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Abstract—We present Spectral Differential Privacy (SpDP),
a novel form of differential privacy designed to protect the
frequency content of time series data that come from wide sense
stationary stochastic processes. This notion is motivated by pri-
vacy needs in applications with time series data over unbounded
time, such as smart meters. First, a notion of differential privacy
on the space of (discretized) spectral densities is introduced.
A Gaussian-like mechanism for SpDP is then presented that
provides differential privacy to the spectral density. Next, a novel
streaming implementation is developed to enable real-time use
of the proposed mechanism. The privacy guarantee provided
by SpDP is independent of the time duration over which data
is collected or shared. In contrast, time-domain trajectory-level
differential privacy (TrDP) will require noise with large variance
to provide privacy over an extended time duration. The technique
is numerically evaluated using smart meter data from a single
home to compare the utility of SpDP to that of time-domain
trajectory-level differential privacy. The noise added by SpDP
is substantially smaller than that added by time-domain TrDP,
particularly when privacy over long time horizons is sought by
TrDP.

Index Terms—differential privacy, spectrum, smart meter,
trajectory

I. INTRODUCTION

The Internet of Things (IoT) is a central hub of inter-
connected, data-driven technologies supporting a variety of
critical infrastructure. In the power grid, smart meters connect
to the IoT for smarter energy management. They can benefit
utility companies in billing, consumption monitoring and load
forecasting. For consumers, they can be a tool to plan for
conservation or monitor electricity use [1]. However, smart
meter data data is often collected at high temporal resolutions
and can reveal sensitive information about its source. Such
data has been well documented to reveal consumer presence,
absence, or lifestyle patterns [2–4]. Hence, the nature of this
data creates serious privacy concerns.

Differential privacy (DP) is a formal privacy framework
that can strike a balance between the need for detailed data
and addressing privacy concerns. Using a statistical notion of
privacy, DP adds carefully calibrated noise to sensitive data (or
functions thereof) to protect it [5]. The value of DP to smart
metering and related grid applications has been recognized
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by many researchers. For instance, DP protects the location
of smart homes from traffic analysis attacks in [6]. A data
aggregation scheme that ensures DP in the presence of general
measurement report failures was explored in [7].

While DP originated in the context of databases, it was
extended to data in the form of trajectories or signals, termed
Trajectory-level Differential Privacy (TrDP) [8]. A challenge
in TrDP is adequately protecting sensitive events as data length
grows. In many applications, such as analytics with smart
meter data, there may be instances when an upper bound on
the required time duration for an analytic is unknown, and
thus a need may arise to protect many sensitive events over
time. Privacy noise grows with the duration and magnitude of
sensitive events to privatize, and thus the protection of many
events over arbitrarily long time horizons can require arbitrar-
ily large noise. Indeed, the noise scale in TrDP may grow to
the point that the privatized trajectory is useless. This pitfall
has been addressed for classical DP, where the author weakens
privacy guarantees in the distant past [9]. Performance of the
mechanism is dependent on the discount factor, which may be
difficult to determine for varying applications.

In this work, we propose a new notion of differential
privacy targeting this weakness of TrDP, by going to the
frequency domain. In our approach, which we term Spectral
Differential Privacy (SpDP), a signal’s power spectral density
(PSD) is treated as sensitive information, and a new definition
and approach to privacy are defined to protect the spectral
representation of sensitive events, rather than the time-domain
representation. A privatized PSD in this setting is the result of
a privacy mechanism applied directly to a PSD. By computing
the PSD offline, this mechanism can be implemented offline.
Our motivation is privacy of smart meter data, and a meter
must transmit time-domain data in a streaming (as opposed
to batch) fashion. We therefore also provide a streaming
implementation to compute and share a signal in real time
so that the PSD of the transmitted signal is the same as the
privatized PSD that the SpDP mechanism generates.

Motivation comes from the observation that frequency
content of smart grid signals are highly sensitive because
of the capability to exploit usage patterns and routines in
consumers [10–12]. Through analysis of frequency content,
the energy distribution of smart meter data per unit time can
be classified into frequency bins, thus identifying prominent
times of activity. To the best of our knowledge, a frequency-
domain representation of DP has only been seen in [13],
where authors study local DP with singular spectrum analysis.
Though results show that utility of private data better retained
than time-domain DP, the computation time for SSA begs
to question how difficult implementation will be without
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additional hardware at the meter.
Most related works utilize differential privacy to protect

aggregate statistics for a collection of n users. Authors in [14]
use infinite divisibility of the Laplace distribution to have each
consumer add gamma-distributed noise, leading to differential
privacy for aggregated information but not for individuals.
Likewise, the privacy-preserving aggregation system in [15],
which uses Fog-computing architecture, provides privacy to
individual users using additively homomorphic encryption.
Only the aggregate statistics have ϵ − δ DP guarantees. A
similar privacy preservation scheme using distributed DP is
used in [16], where additive homomorphic encryption is added
to protect individual statistics and to ensure each participant’s
privacy. In contrast, our work will provide differential privacy
guarantees to all users individually, at all time instances with-
out concern for encryption key management. The mechanism
will be developed and evaluated for a single consumer with
extension to a neighborhood of users discussed in Section V.

The main advantage of our proposed privacy framework
is that the noise in the resulting time domain data that is
shared, i.e., the output of the streaming implementation, is
bounded irrespective of data length. In contrast, noise in the
privatized data shared by TrDP grows without bound as the
time duration increased. Data privatized with SpDP therefore
has more utility for downstream analytics when long time
intervals are involved.

Two additional contributions of this paper are: (1) a novel
non-i.i.d. additive Gaussian mechanism and (2) a data-based
calibration method for choosing the adjacency parameters for
SpDP and time domain TrDP. A related work that does not
provide DP guarantees but privatizes smart meter data with
correlated noise is [17]. The adjacency parameter is a design
choice, and few guidelines exist in the literature on differential
privacy how to choose its numerical value.

The rest of this paper is organized as follows: Section II
summarizes TrDP and its weaknesses, defines the required
mathematical preliminaries for SpDP and explains the prob-
lem solved by SpDP. Following this, Section III defines all
elements of SpDP along with streaming implementation. Sec-
tion IV discusses numerical results, followed by conclusions
and future work in Section V.

II. PRELIMINARIES

The symbols R,R+, Z,Z+ denote the sets of real, non-
negative real, integers and non-negative integers, respectively.
A discrete sequence x is a function x : Z→ Rn, i.e., xk ∈ Rn

for every k ∈ Z+. The protypical signal of interest is power
demand of a consumer. For that signal, the index k in xk is a
discrete time index, corresponding to the time ticks when data
is sent.

The ℓ2 norm of a sequence x is ∥x∥ℓ2 =(︂∑︁∞
k=0 ∥xk∥22

)︂1/2

, and the symbol ℓ2 denotes the set
of all sequences x that have finite ℓ2 norm. Further, the
notation ℓ̃

n

2 denotes the set of all sequences x : N→ Rn such
that every finite truncation of the sequence has a finite ℓ2
norm. In other words, x ∈ ℓ̃2 if ∥xk∥2 <∞ for all k. Often
we will consider a finite truncation of a sequence, such as

x1:n := (x1, . . . , xn). For consistency, we will use ∥x1:n∥ℓ2
to denote the 2-norm of the vector of truncated values, i.e.
∥x1:n∥ℓ2 := (

∑︁n
i=1 ∥xi∥22)1/2.

A. Summary of TrDP
Differential privacy (DP) was designed in part to prevent

differential attacks. Even with a secure aggregation scheme,
say at the power utility, an adversary can acquire the aggre-
gation of n users and that of n − 1 users, and compromise
the privacy of the differential user [7]. Hence, DP masks the
differences between adjacent pieces of data by ensuring that
they produce approximately indistinguishable outputs when a
privacy mechanism is applied to them. That is, given some
private output sequence, it should be unlikely for its recipient
to make meaningful distinctions between input sequences that
could have produced it. We refer to the input x as the sensitive
data and the output — a realization of the DP mechanism
M(x) — as the privatized data. In this work, a system will
directly add noise to its outputs before sharing them. This is
the input perturbation approach to DP, and has the advantage
of masking sensitive data before it is shared.

The essential notions from trajectory-level differential pri-
vacy (TrDP) with the Gaussian mechanism are stated in the
following proposition; see [8] for a thorough exposition. We
first define adjacency using an adjacency parameter B > 0.
This design parameter is selected based on the size of the
difference in demand signals that needs to be hidden so that
differential attacks of adjacent datasets are unlikely.

Proposition 1. Fix B > 0.
1) Two sequences x, y ∈ ℓ̃

n

2 are said to be adjacent
if ∥x− y∥ℓ2 ≤ B.

2) A mechanism M is (ϵ, δ)-differentially private with
respect to this adjacency relationship if

P
[︁
M(x) ∈ A

]︁
≤ eϵP

[︁
M(y) ∈ A

]︁
+ δ (1)

for all measurable A ⊆ ℓ̃
n

2 and all adjacent x and y.
3) The Gaussian mechanism M(x) = x + w is (ϵ, δ)

differentially private with w(k) ∼ N (0, σ2I), if

σ ≥ B

2ϵ

(︂
Q−1(δ) +

√︁
Q−1(δ)2 + 2ϵ

)︂
(2)

and Q(a) = 1√
2π

∫︁∞
a

exp(−u2/2)du is the Gaussian
tail integral.

The interpretation is as follows: the parameter ϵ controls
information leakage about sensitive data. Smaller values of ϵ
imply less leakage and hence stronger privacy. The parameter δ
can be interpreted as the probability that ϵ-differential privacy
fails. In the literature, typical values are ϵ ∈ (0, log 3) and δ ∈
[0, 0.5] [5, 8].

To apply the notion of TrDP to time-domain demand data
sequences, consider two power demand trajectories (in kW)
of length K from the same consumer1: d1:K := {dk}Nk=1

and dK+1:2K := {dk}2Kk=K+1. As K increases, the distance
D(K) := ∥d1:K − dK+1:2K∥2 increases without bound.

1We use x to denote an arbitrary time series or stochastic process. Here,
we consider demand signals specifically, which is indicated by a change in
notation to d for the signal.
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(b) Distance between demand data from the same consumer.

Fig. 1: (a) Sensitive power demand d and (b) the distance
between d1:K and dK+1:2K as a function of duration K,
which illustrates the trouble with TrDP. Data: Pecan Street
Project [18].

Figure 1 is evidence in support of this claim for electrical
power demand data collected at a 5-minute interval from a
single home.

Since the time series used to find the distance D(K) are
from the same consumer over two consecutive time intervals,
a reasonable notion of adjacency should qualify them as adja-
cent. Figure 1b shows that the time-domain distance between
these trajectories is large and grows without bound over time.
Thus, in a TrDP framework, a large adjacency parameter B
is required to qualify the time series as adjacent. For given
privacy parameters ϵ and δ, a large B necessitates the use of
high-variance noise for privacy, cf. Proposition 1. As privacy
is demanded for data of even larger duration K, the value of
B(K) must also be chosen larger. Since the variance of privacy
noise is proportional to B2, the accuracy of any analytics with
the privatized data degrades as K increases. Consequently,
the utility of privatized data decreases commensurately as K
increases. To provide (ϵ, δ)-DP for a fixed ϵ and δ independent
of the time duration K, the adjacency parameter — and thus
the noise added — must be infinitely large. As a result, the
utility of privatized data for analytics becomes zero. If B is
held fixed while the length of trajectories increase without
bound, then only a small number of events and/or events of
short duration (relative to the length of the trajectory) can be
protected from differential attacks through time domain TrDP.

Authors in [8] address adjacency parameter selection for
arbitrary finite-horizon (and finite-dimensional) settings. The
subtlety there is that B must be fixed based on the events that

need protection; as the duration of interest increases, a new
adjacency parameter must be fixed to protect events in the
longer trajectory.

This discussion shows the difficulty of using standard TrDP
to provide privacy to smart meter data, or to any smart grid
applications requiring time-domain data: two data streams
generated by the same behavior and same consumer will have
small differences that do not vanish as time increases. Thus,
the distance between these two time series will grow without
bound as the time duration of the series grows. An exception
is time series x with asymptotically vanishing xk’s so that
x ∈ ℓ2, but such time series are not relevant to smart grid
applications.

B. Mathematical Preliminaries on PSDs
Here we summarize mathematical preliminaries needed to

formally define the problem that is the subject of this work.
Throughout this work we assume sensitive time-domain data
is a wide sense stationary (WSS) stochastic process to make
use of well-established spectral theory for stationary time
series. A pure WSS model may not be appropriate for many
types of smart grid data due to seasonal and other quasi-
periodic variations. However, such data can be modeled as
a deterministic time-varying mean plus a WSS process.

The power spectral density of a zero mean WSS process x
is the Fourier transform of its autocorrelation, or, alternatively,
a limit of the average of the square of the Fourier transform
of the truncated data:

Φxx(ω) :=

∞∑︂
m=−∞

Rxx[m]e−jωm (3)

= lim
T→∞

1

T
E

⎡⎣⃓⃓⃓⃓⃓
T∑︂

k=1

xke
−jωk

⃓⃓⃓⃓
⃓
2
⎤⎦ , (4)

where ω is the (continuous) frequency variable. The equality
between (3) and (4) is the Wiener-Khinchin Theorem [19].
The process x is assumed to be zero mean throughout the
paper for notational convenience. Otherwise, every definition
that involves an expectation must subtract the mean.

We will work with a sampled version of the function
Φxx(ω). We choose an integer N and sample the PSD at 2N
frequency points, where the n-th frequency ωn is:

ωn =
2πFs

2N
n (rad/sample), n = 0, . . . , 2N − 1 (5)

where Fs is the sampling frequency of the time-domain data
in samples per unit time. Denote the part that goes up to the
Nyquist frequency as ϕN :

ϕN = [Φxx(e
jω0),Φxx(e

jω1), . . . ,Φxx(e
jωN )]T ∈ R(N+1)

+ .
(6)

The length of the sampled PSD is a design variable selected
based on the frequencies one wants to resolve in the PSD. The
superscript N will be often omitted to reduce clutter, and the
sampled PSD will be referred to as ϕ.

There are several reasons why it is meaningful to consider
the sampled PSD as the sensitive data to be privatized. First,
as long as N is large enough to resolve the frequencies
of interest, the sampled version will contain most of the
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Fig. 2: Estimates of the power spectral density of a consumer’s
power demand computed from data of varying lengths. Data:
Pecan Street Project [18].

information from the function Φxx(ω). The second reason
considers computation needs. All numerical algorithms to
estimate the PSD do not estimate the continuous function
Φxx(ω). Rather, they estimate the vector ϕ for some N .
The expectation of this unbiased estimate approaches the true
spectral density of the process x for large K [20]. In addition,
in order to have good estimation accuracy N must be far
less than K. Moreover since the streaming implementation of
SpDP developed in Section III and the analysis of privatized
data require the sampled PSD, privacy guarantees provided
directly on ϕ are useful.

C. Problem Definition
The privacy goal we consider in this work is preventing dif-

ferential attacks of a single consumer’s trajectories to prevent
adversaries from exploiting repetitive behaviors to uncover
sensitive information. Since the frequency content of signals
is sensitive information [10–12], we focus on privatizing the
power spectral densities (PSD) of the power demand rather
than the time-domain data itself. In light of the weakness
of time-domain DP described previously, the key advantage
of privacy in the Fourier domain is that the PSD is defined
over a frequency interval that is independent of the length of
time involved. The highest frequency is the Nyquist frequency,
which is half of the sampling frequency of the data. Thus,
the noise needed to privatize intuitively adjacent PSDs is not
dependent on (and does not grow with) the time interval.

To illustrate this advantage, Figure 2 shows three different
PSD estimates of a consumer’s power demand. These esti-
mates are computed from varying lengths of time-domain data,
but the frequency range only goes up to the Nyquist frequency,
which is 0.5× 1

300 = 1.67×−3 Hz (= 6 hour−1) in this case
since the data is sampled every 5 minutes. In addition, one can
see from the figure that PSD estimates obtained from various
data traces of the same consumer do not differ much. Later it
will be shown that this feature allows a uniform B (irrespective
of time interval involved) to quantify adjacency for DP when
the PSD is considered the sensitive data to be privatized.

With this, the following problem is the subject of this work:

Problem 1. Given a time-domain signal x = {xk}k∈N and
its sampled power spectral density (PSD) estimate ϕ, do the
following:

1) Design an (ϵ, δ)-differential privacy mechanism M to
prevent differential attacks of frequency-domain sensitive
data ϕ.

2) Develop a streaming implementation of M that gener-
ates samples x̃k in real-time so that the PSD of x̃ is ϕ̃.
The time-domain data that the streaming implementation
produces must still be useful in downstream analytics.

Problem 1.1 is solved with correlated Gaussian mechanism
and the SpDP mechanism in Section III-B. Problem 1.2 is
solved in Section III-C.

D. A Correlated Gaussian Mechanism for TrDP
The Gaussian mechanism mentioned in Proposition 1 uses

i.i.d. noise which is standard in the literature on TrDP [5]. We
now present an extension to the non-i.i.d. case, which will be
useful in our sequel.

Proposition 2. Fix a probability space (Ω,F,P), and let d
be a sensitive signal and let privacy parameters ϵ > 0,
δ ∈ (0, 0.5) be given. Consider the correlated Gaussian
mechanism M : ℓ̃

n

2 ×Ω→ ℓ̃
n

2 defined by M(d) = d+w with
W ∼ N (0,Σ). This mechanism is (ϵ,δ)-differentially private
if λmin(Σ), the minimum eigenvalue of the covariance matrix
Σ, satisfies λmin(Σ) ≥ λ, where

λ :=
B2

(−A+
√
A2 + 2ϵ)2

, A = Q−1(δ). (7)

Due to its technical nature, proof of the proposition is
in the Appendix. With correlated noise, the probability of
having a large difference between ϕ and its private counterpart
is lessened compared to a more common i.i.d. mechanism.
With this, the output time-domain signal from streaming
implementation will maintain better correlation with the time-
domain sensitive data when correlated noise is used. This will
be further discussed in Section III-C.

III. SPECTRAL DIFFERENTIAL PRIVACY (SPDP)

This section develops Spectral Differential Privacy including
an adjacency relation between the sampled power spectra, a
formal mechanism, and streaming implementation to generate
a private time series from the differentially private PSD. We
use the input perturbation approach to privacy, which provides
privacy to a database with a single entry.

A. Definitions
Indistinguishability of signals in SpDP is made parallel to

TrDP using an adjacency relation on the PSD estimates rather
than the time series. Subscripts i, j indicate PSD estimates of
two different trajectories from a single consumer.

Definition 1. Fix B > 0. The adjacency relation AdjB is
defined ∀ϕi,ϕj ∈ RN

+ for p ≥ 1 as

AdjB(ϕi,ϕj) =

{︄
1 ||ϕi − ϕj ||p ≤ B

0 otherwise.

Following the privacy goal, each user applies this definition
to mask sensitive events in their data individually. Therefore,
the user specifies the boundedness defining AdjB . Namely, a
user selects an adjacency parameter B > 0, and their true PSD
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Fig. 3: Distances between pairs of time series and sampled
PSD estimates. Data: Pecan Street Project [18].

is made approximately indistinguishable from all other PSDs
within distance B by the privacy mechanism.

The benefits of an adjacency relation on the PSDs is best
illustrated in comparison with TrDP. Figure 3 shows the
distance between PSDs of demand as a function of duration
of data used to estimate the PSD. The same figure also shows
the distance between demand data (in the time-domain), which
increases monotonically as the data duration increases. The 2-
norm was used in both cases to compute this distance. For
PSD estimates, the distance does not grow as one considers
longer durations of data. In fact, the distance between PSDs
appears to settle down to a constant. With a fixed length PSD,
the adjacency parameter needed to do so will not increase with
time series length. This results in constant distances between
PSDs and bounded noise added to the PSD for differential
privacy.

A mechanismM(·) in SpDP is a randomized mapping with
domain and co-domain RN . We define

ϕ̃ =M(ϕ) (8)

so that M provides (ϵ, δ)-differential privacy to frequency-
domain sensitive data ϕ for given ϵ and δ. We formally define
SpDP below with probability space (Ω,F,P), and we use the
Borel σ-algebra over RN , denoted BN .

Definition 2. A mechanism M : RN × Ω → RN preserves
(ϵ, δ)-differential privacy if, for all adjacent PSD signals
ϕi,ϕj ∈ RN ,

P[M(ϕi) ∈ S] ≤ eϵP[M(ϕj) ∈ S] + δ ∀S ∈ BN .

SpDP is made parallel to TrDP in that the privacy mecha-
nism is applied to the PSD in a parallel manner so that (1) each
realization of the private PSD is itself a valid PSD and (2) the
aforementioned definition is satisfied. This is consistent with
the standard interpretation of differential privacy applied to
time-domain data; with SpDP, an adversary will be unlikely
to make meaningful distinctions between signals’ frequency
content. The claim is that SpDP provides spectral differential
privacy to all PSDs (and likewise provides its attendant im-
munity to post-processing and robustness to side information)
with improved utility over TrDP because it requires less noise.

B. A SpDP Mechanism
Algorithm 1 describes a mechanism for SpDP. It uses con-

cepts from positive dynamical systems. A positive dynamical

system is one that, if the initial condition and input are non-
negative, has non-negative states and outputs [21].

Algorithm 1: Mechanism MSpDP to provide (ϵ, δ)-
Spectral Differential Privacy SpDP.
Input: Sensitive PSD of demand ϕ, noise covariance

matrix Σ, positive filter P (z)
Output: A differentially private PSD ϕ̃
/* Apply Gaussian mechanism */

1 Set ϕ′ ← ϕ+ η , with η ∼ N (0,Σ).
/* Make values non-negative */

2 Set ϕ′ ← (ϕ′)+ for all ω ∈ [0, π]
/* Apply P (z) non-causally */

3 Set ϕ̃← P (z)[ϕ′]

We compactly represent all the steps involved in the mech-
anism as

MSpDP (ϕ) := P (z)[(ϕ+ η)+], (9)

where P (z)[y] indicates the filter P (z) is used on the signal y
and the notation (y)+ denotes the negative values thresholded
to 0. This algorithm provides DP to the signal ϕ and produces
a valid PSD, and thus solves Problem 1a, as summarized in
the following theorem.

Theorem 1. For a given adjacency parameter B > 0 and
privacy parameters ϵ > 0 and δ ∈ (0, 0.5), Algorithm 1
provides (ϵ, δ)-differential privacy to the PSD ϕ and produces
a valid PSD ϕ̃, if λmin(Σ) ≥ λ where λ is defined in (7).

Proof. Consider the intermediate array ϕ′ := ϕ + η, where
η is a vector of N samples from a Gaussian distribution
with mean 0 and covariance Σ. Because of the eigenvalue
condition in the hypothesis, (ϵ, δ)-differential privacy of ϕ′

follows immediately from Proposition 2. However, the sum
ϕ+η will be negative at some indices (frequencies) with non-
zero probability due to the zero mean nature of η, and hence
the sum may not be a valid sampled PSD. Applying post-
processing by thresholding negative values to zero makes the
signal non-negative at all frequencies, which ensures the output
is a valid PSD. Filtering with a positive dynamical system
makes the result smoother while maintains non-negativity,
which ensures that the output of the mechanism is a valid
PSD. That ϕ̃ is (ϵ, δ)-differentially private follows from im-
munity to post-processing of differential privacy: ϕ′ is (ϵ, δ)-
differentially private, and subsequent operations are merely
post-processing, which means their outputs have the same level
of privacy [5].

Figure 4 demonstrates a numerical example of MSpDP

applied with Algorithm 1. The noise was generated using
the procedure described in Section II-D. The figure shows
the frequency-domain sensitive data ϕ, which is the sampled
PSD of a consumer’s demand and the privatized PSD data ϕ̃
obtained by applying the mechanism MSpDP . These PSDs
were estimated using one month of time-domain data. Values
of the parameters used in this numerical example are provided
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Fig. 4: Numerical example of an SpDP mechanism: a sampled
PSD estimate of a consumer’s electric power demand is the
sensitive data, while the privatized PSD is the output of
the SpDP mechanism of Algorithm 1. The sensitive PSD
is obtained from a consumer demand data in Pecan Street
Project [18].

in Table I. The positive dynamical system used in this example
is a discrete time low-pass filter with cutoff frequency ωN :

P (z) = Kp
ωNz−1

1 + (ωN − 1)z−1
. (10)

C. Streaming Implementation
Estimates of a consumer’s PSD from power demand data

can be determined from past usage, and hence privatizing
the PSD occurs offline. However, meters must transmit time-
domain data, not PSDs, so a streaming implementation is
necessary for a time-domain application of SpDP. Thus, a
streaming implementation generates values in time whose
PSD is the same as the private PSD that the SpDP mecha-
nism generates. For streaming implementation, we assume the
frequency-domain sensitive data ϕ, the privatized PSD ϕ̃, and
the time-domain sensitive data x are available to the smart
meter that will perform the streaming implementation. While
ϕ, ϕ̃ are known a priori, x is available only in real-time.
Also, development of a streaming implementation requires
smart meters that are tamper resistant and trusted with the
ability to perform filtering. Figure 5 illustrates the streaming
implementation described in the following algorithm.

The next proposition shows the steps above are a valid
streaming implementation of the mechanism described in
Section III-B.

Proposition 3. If γ[n] > 0 for n = 0, . . . , N , then Algo-
rithm 2 is feasible, and the sampled PSD of the released time-
domain data x̃ is ϕ̃, and the cross-correlation function between
x and x̃ is Rxx̃[m] = Rxx[m]∗f∗[−m] where f is the impulse
response of F (z).

Proof. The on-line steps are feasible. If the hypothesis about
entry-wise positivity of the array γ is satisfied, then γ can be
viewed as a sampled version of a PSD γ(ω) in the frequency
range [0, π). Thus, a stable spectral factor H(z) exists so
that |H(ejω)|2 = γ(ω) [19]. There are many algorithms for
computing such a spectral factor given a sampled version
of the PSD, see [22] and references therein. One of them
can be used to determine H which will by design satisfy
the requirement in the algorithm, that |H(ejωn)|2 = γ[n],

Algorithm 2: Streaming implementation of SpDP
Input: Time-domain sensitive signal x = {xk}k∈N, its

PSD ϕ, its privatized form ϕ̃, and the filter
F (z)

Output: A time-domain signal x̃ := {x̃k}k∈N related
to x whose PSD is ϕ̃

/* Offline: */
1 Compute γ ∈ RN+1

+ , where

γ[n] := ϕ̃[n]− |F (ejωn)|2ϕ[n], n = 0, . . . , N. (11)

2 Determine H(z) such that |H(ejωn)|2 = γ[n],
n = 0, . . . , N where ωn is defined in (5).
/* Online: */

3 for k = 0, 1, . . . do
4 Generate white Gaussian noise wk with 0 mean

and unit variance.
/* Apply H(z) to wk */

5 ck ← H(z)[wk]
/* Apply F (z) to xk */

6 dFk ← F (z)[xk]
7 x̃k ← xF

k + ck
8 Release x̃k

9 end for

(a) Online

(b) Offline

Fig. 5: Illustration of streaming implementation

n = 0, . . . , N . This proves feasibility. To show that the
released time-domain data x̃ has the desired PSD,

PSD(x̃) = PSD(xF + c)

= PSD(xF ) + PSD(c)

where the second equality follows from the fact that c is inde-
pendent of xF . Denoting by Φxx(ω) the PSD of a stochastic
process x, along with standard properties relating PSDs of
inputs and outputs of filters, and the fact that the PSD of a
i.i.d. unit variance Gaussian process is 1 at all frequencies [19],
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we get from the above that

Φx̃x̃(ω) = |F (ejω)|2Φxx(ω) + |H(ejω)|2

⇒ Φx̃x̃(ωn) = |F (ejωn)|2Φxx(ωn) + |H(ejωn)|2, n = 0, . . . , N

= |F (ejωn)|2Φxx(ωn) + γ[n], n = 0, . . . , N

= ϕ̃[n], n = 0, . . . , N

where the last equality follows by substituting (11) in the
previous equation. This shows that the PSD of the process x̃ at
the frequencies ωn have the desired value, and so the algorithm
is a streaming implementation of the SpDP mechanism. The
statement about the cross correlation follows from standard
results on the cross-correlations between inputs and outputs
of a linear filter (see [19, Chapter 9]) upon recognizing that c
is independent of x.

To satisfy the positivity requirement of γ[n], one has to
choose the reduction filter F appropriately. A poorly designed
filter can make γ < 0 at some n, in which case its spectral
factorization into H is not theoretically possible. In that case,
Algorithm 2 is not implementable. In practice, F is a low-
pass filter, with adaptable cutoff frequency to ensure positivity
of γ. Filter design can be performed after the mechanism
has been applied and the private PSD ϕ̃ is available, and
so the positivity condition can always be maintained. Since
the filter F is used in streaming implementation, it does
not affect the privacy guarantees on the frequency-domain
data ϕ. The positivity requirement is also maintained through
use of the correlated Gaussian Mechanism. If there are large
differences between the filtered version of ϕ and ϕ̃, the
spectral factorization of γ would result in time-domain noise
with large standard deviation. This is due to the resulting large
magnitude of γ. Instead, with correlated noise privatizing ϕ,
there is less probability of large values of γ and thus the
resulting noise from streaming implementation is of smaller
standard deviation.

Apart from feasibility of streaming implementation, design
of F along with the differentially private noise η determine
the degree of correlation between released time-domain data
x̃ and time-domain sensitive data x. Figure 5b illustrates this:
if the filter F has low gain at some frequency, the gap γ
between the PSDs of sensitive demand (i.e., ϕ) and filtered
demand (i.e., |F (ejωn)|2ϕ) will be large at that frequency.
Recall this gap is filled by the colored noise c, since the
PSD of c is |H(ejωn)|2 = γ[n]. Thus, the released data
will have a large noise variance c compared to time-domain
sensitive data x at that frequency. Depending on the level of
noise in the particular realization ϕ̃ of the mechanism M,
the reduction filter may have to be designed with extremely
low gain at certain frequencies. In that case the time-domain
privatized data x̃ produced by streaming implementation will
have low correlation with the time-domain sensitive data x.
Correspondingly, downstream analytics with the released time-
domain data x̃ will then be less accurate than those done
with the sensitive data x. The loss of accuracy will increase
as the gain of F is reduced. In contrast, as the gain of F
approaches 1, the loss of accuracy approaches 0 but streaming
implementation may be infeasible.

TABLE I: Parameters Used in SpDP

Parameter Description Value Units
N Number of NFFT Points 288 none
ϵ Privacy Level log(2) none
δ Privacy Failure Parameter 0.01 none
β Degree of Noise Correlation 0.5 none
ωN Positive Filter Cutoff Frequency 0.39 Hz
Kp Positive Filter Gain 0.8 None
ωF Cutoff Frequency of F (z) 2× 10−4 Hz
KF Gain of F (z) 0.8 None
BSpDP SpDP Adjacency Parameter 0.12 kW2·Hour
B

(1)
TrDP 4-Hour Adjacency Parameter 0.2 kW

B
(2)
TrDP 1-Week Adjacency Parameter 39 kW

IV. NUMERICAL EVALUATION

We evaluate the proposed paradigm on consumer demand
from a single home in Pecan Street [18]. The privacy goal
considered in our numerical evaluation is to protect demand
data from a single home with a 5-minute sampling period.
By first applying the SpDP mechanism MSpDP , and then
performing the streaming implementation, we conduct a full
application of SpDP. The result is that the privatized data d̃
is streamed by the smart meter in real time based on time-
domain sensitive demand data d immediately as the sensitive
data is measured. The Lisa Technology Package Data Analysis
(LTPDA) was used to generate correlated noise c noise from
private PSD ϕ̃ [23]. Numerical values of the parameters used
in the study are in Table I.

A. Choice of B
The adjacency parameter B depends on the choice of norm

used to define distances between trajectories. Beyond this, B is
a design choice and few guidelines exist on how to choose it.
Since time-domain TrDP and SpDP use vastly different norms
to define distances, the choice of B must differ in these two
distinct privacy paradigms.

Recall that the privacy goal is to protect demand data from
a single home. For SpDP we choose B as

BSpDP = max
i,j∈N

∥ϕi − ϕj∥2 (12)

where ϕi is the estimate of the sampled PSD computed from
the i-th time-domain dataset di := dki

, dki+1, . . . , dki+Ni
,

and N is a set of such time-domain data, with each dataset
potentially of distinct duration Ni. Each numerical estimate
of the PSD from a particular time-domain dataset can be
thought of a distinct PSD itself, which is a frequency-domain
characterization of the potential behavior of a consumer.

The true (unknown) PSD of the consumer does not vary
with time duration. Thus, to determine BSpDP we want the
time-domain datasets that produce similar PSD estimates, with
differences among estimates attributable to estimation errors.
It turned out that PSDs from 7 to 12 week durations produced
the most similar PSD estimates and the result from (12) was
0.12 kW2×Hour and this value was chosen as BSpDP . This
adjacency parameter can be used in SpDP irrespective of time
duration and protects events up to a frequency of 6 hour−1,
which is the Nyquist frequency corresponding to the sampling
period of 5 minutes.



8

For time-domain TrDP with the same privacy goal, an
appropriate choice of B will be

BTrDP (K) = max
ℓ,m
∥d(ℓ)1:K − d

(m)
1:K∥2 (13)

which depends on the time interval K. Superscripts ℓ,m indi-
cate two non-overlapping power demand trajectories of length
K from a single consumer. As discussed in Section II-A,
calibrating privacy in this way for TrDP requires an infinitely
large adjacency parameter for data over an unbounded time
interval, and so the choice of B necessarily depends on the
time duration K over which privacy is to be provided.

For illustration, we consider two scenarios with two distinct
K’s, denoted K(1) and K(2). The first is K(1) = 576 kW,
corresponding to four hours of data. This yields B(1)

TrDP = 0.2
kW. The second is for K(2) = 2016, corresponding to one
week of data, which yields B

(2)
TrDP = 39 kW.

The correlation coefficient between the time-domain sen-
sitive data and the released time-domain data is taken as a
measure of utility. A higher correlation coefficient corresponds
to more useful data for downstream analytics. When the
coefficient is 1 that means the time-domain sensitive data itself
is released and there is no loss in accuracy of analytics, though
it would also mean no privacy is afforded to the consumer.

B. Results
Results of the full implementation of SpDP and imple-

mentation of TrDP for the two scenarios, applied to the
demand data from a house in Pecan Street are in Figure 6.
Figure 6a shows time-domain sensitive data d and released
data d̃ after applying SpDP mechanism (Algorithm 1) and
streaming implementation (Algorithm 2). Figure 6b and 6c
show the same sensitive data along with data privatized using
TrDP and the Gaussian mechanism in Proposition 1. The
additional parameters used in SpDP are in Table I.

TrDP shows superior performance over SpDP in the first
scenario (TrDP designed for 4 hours) in terms of utility, but
SpDP outperforms TrDP in utility for the second scenario
(TrDP designed for a week). In fact, for any time duration
higher than four hours SpDP outperformed TrDP. It should be
emphasized that SpDP provides differential privacy for all time
durations. Table II further highlights the utility differences
of SpDP and TrDP results. SpDP and TrDP designed for
4 hours preserve the mean of the sensitive time series, and
their standard deviations are within 15% of the sensitive time
series. Contrarily, TrDP designed for one week has a standard
deviation over 100 times larger and a mean almost two times
larger than the sensitive time series.

Table III shows the standard deviation of added time-
domain noise and correlation coefficients between the time-
domain sensitive data and released data for each result in
Figure 6. From these results, TrDP only outperforms SpDP
at extremely short time durations, illustrated by the higher
correlation coefficient. The signal-to-noise ratio (SNR) is the
ratio of signal level to the noise level in decibels. Ratios greater
than 1 indicate there is more useful information in the signal
than there is unwanted data, i.e., the noise. For both SpDP and
TrDP designed for 4 hours, the SNR indicates good utility,
whereas for TrDP designed for 1 week the sensitive power
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Fig. 6: A 24-hour snapshot of time-domain sensitive data and
privatized results from (a) SpDP, which are the same no matter
the time duration considered, (b) TrDP, providing privacy for
4 hours, and (c) TrDP, providing privacy for one week. Data:
Pecan Street Project [18].

demand is buried in the noise. Increasing the length of the
signal for which privacy is sought results in poor performance
of TrDP and little to no utility of the privatized signal.

Extending SpDP to a collection of users will reap a similar
utility result. Since the standard deviation of added noise
required by SpDP’s released time series is significantly smaller
than TrDP, an aggregation of multiple consumers will magnify
the poor performance of TrDP.

C. Parameter Effects on Data Utility
Three parameters are critical to utility of the released time

series in SpDP: ϵ, δ, and adjacency parameter B. In practice,
these parameters should be selected on a per-user basis so that
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TABLE II: Comparison of TrDP, SpDP, and Sensitive Time
Series

Mean
(kW)

Standard
Deviation (kW)

Sensitive 1.73 1.74
SpDP 1.77 1.91

TrDP - 4 Hours 1.75 1.97
TrDP - 1 Week 3.38 180

TABLE III: Comparison of TrDP and SpDP Results

Standard Deviation
of Added Noise

Correlation
Coefficient

Signal-to-Noise
Ratio (dB)

SpDP 2.1 kW 0.34 1.86
TrDP - 4 Hours 0.92 kW 0.88 9.07
TrDP - 1 Week 0.18 MW -0.015 -5.5×10−4

the streaming implementation output is in accordance with
their privacy needs. Though the utility of the SpDP will be
impacted by varied parameter selection, the effectiveness of
the mechanism is not diminished.

In both SpDP and TrDP, stronger privacy guarantees are
provided with a smaller privacy level ϵ and smaller δ; the ex-
pense is in the scale of added noise. Decreasing either privacy
parameter without retuning of the filters in SpDP would result
in mechanism output that is too noisy to satisfy the positivity
condition needed for a streaming implementation. This can
be combated by proper tuning of the positive filter without
risk of losing information or privacy guarantees, which is a
benefit of SpDP over TrDP. The amount of tuning required
will vary based on the positive filter design and utility needs
of the released time series.

The adjacency parameter BSpDP determines the events that
are protected by SpDP and the scale of noise required for
differential privacy. SpDP protects events (in the frequency
domain) up to the Nyquist frequency which is specified by
the sampling period, and this includes all possible events for
this fixed length PSD. If BSpDP is reduced, utility of the
released time series will be improved due to less noise needed
for privacy, but fewer events will be protected. An increased
adjacency parameter will have the opposite effect.

V. CONCLUSIONS AND FUTURE WORK

A new notion of differential privacy, called Spectral Differ-
ential Privacy (SpDP), was presented. SpDP treats the power
spectral density (PSD) of the underlying process that generates
the data as the sensitive information that needs protection. The
frequency content of time-series data can reveal patterns as
potential sources of exploitation by adversaries. Differential
privacy guarantees on the frequency content of data are de-
signed in this work to circumvent this issue. A key advantage
of SpDP is the noise needed to provide a certain level of
privacy to the PSD is independent of time duration. Moreover,
the adjacency parameter – which determines the noise – in
SpDP is selected from data and, to the best of our knowledge,
this work is the first to justify this design choice for privatizing
signals.

In contrast, the noise needed for privacy in time-domain
TrDP increases without bound as the time duration increases.
Numerical evaluations with a consumer’s electrical demand
data show that SpDP reduces the noise needed significantly
compared to TrDP for equal levels of differential privacy as
time duration increases.

The input perturbation approach for local differential pri-
vacy was used in SpDP development to ensure protection of
individual users and of each time instance. Compared to a
global approach, where privacy is only provided to aggregate
statistics of n users, local differential privacy will result in a
noisier aggregate result with utility dependent on group size.
However, the improved utility of SpDP’s released time series
compared to TrDP is a promising result that can combat this
issue.

Next steps in evaluating SpDP involve improvements to
the reduction filter to hide specific data features and improve
downstream analytics. Further, an assessment of analytics,
such as billing and real-time monitoring, will be performed to
quantify the error in the released data estimate. Additionally,
the impact of the WSS assumption on mechanism design is
of interest since this assumption may not hold for many smart
grid processes due to seasonal or other cyclic phenomenon.
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APPENDIX A
PROOF OF PROPOSITION 2

Proof. Define u =M(x) and random variables W ∼ N (0,Σ)
with observations w and U ∼ N (x,Σ) with observations u.
For S ∈ ℓp, denote v := x−x′ where x, x′ are adjacent signals
according to Proposition 1.

P(U ∈ S) =
1

(2π)K/2|Σ|1/2

∫︂
S

e−
1
2 (u−x)TΣ−1(u−x)dw (14)

=
1

(2π)K/2|Σ|1/2

∫︂
S

[︂
e−

1
2 (u−x′)TΣ−1(u−x′) (15)

e(u−x′)TΣ−1v− 1
2 v

TΣ−1v
]︂
du

≤ eϵP(M(x′) ∈ S) +
1

(2π)K/2|Σ|1/2

∫︂
S∩S2

[︂
e−

1
2 (u−x)TΣ−1(u−x)

(16)

1{u|(u−x)TΣ−1v+ 1
2 v

TΣ−1v−ϵ>0}
]︂
du

Here, we completed the square and partitioned
the sample space such that Ω = S1 ∪ S2 where
S1 =

{︁
u|(u− x′)TΣ−1v − 1

2v
TΣ−1v − ϵ ≤ 0

}︁
and

S2 =
{︁
u|(u− x′)TΣ−1v − 1

2v
TΣ−1v − ϵ > 0

}︁
. For S2

note that, (u− x′)TΣ−1v = (u− x)TΣ−1v + vTΣ−1v. This
substitution is needed because the mean of U is defined by
x, not x′.

Since Σ is a valid covariance matrix, there exists a positive
definite, symmetric square root of its inverse Σ−1 that can be
defined as L := Σ−1/2. Let yT = (u − x)TL and represent
observations of random variable Y ∼ N (0, IK). From here
we seek to bound the right-hand side of (16) by δ.

P(U ∈ S2) = P
(︃
Y TLv > ϵ− 1

2
vTL2v

)︃
(17)

Defining an intermediate random variable Z = Y TLv
||Lv||2 with

distribution N (0, 1), the integral of (16) can be rewritten
as P

(︂
Z ≥ ϵ

||Lv||2 −
||Lv||2

2

)︂
≤ δ which is equivalent to

Q
(︂

ϵ
||Lv||2 −

||Lv||2
2

)︂
≤ δ for Q(t) = 1√

2π

∫︁∞
t

e−
u2

2 du. For
ease of notation let A = Q−1(δ).

ϵ− ||Lv||
2
2

2
≥ A||Lv||2 (18)

||Lv||2 ≤ −A+
√︁

A2 + 2ϵ (19)

Note that ||Lv||2 ≤ ||L||2||v||2 ≤ ||L||2B since ||v||2 = ||x−
x′||2 ≤ B. Let the sorted eigenvalues of Σ be λmax ≥ ... ≥
λmin so the eigenvalues of L are 1√

λmin
≥ ... ≥ 1√

λmax
. Then,

||L||2B ≤ −A+
√︁
A2 + 2ϵ (20)

1√
λmin

≤ −A+
√
A2 + 2ϵ

B
(21)

λmin ≥
B2

(−A+
√
A2 + 2ϵ)2

(22)

If λ = λmin, then (ϵ, δ)-differential privacy follows.
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