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Abstract— An efficient strategy for maximizing the power
production of a power plant is to control in a coordinated way
only turbines that are aerodynamically coupled through wake
effects. The implementation of such control strategy requires
the knowledge of which clusters of turbines are coupled through
wake interaction. In a previous study, we identified turbine
clusters in real-time by evaluating the correlation among the
power production signals of the turbines in the farm. In this
study we reproduce the more challenging scenario with large-
scale variation of the wind direction. Different time windows of
data needed to compute the correlation coefficients are tested
and characterized in term of accuracy and promptness of the
identification.

I. INTRODUCTION

The power production of a turbine in the wake of another

can be reduced by 40% - 60% [1], [2], [3]. As a consequence

the Annual Energy Production of large wind power plants

can be negatively affected by wake interaction depending on

the wind variability at the site, turbulence, and layout of the

farm [4].

Different control algorithms have been proposed to reduce

wake interaction and increase the cumulative power produc-

tion of wind farms. The common aspect to these control

algorithms is the need to consider wind farm collectively

rather than optimize each individual turbines separately.

When looking at the wind farm in a collective way, turbines

wakes play a fundamental role since they may link several

turbines in the wind farm through wake interaction. The

momentum extracted from the wind by upstream turbines

results in the formation of downstream wakes that may

impinge on trailing turbines. In this case, the wind farm

can be then divided in clusters of turbines coupled through

their wakes. Turbines belonging to a cluster are signifi-

cantly affected by a change in the operating condition of

another turbine in the same cluster. On the other hand, a

perturbation to a turbine belonging to a cluster, to a good

approximation, does not influence turbines belonging to a

separate cluster. Breaking down a wind farm into several

clusters has the advantage of reducing the complexity of

the optimization process [5]. For example, dividing a wind

farm of N turbines into M smaller clusters reduces the

wind farm optimization problem (consisting of at least N
control parameters) to the optimization of M independent

smaller problems with Li control variables each (where Li

is the number of turbines belonging to the ith cluster). This
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allows reducing the converging time to optimize the wind

farm since the optimization of the M clusters can be carried

out simultaneously. In addition, each M th cluster consists

of a reduced number of turbines respect to the wind farm

and thus a smaller number of control parameters that can be

optimized. As an example of the potentiality of reducing the

optimization computational cost, turbine clustering has been

recently implemented in the yaw misalignment optimization

tool of FLORIS[6].

Yaw control, i.e. the intentional application of yaw mis-

alignment to upstream turbines, has been shown to be a

promising technique to increase the power production of

arrays of aligned turbines[7] and of wind farms [8], [9],

[10], [11], [12]. The power production of the yawed turbines

decreases but their wakes are steered away from the down-

stream turbines. As a result, the cumulative power production

of the turbine array increases. The application of yaw control,

thus, relies on the knowledge of which turbines are in the

wake of the upstream turbines, i.e. identify the cluster of

turbines coupled by the wake interaction. However, in a real

wind farm, because of the variability of the wind direction,

turbine clusters continuously change.

In our previous work[13], [14], we developed a method to

identify turbine clusters based on the correlation of the power

production signals among all the turbines in the wind farm.

When the method does not find any cluster in the farm, it

means that the wake interaction is weak and that yaw control

is not effective. While in the previous study we considered

4 different but constant wind directions, in this work we

reproduce a more realistic condition where the wind direction

varies in time over a span of 60◦.

Large scale variation of the wind direction should

promptly be identified in order to switch the wind farm

controller from the collective yaw control to the individual

controller during the transients and then apply new yaw

misalignment configuration based on the new wind direction.

The performance of the proposed method is then evaluated

by considering also the response to large scale variation of

the wind direction. On the other hand, when a new stable

wind direction is reached, the wind farm controller should

allow the new clusters of turbines to form before applying

any power optimization control strategy.

To identify clusters of turbines in real-rime, correlation of

power signals need to be computed over a sliding window.

In the previous study we considered a fixed time window of

30 minutes. This paper aims to study the sensitivity of the

cluster identification to the time window considering both the

accuracy and the promptness of the response to the variation

of the wind direction.
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Fig. 1. Layout and turbine labels of the wind farm. The rotor diameter of
the turbines is denoted by D and θ is the wind direction (in the instantaneous
visualization equal to 30

◦).

Section II presents the set up used for the numerical

simulation.Section III summarizes the main features of the

cluster identification method. Section IV shows the effect of

yaw misalignment during wind direction transients. Lastly,

sections V and VI respectively show the results of the study

and draw the conclusions.

II. NUMERICAL SET-UP

A virtual wind-farm composed of 16 NREL-5MW ref-

erence turbine[15], arranged in 4 rows and 4 columns, is

simulated with Large Eddy Simulations (LES). The turbines

have a rotor diameter D = 126 m, rated wind speed Urated =
11.4m/s and rated power Prated = 5MW. As shown in

figure 1, the turbine spacing in the transversal direction

(z direction) is 3D, while in the longitudinal direction

(x direction) the spacing is 5D. The towers and nacelles

are simulated using the immersed boundary method (IBM)

implemented by Orlandi & Leonardi[16] and by Santoni

et al.[17]. The forces of the rotor acting on the flow are

reproduced using the rotating actuator disk model[18]. The

disk rotates in time according to the actual blade motion

and accounts for both the thrust and tangential forces; the

angular speed is determined according to the rotor dynamics

and controlled using a standard region II control law, where

the generator torque is taken proportional to the square of

the generator speed[19]. Additional details about the torque

controller can be found in[14]. The nacelle direction is con-

trolled by the individual yaw controller of each turbine. The

individual yaw controller operates on the difference between

the nacelle direction, α and the wind direction, θ, filtered

with a low-pass filter with an RC constant equal to 10s. The

rotation of the nacelle is activated when |(α− ψ)− θ| > 2◦,

where ψ is the imposed yaw misalignment. If rotation is

activated, the nacelle moves with a yaw rate of 0.4◦/s until

reaching the desired orientation.
The average wind speed at the hub height is equal to

Uhub = 0.8Urated. In order to reproduce the atmospheric

boundary layer (ABL) at the inlet, turbulence obtained from

a precursor simulation is superimposed to a mean velocity

profile expressed by the following law:

U

Uhub

=

(

y

yhub

)α

(1)

where y is the vertical coordinate, yhub is the hub height

and α is the shear exponent set to α = 0.05. The precursor

simulation to reproduce the ABL turbulence was performed

as a half-channel with periodic boundary conditions on the

sides and free-slip condition on the top. Neutral atmospheric

stability conditions were applied. The streamwise component

of the wind velocity at height y is denoted by U and Uhub

is the streamwise component of the wind velocity at the hub

height upstream of the wind farm. From the superposition

of the mean flow of equation (1) and the turbulence from

the precursor, the resulting turbulence intensity at the hub

height upstream of the wind farm is equal to 11%. The

space-averaged wind direction at the inlet upstream of the

wind farm varies in time in the interval of θ ∈ [0◦, 60◦] as

shown by the black line in figure 2. It should be noted that

the local wind direction at any location of the domain may be

instantaneously different from the average wind direction due

to local turbulence. As an example, the blue line and red lines

in figure 2 show respectively the wind direction measured at

T01 and T16. Their instantaneous value fluctuates in time

depending of the upstream turbulence and the location of

the wind turbine in the wind farm. The large-scale wind

direction variation adopted for this study and reproduced

in figure 2 was inspired by realistic variation in the wind

direction from SCADA data of wind farm in North Texas.

Using the chosen wind direction variation we want to test the

cluster identification algorithm against the most challenging

condition where new clusters should be identified in the

smallest amount of time possible after a rapid change in the

wind direction.

The simulation of the large scale time-varying wind direc-

tion is achieved by imposing at the inlet of the simulation

domain a variation in time of the two horizontal components

of the velocity vector:

u(t) = U(t) cos θ(t)−W (t) sin θ(t) (2a)

w(t) = U(t) sin θ(t) +W (t) cos θ(t) (2b)

where t is the time and θ is the wind direction; u(t) and

w(t) are respectively the components of the velocity in the x
and z directions of figure 1. U and W are the instantaneous

components of the streamwise and spanwise velocity that

are the sum of the mean velocity profile and turbulent

fluctuations:

U(t) = U + u′(t) (3a)

W (t) = W + w′(t) (3b)

with U is obtained from eq.(1), W = 0 is the average

spanwise velocity, u′ and w′ are the turbulent fluctuations

respectively in the streamwise and spanwise direction ob-

tained from the precursor simulation. Thanks to the periodic
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Fig. 2. Time variation of the wind direction: space-averaged wind
direction upstream of the wind farm; the wind direction at T01;
the wind direction at T16.

boundary conditions at the sides, the turbulent fluctuations

from the precursor simulation are prescribed only at the inlet

of the simulation domain.

The computational box is designed such that the periodic

boundary conditions at the sides does not influence the flow

field inside the wind farm. A minimal distance of 5D is kept

between the inlet/outlet and the respective boundaries of the

wind farm. Radiative boundary conditions are applied at the

outlet. The vertical size of the domain was kept constant and

equal to 10D with free slip boundary conditions at the top.

The grid resolution in the region of the turbines is ∆x =
∆z = 0.03D and ∆y = 0.025D.

III. CLUSTER IDENTIFICATION

Time-lags due to advection must be taken into account

when applying any control strategy to large wind farms.

Indeed, a change in the wind condition or in the control

set point of an upstream turbine affects downstream turbines

with a time delay that is proportional to ratio among the

turbines and the free stream velocity. For large wind farms

this can be of the order of several minutes. As an example,

the blue line of Fig.2 shows the wind direction measured

by the turbine T01, representative of the upstream turbines,

while the red line reports the wind direction measured by

the turbine T16, i.e. the most downstream turbine. From the

comparison between the blue and red lines, we can observe

a time delay of about 5 minutes from the time at which the

wind direction starts changing at T01 to the time at which it

start changing at T16. Since changes in the wind conditions

are convected downstream by the free stream flow, the time

delay depends on the average wind velocity upstream of

farm. Slower wind velocity implies a lager time delay and

vice versa. A rough estimate of the time delay τ∗ can be

obtained as:

τ∗ = d/Uhub (4)

where d is the extension of the wind farm in the streamwise

direction (for example, in the case of θ = 30◦ shown in Fig.1,

d is equal to the distance between T01 and T16). As noted

in [13], the average velocity at which wind disturbances

are transported in the wakes corresponds to about 0.8Uf ,

where the Uf is the free stream velocity in front of the

wind farm. As a consequence, the actual time delay τ is

a function also of the wake interaction within the wind farm

and can be longer than the estimated τ∗. More stable wakes

with less wake recovery will increase the time delay τ since

the average wind speed inside the wind farm is reduced.

However, the study of this dependence goes beyond the scope

of this paper.

In order to identify clusters of turbines in real time we

use the correlation of the power production signals of all the

turbines in the wind farm as described in [14]. At each time

instant, the power production signal of all the turbines is

stored for a time window with a-priori determined length.

The correlation coefficients are then computed using the

data inside the time-window. Turbine pairs coupled by the

wake interaction are expected to exhibit a maximum in the

correlation for a time delay τ that is function of the distance

between the two turbines. Large coherent turbulent structures

can correlate the power production of pairs of turbines with

random directions. These outliers are filtered out exploiting

the coherence in the direction of the pair of turbines that

have a high correlation due to wake interaction. In other

words, if there is wake interaction within a wind farm,

turbine pair with high correlation due to wake interaction

will have a coherent direction while turbine pairs correlated

by the turbulence will have random directions. Finally,

a network of interacting turbines is obtained only for the

wind conditions that allow increasing the wind farm power

production through collective yaw control. When no clusters

are detected, it means that the wake interaction within the

wind farm is weak enough that each turbine can be controlled

as it was isolated. Such condition happens for example during

transients from one direction to another.

In this study we perform a parametric study of the length

of the sliding time-window over which the power production

correlation has to be computed at each time step in order

to identify the turbine clusters with variable wind direction

in time. In particular sliding windows of 10, 20, 30 and 40

minutes of power production data are considered for the com-

putation of the correlation coefficients and the identification

of the turbine clusters.

IV. WIND DIRECTION TRANSIENTS

An implicit hypothesis of yaw control is that an actual

energy gain is obtained when the wind direction remains

constant for a significant amount of time. Indeed, during

the transition from one wind direction to another, the wind

direction is not uniform across the wind farm and the

imposition of yaw misalignment for wake steering control

may actually result in power losses. As an example, Figure

3 shows the cumulative power production of the wind farm

when the wind direction changes from from θ = 0◦ to θ =
30◦. The solid line represents the power production of the

wind farm when each turbine is controlled individually. For

θ = 0◦, 4 clusters of turbines aligned with a wind direction
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Fig. 3. Time variation of the wind farm cumulative power production
during changing wind direction with individual control ( ) and with
coordinated yaw control ( ).
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Fig. 4. Instantaneous velocity at the hub height for θ = 0
◦.
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Fig. 5. Instantaneous velocity at the hub height during the transient from
θ = 0

◦ to θ = 30
◦.

and a turbine spacing of 5D are formed (see Figure 4). Large

turbulent structures, obtained from the precursor simulation

are visible in front of the and around the wind farm. These

turbulent structures are the reason of the fluctuations in the

wind direction of T01 shown by the blue line in Figure 2.

The wind farm power production is minimum because of the

strong wake interaction within the clusters.
When the wind direction starts changing, the farm power

production increases until reaching a maximum that corre-

sponds to non-uniform wind direction within the wind farm

and very weak wake interaction. Figure 5 shows that during

the transient from θ = 0◦ to θ = 30◦ the direction of the

wakes of the most upstream row of turbines (T01, T02, T03

and T04) is significantly different from the wake direction

of the turbines in the most downstream row of the turbines

in the wind farm (T13, T14, T15 and T16). Since turbine

wakes are convected downstream by the local wind, non-

uniform wake direction implies non-uniform wind direction

within the wind farm.
Finally, when θ = 30◦ across all the wind farm, the power

production of the wind farm starts decreasing again because

of the formation of new clusters of turbines. However, the

farm power production for θ = 30◦ is higher than for

θ = 0◦ because of the different cluster configuration with

more turbines that face free stream conditions and the larger

spacing in the streamwise direction among turbine belonging

to the same cluster (see figure 1).
The dashed line in Figure 3 represents instead the wind

farm power production when yaw control is applied in order

to reduce the wake interaction and maximize the cumulative

power production. In particular, using the results in [14], the

wind farm is initially optimized for the wind direction θ = 0◦

by imposing the following yaw misalignment angles:

• ψ = −20◦ to the turbines in the two clusters in the West

part of the wind farm (T01-T05-T09; T02-T06-T10);

• ψ = +20◦ to the turbines in the two clusters in the East

part of the wind farm (T03-T07-T11; T04-T08-T12);

• no yaw misalignment to the most downstream turbines

in each cluster (T13; T14; T15; T16).

This configuration allows to best exploit the blockage effect

of the wind farm on the incoming flow to steer the wakes

away from the downstream turbines. In this example we

impose that the collective yaw controller, does not change

the yaw misalignment angles of the turbines until the new

wind direction of θ = 30◦ is uniform across the wind farm,

i.e. when a new set of yaw control angles should be applied.

At the beginning, when θ = 0◦, the power production of the

wind farm controlled with collective yaw controller exceeds

the power production of the individually controlled wind

farm thanks to the optimized yaw misalignment angles. Then,

when the wind direction starts changing at the most upstream

turbine of the wind farm (T01), the power production of

the individually controlled wind farm outperforms the power

production of the wind farm where yaw control is applied.

This is due to the fact that during the transition from θ = 0◦

to θ = 30◦, the wake interaction among turbines in the wind

farm is much reduced as shown in Figure 5. In order to
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avoid power losses during transients of the wind direction,

the cluster identification algorithm must be able to promptly

identify the change in the wind direction and communicate

to the farm controller to switch from the collective to the

individual control approach.

V. RESULTS

The performance of the cluster identification algorithm can

be evaluated in terms of two main criteria:

• the accuracy of the identification, i.e. the number of

correct identification of turbine clusters;

• the promptness of the response, that is the time delay

that the algorithm takes to identify a change in the

cluster configuration.

A. Accuracy

The accuracy of the identification is computed as:

Accuracy = 1−
N. incorrect identifications

N. base connections
(5)

where the N. incorrect identifications is the sum of the

waked turbine pairs that are not identified (false negative) and

turbine pairs that are incorrectly identified as coupled by the

wake interaction (false positive). A base connection is each

turbine pair whose cumulative power production increases

after the application of yaw misalignment. In a previous

study[13], we determined the turbine pairs coupled by the

wake interaction by comparing their cumulative power pro-

duction before and after the application of yaw misalignment

to the upstream turbine. For each wind direction, we use

this network of base connections as reference to evaluate the

performance of the cluster identification algorithm.

Figure 6 shows how the accuracy of the identification

change with the increasing length of the sliding time window

used to compute the correlation coefficients. A too small time

window does not allow the flow to fully propagate across the

wind farm. Therefore, signals of the power production are

mostly uncorrelated and clusters cannot be identified. This is

also expected from a theoretical point of view. Indeed, due

the characteristic time of the wake propagation in the wind

farm, any flow disturbance introduced by an upstream turbine

affects the most downstream turbines with a time delay that

is function of the free stream velocity and wind farm size

(see eq. (4)).

With larger time windows to compute the correlation

coefficients, the accuracy of the identification increases up

to about 80% for a time window of about 30 minutes. This

value of the accuracy usually corresponds to the presence of

a maximum 2 false negatives in the entire wind farm. For a

time window of 40 minutes, the accuracy reaches the value

of 90%. However, this increase in the accuracy is payed by

a reduction in the promptness of the cluster identification

during large scale variation of wind direction. Indeed, using

a longer time interval of data implies that the transition of the

wind direction affects the correlation of the power production

over a longer period of time and, thus, clusters are identified

with a larger time delay.
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Fig. 6. Accuracy in the identification against the length of time window
used for computing the correlation coefficients.

B. Promptness of the response

Given the physical response of the system, the promptness

of the response can be divided in two phases:

1) The promptness of algorithm to recognize that wind

direction is starting to change, as for example at time

t = 74 min in Figure 3. This ability is particularly

desired because a delay in recognizing the transients

in changing wind direction would cause most of the

turbines in the wind farm to be misaligned respect to

the wind direction when no wake steering is actually

needed.

2) The time needed to recognize that a new cluster

configuration is reached after a change in the wind

direction. In this case it is desirable to allow a larger

time delay since, in reality, large scale variation in the

wind direction can be accompanied by subsequent tran-

sients with unstable wind direction. It is then desirable

that the algorithm allows a time delay between the

formation of the cluster and the identification so that

the collective control approach is applied only when

the wind direction reaches a new stable condition.

Table I reports the time needed for the algorithm to execute

the two tasks during the transition of the wind direction

from θ = 0◦ to θ = 30◦. Three different time windows

are considered of respectively 20, 30 and 40 minutes. The

time to detect the changing wind direction increases with the

length of the time window but remains in the order of about 2

minutes. The time to detect new cluster configuration instead

has a minimum for a time window of 30 minutes and then it

increases considerably for a time window of 40 minutes. In

the case of 20 minutes time window, the time to detect the

clusters is higher than the 30 minutes time window because

of the reduced accuracy in the identification.
Considering the two criteria (accuracy and promptness)

we can conclude that 30 minutes is the best performing time

window of data needed to identify turbine clusters or the

wind farm configuration considered in this study. Indeed,

this time window allows achieving both a good accuracy and

promptness during large scale transient of the wind direction.
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It should be noted, however, that this time window could vary

with the extension of the wind farm.

TABLE I

TIME WINDOW AGAINST PROMPTNESS OF THE RESPONSE.

Time window Time to detect Time to detect
changing wind direction new cluster config.

20 min 1.4 min 25 min
30 min 1.8 min 20 min
40 min 2.6 min 33 min

VI. CONCLUSIONS

In this study, we presented the application of the cluster

identification method developed in [14] applied to the more

challenging conditions of time-varying wind direction. Re-

spect to other approaches, the presented cluster identification

method is model-free. It requires only the power production

signal of the turbines in the wind farm and the estimation

of the wind velocity upstream of the wind farm without any

assumptions about the wind direction or the turbulent inten-

sity. Yaw control is able to increase the energy production

of wind farms by reducing the wake interaction. However,

we found that an actual power gain from yaw control is

obtained only when the wind direction remains consistent

over a prolonged amount of time. Large scale wind direction

variations imply not uniform wind conditions across the

wind farm and, as a consequence, weaker and not uniform

wake interaction within the wind farm. During transients

of the wind direction, yaw control may result in power

production losses respect to the individual control where all

turbines are aligned with the wind direction. Therefore, the

wind farm controller should be able to promptly identify

variation in the wind direction to avoid power losses due yaw

misalignment. The cluster identification methodology based

on the correlation of the power production signals is able to

correctly identify such wind direction transition with a time

delay of few minutes. We also found that the best performing

time window of data needed to identify the clusters is 30

minutes long for the current wind farm set up. This time

window corresponds to approximately 6 times the minimum

amount of time that takes for the wakes to propagate from

the most upstream to the most downstream turbines in the

wind farm. While this may seem a limitation for very large

wind farms, wind condition may spatially vary within the

wind farm with an extension of several kilometers. Since

the cluster identification algorithm consider the collectively

of the turbines to identify the wake interaction, it may be

convenient to divide the wind farm in smaller subsets within

which clusters are identified. The division of the wind farm

in subsets would allow considering spatial inhomogeneity

of the wind conditions within the wind farm and reducing

the time window needed to compute the correlation among

the turbines. However, such application to very large wind

farms needs additional effort in terms of both numerical and

experimental studies.
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