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Abstract— Graphs are the dominant formalism for modeling
multi-agent systems. The algebraic connectivity of a graph
is particularly important because it provides the convergence
rates of consensus algorithms that underlie many multi-agent
control and optimization techniques. However, sharing the
value of algebraic connectivity can inadvertently reveal sensitive
information about the topology of a graph, such as connections
in social networks. Therefore, in this work we present a method
to release a graph’s algebraic connectivity under a graph-
theoretic form of differential privacy, called edge differential
privacy. Edge differential privacy obfuscates differences among
graphs’ edge sets and thus conceals the absence or presence of
sensitive connections therein. We provide privacy with bounded
Laplace noise, which improves accuracy relative to conventional
unbounded noise. The private algebraic connectivity values are
analytically shown to provide accurate estimates of consensus
convergence rates, as well as accurate bounds on the diameter
of a graph and the mean distance between its nodes. Simulation
results confirm the utility of private algebraic connectivity in
these contexts.

I. INTRODUCTION

Graphs are used to model a wide range of interconnected
systems, including multi-agent control systems [1], social
networks [2], and others [3]. Various properties of these
graphs have been used to analyze controllers and dynamical
processes over them, such as reaching a consensus [4], the
spread of a virus [5], robustness to connection failures [6],
and others. Graphs in these applications may contain sensi-
tive information, e.g., one’s close friendships in the case of
a social network, and it is essential that these analyses do
not inadvertently leak any such information.

Unfortunately, it is well-established that even graph-level
analyses may inadvertently reveal sensitive information about
individuals in them, such as the absence or presence of
individual nodes in a graph [7] and the absence or presence
of specific edges between them [8]. Similar privacy threats
have received attention in the data science community, where
graphs represent datasets and the goal is to enable data
analysis while safeguarding the data of individuals in those
datasets.

Differential privacy is one well-studied tool for doing
so. Differential privacy is a statistical notion of privacy
that has several desirable properties: (i) it is robust to side
information, in that learning additional information about
data-producing entities does not weaken privacy by much [9],
and (ii) it is immune to post-processing, in that arbitrary post-
hoc computations on private data do not weaken privacy [10].
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There exist numerous differential privacy implementations
for graph properties, including counts of subgraphs [8],
degree distributions [11], and other frequent patterns in
graphs [12]. These privacy mechanisms generally follow the
pattern of computing the quantity of interest, adding carefully
calibrated noise to it, and releasing its noisy form. Although
simple, this approach strongly protects data with a suite of
guarantees provided by differential privacy [10].

The need for privacy comes from the inferences that one
can draw about a graph from these quantities, as detailed
in [13]–[15]. Decades of research in algebraic graph theory
have quantified connections between λ2 and a myriad of
other graph properties; see [16] for a summary. Accordingly,
λ2 implicates the same ability to draw inferences and hence
gives rise to the same types of privacy concerns.

We therefore protect a graph’s algebraic connectivity us-
ing edge differential privacy, which obfuscates the absence
and/or presence of a pre-specified number of edges. A
graph’s algebraic connectivity (also called its Fiedler value)
is equal to the second-smallest eigenvalue of its Laplacian.
This value plays a central role in the study of multi-agent
systems because it sets the convergence rates of consensus
algorithms [17], which appear directly or in modified form in
formation control [18], connectivity control [19], and many
distributed optimization algorithms [20]. The private release
of the algebraic connectivity of a graph would enable the
computation of such convergence rates by a network analyst,
while protecting sensitive properties of individuals in these
graphs. This paper provides the means to do so.

Our implementation uses the recent bounded Laplace
mechanism [21], which develops a mechanism that ensures
that private scalars lie in a specified interval. The algebraic
connectivity of a graph is bounded below by zero and above
by the number of nodes in a graph, and we confine private
outputs to this interval by applying the mechanism in [21]
to the privatization of λ2.

Contributions: We provide closed-form values for the
sensitivity and other constants needed to define a privacy
mechanism for algebraic connectivity, and this is the first
contribution of this paper. The second contribution is bound-
ing the error that privacy induces in the convergence rates of
consensus. Differential privacy has made inroads in control
applications ranging from LQ control [22], state estima-
tion [23], [24], formation control [25], Markov decision
processes [26], symbolic systems [27], multi-agent optimiza-
tion [28], [29], reinforcement learning [30], location-based
services [31], designing nonlinear observers [32], and others,
due in part to the accurate analyses and high performance
one can maintain even with privacy implemented. We show



that this is the case for the consensus setting as well. Our
third contribution is the use of the private values of algebraic
connectivity to bound other graph properties, namely the
diameter of graphs and the mean distance between their
nodes.

We note that [33] has developed a different approach to
privacy for the eigendecomposition of a graph’s adjacency
matrix. Given our motivation by multi-agent systems, we
focus on a graph’s Laplacian, which commonly appears in
multi-agent controllers, and we derive simpler forms for the
distribution of noise required, as well as a privacy mechanism
that does not require any post-processing.

The rest of the paper is organized as follows. Section II
provides background and problem statements. Section III
develops the differential privacy mechanism for algebraic
connectivity. Next, Section IV uses this mechanism to pri-
vately compute consensus convergence rates, and Section V
applies it to bounding other graph properties. Then, Sec-
tion VI provides simulation results and Section VII provides
concluding remarks.

II. BACKGROUND AND PROBLEM FORMULATION

In this section, we briefly review the necessary background
on graph theory and differential privacy, followed by formal
problem statements.

A. Background on Graph Theory

We consider an undirected, unweighted graph G = (V,E)
defined over a set of nodes V = {1, . . . , n} with edge
set E ⊂ V × V . The pair (i, j) belongs to E if nodes
i and j share an edge, and (i, j) /∈ E otherwise. Let Gn

denote the set of all graphs on n nodes. We let di =
|{j ∈ V | (i, j) ∈ E}| denote the degree of node i ∈ V .
The degree matrix D(G) ∈ Rn×n is the diagonal matrix
D(G) = diag

(︁
d1, . . . , dn

)︁
. The adjacency matrix of G is

(H(G))ij =

{︄
1 (i, j) ∈ E

0 otherwise
.

We denote the Laplacian of the graph G
by L(G) = D(G)−H(G), which we simply refer to
by L when the associated graph is clear from context.

Let the eigenvalues of L be ordered according
to λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L). The matrix L is sym-
metric and positive semidefinite, and thus λi(L) ≥ 0 for
all i. All graphs G have λ1(L) = 0, and a seminal result
shows that λ2(L) > 0 if and only if G is connected [34].
Thus, λ2 is often called the algebraic connectivity of a graph.
Throughout this paper, we consider connected graphs.

The value of λ2 encodes a great deal of information
about G: its value is non-decreasing in the number of
edges in G, and algebraic connectivity is closely related
to graph diameter and various other algebraic properties of
graphs [16]. The value of λ2 also characterizes the per-
formance of consensus algorithms. Specifically, worst-case
disagreement in a consensus protocol decays proportionally
to e−λ2t [35].

B. Background on Differential Privacy
Differential privacy is enforced by a mechanism, which

is a randomized map. Given “similar” inputs, a differential
privacy mechanism produces outputs that are approximately
indistinguishable from each other. Formally, a mechanism
must obfuscate differences between inputs that are adjacent1.

Definition 1. Let A ∈ N be given, and fix a number of
nodes n ∈ N. Two graphs on n nodes, G and G′, are adjacent
if they differ by A edges. We express this mathematically via

AdjA(G,G′) =

{︄
1 |E(G)∆E(G′)| ≤ A

0 otherwise
,

where S1∆S2 = (S1\S2) ∪ (S2\S1) is the symmetric
difference of two sets and | · | denotes cardinality. ♢

Thus, A is the number of edges whose absence or presence
must be concealed by privacy. In other words, differential
privacy for λ2 must make any graph approximately indis-
tinguishable from any graph within A edges of it when the
private value of λ2 is released.

Next, we briefly review differential privacy; see [10] for a
complete exposition. A privacy mechanism M for a function
f is obtained by first computing the function f on a given
input x, and then adding noise to the output. The distribution
of noise depends on the sensitivity of the function f to
changes in its input, described below. It is the role of a
mechanism to approximate functions of sensitive data with
private responses, and we next state this formally.

Definition 2 (Differential privacy; [10]). Let ϵ > 0 and
δ ∈ [0, 1) be given and fix a probability space (Ω,F ,P).
Then a mechanism M : Ω× Gn → R is (ϵ, δ)-differentially
private if, for all adjacent graphs G,G′ ∈ Gn,

P
[︁
M(G) ∈ S

]︁
≤ exp(ϵ) · P

[︁
M (G′) ∈ S

]︁
+ δ

for all sets S in the Borel σ-algebra over R. ♢

The value of ϵ controls the amount of information shared,
and typical values range from 0.1 to log 3 [10]. The value
of δ can be regarded as the probability that more information
is shared than ϵ should allow, and typical values range
from 0 to 0.05. Smaller values of both imply stronger privacy.
Given ϵ and δ, a privacy mechanism must enforce Defini-
tion 2 for all graphs adjacent in the sense of Definition 1.

We next define the sensitivity of λ2, which will be used
later to calibrate the variance of privacy noise. With a slight
abuse of notation, we treat λ2 as a function λ2 : Gn → R.

Definition 3. The sensitivity of λ2 is the greatest difference
between its values on Laplacians of adjacent graphs. For-
mally, given A,

∆λ2 = max
G,G′∈Gn

AdjA(G,G′)=1

⃓⃓
λ2(L)− λ2(L

′)
⃓⃓
,

1The word “adjacency” appears in two forms in this paper: for the adja-
cency matrix H above, and for the adjacency relation used by differential
privacy. The adjacency matrix appears only in this section and only to
defined the graph Laplacian. All uses of “adjacent” and “adjacency” in the
rest of the paper pertain to differential privacy (not the adjacency matrix).



where L and L′ are the Laplacians of G and G′. ♢

We next state the problems that we will solve.

Problem 1. Given the adjacency relation in Definition 1,
develop a mechanism to provide (ϵ, δ)-differentially privacy
for the algebraic connectivity of a graph G.

Problem 2. Given a differentially private algebraic connec-
tivity, quantify the accuracy of consensus protocol conver-
gence rate estimates that use it.

Problem 3. Given a private algebraic connectivity, develop
bounds on the expectation of other graph properties.

Graph privacy threats have been observed in the data
science community for other scalar-valued graph properties,
such as counts of subgraphs and triangles [13], degree
sequences [14], and numerous others [15]. These threats
have been addressed by developing new mechanisms to
provide differential privacy to the graph properties of interest.
Given the possibility of privacy breaches associated with
releasing λ2 and the wide use of λ2 in analyzing multi-agent
systems, our solution to Problem 1 will develop techniques
to protect λ2 with differential privacy, and our solutions to
Problems 2 and 3 will quantify privacy’s impact where we
expect λ2 to be used.

III. PRIVACY MECHANISM FOR λ2

In this section we develop the privacy mechanism that
enforces edge differential privacy. We start by providing a
bound on the sensitivity in Definition 3.

Lemma 1. Fix an adjacency parameter A ∈ N. Then,
with respect to the adjacency relation in Definition 1, the
sensitivity of λ2 satisfies ∆λ2 ≤ 2A.

Proof: See [36, Appendix A]. ■
Noise is added by a mechanism, which is a randomized

map used to implement differential privacy. The Laplace
mechanism is widely used, and it adds noise from a Laplace
distribution to sensitive data (or functions thereof). The
standard Laplace mechanism has support on all of R, though,
for graphs on n nodes, λ2 is known to lie in the inter-
val [0, n]. One can add Laplace noise and then project the
result onto [0, n] (which is differentially private because
the projection is merely post-processing), though similar
approaches have been shown to produce highly inaccurate
private data [37]. Instead, we use the bounded Laplace
mechanism in [21]; though bounded Laplace noise appeared
earlier in the privacy literature, to the best of our knowl-
edge [21] is the first work to rigorously analyze its privacy
properties. We state it in a form amenable to use with λ2.

Definition 4. Let b > 0 and let D = [0, n]. Then the bounded
Laplace mechanism Wλ2

: Ω → D, for each λ2 ∈ D, is
given by its probability density function fWλ2

as

fWλ2
(x) =

{︄
0 if x /∈ D

1
Cλ2

(b)
1
2be

− |x−λ2|
b if x ∈ D

,

where Cλ2
(b) =

∫︁
D

1
2be

− |x−λ2|
b dx is a normalizing term. ♢

Next, we establish an algebraic relation for b which
lets the bounded Laplace mechanism satisfy the theoretical
guarantees of (ϵ, δ)-differential privacy in Definition 2.

Theorem 1 (Privacy mechanism for λ2; Solution to Prob-
lem 1). Let ϵ > 0 and δ ∈ (0, 1) be given. Then for the
bounded Laplace mechanism Wλ2

in Definition 4, choosing
b according to

b ≥ 2A

ϵ− log

(︄
1− 1

2 e
− 2A

b

(︂
1+e−

n
b
−1

)︂
1− 1

2

(︂
1+e−

n
b

)︂
)︄

− log(1− δ)

(1)

satisfies (ϵ, δ)-differentially privacy.

Proof: See [36, Appendix B]. ■
Note that b appears on both sides of (1). In [21], the au-

thors provide an algorithm to solve for b using the bisection
method, and we use this in the remainder of the paper to
find b.

IV. APPLICATIONS TO CONSENSUS

In this section, we solve Problem 2 and bound the error
in consensus convergence rates when they are computed
using private values of λ2. As discussed in the introduction,
consensus protocols underlie a number of multi-agent control
and optimization algorithms, e.g., [17]–[20]. Consider a
network of n agents running a consensus protocol with
communication topology modeled by an undirected, un-
weighted graph G. To protect the connections in this graph, a
differentially private version of λ2 is used for analysis. This
computation would be performed, for example, by a network
analyst who only has access to the private value of λ2 that
has been shared by a data curator.

In continuous time, a consensus protocol takes the form
ẋ = −L(G)x, where L(G) is the graph Laplacian. This
protocol converges to the average of agents’ initial state
values with worst-case error bound at time t proportional
to e−λ2t [35]. Let r(t) = e−λ2t be the true convergence
rate for the network G. Let λ̃2 be the output of the bounded
Laplace mechanism with privacy parameters ϵ and δ. Let
r̃(t) = e−λ̃2t be the corresponding convergence rate es-
timate. To compare the estimated convergence rate under
privacy to the true convergence rate, we analyze |r̃(t)−r(t)|.

Note that as t → ∞, both r̃(t) → 0 and r(t) → 0,
which implies that |r̃(t) − r(t)| → 0 as well. Although
the error in the convergence rate estimate goes to 0 asymp-
totically, we are interested in analyzing the error at all
values of t, which will give insight into the short-run utility
of private convergence rate estimates. To accomplish this,
we give a concentration bound that bounds the probability
P (|r̃(t)− r(t)| ≥ a) in terms of t, the true algebraic con-
nectivity λ2, and the level of the privacy encoded in b that
is determined using ϵ and δ.

Theorem 2 (Convergence rate concentration bound; Solu-
tion to Problem 2). Let Cλ2

(b) = 1− 1
2

(︂
e−

λ2
b + e−

n−λ2
b

)︂
.



Then, for t > 0 and a fixed λ2 and b,

P (|r̃(t)− r(t)| ≥ a) ≤ 1

Cλ2(b)

1

2a
(ρ1(t) + ρ2(t)− ρ3(t)) ,

where

ρ1(t) =
e−λ2(

1
b+t)

(︂
−bte

λ2
b + bt+ eλ2t − 1

)︂
bt− 1

,

ρ2(t)=e−λ2t
(︂
1− e

λ2−n
b

)︂
, ρ3(t)=

e−λ2t − e
λ2−n(bt+1)

b

bt+ 1
.

Proof: See [36, Appendix C]. ■
Taking limits of the bound in Theorem 2 shows that as

t → ∞, P (|r̃(t)− r(t)| ≥ a) → 0 for all a, and thus this
bound has the expected asymptotic behavior.

We can use Theorem 2 to further characterize the transient
response of error in the estimated consensus convergence
rate. Specifically, we can bound the time required for the
error in the convergence rate estimate to be larger than some
threshold a only with probability smaller than η. Formally,
given a threshold a > 0 and probability η > 0, we bound
the times t for which P (|r̃(t)− r(t)| ≥ a) ≤ η.

Theorem 3. Fix a > 0 and η ∈ (0, 1). Let ϵ > 0
and δ ∈ (0, 1) be given and compute the scale pa-
rameter b > 0. Consider a graph on n nodes with
algebraic connectivity λ2. If λ2 ≤ n

2 , then we
have P (|r̃(t)− r(t)| ≥ a) ≤ η for

t ≥

(︂
e−

λ2
b − e

λ2−n
b

)︂
b

λ2e
+ 2aCλ2(b)η + 1

2aCλ2ηb
.

If λ2 > n
2 , then the desired bound holds for t ≥ 2aCλ2

(b)η+1

2aCλ2
(b)ηb .

Proof: See [36, Appendix D]. ■
We note that the statistics of the differential privacy mech-

anism can be released without harming privacy. Therefore,
the values of Cλ2

(b) and b can be publicly released. A
network analyst can thus compute these bounds for any
choices of a and η of interest. Because the exact value of λ2

is unknown, they can compute the maximum value of these
two times to find a time after which the desired error bound
always holds.

Notice that the two conditions on t in Theorem 3 only
vary by a factor of

(︂
e−

λ2
b − e

λ2−n
b

)︂
b

λ2e
in the numerator,

and when λ2 is large this term is negative. This means that
if λ2 is large, the required time for P (|r̃(t)− r(t)| ≥ a) ≤ η
is smaller than if λ2 was small. In Section VI, we provide
simulation results and further commentary for Theorem 3.

Beyond the consensus protocol, the value of λ2 is related
to many other graph properties [16], and we next show how
the private value of λ2 can still be used to accurately bound
two other properties of interest.

V. BOUNDING OTHER GRAPH PROPERTIES

There exist numerous inequalities relating λ2 to other
quantitative graph properties [16], [35], and one can therefore
expect that the private λ2 will be used to estimate other

quantitative characteristics of graphs. To illustrate the utility
of doing so, in this section we bound the graph diameter d
and mean distance ρ in terms of the private value λ̃2.

Both d and ρ measure graph size and provide insight
into how easily information can be transferred across a
network [38]. We estimate each one in terms of the pri-
vate λ2 and bound the error induced in these estimates
by privacy. Similar bounds can be simply derived, e.g., on
minimal/maximal degree, edge connectivity, etc., because
their bounds are proportional to λ2 [39].

We first recall bounds from the literature.

Lemma 2 (Diameter and Mean Distance Bounds [40]). For
an undirected, unweighted graph G of order n, define

d(λ2, α) =

(︄
2

√︃
λn

λ2

√︃
α2 − 1

4α
+ 2

)︄(︂
logα

n

2

)︂
ρ(λ2, α) =

(︄√︃
λn

λ2

√︃
α2 − 1

4α
+1

)︄(︃
n

n− 1

)︃(︃
1

2
+logα

n

2

)︃
.

Then for any fixed λ2 > 0 and any α > 1, the diameter d
and mean distance ρ of the graph G are bounded via

d(λ2) =
4

nλ2
≤ d ≤ d(λ2, α)

ρ(λ2) =
2

(n− 1)λ2
+

n− 2

2(n− 1)
≤ ρ ≤ ρ(λ2, α).

The least upper bounds can be derived by using the values of
αd and αρ that minimize d(λ2, α) and ρ(λ2, α), respectively.

■

A list of αd and αρ can be found in Table 1 in [40]. To
quantify the impacts of using the private λ2 in these bounds,
we next bound the expectations of d and ρ when computed
with λ̃2. These bounds use the upper incomplete gamma
function Γ(·, ·) and the imaginary error function erfi(·),
defined as

Γ(s, x) =

∫︂ ∞

x

ts−1e−tdt and erfi(x) =
2√
π

∫︂ x

0

et
2

dt.

We use d̃ and ρ̃, respectively, to denote the diameter
and mean distance when computed with λ̃2. Their expected
values can be bounded as follows.

Theorem 4 (Expectation bounds for d and ρ; Solution
to Problem 3). For any λ2 > 0, denote its private value
by λ̃2. Then, when bounded using λ̃2, the expectations of
the diameter, E[d̃], and mean distance, E[ρ̃], obey

4

nE[λ̃2]
≤ E[d̃] ≤ E[d(λ̃2, αd)] and

2

(n− 1)E[λ̃2]
+

n− 2

2(n− 1)
≤ E[ρ̃] ≤ E[ρ(λ̃2, αρ)],



where

E[d(λ̃2, αd)]=

⎡⎣2
√︄

λn(α2
d − 1)

4αd
E

[︄√︄
1

λ̃2

]︄
+2

⎤⎦[︂logαd

n

2

]︂
,

E[ρ(λ̃2, αρ)] =

[︄√︄
λn(α2

ρ − 1)

4αρ
E

[︄
1√︁
λ̃2

]︄
+ 1

]︄

·
[︃

n

n− 1

]︃
·
[︃
1

2
+ logαρ

n

2

]︃.
We can compute the expectation terms with λ̃2 via

E

[︄
1√︁
λ̃2

]︄
=

1

Cλ2
(b)

1

2b

(︄
√
π
√
be−

λ2
b

(︄
erfi

(︄√︃
λ2

b

)︄)︄

+
√
be

λ2
b

(︃
Γ

(︃
1

2
,
n

b

)︃
− Γ

(︃
1

2
,
λ2

b

)︃)︃)︃,
E[λ̃2] =

1

2Cλ2
(b)

(︂
2λ2 + be−

λ2
b − be−

n−λ2
b − ne−

n−λ2
b

)︂
.

Proof: See [36, Appendix E]. ■

Remark 1. A larger ϵ indicates weaker privacy, and it results
in a smaller value of b and a distribution of privacy noise that
is more tightly concentrated about its mean. Thus, a larger ϵ
implies that the expected value E[λ̃2] is closer to the exact,
non-private λ2, which leads to smaller disagreements in the
bounds on the exact and expected values of d and ρ.

VI. SIMULATIONS

In this section, we present consensus simulation results
and numerical results for the bounds on graph measurements
when using the private λ2 in graph analysis.

Consider a network of n = 10 agents with λ2 = 1 and a
true convergence rate of r(t) = e−λ2t = e−t. The network
operator wishes to privatize λ2 using the bounded Laplace
mechanism with ϵ = 0.4, δ = 0.05, and A = 1. Solving for
b with the algorithm in [21] yields b ≥ 7.39, and selecting
b = 7.39 ensures (0.4, 0.05)−differential privacy. Let λ̃2 be
the private output of the bounded Laplace mechanism. Then,
for a recipient of λ̃2, the estimated consensus convergence
rate is r̃(t) = e−λ̃2t. Let P

(︁
|r̃(t) − r(t)| ≤ a

)︁
be the the

probability of the error of the convergence rate estimate being
less than a at time t. Intuitively, P

(︁
|r̃(t)− r(t)| ≤ a

)︁
should

be close to 1 as t grows.
We can lower bound P

(︁
|r̃(t)− r(t)| ≤ a

)︁
by noting that

P
(︁
|r̃(t)− r(t)| ≤ a

)︁
= 1− P

(︁
|r̃(t)− r(t)| ≥ a

)︁
, (2)

which we can use Theorem 2 to bound. To that end,
Figure 1 shows how P

(︁
|r̃(t) − r(t)| ≤ a

)︁
changes with

time for a = 0.2 and shows 500 sample convergence rate
estimates for values of λ2 privatized with the parameters
from above.

These simulations show that for a sufficiently large t,
P
(︁
|r̃(t) − r(t)| ≤ a

)︁
is close to 1 and that the times t

for which this occurs are often small. This occurs because
the bounded Laplace mechanism outputs λ̃2 ∈ [0, n], and
thus r̃(t) → 0 as t → ∞ for any λ̃2, while the true
convergence rate r(t) also converges to 0. These results
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Fig. 1. The top plot shows 500 sample convergence rate estimates r̃i(t) =
e−λ̃

i
2t, where λ̃

i
2 is the output of the ith trial of the bounded Laplace

mechanism with ϵ = 0.4, δ = 0.05, and A = 1 for a network of
n = 10 agents with λ2 = 1. The set S(t) shown on these plots is
defined as S(t) = {r̃i(t) : r̃i(t) = e−λ̃

i
2t and |r̃i(t)− e−λ2t| ≤ a} with

a = 0.2. The bottom plot shows the lower bound on P(r̃i(t) ∈ S) obtained
by using Theorem 1 in (2). This lower bound approaches 1 relatively quickly
and is consistent with the sample convergence rates shown in the top plot.
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Fig. 2. The top plot shows the distance between the exact and expected
upper bounds for d. The bottom plot shows the distance between the
corresponding lower bounds.

also show that Theorem 1 is consistent with intuition as
highlighted in Figure 1, namely that as t grows the error
in any estimated convergence rate using the output of the
bounded Laplace mechanism converges to 0 eventually.

We next present simulation results for using the private
value of λ2 to estimate d and ρ. We consider networks of
n = 30 agents with different edge sets and hence different
values of λ2. We let λn = n and therefore the upper
bounds on d and ρ in Theorem 4 can reach their worst-
case values. We apply the bounded Laplace mechanism with
δ = 0.05 and a range of ϵ ∈ [0.1, 2]. To illustrate the effects
of privacy in bounding diameter, we compute the distance
between the exact (non-private) upper bound on diameter in
Lemma 2 and the expected (private) upper bound on diameter
in Theorem 4. This distance is shown in the upper plot in
Figure 2, and the lower plot shows the analogous distance for
the diameter lower bounds. Figure 3 shows the corresponding
upper- and lower-bound distances for ρ.

In all plots, there is a general decrease in the distance be-
tween the exact and private bounds as ϵ grows. Recalling that
larger ϵ implies weaker privacy, these simulations confirm
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Fig. 3. The top plot shows the distance between the exact and expected
upper bounds for ρ. The bottom plot shows the distance between the
corresponding lower bounds.

that weaker privacy guarantees result in smaller differences
between the exact and expected bounds for d and ρ, as
predicted in Remark 1.

VII. CONCLUSIONS

This paper presented a differential privacy mechanism for
the algebraic connectivity of undirected, unweighted graphs.
Bounded noise was used to provide private values that are
still accurate, and the private values of algebraic connectivity
were shown to give accurate estimates of consensus protocol
convergence rates, and the diameter and mean distance of a
graph. Future work includes the development of new privacy
mechanisms for other algebraic graph properties.
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