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Differentially Private LQ Control
Kasra Yazdani∗, Austin Jones†, Kevin Leahy†, Matthew Hale∗

Abstract—As multi-agent systems proliferate and share more
user data, new approaches are needed to protect sensitive data
while still enabling system operation. To address this need, this
paper presents a private multi-agent LQ control framework.
Agents’ state trajectories can be sensitive and we therefore
protect them using differential privacy. We quantify the impact
of privacy along three dimensions: the amount of information
shared under privacy, the control-theoretic cost of privacy, and
the tradeoffs between privacy and performance. These analyses
are done in conventional control-theoretic terms, which we
use to develop guidelines for calibrating privacy as a function
of system parameters. Numerical results indicate that system
performance remains within desirable ranges, even under strict
privacy requirements.

I. INTRODUCTION

MULTI-AGENT systems, such as smart power grids and
robotic swarms, require agents to exchange information

to work together. In some cases, the information shared may be
sensitive. For example, consumption data in a power grid can
expose habits and activities of individuals [1], [2]. Sensitive
user data must be protected when it is shared, though of course
it must remain useful in multi-agent coordination. Hence,
privacy in multi-agent control should protect sensitive data
from the agent receiving it while still ensuring that private
data remains useful to that recipient.

Recently, privacy of this form has been achieved using dif-
ferential privacy. Differential privacy was originally designed
to protect data of individuals in static databases [3], [4]. Its
goal is to allow accurate statistical analyses of a population
while providing strong, provable privacy guarantees to individ-
uals. Differential privacy is appealing because it is immune to
post-processing [5], in that post-hoc computations on private
data do not weaken privacy’s guarantees. For example, filtering
private trajectories can be done without harming privacy [6],
[7]. Differential privacy is also robust to side information [8],
in that its privacy guarantees are not defeated by an adversary
with access to additional information about data-producing
entities. Differential privacy has been extended to dynamical
systems [6] in which trajectory-valued data is protected, and
it is this notion of differential privacy that we use.
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Linear-quadratic (LQ) control is the underlying framework
for many existing multi-agent control applications. One ex-
ample is smart power systems where power forecast, gen-
eration, and distribution require access to time series usage
data measured by smart meters. In particular, LQ control for
load frequency control has been used in power systems [9],
[10], with the objective of restoring balance between power
consumption and generation. In addition, the work in [11]–
[14] incorporates an LQ control scheme for stability and
performance of wide-area power control systems using stan-
dard phasor measurement units. Other applications of LQ
control include motion planning [15] and security of cyber
physical systems [16]. Existing work investigates convergence
and performance under various constraints; however, despite
the sensitive nature of the data involved, privacy is generally
absent in their treatment.

In this paper, we use differential privacy to develop a
private multi-agent LQ control framework. Adding privacy
noise makes this problem equivalent to a linear quadratic
Gaussian (LQG) problem, and the optimal controller will be
linear in the expected value of agents’ states. Computing this
expected value is a centralized operation, and we therefore
augment the network with a cloud computer [17]. In contrast
to some existing approaches, the cloud is not a trusted third
party and does not receive sensitive information from any
agent [18]. The cloud instead gathers private information from
the agents, estimates their states, and generates optimal inputs.
These inputs are transmitted back to the agents, which apply
them in their local state updates, and then this process repeats.

Contributions: Although there exists a large body of privacy
research, privacy parameter interpretation and selection both
largely remain the domain of subject matter experts. More-
over, since offering privacy guarantees for a control system
generally involves sacrificing some level of performance, it is
critical to quantify the effects of privacy to rigorously evaluate
tradeoffs. Our contributions are therefore the following:
1) Developing an algorithm for multi-agent deferentially pri-

vate LQ control. (Sec. IV)
2) Quantifying sensitive information revealed by bounding

filter accuracy in terms of privacy parameters (Sec. V)
3) Providing quantitative criteria for privacy calibration to

trade off information shared and control cost (Sec. VI)
4) Quantifying the relationship between agents’ cost and their

privacy levels (Sec. VII)
Preliminary versions of this work appeared in [19], [20].

This paper differs from [19] because it does not rely on a
trusted aggregator. Further, we quantify the tradeoff between
cost and privacy, which was not explored in [19], [20].

Organization: Section II reviews privacy background. Sec-
tion III defines the private LQG problem, and Section IV
solves it. Section V bounds filter error under privacy, and
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in Section VI we provide guidelines for calibrating privacy.
Section VII quantifies the cost of privacy. Next, we provide
simulations in Section VIII, and then Section IX concludes.

II. REVIEW OF DIFFERENTIAL PRIVACY

Differential privacy is a statistical notion of privacy that
masks sensitive data while still enabling accurate analyses
of it [5]. It is appealing because post-processing does not
weaken its protections. In particular, filtering private data is
permitted. Moreover, differential privacy is not weakened even
if an adversary knows the privacy mechanism used [4], [5].
We briefly review differential privacy here and refer the reader
to [4]–[6] for a thorough introduction.

We use the “input perturbation” approach to differential
privacy, which means that agents add noise directly to their
outputs before sharing them. Thus, agents do not ever share
sensitive data. Privacy guarantees are likewise provided on an
individual basis. Formally, each agent’s state trajectory will be
made approximately indistinguishable from other nearby state
trajectories which that agent individually could have produced.

We use the notation [ℓ] = {1, . . . , ℓ} for ℓ ∈ N. We
consider trajectories of the form Z = (Z (1) , Z (2) , . . . ) ,
where Z (k) ∈ Rd and ∥Z(k)∥2 < ∞ for all k. Denote the
set1 of all such sequences by ℓ̃

d

2.
We consider N agents, and we denote agent i’s state

trajectory by xi ∈ ℓ̃
ni

2 for some ni ∈ N. The kth element of
xi is xi (k) ∈ Rni . We define our adjacency relation over ℓ̃

ni

2 .

Definition 1. (Adjacency for Trajectories) Fix an adjacency
parameter bi > 0 for agent i. Two trajectories vi, wi ∈ ℓ̃

ni

2

are adjacent if ∥vi − wi∥ℓ2 ≤ bi. We write Adjbi(vi, wi) = 1
if vi, wi are adjacent, and Adjbi(vi, wi) = 0 otherwise.

This adjacency relation requires that every agent’s state
trajectory be made approximately indistinguishable from all
other state trajectories not more than distance bi away. Next,
we define differential privacy for dynamic systems. This
definition considers outputs of agent i of dimension qi at each
point in time. Output signals are in the set ℓ̃

qi
2 , over which we

use the σ-algebra Σqi
2 (see [6] for a formal construction).

Definition 2. (Differential Privacy for Trajectories) Let ϵi >
0 and δi ∈ (0, 1/2) be given. A mechanism M is (ϵi, δi)-
differentially private if, for all adjacent xi, x

′
i ∈ ℓ̃

ni

2 , we have

P [M (xi) ∈ S] ≤ eϵiP [M (x′
i) ∈ S] + δi for all S ∈ Σqi

2 .

We enforce this definition with the Gaussian mechanism,
defined next. We use s1(·) for the largest singular value of a
matrix, and Q to denote the Gaussian tail integral [21].

Lemma 1 (Gaussian mechanism; [6]). Let agent i use pri-
vacy parameters ϵi > 0 and δi ∈ (0, 1/2) and adjacency
parameter bi > 0. For outputs yi(k) = Cixi(k), the Gaus-
sian mechanism sets ỹi(k) = yi(k) + vi(k), with vi(k) ∼
N
(︁
0, σ2

i Iqi
)︁
, where Iqi is the qi × qi identity matrix, and

σi ≥ s1(Ci)bi
2ϵi

(Kδi +
√︂
K2

δi
+ 2ϵi), with Kδi := Q−1 (δi).

This is (ϵi, δi)-differentially private with respect to Adjbi .

1This notation comes from the fact that all such Z have finite truncations
with finite ℓ2-norm. See [6] for additional discussion.

For convenience, we set κ(δi, ϵi) = 1
2ϵi

(Kδi+
√︂

K2
δi
+ 2ϵi).

We use the Gaussian mechanism for the rest of the paper.

III. PROBLEM FORMULATION

We next introduce the private multi-agent LQG problem.
Below, we write diag(P1, . . . , Pn) :=

⨁︁n
i=1 Pi for matri-

ces P1 through Pn.

A. Multi-Agent LQ Formulation

Consider N agents indexed over i ∈ [N ]. At time k, agent i
has state xi (k) ∈ Rni , with dynamics

xi(k + 1) = Aixi(k) +Biui(k) + wi(k),

where ui (k) ∈ Rmi , wi (k) ∈ Rni , Ai ∈ Rni×ni ,
and Bi ∈ Rni×mi . The distribution of process noise
is wi (k) ∼ N (0,Wi), where Wi ∈ Rni×ni is symmetric and
positive definite. All process noise terms are independent.

We define the state x(k) = (xT
1 (k) . . . x

T
N (k))T ∈ Rn

and control u(k) = (uT
1 (k) . . . u

T
N (k))T ∈ Rm, where

the dimensions n =
∑︁

i∈[N ] ni and m =
∑︁

i∈[N ] mi.
Along with w(k) = (wT

1 (k), . . . , w
T
N (k))T ∈ Rn,

and the matrices A = diag(A1, . . . , AN ) ∈ Rn×n and
B = diag(B1, . . . , BN ) ∈ Rn×m, we have the dynamics

x(k + 1) = Ax(k) +Bu(k) + w(k).

We consider infinite-horizon problems with cost

J (x, u)= lim
Kf→∞

1

Kf
E

{︄Kf∑︂
k=1

(x (k)−x̄ (k))
T
Q (x (k)−x̄ (k))

+ u (k)
T
Ru (k)

}︄
,

where Q ∈ Rn×n and R ∈ Rm×m. The vector x̄i(k) ∈ Rni

is agent i’s desired state at time k, and we define
x̄ (k) = (x̄T

1 (k) , . . . , x̄T
N (k))T . We make the standard as-

sumption that limk→∞ x(k) = x̄ exists [22].

Assumption 1. In the cost J , Q = QT ≻ 0 and R = RT ≻
0. The pair (A,B) is controllable, and there exists Ω such
that Q = ΩTΩ and such that the pair (A,Ω) is observable.

Assumption 1 is standard in LQ control [22]–[24], and it
guarantees the existence of a solution to an algebraic Riccati
equation that we will encounter below [22, Chapter 4].

B. Differentially Private Information Sharing

The cost J is generally non-separable, which means that
it cannot be minimized by agents using only knowledge of
their own states. We therefore introduce a cloud computer
to aggregate information and distribute control inputs to the
agents. The cloud has been used in cyber-physical systems,
e.g., in SCADA-based monitoring and state estimation [11]–
[13], [25], and is a natural choice here.

At time k, the cloud requests from agent i the output value
yi (k) = Cixi (k), where Ci ∈ Rqi×ni . To protect its state
trajectory, agent i sends a differentially private form of yi to
the cloud. The cloud uses these private outputs to compute
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optimal inputs for the agents. Agents use these inputs in their
local state updates, and then this process repeats.

Agent i adds noise to each yi (k) before sending it to the
cloud to enforce differential privacy for xi. Agent i selects
privacy parameters ϵi > 0 and δi ∈ (0, 1/2) and adjacency
parameter bi > 0. Then agent i sends the cloud

ỹi (k) := yi (k) + vi (k) = Cixi (k) + vi (k) , (1)

where the privacy2 noise vi (k) ∼ N
(︁
0, σ2

i Iqi
)︁

and
σi ≥ κ (δi, ϵi) s1 (Ci) bi from Lemma 1. The full privacy
vector is v (k) = (vT1 (k) , . . . , vTN (k))T , and, for all k, we
have v (k) ∼ N (0, V ) with V = diag

(︁
σ2
1Iq1 , . . . , σ

2
NIqN

)︁
.

Below we use C = diag(C1, . . . , CN ).
Agents’ reference trajectories are a source of side infor-

mation that can reveal their intentions. However, agents do
not need to reveal their whole reference trajectories to the
cloud. As written, the cost J depends on x̄(k) for all k, but,
leveraging the standard average cost-per-stage formulation,
one can replace x̄(k) with x̄ for all k with no loss of
optimality; see [22] for a thorough discussion. We emphasize
that this change is independent of privacy and is a standard
approach in infinite-horizon LQG. As a result, only the limit
of agent i’s reference trajectory, denoted x̄i, is needed by the
cloud to compute optimal inputs. Agent i thus privatizes x̄i

before sharing it3. Agent i selects privacy parameters ϵ̄i > 0
and δ̄i ∈ (0, 1/2) and adjacency parameter βi. Two reference
limits x̄i, x̄

′
i are adjacent if ∥x̄i − x̄′

i∥2 ≤ βi. Then privacy
noise is added via x̃i := x̄i + w̄i. Using the rules for
privatizing static data in [6, Lemma 1], agent i generates noise
via w̄i ∼ N

(︁
0, σ̄2

i Ini

)︁
, with σ̄i ≥ κ

(︁
δ̄i, ϵ̄i

)︁
βi.

Problem 1. Let the initial estimate x̂(0) = E[x(0)] and the
matrices A, B, C, V , and W be public information. Minimize

J̃ (x, u) = lim
Kf→∞

1

Kf
E

{︄ Kf∑︂
k=1

(x (k)− x̃)
T
Q (x (k)− x̃)

+ u (k)
T
Ru (k)

}︄
over all control signals u with u (k) ∈ Rm, subject to

x (k + 1) = Ax (k) +Bu (k) + w (k)

ỹ (k) = Cx (k) + v (k) ,

where agent i has privacy parameters (ϵi, δi) and (ϵ̄i, δ̄i).

IV. PRIVATE LQG TRACKING CONTROL

Problem 1 is an infinite-horizon LQG problem whose
optimal controller [27] is u∗ (k) = Lx̂ (k) + Mg, where

2In Equation (1), measurement noise inherent to the system can be included,
and all analyses permit this change. The form of various Riccati equations
will remain the same, with instances of V replaced by the sum of V and the
measurement noise covariance matrix. However, we focus on bounding the
effects of privacy, and thus exclude measurement noise.

3We expect privatizing the reference limit to be unproblematic in applica-
tions in which it only changes the cost incurred, e.g., in applications where
states are non-physical quantities. However, if the reference also encodes some
notion of safety that could be affected by privacy, e.g., collision avoidance,
the approach we present can be augmented with a low-level reactive controller
for that purpose, such as a control barrier function [26].

M = −
(︁
R+BTKB

)︁−1
BT and L = MKA. Here, K is the

unique positive semidefinite solution to the discrete algebraic
Riccati equation

K = ATKA−ATKB
(︁
R+BTKB

)︁−1
BTKA+Q

and g solves g = AT [I − KB(R + BTKB)−1BT ]g − Qx̃.
Without privacy, g would depend on x̄, but the cloud only
receives its private form, x̃, and this is what it must use.

Computing state estimates for infinite time horizons can
use a time-invariant Kalman filter [22, Section 5.2] whose
prediction step is x̂−(k + 1) = Ax̂ (k) + Bu (k). The a
posteriori state estimate x̂(k) is computed with

x̂(k+1)= x̂−(k+1)+ΣCTV −1
(︁
ỹ (k+1) − Cx̂−(k+1)

)︁
,

where the a posteriori error covariance matrix Σ is given by
Σ = (CTV −1C+Σ−1)−1, and the a priori error covariance Σ
is the unique positive semidefinite solution to the discrete alge-
braic Riccati equation Σ = A(Σ−1 + CTV −1C)−1AT +W .
The terms K,L,M,Σ,Σ, and g can be all computed before-
hand by the cloud to reduce its computational load at runtime.

We solve Problem 1 in Algorithm 1: for all i ∈ [N ],
Algorithm 1 provides (ϵi, δi)-differential privacy for agent i’s
state trajectory and (ϵ̄i, δ̄i)-differential privacy for x̄i.

Algorithm 1: Differentially Private LQG (Solution to
Problem 1)
Data: Public information: Ai, Bi, Ci, ϵi, δi, ϵ̄i, δ̄i,

x̂i(0), Wi, and Vi for all i, and Q, R
1 For all i, agent i chooses (ϵi, δi) and (ϵ̄i, δ̄i). It

computes x̃i and sends it to the cloud
2 In the cloud, compute K, L, M , Σ, Σ, and g
3 for k = 0, 1, 2, . . . do
4 for i = 1, . . . , N do
5 Agent i sends the cloud the private

output ỹi(k) := Cixi(k) + vi(k)

6 In the cloud, compute u∗(k), send u∗
i (k) to agent i

7 for i = 1, . . . , N do
8 Agent i updates its state via

xi(k + 1) = Aixi(k) +Biu
∗
i (k) + wi(k)

The feedback control signals u∗
i , i ∈ [N ], are computed

using estimates of agents’ states, and these state estimates are
functions of the private output trajectories ỹi, i ∈ [N ]. The
signals u∗

i are thus post-processing on private data and do not
reveal agents’ state trajectories. In addition, knowledge of how
u∗
i depends upon the xi’s is equivalent to knowledge of agents’

dynamics, which is often assumed to be public information and
is unproblematic for privacy. Therefore, this use of a feedback
controller does not harm privacy.

V. QUANTIFYING ERROR INDUCED BY PRIVACY

Algorithm 1 solves Problem 1, though adding privacy noise
makes it more difficult for the cloud to compute optimal
control values. Indeed, the purpose of differential privacy is to
protect an agent’s state from the cloud, other agents, and any
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eavesdroppers. Thus, the cloud is forced to estimate agents’
states to generate control values for them. Accordingly, in this
section we quantify the ability of the cloud to estimate the
agents’ states as a measure of the impact of privacy.

The cloud runs a Kalman filter and computes the input
u∗ (k), though privacy noise only affects the Kalman filter
due to the certainty equivalence principle [22]. We therefore
quantify the impact of privacy upon the Kalman filter in
Algorithm 1 by investigating the best estimate that can be
computed with differentially private outputs.

We proceed by developing trace bounds for the a priori
error covariance matrix Σ and the a posteriori error covariance
matrix Σ, which are, respectively, equal to the steady-state
mean-square error (MSE) of the prediction and estimation
steps in the Kalman filter. Because the Kalman filter minimizes
both of these quantities, lower bounds on them are lower
bounds on (asymptotic) MSE for any filtering strategy.

We use λn(Υ) ≤ · · · ≤ λ1(Υ) to denote the ordered eigen-
values of the matrix Υ. For simplicity, consider C diagonal.
Noting that CTV −1C = diag

(︂
C2

11

σ2
1
, . . . ,

C2
nn

σ2
n

)︂
, we define

l = argmin
1≤i≤n

C2
ii

σ2
i

, u = argmax
1≤i≤n

C2
ii

σ2
i

. (2)

Theorem 1. Suppose every agent shares its private output
trajectory, and the cloud has all public information. Then the
steady-state a priori MSE of the Kalman filter is bounded via

trW +
σ2
utr(ATA)λn(W )

σ2
u + λn(W )C2

u

≤ trΣ ≤ trW +
σ2
l tr(ATA)

C2
l

and the steady-state a posteriori MSE is bounded via

nσ2
u

C2
u + σ2

uλ
−1
n (W )

≤ trΣ ≤ n
σ2
l

C2
l

,

where σl = κ(δl, ϵl)s1(Cl)bl and σu = κ(δu, ϵu)s1(Cu)bu are
the minimum and maximum privacy noise among agents.

Proof: See the appendix. ■
These bounds relate privacy to the accuracy of information

shared with the cloud and give insight into differential pri-
vacy’s protections in conventional estimation-theoretic terms.
We next leverage these bounds to guide privacy calibration.

VI. GUIDELINES FOR SELECTING PRIVACY PARAMETERS

Calibrating privacy can be challenging. The computer sci-
ence literature has studied this problem [28], though, to
the best of our knowledge, there are not control-theoretic
guidelines for calibrating privacy. Therefore, in this section,
we develop such techniques. The privacy parameter δ can be
interpreted as the probability that ϵ-differential privacy fails,
and is typically [6] chosen in the range [10−5, 10−1] on this
basis. The parameter ϵ can be interpreted as the privacy loss
of differential privacy, and it is typically the parameter to be
tuned. We therefore develop guidelines for calibrating ϵ.

Theorem 2. Suppose the cloud has all public informa-
tion, and agent i shares its private output trajectory ỹi,
where ỹi(k) = Cixi(k) + vi(k). Take δi ∈ [10−5, 10−1] and
set σi = s1(Ci)κ(δi, ϵi)bi. Suppose we want the MSE in the

cloud’s state estimates to be bounded below by Bl > 0 and
above by Bu > Bl. These bounds are attained if

1

8

(︃
1 +

√
36η4 + 1

η4

)︃2

≤ ϵi ≤
1

η3

for all i, where

η3 :=

(︄
BlC

2
u

s1(Ci)2b2i
(︁
n−Blλ

−1
n (W )

)︁)︄1/2

, η4 :=

(︃
BuC

2
l

ns1(Ci)2b2i

)︃1/2

.

Proof: See the appendix. ■
Theorem 2 provides guidelines for choosing ϵi, which

allows agents to make informed decisions for privacy. With
this ability, we next examine privacy’s impact upon the cost J .

VII. THE CONTROL-THEORETIC COST OF PRIVACY

Implementing differential privacy adds noise where it would
otherwise be absent, and we expect privacy to increase the
cost J relative to a non-private implementation. Without
any cost considerations, one could add noise of very large
variance to provide arbitrarily strong privacy. However, private
information is used to compute control inputs, which affect
future states. Thus, there is a need to balance privacy and per-
formance. The existing literature has explored several notions
of a “cost of privacy;” LQG minimizes J , and we therefore
compute the increase in J due to privacy, which offers a “cost
of privacy” in standard control-theoretic terms.

Theorem 3 (Cost of Privacy). Let J0(x, u) be the cost of
Algorithm 1 without privacy, i.e., with vi(k) = w̄i = 0 for all i
and k. Let J̃(x, u) be the cost of Algorithm 1 with privacy.
Then the cost of privacy in LQG, denoted ∆J , is

∆J (x, u) = J̃(x, u)− J0(x, u) (3)

= tr
(︁
KΣ+ (Q−K) Σ

)︁
− tr (KW )

+ tr(QW ) + tr(HTRHW ),

where H = M
[︁
I − (A+BL)T

]︁−1
.

Proof: See the appendix. ■
After selecting a privacy level and computing its cost, agents

may wish to change their privacy levels to tune costs. For
example, agents may choose to relax privacy for significant
reductions in ∆J . A natural way to analyze these changes is
with the derivative of the cost of privacy ∆J with respect to ϵi;
recalling that δi is typically fixed a priori, ϵi is the parameter
to be tuned. For simplicity, we take ϵ̄i = ϵi = ϵ, δ̄i = δi = δ,
and s1(Ci)bi = ω for all i.

Theorem 4. Let A be stable. Then the sensitivity of the cost
of privacy to changes in privacy is lower-bounded via

d∆J

dϵ
≥

(︄
−ω

ϵ
κ(δ, ϵ) +

ω

2ϵ

1√︁
K2

δ + 2ϵ

)︄
·(︄

λ1(K)
−2σtr(FTF )

λn(U)
+ 2σtrQ+ 2σtr

(︁
HTRH

)︁
+

λ1(Q−K)

[︄
max

{︃
−2σtr(FTF )

λ1(U)
, 0

}︃
λn

(︁
Ū
)︁
+tr
(︂
2σF̄

T
F̄
)︂]︄)︄



5

and upper-bounded via

d∆J

dϵ
≤

(︄
−ω

ϵ
κ(δ, ϵ) +

ω

2ϵ

1√︁
K2

δ + 2ϵ

)︄
·(︄

λn(K)max

{︃
−2σtr(FTF )

λ1(U)
, 0

}︃
+ 2σtrQ+ 2σtr

(︁
HTRH

)︁
λn(Q−K)

[︄
−2σtr(FTF )

λn(U)
λ1

(︁
Ū
)︁
+ tr

(︂
2σF̄

T
F̄
)︂]︄)︄

,

where we use the matrices P = CT
(︁
CΣCT + V

)︁−1
CΣAT ,

U = (AT −P )(A−PT )− I , P̄ = CT
(︁
CΣCT + V

)︁−1
CΣ,

F =
(︁
CΣCT + V

)︁−1
CΣAT , F̄ =

(︁
CΣCT + V

)︁−1
CΣ,

and Ū = (I − P̄ )(I − P̄
T
).

Proof: See the appendix. ■

Theorem 4 explores the continuum of privacy costs that
result from varying ϵ, and for a given problem it provides
parameter regimes that either make it useful or not to relax
privacy. One may also wish to enforce hard constraints on
performance. Next, we provide guidelines for choosing the
privacy parameters {ϵi}i∈[N ] to enforce a desired cost bound.

Theorem 5. Suppose a performance requirement
is given as a bound on cost by requiring
J̃(x, u) ≤ α. Take δi ∈ [10−5, 10−1] and set
σi = s1(Ci)κ(δi, ϵi)bi. Then Algorithm 1 attains

J̃(x, u) ≤ α if, for all i, ϵi ≥ 1
8

(︂
1+

√
36η5+1
η5

)︂2
, where

η5=

⎡⎣Bu−λ1(K)trW−x̄TQx̄+gTB(R+BTKB)
−1

BT g

s1(Ci)2b2i

(︃
λ1(K)

tr(AT A)

C2
l

+tr(HTRH)+tr(Q)

)︃
⎤⎦1/2

.

Proof: See the appendix. ■

VIII. CASE STUDY

Load Frequency Control (LFC) regulates power flow to
different areas while balancing load and generation. In our
framework, each area is an agent, and we consider a system of
ten decoupled areas. LFC requires transmitting measurements
from remote terminal units (RTUs) to a control center and
control signals from the control center to the plant side.
This aggregation and communication have well-established
privacy concerns [1], [2], and we use Algorithm 1 for it. The
continuous time dynamic model of the multi-area LFC system
is given by Ẋ(t) = AcX(t) + BcU(t), and the matrices Ac

and Bc can be found in [10]. The state vector for agent i is

xi(t) = [∆f i(t), ∆P i
g(t), ∆P i

tu(t), Λi(t)]T ∈ R4,

where ∆f i(t),∆P i
g(t), and ∆P i

tu(t) are the frequency de-
viation, generator power deviation, and position value of the
turbine, respectively. The control input error on the i-th power
area is denoted by Λi(t) =

∫︁ t

0
ϑi∆f i(s)dt, where ϑi is the

frequency bias factor. We simulate 5 agents with dynamics of
Area 1 from [10] and 5 agents with dynamics of their Area 2.

We discretize the dynamics of X(t) with A = eAch

and B =
∫︁ h

0
eAcτBcdτ , where h is the sampling period. We

have C = I40×40 and W = I40×40. All areas select identical
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Fig. 1: The time-average cost incurred by ten power system areas
with privacy (solid line) and without privacy (dashed line). Privacy
increases costs, though these increases become small relative to the
noise-free cost, indicating that privacy’s impact is not excessive.

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

160

180

200

Fig. 2: The squared error of the cloud’s state estimates (solid line),
the lower bound on estimation error in Theorem 1 (dotted line), and
the upper bound on estimation error in Theorem 1 (dashed line) over
200 timesteps. We see that instantaneous a posteriori error typically
obeys our MSE bounds, and on average lies within the bounds.

privacy parameters, namely, (ϵi, δi) = (ln 3, 0.001) for all i.
In addition, x̄i = 0 is made private with

(︁
ϵ̄i, δ̄i

)︁
= (ln 3, 0.2).

For the cost, we choose Qij = 100 for all i and j, and we
set Rii = 100 and Rij = 5.

The effects of privacy on cost are shown in Figure 1. As
expected, the cost with privacy is higher than without privacy.
However, this increase becomes relatively modest over time,
which indicates that privacy is well-suited to the long-horizon
problems we consider. In Figure 2, we show the instantaneous
error of the cloud’s state estimates, and we compare that
with the bounds in Theorem 1; we note that we plot the
instantaneous error, but the bounds are for mean-square error.
As expected, there are ephemeral bound violations by the
instantaneous error, and it is shown that on average, the a
posteriori error lies within the bounds in Theorem 1. This
illustrates that privacy is compatible with the cloud estimating
agents’ states under privacy. Finally, Figure 3 illustrates the
behaviour of the states of one of the areas.

IX. CONCLUSIONS

We have studied distributed linear-quadratic control with
differential privacy and bounded the uncertainty and cost in-
duced by privacy. Future work will develop differential privacy
for other optimal control problems, including in model-free
contexts at the intersection of control and learning [29].
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Fig. 3: Even with privacy, control values provided by the cloud are
able to regulate an agent’s state to remain near its desired trajectory.
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X. APPENDIX

The following lemmas will be used in deriving error bounds.

Lemma 2. [30, Fact 5.12.4] Let Υ and Θ
be symmetric n × n matrices. If Υ ≻ 0,
then λn(Θ)tr(Υ) ≤ tr(ΥΘ) ≤ λ1(Θ)tr(Υ).

Lemma 3. [30, Theorem 8.4.11.] Let Υ and Θ be n × n
Hermitian matrices. Then

λ1(Υ) + λn(Θ) ≤ λ1(Υ + Θ) ≤ λ1(Υ) + λ1(Θ)

λn(Υ) + λn(Θ) ≤ λn(Υ + Θ) ≤ λn(Υ) + λ1(Θ).

Proof of Theorem 1: The steady-state MSE of the Kalman
filter’s predictions is tr(Σ). Taking the trace of the Riccati
equation defining Σ, we obtain trΣ− trW = tr

[︂
ATA(Σ−1 +

CTV −1C)−1
]︂
, where we have used the cyclic permutation

property of the trace. Next, we use Lemma 2 to write

trΣ− trW ≥ tr(ATA)λn

[︂
(Σ−1 + CTV −1C)−1

]︂
≥ tr(ATA)

λ1(Σ−1) + λ1

(︁
CTV −1C

)︁ =
tr(ATA)

1
λn(Σ) + λ1

(︁
CTV −1C

)︁ ,
where we apply Lemma 3 on the second line to split up
the eigenvalues and use the fact that λ1(Σ

−1) = 1/λn(Σ)

in the final step. It is shown in [31, Theorem 3.1] that
Σ ⪰ W , and therefore λn(Σ) ≥ λn(W ). Using this fact and
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Equation (2) completes the first part of the proof. Similarly,
applying Lemmas 2 and 3 to the same Riccati equation,

trΣ− trW ≤ tr(ATA)λ1

[︂
(Σ−1 + CTV −1C)−1

]︂
≤ tr(ATA)

λn(Σ−1) + λn(CTV −1C)
≤ σ2

l tr(ATA)

C2
l

,

where the second step uses λ1(Υ
−1) = 1/λn(Υ) and the third

step uses Lemma 3 to split the eigenvalues.
The steady-state MSE of the Kalman filter’s state estimates

is tr(Σ). Using Lemma 2,

trΣ ≥ n

λ1(CTV −1C +Σ−1)
≥ n

λ1(CTV −1C) + λ1(Σ−1)

≥ n

λ1(CTV −1C) + λ−1
n (W )

=
nσ2

u

C2
u + σ2

uλ
−1
n (W )

,

where in the second inequality we use Lemma 3 to split the
eigenvalues. In the last line, we use λn(Σ) ≥ λn(W ) [31,
Theorem 3.1] and Equation (2).

Using Lemma 2, an upper bound can be derived with

trΣ ≤ nλ1

(︁
(CTV −1C +Σ−1)−1

)︁
≤ n

λn(CTV −1C)
,

where we have used Lemma 3 to split the eigenvalues. Using
Equation (2) completes the proof. ■

Proof of Theorem 2: Choose ϵi ≥ 1
8

(︂
1+

√
36η4+1
η4

)︂2
and solve

for η4 to get 9+
√
2ϵi

2ϵi
≤ η4. Choosing δi ∈ [10−5, 10−1] gives

Kδi ∈ [1, 4.5]. Then 2Kδi
+
√
2ϵi

2ϵi
≤ η4. Because

√
υ + θ ≤√

υ +
√
θ, we can lower-bound the left-hand-side to write

κ(δi, ϵi) ≤ η4. Squaring, substituting in η4, and rearranging we
find s1(Ci)

2κ(δi, ϵi)
2b2i ≤ BuC

2
l

n , which implies σ2
l ≤ BuC

2
l

n .
Comparing to Theorem 1, we see that trΣ ≤ Bu.

Next, choose ϵi ≤ 1
η3

. Given Kδi ∈ [1, 4.5], we may write

η3 ≤ Kδi

ϵi
. We substitute for η3 and square both sides to write

BlC
2
u

s1(Ci)2b2i
(︁
n−Blλ

−1
n (W )

)︁ ≤
(︃
Kδi

ϵi

)︃2

.

Using Kδi

ϵi
≤ κ(δi, ϵi) and rearranging, we have

BlC
2
u

n−Blλ
−1
n (W )

≤ s1(Ci)
2κ(δi, ϵi)

2b2i .

This implies BlC
2
u

n−Blλ
−1
n (W )

≤ σ2
u. Isolating Bl and applying

Theorem 1 implies trΣ ≥ Bl. ■

Proof of Theorem 3: The cost of privatizing x̄ specifically is

tr
(︁
[Q+HTRH]W

)︁
, (4)

which is obtained from the authors’ technical report in [27]
and consecutive application of [32, Equation (318)]. Next,

using [33] and Equation (4), the total cost incurred by the
differentially private LQG implementation in Algorithm 1 is

J̃(x, u) = J(x, u) + tr(QW ) + tr(HTRHW ) =

lim
Kf→∞

1

Kf

Kf∑︂
k=1

tr
(︁
KΣ+ (Q−K) Σ

)︁
+ lim

Kf→∞

1

Kf

Kf−1∑︂
k=0

x̄TQx̄− gTB
(︁
R+BTKB

)︁−1
BT g

+ tr(QW ) + tr(HTRHW ),

where the second step is derived from [33, Equation 4.12].
Equation (3) immediately follows by subtracting the cost
without privacy noise. ■
Proof of Theorem 4: Using chain rule we have d∆J

dϵ =
d∆J
dσ

dσ
dϵ . For the first term, we have

d∆J(x, u)

dσ
= tr

[︄
d
(︁
KΣ+ (Q−K)Σ

)︁
dσ

]︄

+
d
[︁
−tr (KW ) + tr(QW ) + tr(HTRHW )

]︁
dσ

(5)

where we have used [32, Equation 36] to move the derivative
inside the trace. The matrices K and Q − K are symmet-
ric, and trdΣdσ , trdΣdσ > 0 because filter error monotonically
increases with privacy noise. Therefore, by Lemma 2, the first
term in (5) can be bounded by

λn(K)tr
dΣ

dσ
+ λn(Q−K)tr

dΣ

dσ
≤ tr

d
(︁
KΣ+ (Q−K) Σ

)︁
dσ

≤ λ1(K)tr
dΣ

dσ
+ λ1(Q−K)tr

dΣ

dσ
. (6)

By differentiating the discrete algebraic Riccati equation that
defines Σ, we have

dΣ

dσ
= A

dΣ

dσ
AT −A

dΣ

dσ
CT

(︁
CΣCT + V

)︁−1
CΣAT

−AΣCT
(︁
CΣCT + V

)︁−1
C
dΣ

dσ
AT

+AΣCT
(︁
CΣCT+V

)︁−1

(︃
C
dΣ

dσ
CT+2σI

)︃(︁
CΣCT+V

)︁−1CΣAT.

Taking the trace of both sides and simplifying, we find
tr
(︁
U dΣ

dσ

)︁
= −2σtr(FTF ). The matrix U is symmetric, and,

because A is stable, it is positive definite. Therefore by
applying Lemma 2 and simplifying we find

max

{︃
−2σtr(FTF )

λ1(U)
, 0

}︃
≤ tr

dΣ

dσ
≤ −2σtr(FTF )

λn(U)
. (7)

Next we differentiate the equation defining Σ to find

dΣ

dσ
=

dΣ

dσ
− dΣ

dσ
CT

(︁
CΣCT + V

)︁−1
CΣ

− ΣCT
(︁
CΣCT + V

)︁−1
C
dΣ

dσ

+ΣCT(CΣCT+V )−1

(︃
C
dΣ

dσ
CT+2σI

)︃
(CΣCT+V )−1CΣ.
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Taking the trace gives trdΣdσ = tr
[︁
dΣ
dσ Ū

]︁
+ tr

(︂
2σF̄

T
F̄
)︂

. By
substituting the bounds in Equation (7) we get

max

{︃
−2σtr(FTF )

λ1(U)
, 0

}︃
λn

(︁
Ū
)︁
+ tr

(︂
2σF̄

T
F̄
)︂
≤ tr

dΣ

dσ

≤ −2σtr(FTF )

λn(U)
λ1

(︁
Ū
)︁
+ tr

(︂
2σF̄

T
F̄
)︂
. (8)

Substituting the results from Equations (7) and (8) into (6)
and assemble the results back in Equation (5), we get

λn(K)max

{︃
−2σtr(FTF )

λ1(U)
, 0

}︃
+ λn(Q−K)[︄

−2σtr(FTF )

λn(U)
λ1

(︁
Ū
)︁
+tr
(︂
2σF̄

T
F̄
)︂]︄

+2σtrQ+2σtr
(︁
HTRH

)︁
≤ d∆J

dσ
≤ λ1(K)

−2σtr(FTF )

λn(U)

+λ1(Q−K)

[︄
max

{︃
−2σtr(FTF )

λ1(U)
, 0

}︃
λn

(︁
Ū
)︁
+tr
(︂
2σF̄

T
F̄
)︂]︄

+ 2σtrQ+ 2σtr
(︁
HTRH

)︁
. (9)

Next, we observe that dσ
dϵ < 0. We multiply Equation (9)

by dσ
dϵ < 0 and this completes the proof. ■

Proof of Theorem 5: Choosing ϵi ≥ 1
8

(︂
1+

√
36η5+1
η5

)︂2
and

solving for η5, we find 9+
√
2ϵi

2ϵi
≤ η5. Taking δ ∈ [10−5, 10−1]

implies Kδi ∈ [1, 4.5], and as a result we can write
2Kδi

+
√
2ϵi

2ϵi
≤ η5. Using

√
υ + θ ≤

√
υ +

√
θ we take Kδi

inside the square root, leading to κ(δi, ϵi) ≤ η5. Expanding,
this is equivalent to

σ2
i ≤

Bu−λ1(K)trW−x̄TQx̄+gTB
(︁
R+BTKB

)︁−1
BTg

λ1 (K) tr(ATA)
C2

l
+ tr(HTRH) + tr(Q)

.

By rearranging terms and using σ̄i = σi = σl, we find

λ1 (K)

[︃
trW +

σ2
l tr(ATA)

C2
l

]︃
+ x̄TQx̄

−gTB
(︁
R+BTKB

)︁−1
BT g+σ̄2

i

[︁
tr(HTRH) + tr(Q)

]︁
≤ Bu.

Using σ̄2
i ≤ λ1(W ) and Lemma 2, we have tr(QW ) +

tr(HTRHW ) ≤ tr(Q)λ1

(︁
W
)︁
+ tr(HTRH)λ1

(︁
W
)︁

and we
can write

λ1 (K)

[︃
trW +

σ2
l tr(ATA)

C2
l

]︃
+ x̄TQx̄ (10)

− gTB
(︁
R+BTKB

)︁−1
BT g + tr(QW ) + tr(HTRHW ) ≤ Bu.

From [31, Theorem 3.1] we know that Q − K ⪯ 0 and
thus λ1(Q−K) ≤ 0. Using this in Equation (10), we find

λ1 (K)

[︃
trW +

σ2
l tr(ATA)

C2
l

]︃
+ λ1 (Q−K)

[︃
nσ2

l

C2
l + σ2

l λ
−1
n (W )

]︃
+ x̄TQx̄

−gTB
(︁
R+BTKB

)︁−1
BT g+tr(QW )+tr(HTRHW ) ≤ Bu.

Using Theorem 1, we can write

λ1 (K) tr (Σ) + λ1 (Q−K) trΣ+ x̄TQx̄

−gTB
(︁
R+BTKB

)︁−1
BT g+tr(QW )+tr(HTRHW ) ≤ Bu,

and therefore

tr (KΣ) + tr
[︁
(Q−K) Σ

]︁
+ x̄TQx̄

−gTB
(︁
R+BTKB

)︁−1
BT g+tr(QW )+tr(HTRHW ) ≤ Bu,

and we find J̃ (x, u) ≤ α, which completes the proof. ■
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