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ABSTRACT 
Pain is driven by sensation and emotion, and in turn, it motivates decisions and actions. To fully 
appreciate the multidimensional nature of pain, we formulate the study of pain within a closed-loop 
framework of sensory-motor prediction. In this closed-loop cycle, prediction plays an important role, as 
the interaction between prediction and actual sensory experience shapes pain perception and 
subsequently, action. In this Perspective, we describe the roles of two prominent computational 
theories--- Bayesian inference and reinforcement learning---in modeling adaptive pain behaviors. We 
show that prediction serves as a common theme between these two theories, and that each of these 
theories can explain unique aspects of the pain perception-action cycle. We discuss how these 
computational theories and models can improve our mechanistic understandings of pain-centered 
processes such as anticipation, attention, placebo hypoalgesia, and pain chronification.  
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INTRODUCTION  
Pain is complex and multi-dimensional. It includes the sensory-discriminative, affective-emotional and 
cognitive-evaluative components and is the result of dynamic interactions of multiple central and 
peripheral neural processes1,2. Acute pain serves to protect us from predictable harm. However, when 
acute pain persists into a chronic phase, it contributes to the dual public health crises of under-treatment 
and opioid overuse and addiction. A detailed understanding of pain mechanisms is necessary to 
address these healthcare issues. 
 
         In the brain, there is no “pain cortex”. Instead, a distributed network of cortical-subcortical areas 
contributes to pain processing3-5. During pain processing, sensory-motor integration occurs, and this 
integration further interacts with memory to guide decision-making. Pain experiences are subjective and 
highly variable across subjects, and are dependent on contextual, social and cultural factors6. 
Furthermore, pain encompasses both hedonic and motivational aspects of an unpleasant experience7. 
Pain serves as a “teaching signal” to avoid or minimize predictable harm and to modulate physiological 
(e.g., homeostatic, autonomic, endocrine, immune) responses that further affect motivated behaviors 
(e.g., exploration and social interaction). To fully understand these complex factors, it is imperative to 
develop a principled computational framework and model individual components. 
 
        The mammalian pain system consists of ascending and descending pathways, including the 
peripheral nerves, spinal cord and cerebral cortex. To date, multimodal neuroimaging and multisite 
electrophysiology techniques have been used to uncover pain mechanisms of peripheral and central 
nervous systems8-11. In contrast to a wealth of experimental data, however, there is a relative lack of 
computational theories and modeling in pain research12-14. Several reviews on pain have focused on 
nociception and negative emotion15,16, expectation17, motivational decision and action18, as well as 
reinforcement and control13,19. Predictive coding and Bayesian models for perception have been widely 
presented in the literature20-23, but only recently been adopted in pain research12,24-32. Gradually, a more 
general computational framework is also beginning to emerge to accommodate the exponential growth 
of data in pain research.  
 
          In this Perspective, we systematically appraise the role of computational theories and models for 
studying a wide range of pain-associated processes, with a goal to present a coherent theme that 
establishes the computational foundation for both theorists and experimentalists in pain research. 
Specifically, we will focus on theories of predictive coding and reinforcement learning (RL), both of which 
share a common machinery of “prediction” and “prediction error”. Predictive coding and Bayesian theory 
offer a predictive inference framework that can be used to understand pain perception across time. 
Meanwhile, RL provides a mechanistic framework to understanding how the brain supports pain-related 
actions and decisions13. Together, these two prediction-driven theories form a computational foundation 
for the “pain perception-action cycle” and goal-oriented decision making.  
 
 
MOTIVATION FOR NEW COMPUTATIONAL APPROACHES IN PAIN RESEARCH  
Good theories can not only deepen understanding of biological processes, but also generate new 
predictions to validate current and future experiments33. An experimental design may be complex, and 
data interpretation often requires making some basic assumptions and inferences. On the other hand, 
modeling also requires information extraction and abstraction (e.g., an internal world model) to identify 
the common computational principle or mechanism (Figure 1A). There are several reasons to call for 
new theories and models to study pain. First, computational approaches can complement and 
overcome some challenges in the current pain experiments, including the lack of quantifiable readout 
in complex pain behaviors and the tendency to emphasize sensation over action in pain experiences. 
Furthermore, theory can potentially harmonize the findings across species and modalities, and fill in the 
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knowledge gap in both circuit and behavioral-level understandings. Theories or models may also help 
constrain experimental variables and guide experimental designs.  
 
        A second reason for studies on theoretical modeling is that a number of older theories on pain, 
such as the intensity theory, specificity theory, pattern theory, and gate control theory (see Ref. 34, 35), 
have been outdated. For instance, the intensity theory believes that pain results from excessive 
stimulation of the sense of touch, and defining pain as an emotion that occurs when the stimulus 
intensity and central summation are greater than the threshold. The specificity theory of pain argues 
that the summation of pain receptors produces nerve impulses which are transmitted to a pain-specific 
system in the brain, and views nociception independently of other sensory pathways. The pattern theory 
of pain hypothesizes that spatiotemporal pattern of impulses from the peripheral nerves encodes the 
pain sensation and intensity, and these patterns only occur with intense stimulation. The gate control 
theory proposes that non-nociceptive neurons ascending to the dorsal horn of the spinal cord activate 
local inhibitory neurons which in turn inhibits smaller-diameter nociceptive pain fibers, thereby halting 
the transmission of sensory information to the brain36. However, all of these older theories do not 
sufficiently account for the integration of active sensing, cognition, and decision-making, and may thus 
underestimate the importance of dynamic changes in nociceptive/sensory/motor variables in real-world 
environments. In other words, pain is not only a multisensory experience, but also involves at least 
partially conscious choices and active behavioral responses. A complete understanding of pain requires 
models that can integrate sensory experience with cognitive choices and motor actions.  
 
       Finally, learning and adaptive behaviors are essential to every aspect of pain processing, with 
examples ranging from pain anticipation, perception, avoidance, recuperation, and chronification. All 
these adaptive behaviors are driven by learning13,19. Pain is a teaching signal. Throughout evolution, 
animals develop the ability to adapt their bodily or physiological responses to detect and avoid 
predictable injury and pain. Hence, a new computational framework is urgently needed to incorporate 
such learning paradigms into the understanding of pain.  
 
 
COMPUTATIONAL FRAMEWORK FOR STUDYING THE PAIN PERCEPTION-ACTION CYCLE  
The perception-action cycle is found in all goal-directed behaviors37. Within this cycle, the brain needs 
to execute a series of cognitive functions including sensory assessment, attention, memory and 
sensorimotor integration. This perception-action cycle can be used as a conceptual model for pain 
processing38. A pain perception-action cycle has several key components: sensory-motor integration, 
motivation, and learning. The principle of prediction comprises many aspects in the pain perception-
action cycle: predictive coding can be used to explain pain perception and expectation, whereas RL 
provides conceptual understanding for motivation-driven action. Indeed, prediction is fundamental to 
numerous pain behaviors including pain anticipation, pain avoidance, fear, pain catastrophizing, chronic 
pain aversion, and placebo analgesia16,39-41. A mismatch between prediction and sensory inputs 
generates a surprise signal representing prediction error (PE), which further drives aversive learning 
associated with nociception, resulting in both adaptive and maladaptive action. In this section, we will 
review several computational theories that are essential to prediction and learning for understanding 
the pain perception-action cycle (Table 1).  
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Table 1. Theories and models for understanding the pain perception-action cycle. 
Theories and Models Computation Pain applications  
Predictive coding Prediction of sensory or motor 

signals 
Pain perception, sensorimotor 
integration 

Bayesian theory Prediction of posterior and 
posterior mean 

Pain perception, placebo analgesia  

Reinforcement learning Prediction of value function   Decision-making, planning, avoidance, 
pain conditioning, pain chronification  

Avoidance/escape 
learning 

Prediction of value function, 
integration of multi-factors    

pain anticipation/avoidance, pain-related 
fear conditioning  

Associative learning Modulation of “associability” 
strength  

Attention modulation for pain, fear-
conditioned pain modulation, pain 
extinction  

Predicted response-
outcome (PRO) model 

Action selection and prediction Pain-associated decision-making 

Motivation-Decision 
model 

Weighting the utility function Decision-making in cost-benefit 
conflicting or competitive choices 

 
         Our main objective of this Perspective article is to educate pain researchers on computational 
approaches for pain studies. Before reviewing detailed pain applications of computational models, we 
hope to present a high-level description of theories and models to familiarize pain researchers with 
basic mathematical backgrounds and necessary technical jargons. Many models are conceptually 
connected, while hybrid models can also be employed in pain applications. To link these theories with 
the various pain applications, we aim to provide multiple lines of evidence and neural correlates of PEs 
in pain circuits by presenting model discussions. 
 
Predictive Coding and Bayesian Theory: Prediction for Sensory Perception and Motor Response 
to Pain 
To address uncertainties (i.e., “what”, “when”, and “where”) in a dynamic environment, the brain uses 
prior information to guide both sensory perception and motor output42-44. A useful paradigm to describe 
this process is predictive coding. In this paradigm, sensing and action describe the inversion of an 
internal generative percept model, which continuously adapts to additional sensory perceptions and/or 
motor preparation. Such predictive coding paradigms have provided insight into perceptual inference, 
motor control and multisensory integration21,23,45,46. In this view, sensing is active and predictive, and 
attention can be used to bias the perceptual selection of multiple sensory inputs.  
 
          In predictive coding, the bottom-up (sensory, nociceptive, proprioceptive) input and top-down 
(expectation, attention) output are integrated to compute a PE, which is further used as a form of 
feedback to update the internal model for subsequent prediction (Figure 1B).  
                                          Prediction = Input + gain ´ PE  
The PE represents a surprise factor, and the uncertainty of this surprise factor can also be characterized 
by its variance, or the inverse of gain in a system. A small PE and/or large variance would call for a 
small correction; in contrast, a large PE and small variance would call for a big update. Predictive coding 
can successfully explain both perception and action, and thus the perception-action cycle consists of 
two intertwining internal prediction loops (Figure 1C). 
 
        Bayesian theory further generalizes predictive coding with a feature of probabilistic inference. In 
the case of nociception, bottom-up sensory inputs from the periphery produce a likelihood for perceptive 
and behavioral response, whereas neurons in the brain which undergo plasticity as the results of prior 
experiences can also provide top-down modulatory outputs to further shape these responses. Take 
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pain perception (including placebo hypoalgesia) as an example, how do we ultimately perceive pain 
(“pain belief”) does not only depend on how the nociceptive input, sensory input (such as vision) and 
proprioceptive input signaling alarms (“likelihood of injury or harm”), but also on our attention, 
expectation, context and environment (“prior”). Through evolution and experiences, our brains have 
built empirical internal predictive mapping models for the likelihood of an event to occur. Such directional 
neural circuit response can be characterized by a generative predictive model (denoted by a probability 
distribution P(observed | model parameter)), where Bayesian inference can be used to compute the 
most likely causes of observed neural response (i.e., posterior) by optimally integrating prior experience 
and observed nociceptive inputs                                          
                                         Posterior µ Prior ´ Likelihood  
                                                         µ Prior ´ ò P(observed | latent) ´ P(latent)  d(latent)  
from which the pain belief can be inferred from the statistics of posterior distribution (e.g., mean, 
variance). Importantly, this often forms an inferential loop as the effect of such information may further 
drive top-down modulation. In this inference model, it is common to introduce a latent variable, which 
can be either a continuous or discrete random variable, to account for unobserved neural processes 
(e.g., attention and modulatory input). In the above pain perception example, this is equivalent to 
averaging out all possibilities of unknowns given their respective priors in the inference. When all the 
unknowns are equally possible (i.e., noninformative priors), then the posterior computation becomes 
simplified. In a general case, however, exact inference of the full posterior distribution is computationally 
intractable (for either computer or brain) and often relies on certain variational approximations, 
producing different classes of approximate Bayesian inference methods (Box 1). A special case of 
predictive coding is the Kalman filter, which is an optimal Bayesian estimator for the linear Gaussian 
system.  
 
        An effort that combines predictive coding and Bayesian theory is Bayesian predictive coding22, 
where the predicted sensory input is equivalent to the mathematical expectation with respect to the 
posterior of the input 
                    Prediction = ò Input ´ Posterior(input) d(input) 
                                     µ ò Input ´ P(input) ´ P(observed | latent, input) ´ P(latent)  d(input) d(latent) 
The computation can be understood through a hierarchical inference process. 
 
        How do predictive coding and Bayesian theory help our understanding of pain perception? To date, 
these two theories have been advocated to account for behavioral and neural data in pain 
processing12,27,47-51. In the context of inference for pain, PE and prediction may be computed in different 
brain regions. A detailed discussion on neural correlates of these PE signals will be presented in the 
next section. Additionally, communications of PE and prediction signaling can be manifested in gamma 
and alpha/beta oscillations in the bottom-up and top-down pathways, respectively; one possibility is 
within the S1-ACC circuits52. The PE is computed in the higher frequency (such as gamma) oscillations, 
whereas the prediction is updated in the lower frequency (such as alpha and beta) oscillations, as shown 
in experimental findings in many pain studies27,53,54. 
 
 
Reinforcement Learning: Prediction of the Pain-Aversive Value 
Motivation forms another key component of the pain perception-action loop. RL is an important tool to 
understand motivated actions and decision-making55. Through experience-based learning, a biological 
agent receives an input from the environment and seeks an action in a certain state to maximize the 
reward and pleasure (such as pain relief) or to minimize the cost. The problem of determining the action 
that leads to a goal-directed outcome can be formulated as a temporal credit assignment problem. For 
instance, if a runner has a long-term objective to run a marathon, then a series of planning and action 
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will be made to reach the goal, which ultimately results in a large emotional reward. The same runner 
will experience physical pain during training; yet the runner is motivated to endure the pain. 
 
        Through learning the associations between stimuli (“state”), actions, and the occurrence of 
pleasant or unpleasant events, RL is capable of predicting future rewards or punishments56. A RL 
algorithm is model-free if it only replies on real samples from the environment and never uses generated 
predictions of next state and next reward to alter behavior. One of the most popular model-free RL 
models is known as temporal difference RL (TDRL) (Box 2 and Figure 1D). The basic idea of the RL 
model is to formulate a value function and use it to compute the reward PE to guide action selection; 
the value function is further updated from the reward PE as explained the following equation  
                           Predicted value function = Old value function + gain ´ reward PE  
In this case, the reward PE can be used to increase the propensity to perform actions resulting in higher-
than-expected rewards, as well as to update the value function and future predictions. Another model-
free RL model is the actor-critic model, which generalizes the TDRL to allow policy iteration, which 
simultaneously allows action learning (actor) and value learning (critic)55. In short, the actor-critic model 
separates PE from the action selection process: the critic learns to calculate PE, and uses it to predict 
the value of the current environmental state, and the actor uses the PE to learn to select between 
competing possible actions. The dorsolateral and ventral striatum have been implicated for the actor 
and critic roles, respectively57. RL has been successfully adopted in a series of human experiments in 
the context of pain58,59. Specifically, the ventral striatum and the anterior insula encode PE signals 
predicted by RL models in a fMRI study of higher-order aversive conditioning, where humans were 
instructed to learn a computational strategy to predict pain58. In contrast, the amygdala and midbrain 
tended to reflect reward-like signals predicted by RL models, where humans learned to generate 
expectations of pain relief59. Detailed discussions of neural correlates of PE signals in distributed pain 
circuits will be presented in the next section. 
 
            Although reward and pain represent pleasant and unpleasant experiences, respectively, they 
can both trigger motivated behaviors through RL models. The nature of reinforcement can be either 
positive or negative. Positive reinforcement works by introducing a reward to increase the likelihood of 
a behavior, whereas negative reinforcement learning involves the removal of an unpleasant stimulus 
(e.g., pain relief)7,60. In the midbrain mesolimbic dopamine system, dopaminergic (DA) signaling was 
found in the presence of not only appetitive stimuli (“reward”) but also aversive stimuli (“pain”)61-64, where 
salience-coding DA signaling are similar for pain and reward. On the other hand, DA signaling can 
represent hedonic value or the sign of the learning signal in reward or pain relief60,65. However, reward 
and pain involve distinct circuit pathways: aversive DA signaling involves ventral tegmental area 
(VTA)àcortical projections, whereas reward DA signaling involves VTAàventral striatal or 
VTAànucleus accumbens (NAc) projections66. These two systems are dissociable and yet also 
interconnected7,67. Additionally, DA signaling has been found to be important for motivational avoidance 
behavior; neuroimaging has suggested that dopamine dysfunction plays a role in chronic pain68-71. 
Chronic pain decreases the activity of VTA DA neurons, reduces motivation for natural rewards and 
drives anhedonia-like behavior72. The RL theory may thus provide a useful framework to model DA-
related chronic pain and addiction behaviors13,73. 
 
         How can RL theories help explain strategies of value learning and action learning in the context 
of pain? Pain presents as a strong motivational drive to impact decision making, and there is also a 
neurobiological overlap between decision-making and pain18,74-76. The adaptive pain behaviors in 
animals and humans may have originated evolutionarily to promote survival by minimizing harm, and 
may further involve higher-order cognitive processes and planning. Therefore, the decision on how to 
plan an action to escape from or endure potential harm in order to maximize future reward, can be 
formulated as a temporal credit assignment problem13. A number of top-down pathways have been 
implicated in the control or modulation of pain-related decision-making processes. These include the 
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projections from the prefrontal and midcingulate areas to mid- and hindbrain structures such as the 
periaqueductal gray (PAG) and NAc39,77, as well as the projections to the insula cortex and thalamus78-
80.  
 
 
Associative Learning: Modulation of PE and Association for Pain   
The ability to learn associations between cues and pain allows the prediction and avoidance of 
experiences of pain and injury81. Operant conditioning (or instrumental conditioning) is a type of 
associative learning through which the strength of a behavior is modified by reinforcement or 
punishment. Similar to RL, associative learning uses PE to guide learning; but it also applies a 
modulating factor (such as attention) to directly or indirectly change the association between a 
conditioned stimulus (CS) and an unconditioned stimulus (US)82. The Rescorla-Wagner model is a 
special class of associative learning model that uses the signed PE to determine the effectiveness of 
USs83. Another class of associative learning model employs the unsigned PE to determine the eligibility 
of CSs84-86. PE signaling has been found in the amygdala in the context of fear87,88. 
          
          How does associative learning relate to pain? Pain is a primary reinforcer in associative learning 
in animal models of fear conditioning18. During a Pavlovian fear-conditioning paradigm, the expected 
shock probability of a noxious stimulus and associability (‘uncertainty’) were estimated from an 
associative learning model89. Human imaging studies have also found a role of associative learning in 
pain expectation as well as in placebo responses40,90,91. Recently, Zhang and colleagues proposed an 
associative learning model for tonic pain relief in an escape-learning paradigm. In this study, they found 
that the uncertainty (‘associability’) signal in the associative learning model was encoded in the 
pregenual anterior cingulate cortex (pACC) that controls the level of tonic pain aversion, and the error 
signals in the dorsal putamen explained active seeking of pain-relief92. Furthermore, another human 
neuroimaging study has shown that associative learning signals---the learned associability and PE---
are correlated with fMRI responses in amygdala-striatal regions, corresponding to the fear learning 
circuit93. 
 
 
Avoidance Learning and Escape Learning: Responses to Aversive Pain Stimuli  
Adaptive pain behaviors can be explained by various instrumental learning theories driven by reward 
or punishment. There is a critical difference between reward- and punishment-based learning because 
of the distinct nature and asymmetry of how the brain process appetitive and aversive outcomes. 
Specifically, avoidance (or escape) learning is referred to the scenario in which animals or humans can 
learn a response to avoid (or terminate) experiencing an aversive and painful stimulus. For instance, in 
avoidance learning, a mouse can avoid the electric shock by moving to the opposite chamber after the 
conditioned stimulus (CS) is presented; in escape learning, a mouse responds to the unconditioned 
stimulus (US) instead of the CS by escaping to the opposite chamber. In avoidance learning, the action 
can be active or passive (i.e., inaction, as action in the presence of warning stimuli has previously led 
to pain).  
 
         How do we develop computational models for avoidance learning behaviors in response to 
aversive pain stimuli? Avoidance learning can be formulated as a temporal difference model similar to 
RL94, and can be used to model pain avoidance conditioning of a non-noxious stimulus95,96. Recently, a 
hybrid model-based and model-free avoidance learning paradigm was proposed for a two-step aversive 
decision-making task97, in which the avoidance behaviors are controlled by two different systems:  a 
‘model-free’ habit system and a ‘model-based’ cognitive system. The model-free system bears a form 
of a specialized RL model, whereas the model-based system learns a forward internal model of state 
transition; the reliabilities of the two models are evaluated from their respective PEs, and the ultimate 
value function consists of a weighted sum of the two value functions (VMF and VMB) of two systems 
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(Figure 1E). Additionally, Jepma and colleagues used model-free RL to fit the behavioral data of 
participants performing an instrumental pain-avoidance learning task; they also found that pain PEs 
were encoded in subcortical and limbic brain regions, whereas no-pain PEs were encoded in frontal 
and parietal cortical regions98.  
 
          What is the neural basis of avoidance learning? The neural substrates of avoidance learning are 
composed by a WHEN system (limbic circuits, including the amygdala, hippocampus, cingulate cortex 
and limbic thalamus) and a WHAT system (motor circuits). Pain and fear are two major factors that 
influence motivational behaviors: pain motivates recuperative behaviors that promote learning, whereas 
fear activates defensive behaviors to guard against dangers. These two motivational systems are 
thought to serve distinct and competitive functions, and as such, a perceptual-defensive-recuperative 
(PDR) model has been developed to account for the relationship between fear and pain99. The 
amygdala and striatum are two subcortical circuits primarily involved in avoidance learning18,100:  the 
amygdala is responsible for learning about aversive outcomes, and the striatum is implicated in reward-
related reinforcement of actions to avoid negative outcomes. The brainstemàamygdala and anterior 
insulaàamygdala pathways play an important role in avoidance of punishment101. Recent data have 
also shown that pharmacological manipulations had no effect on the neural encoding PEs, suggesting 
that pain-avoidance learning is supported by separate threat- and safety-learning system, and that 
dopamine and endogenous opioids regulate learning from successfully avoided pain98. 
  
 
Prediction Models for Action Selection and Decision-Making in Conflicts for Pain 
Another aspect of the pain perception-action cycle is action. Therefore, it is equally important to develop 
computational models to understand the process of action and its motivation. The anterior cingulate 
cortex (ACC) is a central hub for pain sensation and action that connects with the somatosensory cortex, 
parietal cortex and supplemental motor area (dorsal pathway) as well as the insula, amygdala, and NAc 
(ventral pathway). The ACC has been implicated in monitoring conflicts and errors, and using the error 
feedback to guide actions in aversive scenarios102. Specifically, a RL-motivated computational model 
known as the predicted response-outcome (PRO) model has been proposed for the ACC, as part of the 
medial prefrontal cortex (mPFC), to predict the action outcome (Figure 1F)103. The PRO model is a 
generalization of the temporal difference RL model. However, unlike the classic RL model that learns a 
scalar prediction of the value of the current state, the PRO model learns predictions for multiple possible 
outcomes. In this case, the model output represents a temporally discounted prediction of various 
outcomes in proportion to their probability of occurrence, and the aggregates of outcome predictions 
generated by this model minus the observed outcomes is explained as “negative surprise”, which 
reflects the probability of an expected non-occurrence, or a “positive surprise”, reflecting the probability 
of an expected occurrence104-106. These surprise signals can be used to guide learning and action 
prediction. For example, Alexander and Brown used PRO and hierarchical error representation (HER) 
models to demonstrate the role of mPFC in action prediction, in which the PE representation and action 
selection are interleaved with bottom-down and top-down processing106. 
 
           The action in pain perception-action cycle is sometimes driven by conflicting motivations. Pain 
affects social decision-making in humans. Animals also need to learn prioritized choices to survive when 
encountering competitive goals (e.g., safety, food, escape, and mating) in the presence of conflicts (e.g., 
pain, hunger, predator threat, and fight). A utility function of each choice can be introduced to guide 
decision-making107. The “decision utility” describes the usefulness that one perceives and uses for 
decision-making, which is rooted in the classical behavioral economics theory108. Given multiple 
competitive choices, a Motivation-Decision model of pain can explain how animals and humans learn 
to reevaluate the cost-benefit conflict to prioritize decisions17,109. According to this model, anything that 
has higher relevance for survival than pain will receive action preference over pain-related reflexes (by 
inhibiting nociception); therefore, neural circuits that process multiple conflicting motivations will 
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integrate information to provide selective outputs to drive immediate attention. This Motivation-Decision 
model also allows us to characterize the pain perception-action loop, as it predicts that top-down 
expectations may either enhance or inhibit nociceptive transmission and further influence pain 
perception and future behavioral responses.  
 
 
NEURAL CORRELATES OF PREDICTION ERRORS IN PAIN CIRCUITS 
The past few decades have witnessed rapid progress and deeper understanding on the neurobiology 
of pain3,5,110-115. Human neuroimaging has enabled us to study “correlational” changes in brain activity 
or functional connectivity between a large number of brain areas during various pain states (Figure 2A). 
Examples of brain regions that respond to acute noxious stimuli and that take part in the pathology of 
chronic pain include the prefrontal cortex (PFC), ACC, midcingulate cortex (MCC), anterior insula, 
posterior insula (PI), thalamus, basolateral amygdala (BLA), hypothalamus, striatum, PAG, and rostral 
ventromedial medulla (RVM). Meanwhile, studies in rodent models have enabled us to dissect the 
causal roles of pain pathways to show how specific neural circuits, such as the ACC, insula cortex, BLA, 
and prelimbic (PL) cortex (human analogue of dorsolateral PFC), play critical roles in pain processing 
and regulation (Figure 2B and BOX 3). 
      
        Neural evidence for brain region activity correlating to the computational models is a strong support 
for the theoretical models. To date, experimental research has shown that many types of neurons can 
carry reward PE signals116, starting from dopamine neurons in the VTA and norepinephrine neurons in 
the locus coeruleus (LC), as well as pyramidal neurons and interneurons from the superior colliculus 
(SC), frontal cortex, PAG, and the striatum (Figure 2A). For instance, in the primary sensory cortex, 
motor cortex, and prefrontal cortex, neuronal expressions of PE have been shown to represent the 
difference between predicted and observed sensory, motor or executive signals21,46. The PE signals 
can appear in the form of unsigned PEs (i.e., representing the magnitude of an unexpected outcome) 
or in the form of signed PEs (i.e., the direction of such deviation). Neural “PE” signals can also appear 
as a generalized form that goes beyond the reward PE or state PE117. 
 
      Two prominent examples of neural correlates of PEs are found in the amygdala and ACC in animal 
studies. In one study, McHugh and colleagues showed that aversive prediction signals are found in the 
mouse BLA118. Specifically, amygdalar responses during fear conditioning evoked by footshock 
progressively decreased, whereas responses evoked by the auditory cue that predicted footshock 
concomitantly increased. The unexpected footshock produced larger amygdala responses than 
expected footshock. The magnitude of the amygdalar response to the footshock predicted behavioral 
responses in the following day, and the omission of expected footshock led to a decreased amygdala 
response below baseline, suggesting a negative aversive PE signal. ACC neurons not only can encode 
pain-related negative affect, but they are also responsible for learning underlying recognition of pain-
predictive cues and avoidance119. The ACC can also encode PE and surprise signals105,120,121. Elston 
and colleagues reported that error-related feedback integration is associated with increased inputs from 
the midbrain to the ACC, and the error is predictive of subsequent behavioral adaptation122.  
 
         Meanwhile, human neuroimaging studies over the last two decades, meanwhile, have identified 
the roles of a broad range of brain regions in prediction and PE during pain processing. For example, 
Talmi et al. reported that reward PEs are also expressed in a ventromedial prefrontal region extending 
into the orbitofrontal cortex (OFC), ACC, ventral striatum, hippocampus, bilateral insula, and posterior 
cingulate cortex (PCC)123. Additionally, Baliki et al. found that the positive activations of NAc in healthy 
subjects encode the predictive value of pain relief and anticipate its analgesic potential on chronic pain39. 
In an instrumental pain avoidance task, Roy et al. found that pain PEs are encoded in the human PAG124. 
Specifically, they found that the ventromedial prefrontal cortex (vmPFC) provides an expectation-input 
to the PAG (Figure 3A), which further relays PE signals to other prefrontal regions important for 
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behavioral regulation (e.g. the dorsomedial prefrontal cortex, dmPFC). Using a probabilistic thermal 
pain paradigm, Geuter and colleagues found that the anterior insula responses to cued pain stimuli 
strictly follow the response patterns according to the predictive coding model, whereas the PI directly 
encodes the stimulus intensity48. Furthermore, the dorsal anterior insula represents pain intensity and 
expectations, whereas the ventral anterior insula additionally represents the absolute PE125. Recently, 
using a mixed US (painful heat or loud sound) experimental protocol, Horing and Buchel reported that 
the anterior insula correlates with unsigned intensity PEs, irrespective of modality (pain vs. sound), 
indicating an unspecific aversive surprise signal; whereas the dorsal PI encodes the signed intensity 
PEs, which are modality specific51. Together, these results from the human insula cortex offer a novel 
interpretation of aberrant pain processing as disturbed weighting of predictions and PEs. In a follow-up 
human EEG study, the same research group reported that the alpha-to-beta frequency band activity in 
the frontal cortical area is associated with the stimulus intensity expectation, followed by a negative 
modulation of the gamma-band activity by absolute PEs126. Additionally, Ploghaus et al. studied brain 
activity during different types of thermal pain mismatch and observed that when painful thermal 
stimulation was unexpected (i.e., positive PE), fMRI BOLD signals were elevated in the hippocampus, 
superior frontal gyrus (GFs), superior parietal gyrus (GPs), and cerebellum81. Activation of these brain 
regions, however, was not found in the mismatch between the expectation and delivery of nonpainful 
heat stimulation. Furthermore, when painful thermal stimulation was unexpectedly omitted (i.e., 
negative PE), the BOLD responses decreased in the left GPs and increased in the hippocampus, GFs, 
and cerebellum. In human EEG recordings, it has been demonstrated that the peak amplitude of laser-
evoked potentials (LEPs) reflect the surprise of painful stimulus rather than the intensity of the stimulus, 
supporting a macroscopic neural correlate of PE127. Together, PE signals appear to be distributed 
across multiple brain regions, and the differences in local responses can cause overall circuit changes 
to process both sensory and affective components of pain.  
  
 
APPLICATIONS OF COMPUTATIONAL MODELS TO UNDERSTAND DISTINCT PAIN 
EXPERIENCES  
Pain Anticipation  
Learning about environmental cues that predict noxious stimuli can modify our response to such stimuli. 
Pain anticipation represents an important example of such learning paradigm. The anticipation of 
impending pain drives pain catastrophizing and other enhanced aversive responses. The anticipation 
of a future reward in the form of pain relief, meanwhile, can result in a range of responses from healthy 
exercises to harmful drug addiction. Human neuroimaging studies have shown that the medial prefrontal 
cortex (mPFC) and insula cortex may encode pain anticipation110,128. These studies further suggest that 
distinct neural activities may underlie pain and the anticipation of pain.  
 
        Prediction and PE provide a natural explanation for pain anticipation. Recently, Iigaya and 
colleagues proposed that the total value of the reward predictive cue may be the sum of the anticipation 
of a future reward and the reward value itself129. Specifically, at the neural circuit level, the authors 
argued that the ventromedial PFC tracks the value of anticipatory utility, midbrain DA correlates with 
information that enhances anticipation, whereas the hippocampus mediates the functional coupling 
between the PFC and midbrain. Thus, the intensity of pain anticipation is mechanistically summed by 
predictions as well as PE. Furthermore, Story et al. found that pain anticipation may carry a cost in 
decision-making, and a delayed outcome can motivate individuals to choose an expedited punishment 
while waiting for the reward130. These two theories explain the potential unpleasantness or aversiveness 
of pain anticipation itself. Evidence from pain studies also suggest that the degree of predictability may 
modulate the degree of anticipation. For instance, the differences in pain rating and differences in event-
related potential (ERP) responses between high and low-intensity painful stimulations were significantly 
reduced when the intensity of the noxious stimulus was random and uncertain131.  
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         A prior history of pain experiences can drive future expectations, and such expectations can in 
turn influence both perception and learning. Furthermore, bidirectional interactions between 
expectations and experiences can result in self-reinforcing behaviors. Both RL and Bayesian theories 
have been applied to understand how pain anticipation drives behaviors. Jepma and colleagues 
examined the modulation of sensory perception in a human fMRI study and compared RL and Bayesian 
inference models while fitting their experimental data (Figure 3B); they argued that the RL model 
explains pain perception as a mechanistic process involving prediction and error correction, whereas 
the Bayesian model explains pain perception in terms of probabilistic inference12. This interpretation is 
still debatable since Bayesian predictive coding models can describe prediction and error correction, 
whereas RL can also be formulated within a Bayesian framework. 
            
  
Placebo and Nocebo Effects  
Since the experience of pain is influenced by one’s belief and expectation, placebo treatment that has 
no intrinsic pharmacological effect may produce analgesia by modifying expectation132,133. 
Psychological and neurobiological mechanisms of placebo analgesia have been well studied134, and 
predictive coding models have been adopted for these mechanistic inquiries135. One theory for placebo 
hypoalgesia is the integration of bottom-up nociceptive signals with top-down prior prediction of pain 
and/or pain relief47. Bayesian model posits that the brain makes inference or prediction by integrating 
the uncertainty of expectation for pain or pain relief and the uncertainty of nociceptive information. Thus, 
Büchel et al. showed that the uncertainty of expectations or sensory information is vital for subjective 
pain perception (Figure 3C)47. Application of the Bayesian theory has led to several important 
discoveries. First, modulatory neurotransmitters including opioid receptor agonists have been shown to 
influence the precision of expectation to modulate pain perception136,137. Second, a disruption of top-
down prediction from prefrontal area as a result of neurodegeneration can exacerbate PEs and 
consequently lead to a stronger influence of ascending nociceptive signals138-140. The theory of Bayesian 
integration in placebo hypoalgesia has been tested in a number of human neuroimaging 
experiments48,49,141. Meanwhile, RL theories can also explain persistent pain modulation after the 
discontinuation of reinforcement, another feature of placebo effects. Indeed, fMRI experiments have 
shown that analgesic expectations are associated with PE signals in the ventral striatum, whereas the 
suppression of striatal PEs mediated by the PFC leads to reduced updating of treatment expectancies 
and decreased extinction of placebo hypoalgesia142. 
 
       Additionally, the view of placebo effects as a form of modification of expectation suggests the 
possibility to update individual expectations. Thus, positive expectations of pain relief can drive placebo 
analgesia and the reduction of pain, and these placebo effects further depend on the length of exposure 
to prior effective interventions143. In contrast, nocebo effects are defined as adverse events related to 
negative expectations and learning processes that are involved in the modulation of the descending 
pain pathways. Nocebo hyperalgesia, as an opposite to placebo analgesia, is defined by the role that 
negative expectations of increased pain intensity play in amplifying the overall pain perception144,145. 
Computational models play a similar role in understanding nocebo effects. In a human neuroimaging 
study, Tinnermann and colleagues showed that the value information (such as the price of medication) 
increased nocebo effects, and this effect was mediated by neural interactions between the rostral ACC 
(rACC), PAG, and spinal cord146. Furthermore, the rACC deactivation predicted the strength of reported 
pain increase during nocebo treatment, serving an inhibitory function on the descending pain. Together, 
these results not only highlight the importance of value representation in higher cortical areas such as 
the ACC for pain modulation, but they also support the role of predictive coding theory in understanding 
placebo and nocebo effects.   
 
 
Attention and Pain  
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An important cognitive component of pain is attention147. Pain demands attention; at the same time, 
attention or distraction can also modulate both sensory and affective expression of pain148,149. Attention 
to pain increases pain sensitivity, whereas distraction from pain reduces it150. Specifically, when 
subjects were distracted during painful stimulation, brain areas associated with the affective division of 
the ACC, orbitofrontal cortex (OFC) and PAG showed increased activation, whereas the insula, 
thalamus, and cognitive division of the ACC showed reduced activation151,152. Within the predictive 
coding framework, attention serves as an important variable to promote neural encoding of PEs153. 
Specifically, attention optimizes the expected precision of predictions and increases the selectivity for 
neural responses to a relevant stimulus (Figure 3D). Therefore, attention and prediction are two 
inherently related processes. Conversely, pain can disrupt attentional performance in both healthy 
subjects and chronic pain patients154. A noxious and salient stimulus can be viewed as an independent 
attentional target, and it competes with other attentional targets in the prefrontal circuit during bottom-
up and top-down interactions of the prefrontal and subcortical regions155-157. A conflict between attention 
and pain avoidance demands a reevaluation of cognitive priority to determine behavioral outputs. At the 
circuit level, if we adopt the conventional view that the PFC leads the main circuit to predict outcomes, 
then changes in attention, through changes in prefrontal activities, can modify the motivational gain 
during pain perception and reshape behavioral response. Furthermore, timing is critical for attention, 
and attentional modulation provides a mechanism whereby even slight changes in neural activity within 
the prediction-action cycle, if properly placed in a specific temporal context, can result in large 
behavioral shifts. For example, a recent finding has shown that low-frequency (2 Hz) optogenetic 
activation of the prelimbic (PL) cortex slightly decreased the basal firing rates of pain-regulatory PFC 
neurons, but it effectively inhibited pain behaviors of freely behaving rats158. Together, these results 
support the role of PFC as a modifier of attention and in turn a gain controller for the prediction of 
behavioral outcomes in pain states159 . Evidence for prefrontal regulation of pain behavioral control also 
allows the adoption of a broad range of prediction-based computational models, such as differential 
reinforcement model160, to unravel the underpinning of attention and pain.  
 
 
Pain Chronification 
Acute pain protects us from danger and bodily harm. Chronic pain, on the other hand, represents a 
pathological state. In many cases, chronic pain continues even when the initial tissue injury has already 
been repaired. Chronic pain is in general defined by pain lasting longer than three months, and two 
hallmark features are frequently observed: hypersensitivity to peripheral noxious stimuli of lower 
intensity or non-noxious stimuli. The pathogenesis of chronic pain has been widely studied at peripheral, 
spinal and brain levels161-164. In animal and human studies, repeated noxious stimulations can result in 
abnormal neural responses to noxious stimuli or at baseline across cortical (e.g., the somatosensory 
cortex, insula, PFC and ACC) and subcortical areas (e.g., the thalamus, amygdala, and NAc). In human 
fMRI studies, during pain chronification, the brain undergoes a gradual switch from a predominantly 
somatosensory pain circuit to one dominated by the affective-processing circuit68,165,166. Multiple lines of 
evidence have pointed to the vital role of mesolimbic or cortico-limbic system in the development, 
amplification and prediction of chronic pain77,167. The interaction of mesolimbic circuitry and prefrontal 
circuitry determines the condition of pain transition to an emotional state, where the limbic circuits 
provide modulatory signals for learning168. During this process, the negative motivational value of 
nociception may increase while the value of reward of pain relief may decrease169. 
 
           While molecular and circuit mechanisms of chronic pain have been well studied111,161,170, 
computational theories including Bayesian learning and RL can further contribute to the understanding 
of chronic pain, particularly the transition from acute to chronic pain38,171. A long-established view of 
pain chronification theory is operant learning172,173, which hypothesizes that positive and negative 
reinforcement of acute pain behaviors leads to the development of chronic pain174,175. Apkarian and 
colleagues proposed that pain chronification is due to the persistence of the memory of pain and/or the 
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inability to extinguish this memory of pain evoked by an initial injury171. According to this theory, pain 
chronification corresponds to a state of continuous learning, in which aversive emotional associations 
are established with incidental peripheral inputs168,171,176. To emphasize the role of maladaptivity in brain 
circuits, Baliki and Apkarian proposed a theory to view chronic pain as a repeated failure of avoidant 
behavior, and postulated that disruption of adaptations in a mesolimbic threshold process that gates 
the transformation of nociceptive activity to conscious pain is viewed as a key factor for chronic pain 
development16. Specifically, they deconstructed chronic pain into four phases: predisposition, injury, 
transition, and maintenance. While healthy persistent pain can be treated and recovered, chronic pain 
represents a maladaptive plastic change in the sensory processing pathway that consequently leads to 
reorganization of the neocortical circuits. Additionally, the transition from acute to chronic pain can 
cause low DA delivery in the mesolimbic system70,71. Since DA signaling contributes to avoidance 
behavior in the presence of noxious stimuli, a deficit in DA signaling can impair motivated behavior over 
time64. Neurobiological and behavioral findings can benefit from computational theories and models to 
explain the chronicity and chronification of pain.  
 
            For instance, the prediction of injury and post-injury inference can be formulated as an inference 
and control question19. The optimal control theory, as a special case of RL, can help model the 
perceived uncontrollability (or unpredictability) and gradual information restriction leading to 
pathological chronic pain. Therefore, the control-as-inference view may model pain chronification as a 
series of maladaptive learning (e.g., wrong associations), maladaptive integration (e.g., lesion-induced 
information loss), and maladaptive priors (e.g., pessimistic belief or reduced subjective controllability) 
(see Ref. 177 for a review). 
  
             During the transition process, a combination of physical events, memory of past events and 
emotions can force the brain develop an actor model (i.e. action learning) and a critic model (i.e. value 
learning) for optimal long-term action selection. Additionally, persistent, maladaptive learning may 
cause a cascading effect or vicious body-mind circle (e.g., painàstressàpain). Overtime, the goal-
directed action (“Stimulus-Action-Outcome” association) may gradually reduce to a habit (an 
autonomous “Stimulus-Response” association) that is beyond volitional control. The basal ganglia---the 
area responsible for habit learning, also plays a role in nociception and pain178. Together, these 
computational models provide potential tools for modeling different putative mechanisms of pain 
chronification, whereas associative learning may be also used for modeling pain extinction or unlearning 
unpleasant emotion179,180.  
 
 
Phantom Pain  
Phantom pain is defined as pain that occurs in an area of the body that is no longer present. Brain 
mechanisms for phantom pain have focused on cortical reorganization181, as well as maladaptive 
plasticity in both peripheral and central nervous systems182. A deeper understanding of such neural 
plasticity in phantom pain can be characterized by computational models183. For instance, Bostrom and 
colleagues proposed a physiologically plausible computational model to study the maladaptive 
reorganization of the primary somatosensory cortex (S1)184. This model assumes that the S1 
dynamically self-organizes based on the neural input, and spontaneous activity in the sensory cortex is 
the result of discrete neuronal noise and coherent activity. Computational simulations for this model 
showed that both the amount of reorganization and the level of S1 activity during phantom movements 
were enhanced, suggesting that phantom pain and persistent representation may share a common 
mechanism driven by an abnormally enhanced spontaneous activity of deafferented peripheral 
nociceptive channels.  
 
       Understanding of the origin of phantom pain has further benefited from computational modeling, 
especially models of prediction and PE. According to a stochastic entanglement model185, a disruption 
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in the “sensory-motor-prediction” loop causes pain perception and sensorimotor circuitry to be 
pathologically linked and in turn activated despite the lack of a real nociceptive input. This pathologic 
link creates a misinformation of prediction in terms of the “perceived location” and “imagined motor 
execution”. This model can explain several features for phantom pain as well as its therapy, including 
mirror treatment where a subject is placed in front of a mirror and asked to reimagine the missing limb186. 
This model also predicts that mirror therapy can effectively induce reactivation of the original central 
and peripheral circuitry involved in motor control of the missing body part, resulting in gradual 
neuroplasticity to disentangle the maladaptive pain-processing circuitry. Finally, phantom limb pain can 
be explained by maladaptive information integration, where the brain fails to access persistent 
congruent multisensory information that is required to infer the state-action value function as a result of 
sensorimotor reorganization, an important factor likely contributing to pathological chronic pain163. Such 
maladaptive learning can be potentially modeled by the actor-critic RL paradigm. 
 
CONCLUSION 
In this Perspective, we have presented a broad range of theoretical and computational models, with the 
common theme being that PE and prediction play a central role in understanding pain as a closed-loop 
of perception and action. Prediction and learning-driven computational models can explain a broad 
range of adaptive pain behaviors, including pain anticipation, pain relief as negative reinforcement, 
placebo and nocebo effects, and chronic pain. Therefore, computational modeling, in combination with 
neuroimaging in humans and circuit dissection studies in animal models, can help advance our 
understanding of pain.  
 
 
 
BOX 1. Bayesian inference 
Let 𝑥  denote the nociceptive input, and 𝑧  denote the pain percept. Given the prior expectation 𝑝(𝑧)	and the 
likelihood 𝑝(𝑥|𝑧), the goal of Bayesian inference is to estimate the posterior  

                                𝑝(𝑧|𝑥) = )(*))(+|*)		
)(+)

∝ 𝑝(𝑧)𝑝(𝑥|𝑧)         (exact Bayesian) 
In the presence of a latent variable ℎ, the posterior estimation needs to integrate over the distribution 𝑝(ℎ). For 
computational simplicity, 𝑝(ℎ)can be approximated by a Gaussian distribution 𝑁(ℎ|𝜇0, 𝜎0)	with mean 𝜇0	and 
standard deviation 𝜎0 

𝑝(𝑧|𝑥) ∝ ∫ 𝑝(𝑧)𝑝(𝑥|𝑧, ℎ) 𝑝(ℎ)dℎ ≈ ∫𝑝(𝑧)𝑝(𝑥|𝑧, ℎ)𝑁(ℎ|𝜇0, 𝜎0)dℎ.							(Gaussian approximation) 
Alternatively, one can compute the lower bound of the marginal log-likelihood log 𝑝(𝑥)	by introducing a variational 
posterior distribution 𝑞(𝑧, ℎ), such that 

log 𝑝(𝑥) = log;dℎ;d𝑧𝑝(ℎ)𝑝(𝑧, 𝑥|ℎ)																																		 

= 	log;dℎ;d𝑧𝑞(𝑧, ℎ)
𝑝(ℎ)𝑝(𝑧, 𝑥|ℎ)

𝑞(𝑧, ℎ) 	 

																																															≥ ∫dℎ ∫ d𝑧𝑞(𝑧, ℎ) log )
(0))=𝑧, 𝑥>ℎ?

@(*,0)
≡ ℱ(𝑞(𝑧, ℎ))	  (free energy) 

where the free energy ℱ(𝑞(𝑧, ℎ))	approximates the lower bound of log 𝑝(𝑥). 
        Let’s consider a simple example with the prior 	𝑝(𝑥)~𝑁(𝜇D, 𝜎D)  and likelihood 𝑝(𝑥|𝑧)~𝑁(𝜇E, 𝜎E), then the 
posterior 𝑝(𝑧|𝑥)  is also Gaussian, with the new variance FG

HFHH

FGHIFHH
 and new mean FHH

FGHIFHH
𝜇D +

FGH

FGHIFHH
𝜇E . Let 𝜉D =

D
FGH
	and	𝜉E =

D
FHH
 denote the precision (inverse variance) parameters; then the new precision is 𝜉 = 𝜉D + 𝜉E, and the 

new posterior mean estimate is weighted by their respective precision parameters: 𝜇 = NG
N
𝜇D +

NH
N
𝜇E. Alternatively, 

the posterior mean can be rearranged as an incremental update form from the prior: 𝜇 = 𝜇D +
NH
N
(𝜇E − 𝜇D), where 

the relative precision NH
N
	can be viewed as a learning rate, and (𝜇E − 𝜇D) can be viewed as a prediction error (PE).  
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Box 2 Temporal difference reinforcement learning 
One of the most popular RL models is the temporal difference RL (TDRL) model55. In the simplest form of TDRL 
model, the value function 𝑉(𝑠) is associated with a state 𝑠, and represents the expected value of the temporally 
discounted sum of all future rewards: 

𝑉(𝑡) = 𝐸[𝛾V𝑟(𝑡) + 𝛾D𝑟(𝑡 + 1) + 𝛾E𝑟(𝑡 + 2) + ⋯ ] 
where 0 < 𝛾 ≤ 1 is a discount factor for the reward. At the k-th step (or trial) of the perception-action cycle, the 
TDRL model is used to update the value function  

𝑉(𝑠\ID) ← 𝑉(𝑠\) + 𝛼[𝑟\ID + 𝛾𝑉(𝑠\ID) − 𝑉(𝑠\)] 
where 𝑟 denotes the (positive, zero or negative) reward, and 0 < 𝛼 < 1 is a small learning rate parameter. When 
𝛾 = 0, the TDRL rule is reduced to the Rescorla-Wagner rule. The error term 𝛿\ ≡ 𝑟\ID + 𝛾𝑉(𝑠\ID) − 𝑉(𝑠\), 
derived from the difference in predictions over successive time steps, is called the reward PE or temporal 
difference (TD) error. This error is known to be represented in the midbrain dopamine (DA) neurons, and has been 
implicated in other cortical processing. 
         In a TDRL model, learning may occur continuously from moment to moment and is not artificially constrained 
to specific trial numbers. Algorithmically, the temporal credit assignment problem can be resolved efficiently by 
the eligibility traces (Figure 1D). In a generalized form of TD(𝜆) model, the value function is represented by a 
linear functional approximation between the feature 𝐱 and weight 𝐰: 𝑉(𝑡) = 𝐰 ∙ 𝐱(𝑡), the weights are updated by 
the following TDRL rule:  

∆𝐰(𝑡) = 𝛼𝛿(𝑡)𝐞(𝑡),      𝐞(𝑡) = 𝜆𝐞(𝑡 − 1) +𝐱(𝑡)  
where 0 < 𝜆 < 1  is a decay parameter that determines the plasticity window; a recently active stimulus will have 
high corresponding eligibility traces, and accommodate for a larger update. When 𝜆 = 0, the standard TD(0) 
learning is recovered.  
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Box 3 Causal dissection of cortical and subcortical pathways in pain regulation  
Unlike peripheral and spinal nervous systems where nociceptive information flow follows a relatively linear 
ascending pathway187, the brain does not have a single distinct region responsible for integration of nociceptive 
signals. Instead, a distributed network of cortical and subcortical regions collectively processes and integrates 
nociceptive signals to give rise to the overall pain experience. Several cortico-cortical and cortico-subcortical 
pathways have been causally identified in rodent pain studies (Fig. 2B). In the S1àACC pathway, chronic pain 
enhances the cortico-cortical connection, whereas optogenetic modulation of this projection regulates aversive 
responses to pain188. In the pathway from mediodorsal (MD) thalamus to ACC, the weakened excitation of ACC 
neurons to MD inputs causes excitation/inhibition (E/I) imbalance in pain; activating MD inputs elicited pain-related 
aversion, whereas direct inhibition of subcortically projecting ACC neurons reproduces the same effect189. In the 
afferent MCCàPI pathway, the MCC does not mediate acute pain sensation and pain affect, but regulates 
nociceptive hypersensitivity190. In the ACCàRVM pathway, direct cortico-spinal modulation by optogenetics 
causes behavioral pain sensitization, whereas inhibiting the projection induces analgesic effects191. In the 
PLàNAc pathway, the prefrontal-striatal pathway provides an important regulation to pain77,192,193. In the 
PFCàPAG pathway, neuropathic pain alters excitability and local connectivity of PFC-PAG neurons194, and 
optogenetic activation of this pathway produces analgesic and antianxiety effects195. Furthermore, it has been 
shown that the BLAàPFCàPAGàspinal pathway was critical for development of mechanical and thermal 
hypersensitivity in neuropathic pain. Nerve injury strengthens synaptic input from the BLA onto inhibitory PL 
interneurons, whereas the connectivity changes after pain behavior by reducing descending modulation of spinal 
pain signals196. Finally, the insulaàBLA pathway is critical for the formation of empathic pain. The selective 
activation or inhibition of the insulaàBLA pathway strengthens or weakens the intensity of observational pain, 
respectively197. 
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Figure 1. Examples of Computational Theories and Models  
(A) Levels of abstraction and update of theory and model via error feedback.  
 
(B) Schematic diagram of predictive coding for pain perception.  
 
(C) The perception-action cycle is intertwined with internal prediction loops, where different stages of prediction 
can be applied in pain-related processing.  
 
(D) Schematic diagram of reinforcement learning (RL). The agent receives nociceptive input xk(t) at the k-th trial, 
updates the value function, selects the action, receives the reward (or punishment), produces a prediction error 
(PE), which is further used to update the weights and value function. 
 
(E) Schematic diagram of the computational model with arbitration between model-based and model-free learning 
systems (Wang et al., 2018, REF 98, figure modified with permission, CCBY 4.0 license). 
 
(F) The predicted response outcome (PRO) model (Alexander and Brown, 2011, REF 103, figure reproduced with 
permission, Springer Nature).  
      (i) The model learns predictions of future outcomes (e.g., error or correct feedback) based on task-related 
cues (S) signaling the onset of a trial is presented. Over the course of a task, the model learns a timed prediction 
(V) of possible responses and outcomes (r). The temporal difference learning signal (δ) is decomposed into its 
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positive and negative components (ωP and ωN, respectively), indicating unpredicted occurrences and unpredicted 
non-occurrences, respectively.  
      (ii) ωN accounts for typical effects observed in the PFC from human imaging studies. Conflict and error 
likelihood panels show activity magnitude aligned on trial onset; error and error unexpectedness panels show 
activity magnitude aligned on feedback. Model activity (vertical axis) is in arbitrary units. HEL, high error likelihood; 
LEL, low error likelihood.  
       (iii) Typical time courses for components of the PRO model. 
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Figure 2. Brain Regions Implicated in Representations, Prediction and Regulation of Pain. 

(A) Top left and bottom left: The lateral and medial views of the brain map show the key nodes of pain matrix 
in the brainstem, cerebellum and cerebral cortex. The table on the right summarizes representative 
studies from human functional imaging studies (*) and electrophysiology studies in animals (#), or 
computer simulations (¨). 

(B) Illustrations of several causally identified direct pathways in pain regulation.  
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Figure 3. Computational Models for Studies of Pain 
(A) Dynamic causal modeling (DCM) for identifying plausible brain nodes of effective connectivity among value-
encoding and aversive PE-encoding regions (Roy et al., 2014, REF 124, figure reprinted with permission, Springer 
Nature).  
 
(B) Computational models to characterize self-fulfilling prophecies in pain (Jepma et al., 2018, REF 12, figure 
adapted with permission, Springer Nature) 

(i) RL model for capturing effects of cued-based expectations on pain and confirmation bias on expectation 
updating. Perceptual inference of pain is jointly determined by nociceptive input, expected pain, and initial 
belief of the cue.  
(ii) Predictive coding is visualized by a graphical model and formulated as a linear Gaussian state-space 
model (parameterized by three variables {𝜇, 𝜎i, 𝜎j}). Each node is a random variable, and the arrow indicates 
the statistical dependency between random variables, the uncertainty is characterized by a Gaussian 
distribution with mean and standard deviation parameters. Bayesian inference produces iterative updating 
of the posterior distribution of pain. 
(iii) Expectation updating as a function of PE sign. Negative (aversive) and positive (appetitive) PEs represent 
the lower-than-expected and higher-than-expected pain, respectively There was a significant main effect of 
cue type but no significant interaction between PE and cue type.  

 
(C) Bayesian model prediction for placebo hypoalgesia (Büchel et al., 2014, REF 47, figure adapted with 
permission, Elsevier). The uncertainty of expectation or pain stimulus is characterized by the precision (inverse of 
variance) parameter.  

(i) Impact of the precision of prior expectation on posterior prediction in placebo hypoalgesia experiments. 
Distributions of prior expectation (red), sensory observation (blue) and posterior of perceived pain (green) 
are shown with respect to the visual analog scale (VAS) rating. 
(ii) Impact of the precision of sensory input on posterior prediction in placebo hypoalgesia experiments. 
 

(D) Effects of attention increases orientation selectivity (response profile amplitude) and mismatch selectivity 
(putative PE) for four test conditions. Time 0 denotes the stimulus onset (Smount et al., 2019, REF 153, CC BY 
license).    
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