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ABSTRACT

Arctic beaded streams provide unigque ecosystem functions and serve az important mundra habitats. Their unigoe
‘beads-on-a-siring” morphology is thought to form from thermokarst erczion, and they are densely reprezented in
permafrost-ridden landscapes. Despite their ubiquity in high latitude regions, beaded stream formation amd
occurrence iz not well studied, and beaded streams are not globally mapped. Accesz to these streams is chal-
lenging in their remote, dynamic environment, and up untl recently, monitoring these streams through zatellite
imagery was difficult given their relatively small zize with channel widths of a few meters. The availability of
high-rezolution imagery from Planet data now makes it possible to detect and map these streams over large areas.
Here we observe and predict the location of beaded stream catchments throughout the pan-Arctic domain by
combining the location of known beaded streams with recent advances in computer vision and high-rezolution
(3 m) satellite imagery. Specifically, we use the location of known existing beaded streams to clasify potential
river catchments as beaded or non-beaded, then download high resolution imagery across those regions, and wze
the latest You-Only-Look-Once (YOLO) object detection algorithm to identify beaded streams throughout the
pan-Arctc, estimating 138,500 = 43,700 beaded catchments globally, occurring in an estimated one third of all
pan-Arctic catchments. In the largest dataset of beaded streams to date (Arp ec al., 2015), only 375 catchments
that contain beaded streams were identified, thus our estimate significantly expands our current understanding
of the location and prevalence of Arctic beaded streams.

1. Introduction

thermokaret erozion at the intersection of ice wedge polygons (Pewe,
1966). The connecting chutes typically follow ice wedges, and thus tend

Beaded streams are a common yet understudied thermokarst land-
form In permafrost ridden landscapes (Arp =t al, 20]15). These streams
are characterized by their unique morphology of deep low-energy pools
followed by high-energy chutes which appear as ‘beads-on-a-string’
(Dewood et al, 1989). Beaded streams are important sources of fresh-
water storage and serve as ecological habitats for species such az Archic
grayling (Heim et al., 2016; McFarland =t al , 201 8). Beaded streams are
claszified as a type of tundra stream (Craiz and MeCart, 1975) which
typically flow from the foothills across the coastal plain in catchments
composed of thin layers of peat underlain by permafrost (Hobbie and
Eling, 2014). The pools, or beads, are often circular or elliptical, rela-
trvely deep (up to 2 m) and wide (1-35 square meters), and form from

* Correzponding author.
E-mail address: mharlan@umass edu (M.E Harlan).
! Present address: U.5. Geological Survey, Denver, C0), United States

hitpa:/ doiorg,/10.1016/).rse 2022 113378

to be shallower and narrower with straight, steep sides (Hopkins and
Earlstrom, 1955).

Several field studies within the North Slope of Alaska have further
characterized beaded stream water chemastry, temperature profiles,
hyporheic exchange, as well as discharge and electrical conductivity
profiles. From these studies we have learned that these streame may be
sensitive to increased mnputs of nutrients from road dust and fertblization
of roadsides (Benstead =t al | 2005), but seem to be resilient to increases
in dissolved orgamie earbon (Larcuche =t al, 2015). Their unique
morphology and thermal stratification allows them to react slowly to
seazonal solar input and maintain thaw thicknesses longer (Brosten
et al | 2006), and this thermal etratification aleo effects transient storage
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of solutes, which in turn effects hyporheic exchange (Zametske et al |
2007, 2008). The water chemistry of these streame and their interaction
with the subsurface and nearby lakes and broader streams can have
broad mmplications for watershed nutriente (Wollheim et al | 2007

Although these field studies provide important insights into the
phyeical and biogeochemical makeup and processes of these streams,
these findings came from a relatively small number of sample streams,
and thus results may not be generalizable acroes all beaded streams. For
example, a study conducted in a Russian provinee found the existence of
beaded channels in the permafrost zone to be unstable (Tarbesva and
Surkow, 2013), which contrasts to relatively stable beaded channels m
Alagka (Arp et al., 2015). Addibonally, Tarbesva and Surkow (2013)
found beaded streams outside of the continuous permafrost region that
were formed from other factors such as anthropogenic changes to flow
regimes, unevenness of geologic structures, and ongoing karst processes.
These divergent findinge motivate the need to continue studying beaded
streams across more representative regions of the Arctic.

In 2015, Arp et al. conducted an expansive survey of beaded net-
works from high resclution asrial imagery, identifying 445 beaded
networks north of 66 latitude. However, the lack of availahality of high-
resolution snow free imagery significantly reduced the number of
identifiable channels in Sibera and Canada. Their estimates suggest that
there are over 1900 individual beaded networks throughout the world,
with an approximate 13% in northern Canada, 18% in Alaska, and 699%
in northern Russia (Arp =t al., 2015). Mapping the approximately 1500
{ 1900 eshimated total 445 wdentified) additional beaded networks
estimated by Arp et al. (2015) may help us better understand the for-
mation, morphology, and occuwrrence of beaded streams. More accurate
beaded stream mape may also help to better contextualize and broaden
the impact of previous field studies that have shown the important role
of beaded streams in Arctie ecology, hydrology, and biogeochemistry.

Assessing these streames on a global scale poses some challenges, as to
date, they are not globally mapped. Beaded streams tend to be too small
for global hydrography networks such azs MERIT Hydro (Yamazaki et al |
2019) or HydroSHEDS (Lehner =t al, 2008), while higher resolution
stream networks such as the National Elevation Dataset (5. Geological
Survey) or the Sentinel-ArcticDEM merged river network SARN (Lu
et al | 2020) are not globally available. Because of their small size, with
an average bead pool width of 6 m from field surveys (Arp =t al_ | 2015),
beaded streams are also hard to detect and identify from publicly
available satellite imagery, as the resolution of 30 m with Landsat or 10
m with Sentinel-2 makes 1t difficult to resolve streams with wadths 10
m. The generally unknown location and logistical impossibility of a pan-
Arctic field survey necessitates remote sensing, and vet these tradifional
gensors are l-suited to the tazk.

Recent advances in the private remote sensing sector are promising,
such as the PlanetScope optical satellite image dataset, which has 3 m, 4-
band imagery with approximately daily near-global coverage. This
extensive spatial and temporal coverage results in enough awvailable
imagery that eventually within the summer months these satellites can
capture clowd-free, snow-free imagery throughout the pan-Arche
domain. Planet imagery has suceessfully been used to map surface
water in high latitude and mountainous regions, from large rivers (Fens
et al., 2019; Kaab et al., 2019; Strick et al., 2019) to wetlands (Cooley
etal, 2017a) and lakes (Cocley et al , 2019; Lezine et al_, 2021 ; Qayyum
et al, 2020). Here we made use of the dense spatictemporal resolution
and awailability of PlanetScope Imagery to map and locate beaded
streams globally to better understand their oceurrence and formation.

To map beaded streams we 1) identified nver catchments that
potentially contain beaded streame from literature threzholds and global
hydrography datasets, 2) downloaded tens of thousands of high-
resolution PlanetScope satellite images within those catchments, and
3) employed a state-ofthe-art computer vision algorithm to detect
beaded stream reaches within each image. We therefore provide the first
remainder of this paper iz orgamized as follows: first, we provide an
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overview of the data sources and methods, including the claszification
scheme, and beaded stream detection through the YOLO-v5 computer
vision algornthm (Jocher =t al, 2021). Next, we present the results of
both the catchment classification, beaded stream detection tramming,
validation, and testing, and the global propertics of beaded stream
ocourrence and catchmentz. Finally, we provide a comparizon to pre-
vious studies including the Arp =t al. (2015) survey, and discuss mi-
tations of thiz approach, azs well az future directions for both object
detection of beaded streams and geospatial surveys more broadly.

2, Data

Data acquired for thiz study consists of 3 m, 4-band PlanetScope
imagery (Planet Team, 2021), a global hydrography dataset from MERIT
Hydro (Yamazali =t al | 2019), a eircum-Arctic permafrost and ground
ice map from the National Snow and lee Data Center (NSIDC; Hegin-
bottom et al., 2002), and an a priori map of known beaded stream lo-
catione (Arp et al, 201 5). Fig. | displaye the locations of the 445 beaded
streams mapped by Arp ot al (201 5) underlain by the NSIDC permafrost
coverage map, as well az a diagram of a beaded and alluvial stream
adapted from Trochim =t al. (2016), and an example beaded stream at
varying resolutions in falze-colour imagery. By design, Arp =t al (2015)
narrowed their study to hugh latitudes, thus a high percentage of their
streams are in continuous permafrost coverage. The conceptual diagram
in Fig. | captures defining differences between beaded and alluvial
streams, namely the presence of the characteristic pool-chute structure,
underlying permafrost, and comparatively low slope regions.

To map river catchments that may contain beaded streams, we relied
on global MERIT Hydro datasete. MERIT Hydro 1= based on the high-
resolution (3 arc-second, ~90 m) high-accuracy MERIT (Multi-Error-
Removed Improved-Terrain) DEM (Yamazala =t al | 2017) and several
inland water maps. The data contain flow direction, flow accumulation,
elevation, and river channel width. Here we relied on a new vector-
based wversion of MERIT Hydro (Lin =t al, 2021} that delineates
MERIT Hywdro into flowlines, watersheds, and basing using TauDEM
software. Within thiz dataset, bazin boundanes are redefined uzing the
updated MERIT DEM resclution, then split with Pfafstetter coding to
individual watersheds with a median global size of 461 km®, approxi-
mately similar to HydreBASINS level-08 classification (Lehner and Grll,
2013).

Az ehown in Fig. 1, Panel D, the MERIT Hydre river network in its
vectornized form does not reliably extend to streams as emall as beaded
streams, with a ] km® threshold for the river network. However, MERIT
Hydro watersheds, referred to as catchments here, cover continuous
areas that invariably contain beaded streame, and have relevant attr-
butes associated with each catehment, including catchment area {kmz},
slope (m/m), upetream drainage area {]unz}l, and channel width (m)
from the Global River Width from Landsat (GRWL; Allen and Pavelsky,
201£) database. Within each catchment, channel width 1z represented as
the average width of rivers wide enough to be obeerved by Landsat | 30
m) within the catchment, thus does not include beaded channels. For
Arctic rivers, MERIT-Hvdro derived flowlines are considerably more
accurate than HydroSHEDS (Lin =t al | 2021), and thus thiz catchment
delineation was chosen here for both ite accuracy and available attri-
butes. Since we scan images of cach entire CART-selected MERIT
catchment with YOLOwS to detect streams therein, if we used more
refined catchments (e.g., Lu =t al | 2020) we would generate different
catchment properties and have searched less images, but we would =till
have hikely found the same beaded streams without needing additional
geoprocessing required from SARN.

In addition to the catchment-level data, base mape such as the NSIDC
Circum-Arctic Map of Permafrost and Ground lee Conditions provide
permafrost extent and ground ice content information. Permafrost is
defined as ground that remaine at or below 0 C for at least two years,
and permafrost extent 1= categonized Into conbinuous (90 100%
coverage), discontinuous (50 90%), sporadic (10 50%), and isolated
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patches (0-10%). Land type iz broadly categonized as either f- “lowlands,
highlands, and intra-and intermontane depressions characterized by
thick overburden cover (>5-10m)” or r- “mountains, highlands ndges,
and plateaus characterized by thin overburden cover (>5-10m) and
exposcd bedroek”, and has additional categories for glaciers, relict
permafrost, inland lakes, ccean/inland seas, and land (Heginbottom
et al., 2002). Although permafrost coverage has changed sinee 2002 (e
g- Biskaborn et al | 2019), given the Arp et al (20]15) findings of beaded
stream stability over decades in time, beaded stream oceurrence likely

Flg. 1. Enown beaded streams. Shown in
yellow pointz are the locationz of beaded
streams found in the Arp et al. (2015) sur-
wvey, used here for training purposzes, under-
lain by the NSIDC permafrost coverage map.
Permafrost iz categorized az C: continmoows,
Dr discontinwous, I: isolated, and 5: semi-
continuous. Panel B displayz a photograph of
beaded streams, and Panel C showsz a con-
ceptual diagram of beaded and alluvial
streams adapted from (Trochim et al., 2016),
structure of beaded streams. Panel D shows a
representative MERIT Hydro catchment and
network delineation in blue, az well az the
location of a beaded smeam within the
catchment. Panelz E and F display closeups
of the beaded stream shown in Panel D,
underlain by PlanetScope imagery (Panel E),
and aerial imagery (Panel F). Panel: D and E
display falze-colour zatellite imagery (Land-
zat and PlanetScope respectively), while
Panel F dizplays true-colour imagery (Maxar
Technologiez, Map data (@2022 Google).
(For interpretation of the referencez to
colour in thiz figure legend, the reader iz
referred to the web version of thiz article.)

has not changed dramatically in the past two decades.

Together, the Arp ot al. (2015) stream locations, MERIT Hydro
catchments, and permafrost base maps form the training data for the
catchment level classification. These three datasete are spatially joined
to overlay permafrost coverage on the catchments, and to find which
catchments contain one or more beaded streames as identified in the Arp

et al. (2015) paper.
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3. Mcthods

It 15 infeasible to manually scan every square kilometer of the Arctic
with high resolution imagery to look for beaded streams. Fortunately,
we can rely on previous literature to help narrow the range of where
beaded streams could form. Arp =t al. (2015) found that most beaded
streams transition to alluvial channels with increasing drainage area and
decreasing channel slope. In an earlier study which focused on three
watersheds in Alaska, it was discovered that most beaded streames were
in areas with marine silt deposite and that 61% of beaded streams
initiated from lakes and 29% were from drained thermolkarst lake bazing
(DTLE), with only a few initiating from hillslopes (Arp =t al, 2012).
Within the continuous permafrost zone in Alaska, Farquharson et al
[2016) confirmed these results, finding that beaded streams are less
commeon in areas of acolian sand and faver high ground ice content and
greater topographic relief. Within the northeastern part of Yalutia,
Tarbeeva and Surkov (2013) provided additional hydrologic bounds,
finding that beaded streams oceur In mvers with catchment areas
ranging from 3 to 10 km® gradientz of up to 2 m/km, and with
maximum fow rates of 0.5-1 m™/s. These findings limit likely areazs with
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beaded streams to regions with moderate to high permafrost coverage,
drained lakes.

We applied these eriteria to the MERIT Hydro catchments to identify
potential regions that may contain beaded streame. To do 5o, we used a
supervised classification appreoach to turn our a prion knowledge of
beaded streams into a potential catchment identifier, shown in the left
panel of Fiz. 2, and desenibed in further detail below. Our catchment
claszification enabled us to narrow the range of where beaded streams
could be found. From thiz narrowed range of possible beaded ecatch-
ments, we then downloaded PlanetScope imagery to detect beaded
stream reaches (Fiz. 2 nght panel).

A traditional geomorphology approach to detecting beaded streams
might consist of generating a water mask from the images and
combining that water mask with a digital elevation model (DEM) to
determine stream locations within the catchment, for example following
methods from Lu =t al, 2020 and Lu =t al., 202]. From there, beaded
streams could be differentiated from non-beaded (alluvial) streams by
their size, width profile, clope, and/or drainage area, following methods
such as RivWidthCloud (Yang et al., 2020), RivaMap (lzikdogan =t al |
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Fig. 2. Methodology outline. On the left panel, the beaded catchment clazsification iz outlined, while on the right the beaded reach object detection workflow iz
outlined. Input to the clazzification involves the beaded streams found in the previous Arp et al. (2015) study, alongzide permafrost and catchment data. The clazsifier
iz frst mained on known beaded and non-beaded catchments, then applied globally to the remaining catchments to predict a binary beaded /non-beaded decision
tree. An example of a typical alluvial and beaded stream iz shown in the center of the panel; both are often found in near proximity to each other, thuz a “beaded™
catchment does not preclode alluvial smreams within, On the right panel, the beaded reach detection workflow inclodes filtering imagery to the catchments amnd image
quality filters, then proceeding with image processing, chipping, and labeling of the training data. Like the catchment classification, the object detection algorithm
(YOLOw5) iz trained on known beaded imagery that were manually digitized, and then applied globally to detect beaded stream reaches.
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2017), and TauDEM (Tarboton, 1997). However, a challenge with this
approach iz generating an accurate water mask, along with the
computational time associated with generating the river network acroes
thousands of catchments. Beaded streames, unlike larger rivers and lakes,
tend to have a different spectral signal, and can be difficult to mask with
common indexes such as the modified normalized difference water
index. Although thresholding can help solve this issue (Cooley ot al |
2017b; Lu et al, 202]; Yang =t al., 2014), it 1z shll possible that some
beaded streams might be confused for vegetation or small unconnected
ponds.

Instead of detecting beaded streams from a pixel-based method such
ac index thresholding, an alternative approach iz through object detee-
tion, a computer vision technique. Unlike a classification algorithm and
object-based image analyeis, object detection 1= a technology that de-
tects instances of eemantic objects, such as detecting floating objects In
rivers (Kale and Chaeczko, 201 5), identifying invasive fish species (Zhang
et al, 2016}, or in this case mapping beaded stream reaches. Given the
task at hand of detecting beaded streams globally, this approach was
promising in that it avoided having to dishinguizsh first water masks and
catchment full of hydrologically diverse features, and forused nstead on
zolely detecting beaded streams, providing an end-to-end methodology.

Combined, our catchment classification and beaded reach detection
using computer vision enabled us to efficiently map beaded stream lo-
cations throughout the pan-Arctic. Below we provide further details on
our classification methods, object detection algorthm, and metries for
evaluating these methods.

3.1. Catchment identification methods

To identify beaded catchments, we classified all MERIT Hydro
catchments within the pan-Aretic domain as either beaded or non-
beaded using the rpart B package which implements classification and
regression trees (CART) following Ereiman =t al. (2017). Variables used
in the classification include catchment properties (area, upstream area,
slope, and mver width) as well as permafrost propertics from NSIDC
(land type, permafrost extent). To train the classifier, we identified
MERIT Hydro catchmentzs that overlapped with Arp et al (20]15) beaded
stream locations (375 In total), and randomly selected an addibional 462
MERIT catchments, which were then manually classified as either bea-
ded or non-beaded from wisual inspection of Google Satellite imagery
{2022 Landsat/ Copernicus, Maxar Technologies Map data 2022
Google). Arp et al (2015) identified beaded streams through a nested
survey approach, scanning cloud-free, ice-free Imagery in Google Earth,
as well az aerial transectz in the North Slope of Alagka, and high-
resolution photography in the Fish Creck watershed in Alaska. Each of
the Arp et al. (2015) stream locations were manually inspected using
Google Satellite imagery to confirm the presence of a current beaded
stream. From the combined 837 classified catchments, we randomly
split approcxamately half of the data into training (433 catchmentz) and
validation (404 catchments). Of these 837 catchments, 379 were bea-
ded, 375 wentified from Arp et al. (2015) locations, and 4 identified
from manual inspection of the 462 catchments that were randomly
gelected (the remaining 458 were classified as non-beaded). From here,
we tramed the CART decizion tree classifier to predict differences be-
tween beaded and non-beaded catchments across the pan-Arctic from
our 433 training catchments, with the goal of reducing the total area of
high-resolution imagery needed for object detection. We validated this
approach on the 404 validation catchments.

CART model Firet, the single variable which best separates beaded and
non-beaded streames is chosen, and the data 15 then recursively separated
into subgroupe, until the subgroups reach a minimum size, or no further
improvement 1z made. The second process uses cross-validation to tim
back the tree, reducing the complexity. Each split iz based on the Gind
impurity index (Breiman et al, 1984), which is caleulated as the
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probability of mislabeling an element (or catchment in thiz case)
assuming that element 1z randomly labeled from the distnbution of all
classes in the set (In this case beaded and non-beaded).

Thiz approach also provides confidence values for the degree to
which catchments have been classified az beaded or non-beaded,
allowing us the flexibility to further narrow or expand the range of
poesible beaded streams. For this analysiz, a standard binary classifies-
tion threshold of 0.50 for the confidence value was used to discriminate
beaded from non-beaded catchments, where all confidence values  0.50
indicate a CART-classified beaded stream. Thus, all catchments classi-
fied az beaded were included. Following the CART model traiming (re-
sults deseribed below), we claszsified all pan-Arctic catchmente as either
poesibly beaded (98,147 catchments) or non-beaded (318,205 catch-
ments), approximately reducing the total area fourfold.

3.2, Image processing methods

We wdentified 71,831 PlanetScope images from May August 2021
that covered these possibly beaded catchments after filtering for eloud
coverage, snow coverage, visibility, cleamness, and the type of nstru-
ment, quality, ground, and asset filter. Each of these filters are defined in
PlanetScope metadata (Flanst Team, 2022). During these summer
monthe, ice break-up in the river channels generally occurs by mid-June,
generating peak flows, and stream temperatures typically start declining
mid-Auguet (Heim et al | 201 6). These filtered images cover 90% of the
potential catchments (88,250 out of 98,147), and there was no
dizscernible spatial pattern to the catchments where beaded imagery of
sufficient quality was not available, thus this comission iz spatially non-
biased. Data were limited to summer 2021 to take advantage of the
latest Planet sensors and limit the quantity of this commereial product
needed.

To identify beaded reaches within these images, we used object
detection methods. Object detection methods can be broadly split into
neural network approaches that rely on deep leaming, and non-neural
approaches. Deep neural networks constitute some of the latest ad-
vancements in the field and tend to perform better than traditional, non-
neural algorithms (Erhan et al., 2014; Zhao =t al, 2019). Zhao et al
(2019) classify generic object detection (locating and classifying objects
in bounding boxes) into two main subeategories: regional and regres-
slon/classification. The regional method first generates regione to clas-
gify, then classifies each region into different categores, and includes
popular methods such ag R-CNN (Girshick et al | 2014), Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ben et al., 201 5), and Mask R-CNN (He
et al, 2017). The regression/claseification approach adopts a umfied
framework to both categorize and locate objects at once, allowing for
real-time detection, and mnclude algorithme such az MultiBox (Erhan
et al., 2014), 85D (Liu =t al, 2016), and YOLO (Jocher et al., 202];
Redmon et al, 2016; Redmon and Farhadi, 2016, 2018; Wang <t al,
2021).

YOLO (Jocher et al | 2021}, or You-Only-Look-Onee, uses an artificial
neural network to prediet the probability that the object it is trained to
find (e z., braded streams) 12 within a bounding box that exactly bounds
the feature. Thus, YOLO does not vield polvgons or rasters of beaded
stream outlines as in traditional object-oriented classifications, but
instead gives a probability confidence that there 1z exactly one beaded
stream reach within each YOLO bounding box. These boxes encompass
the entirety of the detected feature, and therefore there 1z a 1:1 mapping
of the number of bounding boxes to the number of beaded stream
reaches.

YOLO makes its predichions after looking once at each image using
non-max suppression, a technique to select the best bounding box out of
potential overlapping bounding boxes to aveoid objects detected more
than ence (Redmon and Farhadi, 2016). YOLO & confidence score 18
computed as the product of conditional class probability (in this case the
probability that the box contains a beaded stream) and the box confi-
dence score (or the accuracy of the area and location of the box).
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Because the algorithm “only looks once™ it can be optimized faster
compared with other object detection algorithme, with similar or higher
accuracy rates (Sovastava et al., 202]1; Tan et al, 2022). We choee
YOLOwS (Jocher et al | 2021), one of the latest versions of YOLO, for this
study based on these published resulis.

Our goal in this study iz to detect the beaded streams within the
catchments claszified az possibly beaded In Section 3.1. Each Planet-
Scope image within the 88,250 catchments (71,831 images- some im-
ages coversd multiple catchments) was cropped to the catchment file,
equalized to ensure the image was visible with sufficient contrast by
standardizing the histogram, converted to 8-bit imagery, and ‘chipped”
to emaller 512 » 512 pixel images. This resulted in a total of 2,188,531
individual chips for classification. Thie chipping produces standard
images that run quickly with computer vision and 1z essentially inverse

PlanetScope images contaiming a known beaded stream derived from
the Arp et al (2015) study were manually inspected through the
LabelMe Annotation tool (Wada, 2022) to confirm the presence of
beaded streams within the training chipe, yielding 1093 image chipe
with a beaded stream (Fiz. 3). For each chip, we labeled (other commeon
terms for this process include “digitally identified’ and *‘digitized”) bea-
ded streams by drawing a unique box for each beaded reach. Here we
define a beaded reach az a section of a beaded stream where the beaded
pattern and width were consistent. For example, if both a tibutary and a
larger connecting stream were beaded, one bounding box would
encompase cach branch for a total of two boxes. Any streams that
exhibited a pool-chute structure that appeared to be low order streams
cross-checked and converted to the YOLO format through the Roboflow
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Amnotation Teol (https://roboflow_ com/).

These labeled boxes associated with mmdividual PlanetScope image
chips represent the training objects for YOLO. For this study, we used a
single-class classification, cnly training on beaded streams, instead of
ecreating multiple training classes of other features also present in Arctic
catchments (e.g., alluvial streams, ponds, lakes, roads). This simplified
the generation of manually digitized datasets and reduced the compu-
tational cost required for training and clazzification within the YOLOvwS
algorithm, likely at the slight cost of commission error accuracy, dis-
cussed further n resulte and discussion

Following image preprocessing, we then tramned the YOLOvS alzo-
nthm (Jocher =t al, 202]) with the 1093 traimng chips. Hyper-
parameters needed to train the alzorthm inelude the size of the tramming
set ("batch size’) and number of times the model will work through the
traiming set (‘epochs’). To train YOLOwS, we relied on a standard bateh
size of 12, with 300 epochs, although the algorithm stopped improving
after only 147 epochs. Traming the model was relatively fast (approxi-
mately 1 h in total) with 1 graphics processing unit (GPU). GPU pro-
cessing is necessary for this study, and therefore aceess to GPUz iz a
prerequisite for this work as CPU processing YOLOwS on 71,831 images

Within YOLOvwS training, the algorithm uses the manually labeled
bounding boxes of known beaded streams to refine the prediction of
beaded stream reaches for each trained image chip. Therefore, we do not
input beaded stream objects or outlines into the traiming- we use a
manually drawn bounding box around cach beaded stream. To test the
rizk of overfitting, we divided the training chipe using a 70/20/10
training testing validation eplit and compared results from 10 random
samples of thiz split. From the 10 traming eamples, the traiming model

Fig. 8. Beaded catchment classification results. Om
top, the tree diagram shows the splits created from
the maining data (half of the datazet of beaded amnd
non-beaded catchments). Variablez are shown in
boxes and ordered from most important (top) to least
important (bottom). The values or atiributes of each
split are shown in bold, e.g. for the first split, dat iz
categorized as either land type *g’, ‘T, ‘Id", or °r’, or az
‘f or ‘o’. The legend explainz each of the land type
(Land) and permafrost extent (Perm Ext) acronyms.
Slope is in units of m/m, width in m, and area and
npmweamamamp_.ﬁ:ea}inhnz.'lhemmberuf
smeam catchmentz correlated with each split are
shown circled in numbers and are denoted as either
beaded (green) or alluvial/mon-beaded (pink). Shown
in the bottom are the confusion matrices for the
raining (left) and validation (right) datasets, along
with the owerall accuracy. (For interpretation of the
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with the median accuracy was chosen for the beaded reach detection so
ae not to overstate the results.

Affter traiming YOLOwvS, we applied the computer vision model to the
71,831 PlanectScope images, chipped into 2 nullion discrete images, to
identify beaded reaches, summarizing them into a total number of
beaded stream catchments. We define a beaded stream catchment az a
catchment that likely contains one or more beaded streams as identified
from both our catchment classification AND computer vision object
detection. Our analysis is focused on beaded catchments, as opposed to
beaded stream reaches or bounding boxes, in order to be able to compare
with pan-Arctic beaded catchments and the rver networks identified in
the Arp et al (2015) etudy.

We estimate the total beaded catchment count from both the
catchment classification and beaded reach detection from YOLOvS. To
arrive at this count, we first compiled all the beaded catchments 1den-
tified from the classification and predicted beaded reach boxes within
those catchments. If a catchment contained a beaded stream with a
YOLOwS confidence score of 0.1 we identify it a poesibly beaded
catchment. From there, we account for commission and omizsion
through the testing and training results, described in greater detail
below.
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but in thiz case any overlap was considered a positive outcome, sinece our
goal iz to map the locations of beaded streams, and not necessanly
outline them with a high degree of precizion.

Thiz accuracy metric helps simplify our commission and omission
errors into one value, but often a suite of error metrics and accuracies are
used in computer vision work (FPadilla et al | 2020), which we compute
here:

(5)

(s)

Rerall and precision are identical to our omission and commission
error formulazs, with the exception that now we are referring to beaded
boxes encompassing beaded reaches, not eatchments. From these met-
rics, we can also compute the average precision (mAP), or the mean
precizion over a range of recall values for a confidence threshold of 0.5.
For our final estimate of beaded catchments, we combine the omission
and commission errors from both the catchment classification, image
downlead, and object detection:

)

3.2. Training mebics

To validate both our CART regression traiming and YOLO, we rely
mainly rely on omission and commission errors, az well az an overall
accuracy metric, defined below for CART:

(&)

(1)

(2)

(2

For the CART analyziz, accuracy refers to the proportion of correctly
categorized beaded and non-beaded catchments over the total number
of predicted catchments. We define our omission error as the proportion
of beaded catchments misclassified as non-beaded out of the total
number of beaded catchments, while our commission error is the pro-
portion of non-beaded catchments misclassified as beaded out of the
total number of all catchments claszified as beaded.

4

Accuracy for YOLO refers to the number of correctly identified
beaded reaches divided by the sum of total beaded reaches in the vali-
dation set and misclaszified non-beaded reaches. A beaded stream was
deemed to be correctly identified zo long as a portion of the predicted
and actual bounding box owverlapped. Traditional object detection
typically calculates error and accuracy in terme of the area of overlap,

where Bﬂﬂmr feaded represents the fraction of correctly 1denti-
fied beaded catchments divided by the true number of beaded catch-
ments (or bounding boxes in the second half of Eq. 7). In Eg. 2, the
formula iz identical, except the denominator now represents the total
number of predicted catchments or bounding boxes, including those
incorrectly identified, and here we do not factor in the error from the
image availability. Together, these errors represent the percentage of all
beaded streame that were likely to be missed from the analyeiz, and the
percentage of alluvial or non-beaded streams or regions misclassified as
a beaded stream from the combination of both the catchment claszifi-
cation and object detection.

4. Results
4.1. Catchment clazsification accuracy and findingz

We tested our CART eclassifier on our set of teshing catchments,
finding an accuracy of 83.66%, with 14.80% omizsion error and 22 16%
commission error (Fiz. 3). Here we are primarily concerned with
vision work to assesz whether or not a beaded stream existe with a
catchment. Commuaesion error iz therefore acceptable provided it does
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not produce too large a global surface, but omizsion error will propagate
into our final analysis. Therefore, we begin our process with up to 153
underestimation of catchments contaiming beaded streams based on our
omission accuracy. Applying this classifier on our global data identified
095,147 catchments, or roughly % of all pan-Arctic catchments, as
“poszibly beaded.”

Az shown in Fig. 3, our classification chowed that the variable that
most distinguished beaded and alluvial streams in the training dataset
was landeover, with lowlands (*f) and inland seazs ("o") associated with
beaded streame, and glaciers, land and inland lakes associated with al-
luvial streams. Within the lowland and inland szea category, beaded
streams were further distimguished by continuous permafrost coverage
an.dcatﬂhmcntswﬂhan:as}ZEkmz,nrifpumaﬁmtmdimumimmus,

Actual

Correct| Missed | Extra| Accuracy
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— o Legend
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semicontinuous, or isolated, in catchments with areas =69 km?.
4.2 Object detection accuracy and findings

In tramming YOLOwS on our manually identified beaded stream ob-
jects, we found accuracies ranging between 76.2% and 99.2%, with a
mean accuracy of 54.9% across our ten samples, indicating some
sensitivity to the traming sample. The training model mean average
precision (mAFP) 12 0.716, while the precision (commission error) is
0.805, and the recall value (omission error) is 0.737. To put the mAP
value in context, mAP values range from O to 1, with 1 representing a
perfect detection. Representative YOLOvS mAP values for classification
on the Microsoft COCO (Common Objects in Context; Lin =t al., 20714}

B

0.50

|
small alluvial stream

Beaded Confidence

)]

wetland

Fig. 4. Object detection training and validation Panel A displays four zample PlanetSeope image chips in near infrared falze colour composite. The yellow boxes
mark labeled bounding boxes, manually digitized for training, and the cyan dashed boxes represent the predicted bounding boxes from the YOLO algorithm. Depicted
valoez are the probability that each box accurately encompasses a beaded stream. Panel B shows results from the training, validation, and testing sets. Predicted
boxes are claszified as “correct”™ if they overlap with a labeled box (top left image on the left), and “extra” if they do not (top left image on the right). If no predicted
box owerlaps with a labeled bounding box, then it iz marked az “mizsed”. *0.17 represents values from all predicted boxes with a beaded confidence =0.1 {10%);
likewize, “0.25" representz all predicted boxes with a confidence valoe =>25%. Panel C shows the comulative denszity function (CDF) of beaded smeam confidence
values from the testing, training, and validation datazets. Three example ‘extra’ bounding boxes showing misclaszified non-beaded stream features are displayed
below in Panel D, denoted by turquoize boxes that do not owerlap with beaded stream boxez, shown in yellow. (For interpretation of the references to colour in thiz

figure legend, the reader iz referred to the web wersion of this article.)



M.E Harlen et ol

benchmark dataszet ranged between 0.457 and 0.727 at a 0.5 confidence
threshold (Jocher =t al., 2021]). Thus, our mAP value of 0.716 iz at the
higher end of training results from the COCD dataset, implying adequate
performance.

Fig. 4 displays results from YOLOvS training on thiz median model
across two confidence score thresheoldes, 0.1 and 0.25, which include all
those thresholds. As the threshold shifts from 0.1 to 0.25, the percentage
of omission (missed) and commission (extra) errors change accordingly,
with omission increasing and commission decreasing. Unlike the
catchment level classification, both errors propagate into the overall
mapping of beaded streams, but the confidence scores help us better
egtimate the rate of commission and omission In terms of the
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distribution of the confidence scores, approximately half of all predicted
beaded reach bounding boxes have confidence scores between 0.1 and
0.35 + 0.05 depending on the dataset, as shown in the cumulative
density function plot in Fig. 4.

Az the rate of omission is low using the 0.1 confidenee threshold (0%,
3.4%, and 1% omission for traming, vahdation, and testing, respec-
tively), we rely on thiz value for the remaining images in the prediction
get. Our commission errors at the 0.1 confidence threshold are higher
(10.2%, 12.3%, and 15.1%), indicating that we could expect approxi-
mately 10-15% of our predicted boxes to misclassify a non-beaded ob-
ject az a beaded stream, or in our case exactly 18 ‘extra’ boxes in our
testing dataset. Of these 18 ‘commission” boxes, with examples shown in
Fig. 4 Panel D, misclassified non-beaded features include small alluvial

Arp et al., 2015

Confidence
0.1-0.2
02-04
04-06
06-048

10.8-0.93

Fig. 5. Beaded reach predictionz. Pamel A
dizplayz a map of the pan-Arctic domain
with the Arp et al (2015) beaded stream
locations shown in yellow, along with the
bounding boxes of predicted streams color-
ized by the confidence value, ranging from
0.1 to 0.93. Panelz B-D show three beaded
stream locations identified by both the Arp
et al. (2015) smudy (manually outlined in
yvellow) and thiz study, shown in predicted
bounding boxes. Panels E-G display beaded
streams newly identified in thiz stody, while
Panels H-J zhow misclassified streams.
Panelz B-J are all underlain by Google zat-
ellite imagery (22022 landsat/ Copemicus,
Maxar Technologies, Map data ©2022 Goo-
gle), which helps to capture some of the
variety in appearance of beaded and high
latitude zmall streams. (For interpretation of
the references to colour in thiz figure legend,
the reader iz referred to the web verzion of
thiz article.)
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streams with widths <5 m (7 boxes), larger alluvial streams (width = 10
m; 4 boxes), and wetland and floodplain areas (7 boxes). No lakes,
ponds, or roads, were mizclaszsified as beaded streams, justifying our
single class approach.

From the remaining YOLOwS predictions, aggregated to a total
mumber of catchments, we can set informed bounds on the mumber of
global beaded stream catchments, which iz our 160,866 catchments
+32,500 for probable commisesion error — 54,900 for probable omission
error for a total of 138,500 + 43,700 catchments Thiz estimate of
138,500 + 43,700 beaded catchments 1= hkely an oversstimation, but
we infer that the true number iz nevertheless orders of magnitude
greater than the Arp et al. (2015) imtial estimate, who estimated 1900
beaded stream networks. These beaded networks may overlap several
catchments, but likely on the order of 0.5-10 catchments per stream
network, not 30-100 as would be needed here if only 1900 beaded
networks existed. By design, commizsion is a greater source of error than
omission because of our cholces of thresholds and desire to locate all
beaded streams, henee our likely oversstimation. Fiz. 5 below displays
results from the object detection, a visual comparison between the Arp
et al. (2015) streame and detection from this study, as well as some
examples of correctly and incorrectly identified beaded streams.

The beaded catchments we identified are pomanly in continuous
permafrost (70.5% ), but eeveral beaded streams were identified in semi-
continuous (5.5%), discontinuous 8.5%), and izolated permafrost
(4.4%) catchments. In terme of land type, less than expected were found
in lowlande (42.1%). This result iz both a factor of the mitial tree clas-
sification, which identified 57.9% as lowland, and the beaded reach
object deteetion, which predicted beaded reaches in 74% of lowlands.
Fiz. & below contextualizes our catchment findings in regard to slope,
stream order, permafrost coverage, and continental coverage compared
with the Arp =t al (2015) study.

Error in our estimation of beaded stream locations aneses from three
main sources: 1) the catchment level classification, 2) image availability
and 3) the beaded stream object detection. The majority of this error
sion errors of 17.36% and 22 2% respectively, whereas the image

Remote Senving of Emironment 255 (2023) 115578

avallability contributes an approximate 10%. For the YOLO object
detection errors, for omizsion we find values of 1% and for commission
we find 15.25%. From all three error sources combined, we expect an
omission error of 20.2%, and a commission error of 34.1%.

5. Discussion

We present the firet global map of Arctic beaded streams by
combining a supervised classification and a recent advancement in ob-
ject detection algorithms with high-resolution satellite data. From our
findings, we estimate that beaded streams are more common than pre-
vipusly thought, occupying 138,500 + 43,700 catchments globally.
Further, we find that an estimated 30% of beaded streams reside outside
of the continuous permafrost zone, confirming findinge from Tarbeeva
and Surkov (20]3) who noted the presence of beaded streams outside of
continuous permafrost. The range of catchment zlopes and upstream
areas 1z much larger than previously thought, as iz catchment size,
previously identified within the Arp et al. (2015) study.

From our CART analyeis, we learned that the atiributes most closely
attributed with the beaded and alluvial training data in erder of
importance are land type, permafrost coverage, and catchment area.

Encouragingly, our classification findinge trained on the Arp =t al
(2015) study generally mateh findings from other beaded stream hiter-
ature, which note the high presence of beaded streams in continuous
permafrost regions in lowlands and low-slope regions, and find that
beaded streams tend to arise from larger catchments with drainage areas
=1 km? compared to alluvial lillelope channels (Arp =t al | 201 2; Far-
guharson et al, 2016). In arcas outside of lowlands or inland seas,
beaded streams are again distinguished by a larger catchment area, as
well as continuous permafrost, catchment river widthe <22 m, slopes
<0.0064 m/m, and upstream areas < 37 km®, and if not, catchment areas
=43 lm?.

These findings are not representative of all beaded streams, and
several of the beaded stream catchments found in the Arp =t al (2015)
study used in this training set were not identified from our regression

| A Flg. 6. Comparizon of catchment propertiez. The
- table in Panel A displays the number of catchments,
Category| Total Slope |Stream |Cont. Morth | Asia (%) | Europe lope (m/m), 5t jer (1-6) of cateh.
catchments [(m/m) |Order |Permafrost|America (%) t= in . froat . (%), and
Arp et 0.00333 133+ and Europe respectively. Results are presented for the
| “;(:15 375, 1,900 + -y 87.1 a1- 5o <1 Arp et al. (2015) study and this srudy. The catchment
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trees (15 out of 210 catchments in the training set, and 25 out of 169 in
the test set). Further, these categorizations may also be biased towards
the set of beaded streams the Arp et al. (2015) study identified. To avoid
some of this bias, several attributes or variables of the catchments were
purposefully not included, including latitude, longitude, continent,
distance to known beaded streams, or other variables that may have
geospatially biased the end results. However, while this regression tree
does not likely encompass all beaded stream catchments, it significantly
helped to narrow the scope of pan-Arctic regions, and the choices within
the regression tree are largely confirmed by trends from literature.
Despite the credibility of these findings, the catchment level classifica-
tion remains the largest source of error throughout this workflow,
revealing that detecting beaded streams through catchment properties
has its limitations.

On the other hand, detecting beaded streams through the YOLO al-
gorithm provided relatively accurate results, when combined with
multiple thresholds, although the accuracy of results was sensitive to the
training data. In general, this approach was largely suitable to the task of
identifying beaded reaches throughout the pan-Arctic, with fast training
and prediction times of around 0.02 s per chipped image using 1 GPU
with 40 cores and 60 GB of memory. When comparing catchments
identified from the YOLOVS5 algorithm with the catchments identified in
the Arp et al. (2015) study, we find that catchments identified here have
higher slope and stream order than the catchments identified in the Arp
et al. (2015) study, and lower permafrost coverage and catchment area.
The initial estimates of the distribution of beaded streams throughout
North America, Russia (Asia) and Europe within the Arp et al. (2015)
study are for the most part similar to our estimates here, and similar to
the regional distribution of all catchments, but with slightly more bea-
ded catchments identified in Europe than North America, as visualized
in the Panel B of Fig. 6. Possibly the largest difference is within the
percentage of beaded streams within continuous permafrost regions
shown in Fig. 6 Panel C, indicating that our work implies a larger per-
centage of streams outside of continuous permafrost.

Although our computer vision work was both quick and efficient,
there were some challenges associated with applying computer vision to
the task at hand of identifying beaded streams. One limitation in
particular was having to rely on boxes to outline the training data, as
they encapsulated mostly land surrounding the beaded streams, and it
was difficult to follow the morphology of the stream reaches with just a
box. Further, the output of bounding boxes made it challenging to
translate our findings into a succinct value of beaded streams, or beaded
stream networks, hence we conducted most of our analysis at the beaded
catchment level. At this catchment level, our ability to quantify beaded
stream characteristics is thus limited to passing on catchment-wide
characteristics such as land cover and permafrost cover from other
data sources, and the strength of our analysis is limited by the as-
sumptions between the relationship of MERIT Hydro-observable rivers
and small beaded streams, and the uniformity of catchment land and
permafrost cover.

To more accurately characterize and delineate beaded streams, we
could have relied on a more traditional geomorphology approach of
detecting streams from digital elevation model stream burning that may
detect stream networks easier, but at the cost of computation time and
potentially accuracy as well (Lu et al., 2020). Instead of object detection,
another approach within computer vision is image segmentation, which
would classify individual pixels within an image as beaded or non-
beaded, enabling a closer look at properties such as the area and
shape of beaded streams. Given the relative width of beaded streams
(~6 m) compared to the pixel size of a PlanetScope image (3 m) sub-
pixel classification would be needed to accurately map beaded
streams. In this case, we chose the faster, more efficient method of object
detection, with output of bounding boxes rather than pixel-level clas-
sification, but note that continued work, possibly with higher-resolution
imagery, could explore these methods as well. Further access to GPU
clusters and the continued translation of computational efficiency from
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computer science to the sciences is also needed to make some of this
work feasible.

In general, the suite of methods relied on within this study (classi-
fication, object detection, confidence thresholds, what denotes a beaded
stream in training) is sensitive. Throughout this method, we made many
informed choices regarding the selection of classification training data,
permafrost and landcover variables, PlanetScope image thresholds, and
computer vision algorithms, and each of these choices impacted and
likely introduced errors to our outcome. Ultimately, our choice was to
err on the side of commission, and thus we based our decisions on
attempting to include as many beaded streams in our final output as
possible. A potential downside of allowing higher commission error is
reducing the computational efficiency of YOLO, but the reduction of
speed was not an impediment to our goals, as the intent of this study was
not near real-time detection, and we rely on GPU processing.

Other limitations of this study include the limitations on the number
of high-resolution Planet images we were able to access, process, and
download. If obtaining and downloading high resolution imagery
everywhere throughout the pan-Arctic was possible, we could have
relied solely on the computer vision method, instead of first classifying
catchments via a CART classifier, which we introduced to limit the total
area we downloaded imagery for. We were also limited by the amount of
beaded stream training data we had access to, as identifying streams
beyond the Arp et al. (2015) set was difficult, hence the need for auto-
mation in this study. Future studies and mapping of beaded streams
could hopefully iterate from the data and locations we have provided
here, to further improve our error metrics.

Other potential future directions for this work include increasing the
number of classes used in the training data, for both the catchment level
classification and/or the beaded object detection work. For example, we
could have classified catchments as beaded, alluvial, and lake, or clas-
sified bounding boxes as containing beaded streams, alluvial streams, or
wetlands to try and decrease our commission error. Although our likely
commission is high at 34.1% with the 0.1 confidence threshold, a silver
lining of this commission error is that we have also identified likely
water features and rivers throughout the pan-Arctic domain that are also
unmapped, even if they might not be technically beaded, as most of our
misclassified predicted boxes in the testing set were other, relatively
small Arctic streams. Using this methodology with a wider set of training
data may be helpful for detecting and mapping various types of small
Arctic streams and headwater streams beyond beaded streams.

Although our uncertainties are large, they vastly improve upon our
current understanding of the locations of beaded streams, and by
combining varying confidence thresholds, we can better understand the
effects of our commission and omission errors on the total prediction.
Further, these results demonstrate the potential of applying computer
vision to high-resolution satellite imagery to map and identify surface
water on a global scale at high spatial resolution.

6. Conclusion

Beaded streams are a common feature of permafrost-ridden land-
scapes, but to date they are not globally studied or extensively mapped.
By relying on recent advances in computer vision and high-resolution
satellite imagery, we predict the location of beaded streams with an
estimated 20.2% omission rate, resulting in the first global mapping of
beaded streams in the region. We characterize differences between
beaded and non-beaded streams and confirm that a large majority of
beaded streams are in continuous permafrost in lowland regions, but
that more than previously thought are in discontinuous permafrost re-
gions. In total we estimate that beaded streams can be found within one
third of all pan-Arctic catchments (138,500 out of 417,189). Addition-
ally, we provide further evidence towards the high prevalence of beaded
streams within Russia and demonstrate the potential of computer vision
for addressing gaps in hydrologic understanding of small Arctic rivers.
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