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Identification of turbine clusters during time varying wind direction
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Abstract— An efficient strategy for maximizing the power
production of a power plant is to control in a coordinated way
only turbines that are aerodynamically coupled through wake
effects. The implementation of such control strategy requires
the knowledge of which clusters of turbines are coupled through
wake interaction. In a previous study, we identified turbine
clusters in real-time by evaluating the correlation among the
power production signals of the turbines in the farm. In this
study we reproduce the more challenging scenario with large-
scale variation of the wind direction. Different time windows of
data needed to compute the correlation coefficients are tested
and characterized in term of accuracy and promptness of the
identification.

I. INTRODUCTION

The power production of a turbine in the wake of another
can be reduced by 40% - 60% [1], [2], [3]. As a consequence
the Annual Energy Production of large wind power plants
can be negatively affected by wake interaction depending on
the wind variability at the site, turbulence, and layout of the
farm [4].

Different control algorithms have been proposed to reduce
wake interaction and increase the cumulative power produc-
tion of wind farms. The common aspect to these control
algorithms is the need to consider wind farm collectively
rather than optimize each individual turbines separately.
When looking at the wind farm in a collective way, turbines
wakes play a fundamental role since they may link several
turbines in the wind farm through wake interaction. The
momentum extracted from the wind by upstream turbines
results in the formation of downstream wakes that may
impinge on trailing turbines. In this case, the wind farm
can be then divided in clusters of turbines coupled through
their wakes. Turbines belonging to a cluster are signifi-
cantly affected by a change in the operating condition of
another turbine in the same cluster. On the other hand, a
perturbation to a turbine belonging to a cluster, to a good
approximation, does not influence turbines belonging to a
separate cluster. Breaking down a wind farm into several
clusters has the advantage of reducing the complexity of
the optimization process [5]. For example, dividing a wind
farm of NN turbines into M smaller clusters reduces the
wind farm optimization problem (consisting of at least N
control parameters) to the optimization of M independent
smaller problems with L; control variables each (where L;
is the number of turbines belonging to the i‘" cluster). This
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allows reducing the converging time to optimize the wind
farm since the optimization of the M clusters can be carried
out simultaneously. In addition, each M th cluster consists
of a reduced number of turbines respect to the wind farm
and thus a smaller number of control parameters that can be
optimized. As an example of the potentiality of reducing the
optimization computational cost, turbine clustering has been
recently implemented in the yaw misalignment optimization
tool of FLORIS[6].

Yaw control, i.e. the intentional application of yaw mis-
alignment to upstream turbines, has been shown to be a
promising technique to increase the power production of
arrays of aligned turbines[7] and of wind farms [8], [9],
[10], [11], [12]. The power production of the yawed turbines
decreases but their wakes are steered away from the down-
stream turbines. As a result, the cumulative power production
of the turbine array increases. The application of yaw control,
thus, relies on the knowledge of which turbines are in the
wake of the upstream turbines, i.e. identify the cluster of
turbines coupled by the wake interaction. However, in a real
wind farm, because of the variability of the wind direction,
turbine clusters continuously change.

In our previous work[13], [14], we developed a method to
identify turbine clusters based on the correlation of the power
production signals among all the turbines in the wind farm.
When the method does not find any cluster in the farm, it
means that the wake interaction is weak and that yaw control
is not effective. While in the previous study we considered
4 different but constant wind directions, in this work we
reproduce a more realistic condition where the wind direction
varies in time over a span of 60°.

Large scale variation of the wind direction should
promptly be identified in order to switch the wind farm
controller from the collective yaw control to the individual
controller during the transients and then apply new yaw
misalignment configuration based on the new wind direction.
The performance of the proposed method is then evaluated
by considering also the response to large scale variation of
the wind direction. On the other hand, when a new stable
wind direction is reached, the wind farm controller should
allow the new clusters of turbines to form before applying
any power optimization control strategy.

To identify clusters of turbines in real-rime, correlation of
power signals need to be computed over a sliding window.
In the previous study we considered a fixed time window of
30 minutes. This paper aims to study the sensitivity of the
cluster identification to the time window considering both the
accuracy and the promptness of the response to the variation
of the wind direction.
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Fig. 1. Layout and turbine labels of the wind farm. The rotor diameter of
the turbines is denoted by D and 6 is the wind direction (in the instantaneous
visualization equal to 30°).

Section II presents the set up used for the numerical
simulation.Section III summarizes the main features of the
cluster identification method. Section IV shows the effect of
yaw misalignment during wind direction transients. Lastly,
sections V and VI respectively show the results of the study
and draw the conclusions.

II. NUMERICAL SET-UP

A virtual wind-farm composed of 16 NREL-5SMW ref-
erence turbine[15], arranged in 4 rows and 4 columns, is
simulated with Large Eddy Simulations (LES). The turbines
have a rotor diameter D = 126 m, rated wind speed U,.q4tcq =
11.4m/s and rated power P.gtcq = SMW. As shown in
figure 1, the turbine spacing in the transversal direction
(z direction) is 3D, while in the longitudinal direction
(z direction) the spacing is 5D. The towers and nacelles
are simulated using the immersed boundary method (IBM)
implemented by Orlandi & Leonardi[16] and by Santoni
et al.[17]. The forces of the rotor acting on the flow are
reproduced using the rotating actuator disk model[18]. The
disk rotates in time according to the actual blade motion
and accounts for both the thrust and tangential forces; the
angular speed is determined according to the rotor dynamics
and controlled using a standard region II control law, where
the generator torque is taken proportional to the square of
the generator speed[19]. Additional details about the torque
controller can be found in[14]. The nacelle direction is con-
trolled by the individual yaw controller of each turbine. The
individual yaw controller operates on the difference between
the nacelle direction, o and the wind direction, 6, filtered
with a low-pass filter with an RC constant equal to 10s. The
rotation of the nacelle is activated when |(a — ¢)) — 0] > 2°,
where 1 is the imposed yaw misalignment. If rotation is
activated, the nacelle moves with a yaw rate of 0.4°/s until
reaching the desired orientation.

The average wind speed at the hub height is equal to
Uhub = 0.8U,qteq. In order to reproduce the atmospheric

boundary layer (ABL) at the inlet, turbulence obtained from
a precursor simulation is superimposed to a mean velocity
profile expressed by the following law:

U Yy ) *
- D
Uhub (yhub (

where y is the vertical coordinate, yp,p iS the hub height
and « is the shear exponent set to o = 0.05. The precursor
simulation to reproduce the ABL turbulence was performed
as a half-channel with periodic boundary conditions on the
sides and free-slip condition on the top. Neutral atmospheric
stability conditions were applied. The streamwise component
of the wind velocity at height ¥ is denoted by U and Up,yp
is the streamwise component of the wind velocity at the hub
height upstream of the wind farm. From the superposition
of the mean flow of equation (1) and the turbulence from
the precursor, the resulting turbulence intensity at the hub
height upstream of the wind farm is equal to 11%. The
space-averaged wind direction at the inlet upstream of the
wind farm varies in time in the interval of 6 € [0°,60°] as
shown by the black line in figure 2. It should be noted that
the local wind direction at any location of the domain may be
instantaneously different from the average wind direction due
to local turbulence. As an example, the blue line and red lines
in figure 2 show respectively the wind direction measured at
TOl and T16. Their instantaneous value fluctuates in time
depending of the upstream turbulence and the location of
the wind turbine in the wind farm. The large-scale wind
direction variation adopted for this study and reproduced
in figure 2 was inspired by realistic variation in the wind
direction from SCADA data of wind farm in North Texas.
Using the chosen wind direction variation we want to test the
cluster identification algorithm against the most challenging
condition where new clusters should be identified in the
smallest amount of time possible after a rapid change in the
wind direction.

The simulation of the large scale time-varying wind direc-
tion is achieved by imposing at the inlet of the simulation
domain a variation in time of the two horizontal components
of the velocity vector:

u(t) =U(t) cosO(t) — W (t)sind(t)
w(t) =U(t)sin(t) + W(t) cos O(t)

(2a)
(2b)

where ¢ is the time and € is the wind direction; u(t) and
w(t) are respectively the components of the velocity in the x
and z directions of figure 1. U and W are the instantaneous
components of the streamwise and spanwise velocity that
are the sum of the mean velocity profile and turbulent
fluctuations:

Ut)=U +u'(t)
W(t) =W +w'(t)

(3a)
(3b)

with U is obtained from eq.(1), W = 0 is the average
spanwise velocity, u’ and w’ are the turbulent fluctuations
respectively in the streamwise and spanwise direction ob-
tained from the precursor simulation. Thanks to the periodic
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Fig. 2. Time variation of the wind direction: — space-averaged wind
direction upstream of the wind farm; — the wind direction at TO1; —

the wind direction at T16.

boundary conditions at the sides, the turbulent fluctuations
from the precursor simulation are prescribed only at the inlet
of the simulation domain.

The computational box is designed such that the periodic
boundary conditions at the sides does not influence the flow
field inside the wind farm. A minimal distance of 5D is kept
between the inlet/outlet and the respective boundaries of the
wind farm. Radiative boundary conditions are applied at the
outlet. The vertical size of the domain was kept constant and
equal to 10D with free slip boundary conditions at the top.
The grid resolution in the region of the turbines is Az =
Az =0.03D and Ay = 0.025D.

III. CLUSTER IDENTIFICATION

Time-lags due to advection must be taken into account
when applying any control strategy to large wind farms.
Indeed, a change in the wind condition or in the control
set point of an upstream turbine affects downstream turbines
with a time delay that is proportional to ratio among the
turbines and the free stream velocity. For large wind farms
this can be of the order of several minutes. As an example,
the blue line of Fig.2 shows the wind direction measured
by the turbine TO1, representative of the upstream turbines,
while the red line reports the wind direction measured by
the turbine T16, i.e. the most downstream turbine. From the
comparison between the blue and red lines, we can observe
a time delay of about 5 minutes from the time at which the
wind direction starts changing at TO1 to the time at which it
start changing at T16. Since changes in the wind conditions
are convected downstream by the free stream flow, the time
delay depends on the average wind velocity upstream of
farm. Slower wind velocity implies a lager time delay and
vice versa. A rough estimate of the time delay 7* can be
obtained as:

*=d/Upuw 4

where d is the extension of the wind farm in the streamwise
direction (for example, in the case of § = 30° shown in Fig.1,
d is equal to the distance between TO1 and T16). As noted

in [13], the average velocity at which wind disturbances
are transported in the wakes corresponds to about 0.8Uy,
where the Uy is the free stream velocity in front of the
wind farm. As a consequence, the actual time delay 7 is
a function also of the wake interaction within the wind farm
and can be longer than the estimated 7*. More stable wakes
with less wake recovery will increase the time delay 7 since
the average wind speed inside the wind farm is reduced.
However, the study of this dependence goes beyond the scope
of this paper.

In order to identify clusters of turbines in real time we
use the correlation of the power production signals of all the
turbines in the wind farm as described in [14]. At each time
instant, the power production signal of all the turbines is
stored for a time window with a-priori determined length.
The correlation coefficients are then computed using the
data inside the time-window. Turbine pairs coupled by the
wake interaction are expected to exhibit a maximum in the
correlation for a time delay 7 that is function of the distance
between the two turbines. Large coherent turbulent structures
can correlate the power production of pairs of turbines with
random directions. These outliers are filtered out exploiting
the coherence in the direction of the pair of turbines that
have a high correlation due to wake interaction. In other
words, if there is wake interaction within a wind farm,
turbine pair with high correlation due to wake interaction
will have a coherent direction while turbine pairs correlated
by the turbulence will have random directions. Finally,
a network of interacting turbines is obtained only for the
wind conditions that allow increasing the wind farm power
production through collective yaw control. When no clusters
are detected, it means that the wake interaction within the
wind farm is weak enough that each turbine can be controlled
as it was isolated. Such condition happens for example during
transients from one direction to another.

In this study we perform a parametric study of the length
of the sliding time-window over which the power production
correlation has to be computed at each time step in order
to identify the turbine clusters with variable wind direction
in time. In particular sliding windows of 10, 20, 30 and 40
minutes of power production data are considered for the com-
putation of the correlation coefficients and the identification
of the turbine clusters.

IV. WIND DIRECTION TRANSIENTS

An implicit hypothesis of yaw control is that an actual
energy gain is obtained when the wind direction remains
constant for a significant amount of time. Indeed, during
the transition from one wind direction to another, the wind
direction is not uniform across the wind farm and the
imposition of yaw misalignment for wake steering control
may actually result in power losses. As an example, Figure
3 shows the cumulative power production of the wind farm
when the wind direction changes from from 6 = 0° to 6 =
30°. The solid line represents the power production of the
wind farm when each turbine is controlled individually. For
6 = 0°, 4 clusters of turbines aligned with a wind direction
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Fig. 5. Instantaneous velocity at the hub height during the transient from

6 =0°to 6 =30°.

and a turbine spacing of 5D are formed (see Figure 4). Large
turbulent structures, obtained from the precursor simulation
are visible in front of the and around the wind farm. These
turbulent structures are the reason of the fluctuations in the
wind direction of TO1 shown by the blue line in Figure 2.
The wind farm power production is minimum because of the
strong wake interaction within the clusters.

When the wind direction starts changing, the farm power
production increases until reaching a maximum that corre-
sponds to non-uniform wind direction within the wind farm
and very weak wake interaction. Figure 5 shows that during
the transient from 6 = 0° to # = 30° the direction of the
wakes of the most upstream row of turbines (TO1, T02, TO3
and T04) is significantly different from the wake direction
of the turbines in the most downstream row of the turbines
in the wind farm (T13, T14, T15 and T16). Since turbine
wakes are convected downstream by the local wind, non-
uniform wake direction implies non-uniform wind direction
within the wind farm.

Finally, when 6 = 30° across all the wind farm, the power
production of the wind farm starts decreasing again because
of the formation of new clusters of turbines. However, the
farm power production for § = 30° is higher than for
0 = 0° because of the different cluster configuration with
more turbines that face free stream conditions and the larger
spacing in the streamwise direction among turbine belonging
to the same cluster (see figure 1).

The dashed line in Figure 3 represents instead the wind
farm power production when yaw control is applied in order
to reduce the wake interaction and maximize the cumulative
power production. In particular, using the results in [14], the
wind farm is initially optimized for the wind direction 6 = (°
by imposing the following yaw misalignment angles:

o 1) = —20° to the turbines in the two clusters in the West

part of the wind farm (TO1-T05-T09; T02-T06-T10);

e 1 = 420° to the turbines in the two clusters in the East

part of the wind farm (T03-T07-T11; T04-TO8-T12);

e 1o yaw misalignment to the most downstream turbines

in each cluster (T13; T14; T15; T16).
This configuration allows to best exploit the blockage effect
of the wind farm on the incoming flow to steer the wakes
away from the downstream turbines. In this example we
impose that the collective yaw controller, does not change
the yaw misalignment angles of the turbines until the new
wind direction of # = 30° is uniform across the wind farm,
i.e. when a new set of yaw control angles should be applied.
At the beginning, when 6 = 0°, the power production of the
wind farm controlled with collective yaw controller exceeds
the power production of the individually controlled wind
farm thanks to the optimized yaw misalignment angles. Then,
when the wind direction starts changing at the most upstream
turbine of the wind farm (TO1), the power production of
the individually controlled wind farm outperforms the power
production of the wind farm where yaw control is applied.
This is due to the fact that during the transition from 6 = 0°
to # = 30°, the wake interaction among turbines in the wind
farm is much reduced as shown in Figure 5. In order to
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avoid power losses during transients of the wind direction,
the cluster identification algorithm must be able to promptly
identify the change in the wind direction and communicate
to the farm controller to switch from the collective to the
individual control approach.

V. RESULTS
The performance of the cluster identification algorithm can
be evaluated in terms of two main criteria:

o the accuracy of the identification, i.e. the number of
correct identification of turbine clusters;

o the promptness of the response, that is the time delay
that the algorithm takes to identify a change in the
cluster configuration.

A. Accuracy
The accuracy of the identification is computed as:

N. incorrect identi fications

(&)

Accuracy =1 —
N. base connections

where the N. incorrect identifications is the sum of the
waked turbine pairs that are not identified (false negative) and
turbine pairs that are incorrectly identified as coupled by the
wake interaction (false positive). A base connection is each
turbine pair whose cumulative power production increases
after the application of yaw misalignment. In a previous
study[13], we determined the turbine pairs coupled by the
wake interaction by comparing their cumulative power pro-
duction before and after the application of yaw misalignment
to the upstream turbine. For each wind direction, we use
this network of base connections as reference to evaluate the
performance of the cluster identification algorithm.

Figure 6 shows how the accuracy of the identification
change with the increasing length of the sliding time window
used to compute the correlation coefficients. A too small time
window does not allow the flow to fully propagate across the
wind farm. Therefore, signals of the power production are
mostly uncorrelated and clusters cannot be identified. This is
also expected from a theoretical point of view. Indeed, due
the characteristic time of the wake propagation in the wind
farm, any flow disturbance introduced by an upstream turbine
affects the most downstream turbines with a time delay that
is function of the free stream velocity and wind farm size
(see eq. (4)).

With larger time windows to compute the correlation
coefficients, the accuracy of the identification increases up
to about 80% for a time window of about 30 minutes. This
value of the accuracy usually corresponds to the presence of
a maximum 2 false negatives in the entire wind farm. For a
time window of 40 minutes, the accuracy reaches the value
of 90%. However, this increase in the accuracy is payed by
a reduction in the promptness of the cluster identification
during large scale variation of wind direction. Indeed, using
a longer time interval of data implies that the transition of the
wind direction affects the correlation of the power production
over a longer period of time and, thus, clusters are identified
with a larger time delay.

100
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Fig. 6. Accuracy in the identification against the length of time window

used for computing the correlation coefficients.

B. Promptness of the response

Given the physical response of the system, the promptness
of the response can be divided in two phases:

1) The promptness of algorithm to recognize that wind

direction is starting to change, as for example at time
t = 74 min in Figure 3. This ability is particularly
desired because a delay in recognizing the transients
in changing wind direction would cause most of the
turbines in the wind farm to be misaligned respect to
the wind direction when no wake steering is actually
needed.

2) The time needed to recognize that a new cluster
configuration is reached after a change in the wind
direction. In this case it is desirable to allow a larger
time delay since, in reality, large scale variation in the
wind direction can be accompanied by subsequent tran-
sients with unstable wind direction. It is then desirable
that the algorithm allows a time delay between the
formation of the cluster and the identification so that
the collective control approach is applied only when
the wind direction reaches a new stable condition.

Table I reports the time needed for the algorithm to execute
the two tasks during the transition of the wind direction
from 6 = 0° to § = 30°. Three different time windows
are considered of respectively 20, 30 and 40 minutes. The
time to detect the changing wind direction increases with the
length of the time window but remains in the order of about 2
minutes. The time to detect new cluster configuration instead
has a minimum for a time window of 30 minutes and then it
increases considerably for a time window of 40 minutes. In
the case of 20 minutes time window, the time to detect the
clusters is higher than the 30 minutes time window because
of the reduced accuracy in the identification.

Considering the two criteria (accuracy and promptness)
we can conclude that 30 minutes is the best performing time
window of data needed to identify turbine clusters or the
wind farm configuration considered in this study. Indeed,
this time window allows achieving both a good accuracy and
promptness during large scale transient of the wind direction.
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It should be noted, however, that this time window could vary
with the extension of the wind farm.

TABLE I
TIME WINDOW AGAINST PROMPTNESS OF THE RESPONSE.

Time to detect
new cluster config.

Time to detect
changing wind direction

Time window

20 min 1.4 min 25 min
30 min 1.8 min 20 min
40 min 2.6 min 33 min

VI. CONCLUSIONS

In this study, we presented the application of the cluster
identification method developed in [14] applied to the more
challenging conditions of time-varying wind direction. Re-
spect to other approaches, the presented cluster identification
method is model-free. It requires only the power production
signal of the turbines in the wind farm and the estimation
of the wind velocity upstream of the wind farm without any
assumptions about the wind direction or the turbulent inten-
sity. Yaw control is able to increase the energy production
of wind farms by reducing the wake interaction. However,
we found that an actual power gain from yaw control is
obtained only when the wind direction remains consistent
over a prolonged amount of time. Large scale wind direction
variations imply not uniform wind conditions across the
wind farm and, as a consequence, weaker and not uniform
wake interaction within the wind farm. During transients
of the wind direction, yaw control may result in power
production losses respect to the individual control where all
turbines are aligned with the wind direction. Therefore, the
wind farm controller should be able to promptly identify
variation in the wind direction to avoid power losses due yaw
misalignment. The cluster identification methodology based
on the correlation of the power production signals is able to
correctly identify such wind direction transition with a time
delay of few minutes. We also found that the best performing
time window of data needed to identify the clusters is 30
minutes long for the current wind farm set up. This time
window corresponds to approximately 6 times the minimum
amount of time that takes for the wakes to propagate from
the most upstream to the most downstream turbines in the
wind farm. While this may seem a limitation for very large
wind farms, wind condition may spatially vary within the
wind farm with an extension of several kilometers. Since
the cluster identification algorithm consider the collectively
of the turbines to identify the wake interaction, it may be
convenient to divide the wind farm in smaller subsets within
which clusters are identified. The division of the wind farm
in subsets would allow considering spatial inhomogeneity
of the wind conditions within the wind farm and reducing
the time window needed to compute the correlation among
the turbines. However, such application to very large wind
farms needs additional effort in terms of both numerical and
experimental studies.
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