the specific geometric representations underlying these abilities are still debated. 

Recognition of the shortest path between two points on a non-planar surface might thus be 

present in human judgements about navigation. In addition, a large body of research on infants’ 

expectations about the goal-directed actions of others has found that infants expect others to take 

the most efficient paths to their goals (e.g., Gergely et al., 1995; Liu & Spelke, 2017). While 

these studies have strictly relied on planar surfaces, infants’ expectations may extend to curved 

surfaces. Future studies might evaluate what sensitivities to surfaces with different geometries 

underlie infants’ and children’s judgments of navigation and efficient action and whether such 

sensitivities are elicited and accessible outside of the domains of place or action understanding. 

 

Conclusion 

Philosophers throughout history to the nineteenth century debated the alignment between 

the natural geometry in our minds and that of the world (Kant, 1998/1781; Plato, 1949/385 

BCE), but always within the context of what would become formalized as Euclidean geometry. 

The history of mathematics then showed us that we humans are not limited to the formal system 

of planar Euclidean geometry when describing the world or the formal system of geometry itself 

(Trudeau, 2001). Previous work focusing on the origins of humans’ unique capacity for 

understanding geometry has nevertheless continued to emphasize only where our natural 

geometric intuitions align with planar Euclidean geometry (e.g., Dillon et al., 2013; Dillon & 

Spelke, 2018; Izard et al., 2011; Sablé-Meyer et al., 2021; Spelke et al., 2010). The present 
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findings instead emphasize the development of those geometric intuitions that are not Euclidean, 

insisting that a comprehensive understanding of humans’ geometric cognition, including its 

readiness for learning formal geometry, requires looking beyond planar Euclidean contexts. The 

present work thus also contributes to growing evidence that our explicit reasoning about simple 

geometric figures is not comprehensively explained solely by Euclidean principles (e.g., Hart et 

al., 2022). 

Both natural and Euclidean geometry have sets of principles, and the results of previous 

research indicate that within natural geometry are principles that allow for an intuitive grasp 

Euclidean geometry. Our present work suggests that Euclidean geometry does not exhaust 

natural geometry or vice versa. We found that intuitions about a foundational principle in all 

formal geometries—linearity—are at least present in judgments about an agent’s efficient 

navigation, even if that navigation is happening on a complex surface in terms of its formal 

description. Children may not naturally develop into “little Euclids”; rather, they may develop a 

natural geometry that gives us humans intuitions not limited to the formal axioms of Euclidean 

geometry or even to the Euclidean plane.  
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