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ABSTRACT  

Arctic beaded streams provide unique ecosystem functions and serve as important tundra habitats. Their unique 

‘beads-on-a-string’ morphology is thought to form from thermokarst erosion, and they are densely represented in 

permafrost-ridden  landscapes.  Despite  their  ubiquity  in  high  latitude  regions,  beaded  stream  formation  and 

occurrence is not well studied, and beaded streams are not globally mapped. Access to these streams is chal-

lenging in their remote, dynamic environment, and up until recently, monitoring these streams through satellite 

imagery was dificult given their relatively small size with channel widths of a few meters. The availability of 

high-resolution imagery from Planet data now makes it possible to detect and map these streams over large areas. 

Here we observe and predict the location of beaded stream catchments throughout the pan-Arctic domain by 

combining the location of known beaded streams with recent advances in computer vision and high-resolution 

(3 m) satellite imagery. Speciically, we use the location of known existing beaded streams to classify potential 

river catchments as beaded or non-beaded, then download high resolution imagery across those regions, and use 

the  latest  You-Only-Look-Once  (YOLO)  object  detection  algorithm  to  identify  beaded  streams  throughout  the 

pan-Arctic, estimating 138,500 ±43,700 beaded catchments globally, occurring in an estimated one third of all 

pan-Arctic catchments. In the largest dataset of beaded streams to date (Arp et al., 2015), only 375 catchments 

that contain beaded streams were identiied, thus our estimate signiicantly expands our current understanding 

of the location and prevalence of Arctic beaded streams.   

1. Introduction 

Beaded streams are a common yet understudied thermokarst land-

form in permafrost ridden landscapes (Arp et al., 2015). These streams 

are characterized by their unique morphology of deep low-energy pools 

followed  by  high-energy  chutes  which  appear  as  ‘beads-on-a-string’ 

(Oswood et al., 1989). Beaded streams are important sources of fresh-

water storage and serve as ecological habitats for species such as Arctic 

grayling (Heim et al., 2016; McFarland et al., 2018). Beaded streams are 

classiied as a type of tundra stream (Craig and McCart, 1975) which 

typically low from the foothills across the coastal plain in catchments 

composed of thin layers of peat underlain by permafrost (Hobbie and 

Kling, 2014). The pools, or beads, are often circular or elliptical, rela-

tively deep (up to 2 m) and wide (1–35 square meters), and form from 

thermokarst  erosion at  the intersection of ice wedge polygons (Ṕeẃe, 

1966). The connecting chutes typically follow ice wedges, and thus tend 

to be shallower and narrower with straight, steep sides (Hopkins and 

Karlstrom, 1955). 

Several ield studies within the North Slope of Alaska have further 

characterized  beaded  stream  water  chemistry,  temperature  proiles, 

hyporheic  exchange,  as  well  as  discharge  and  electrical  conductivity 

proiles. From these studies we have learned that these streams may be 

sensitive to increased inputs of nutrients from road dust and fertilization 

of roadsides (Benstead et al., 2005), but seem to be resilient to increases 

in  dissolved  organic  carbon  (Larouche  et  al.,  2015).  Their  unique 

morphology and  thermal stratiication allows them to react  slowly to 

seasonal  solar  input  and  maintain  thaw  thicknesses  longer  (Brosten 

et al., 2006), and this thermal stratiication also effects transient storage 
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of solutes, which in turn effects hyporheic exchange (arnetske et al., 

2007, 2008). The water chemistry of these streams and their interaction 

with  the  subsurface  and  nearby  lakes  and  broader  streams  can  have 

broad implications for watershed nutrients (Wollheim et al., 2001). 

Although  these  ield  studies  provide  important  insights  into  the 

physical  and  biogeochemical  makeup  and  processes  of  these  streams, 

these indings came from a relatively small number of sample streams, 

and thus results may not be generalizable across all beaded streams. For 

example, a study conducted in a Russian province found the existence of 

beaded channels in the permafrost zone to be unstable (Tarbeeva and 

Surkov, 2013), which contrasts to relatively stable beaded channels in 

Alaska  (Arp  et  al.,  2015).  Additionally, Tarbeeva  and  Surkov  (2013) 

found beaded streams outside of the continuous permafrost region that 

were formed from other factors such as anthropogenic changes to low 

regimes, unevenness of geologic structures, and ongoing karst processes. 

These divergent indings motivate the need to continue studying beaded 

streams across more representative regions of the Arctic. 

In  2015,  Arp  et  al.  conducted  an  expansive  survey  of  beaded net-

works  from  high  resolution  aerial  imagery,  identifying  445  beaded 

networks north of 66latitude. However, the lack of availability of high- 

resolution  snow  free  imagery  signiicantly  reduced  the  number  of 

identiiable channels in Siberia and Canada. Their estimates suggest that 

there are over 1900 individual beaded networks throughout the world, 

with an approximate 13 in northern Canada, 18 in Alaska, and 69 

in northern Russia (Arp et al., 2015). Mapping the approximately 1500 

(1900  estimated  total – 445  identiied)  additional  beaded  networks 

estimated by Arp et al. (2015) may help us better understand the for-

mation, morphology, and occurrence of beaded streams. More accurate 

beaded stream maps may also help to better contextualize and broaden 

the impact of previous ield studies that have shown the important role 

of beaded streams in Arctic ecology, hydrology, and biogeochemistry. 

Assessing these streams on a global scale poses some challenges, as to 

date, they are not globally mapped. Beaded streams tend to be too small 

for global hydrography networks such as MERIT Hydro (Yamazaki et al., 

2019)  or  HydroSHEDS  (Lehner  et  al.,  2008),  while  higher  resolution 

stream networks such as the National Elevation Dataset (U.S. Geological 

Survey)  or  the  Sentinel-ArcticDEM  merged  river  network  SARN  (Lu 

et al., 2020) are not globally available. Because of their small size, with 

an average bead pool width of 6 m from ield surveys (Arp et al., 2015), 

beaded  streams  are  also  hard  to  detect  and  identify  from  publicly 

available satellite imagery, as the resolution of 30 m with Landsat or 10 

m with Sentinel-2 makes it dificult to resolve streams with widths 10 

m. The generally unknown location and logistical impossibility of a pan- 

Arctic ield survey necessitates remote sensing, and yet these traditional 

sensors are ill-suited to the task. 

Recent advances in the private remote sensing sector are promising, 

such as the PlanetScope optical satellite image dataset, which has 3 m, 4- 

band  imagery  with  approximately  daily  near-global  coverage.  This 

extensive  spatial  and  temporal  coverage  results  in  enough  available 

imagery that eventually within the summer months these satellites can 

capture  cloud-free,  snow-free  imagery  throughout  the  pan-Arctic 

domain.  Planet  imagery  has  successfully  been  used  to  map  surface 

water in high latitude and mountainous regions, from large rivers (Feng 

et al., 2019; Kaab et al., 2019; Strick et al., 2019) to wetlands (Cooley 

et al., 2017a) and lakes (Cooley et al., 2019; Lezine et al., 2021; ayyum 

et al., 2020). Here we made use of the dense spatiotemporal resolution 

and  availability  of  PlanetScope  imagery  to  map  and  locate  beaded 

streams globally to better understand their occurrence and formation. 

To  map  beaded  streams  we  1)  identiied  river  catchments  that 

potentially contain beaded streams from literature thresholds and global 

hydrography  datasets,  2)  downloaded  tens  of  thousands  of  high- 

resolution  PlanetScope  satellite  images  within  those  catchments,  and 

3)  employed  a  state-of-the-art  computer  vision  algorithm  to  detect 

beaded stream reaches within each image. We therefore provide the irst 

global  assessment  of  these  common  high  latitude  streams.  The 

remainder  of  this  paper  is  organized  as  follows:  irst,  we  provide  an 

overview of the data sources and methods, including the classiication 

scheme, and beaded stream detection through the YOLO-v5 computer 

vision algorithm (Jocher et al., 2021). Next, we present the results of 

both  the  catchment  classiication,  beaded  stream  detection  training, 

validation,  and  testing,  and  the  global  properties  of  beaded  stream 

occurrence and catchments. Finally, we provide a comparison to pre-

vious studies including the Arp et al. (2015) survey, and discuss limi-

tations  of  this  approach,  as  well  as  future  directions  for  both  object 

detection of beaded streams and geospatial surveys more broadly. 

2. Data 

Data  acquired  for  this  study  consists  of  3  m,  4-band  PlanetScope 

imagery (Planet Team, 2021), a global hydrography dataset from MERIT 

Hydro (Yamazaki et al., 2019), a circum-Arctic permafrost and ground 

ice map from the National Snow and Ice Data Center (NSIDC; Hegin-

bottom et al., 2002), and an a priori map of known beaded stream lo-

cations (Arp et al., 2015). Fig. 1 displays the locations of the 445 beaded 

streams mapped by Arp et al. (2015) underlain by the NSIDC permafrost 

coverage  map,  as  well  as  a  diagram  of  a  beaded  and  alluvial  stream 

adapted from Trochim et al. (2016), and an example beaded stream at 

varying resolutions in false-colour imagery. By design, Arp et al. (2015) 

narrowed their study to high latitudes, thus a high percentage of their 

streams are in continuous permafrost coverage. The conceptual diagram 

in Fig.  1 captures  deining  differences  between  beaded  and  alluvial 

streams, namely the presence of the characteristic pool-chute structure, 

underlying permafrost, and comparatively low slope regions. 

To map river catchments that may contain beaded streams, we relied 

on global MERIT Hydro datasets. MERIT Hydro is based on the high- 

resolution  (3  arc-second,  90  m)  high-accuracy  MERIT  (Multi-Error- 

Removed Improved-Terrain) DEM (Yamazaki et al., 2017) and several 

inland water maps. The data contain low direction, low accumulation, 

elevation,  and  river  channel  width.  Here  we  relied  on  a  new  vector- 

based  version  of  MERIT  Hydro  (Lin  et  al.,  2021)  that  delineates 

MERIT  Hydro  into  lowlines,  watersheds,  and  basins  using  TauDEM 

software. Within this dataset, basin boundaries are redeined using the 

updated  MERIT  DEM  resolution,  then  split  with  Pfafstetter  coding  to 

individual watersheds with a median global size of 461 km2, approxi-

mately similar to HydroBASINS level-08 classiication (Lehner and Grill, 

2013). 

As shown in Fig. 1, Panel D, the MERIT Hydro river network in its 

vectorized form does not reliably extend to streams as small as beaded 

streams, with a 1 km2 threshold for the river network. However, MERIT 

Hydro  watersheds,  referred  to  as  catchments  here,  cover  continuous 

areas that invariably contain beaded streams, and have relevant attri-

butes associated with each catchment, including catchment area (km2), 

slope  (m/m),  upstream  drainage  area  (km2),  and  channel  width  (m) 

from the Global River Width from Landsat (GRWL; Allen and Pavelsky, 

2018) database. Within each catchment, channel width is represented as 

the average width of rivers wide enough to be observed by Landsat (30 

m) within the catchment, thus does not include beaded channels. For 

Arctic  rivers,  MERIT-Hydro  derived  lowlines  are  considerably  more 

accurate than HydroSHEDS (Lin et al., 2021), and thus this catchment 

delineation was chosen here for both its accuracy and available attri-

butes.  Since  we  scan  images  of  each  entire  CART-selected  MERIT 

catchment  with  YOLOv5  to  detect  streams  therein,  if  we  used  more 

reined catchments (e.g., Lu et al., 2020) we would generate different 

catchment properties and have searched less images, but we would still 

have likely found the same beaded streams without needing additional 

geoprocessing required from SARN. 

In addition to the catchment-level data, base maps such as the NSIDC 

Circum-Arctic  Map  of  Permafrost  and  Ground  Ice  Conditions  provide 

permafrost  extent  and  ground  ice  content  information.  Permafrost  is 

deined as ground that remains at or below 0 C for at least two years, 

and  permafrost  extent  is  categorized  into  continuous  (90–100 

coverage),  discontinuous  (50–90),  sporadic  (10–50),  and  isolated 
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patches (0–10%). Land type is broadly categorized as either f: “lowlands, 

highlands,  and  intra-and  intermontane  depressions  characterized  by 

thick overburden cover (>5-10m)” or r: “mountains, highlands ridges, 

and  plateaus  characterized  by  thin  overburden  cover  (>5-10m)  and 

exposed  bedrock”,  and  has  additional  categories  for  glaciers,  relict 

permafrost,  inland  lakes,  ocean/inland  seas,  and  land  (Heginbottom 

et al., 2002). Although permafrost coverage has changed since 2002 (e. 

g. Biskaborn et al., 2019), given the Arp et al. (2015) indings of beaded 

stream stability over decades in time, beaded stream occurrence likely 

has not changed dramatically in the past two decades. 

Together,  the Arp  et  al.  (2015) stream  locations,  MERIT  Hydro 

catchments, and  permafrost base  maps form the training data for the 

catchment level classiication. These three datasets are spatially joined 

to overlay permafrost coverage on the catchments, and to ind which 

catchments contain one or more beaded streams as identiied in the Arp 

et al. (2015) paper. 

Fig.  1.Known  beaded  streams.  Shown  in 

yellow  points  are  the  locations  of  beaded 

streams  found  in  the Arp  et  al.  (2015) sur-

vey, used here for training purposes, under-

lain by the NSIDC permafrost coverage map. 

Permafrost  is  categorized  as  C:  continuous, 

D:  discontinuous,  I:  isolated,  and  S:  semi-

continuous. Panel B displays a photograph of 

beaded  streams,  and  Panel  C  shows  a  con-

ceptual  diagram  of  beaded  and  alluvial 

streams adapted from (Trochim et al., 2016), 

highlighting  the  characteristic  pool  chute 

structure of beaded streams. Panel D shows a 

representative MERIT Hydro catchment and 

network  delineation  in  blue,  as  well  as  the 

location  of  a  beaded  stream  within  the 

catchment. Panels E and F display closeups 

of  the  beaded  stream  shown  in  Panel  D, 

underlain by PlanetScope imagery (Panel E), 

and aerial imagery (Panel F). Panels D and E 

display false-colour satellite imagery (Land-

sat  and  PlanetScope  respectively),  while 

Panel F displays true-colour imagery (Maxar 

Technologies,  Map  data  @2022  Google). 

(For  interpretation  of  the  references  to 

colour  in  this  igure  legend,  the  reader  is 

referred to the web version of this article.)   
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3. Methods 

It is infeasible to manually scan every square kilometer of the Arctic 

with high resolution imagery to look for beaded streams. Fortunately, 

we can rely on previous literature to help narrow the range of where 

beaded streams could form. Arp et al. (2015) found that most beaded 

streams transition to alluvial channels with increasing drainage area and 

decreasing  channel  slope.  In  an  earlier  study  which  focused  on  three 

watersheds in Alaska, it was discovered that most beaded streams were 

in  areas  with  marine  silt  deposits  and  that  61%  of  beaded  streams 

initiated from lakes and 29% were from drained thermokarst lake basins 

(DTLB),  with  only  a  few  initiating  from  hillslopes  (Arp  et  al.,  2012). 

Within  the  continuous  permafrost  zone  in  Alaska, Farquharson  et  al. 

(2016) conirmed  these  results,  inding  that  beaded  streams  are  less 

common in areas of aeolian sand and favor high ground ice content and 

greater  topographic  relief.  Within  the  northeastern  part  of  Yakutia, 

Tarbeeva  and  Surkov  (2013) provided  additional  hydrologic  bounds, 

inding  that  beaded  streams  occur  in  rivers  with  catchment  areas 

ranging  from  3  to  10  km2,  gradients  of  up  to  2  m/km,  and  with 

maximum low rates of 0.5–1 m3/s. These indings limit likely areas with 

beaded streams to regions with moderate to high permafrost coverage, 

in silty, relatively low-slope regions with high concentrations of lakes or 

drained lakes. 

We applied these criteria to the MERIT Hydro catchments to identify 

potential regions that may contain beaded streams. To do so, we used a 

supervised  classiication  approach  to  turn  our  a  priori  knowledge  of 

beaded streams into a potential catchment identiier, shown in the left 

panel of Fig. 2, and described in further detail below. Our catchment 

classiication enabled us to narrow the range of where beaded streams 

could  be  found.  From  this  narrowed  range  of  possible  beaded  catch-

ments,  we  then  downloaded  PlanetScope  imagery  to  detect  beaded 

stream reaches (Fig. 2 right panel). 

A traditional geomorphology approach to detecting beaded streams 

might  consist  of  generating  a  water  mask  from  the  images  and 

combining  that  water  mask  with  a  digital  elevation  model  (DEM)  to 

determine stream locations within the catchment, for example following 

methods from Lu et al., 2020 and Lu et al., 2021. From there, beaded 

streams could be differentiated from non-beaded (alluvial) streams by 

their size, width proile, slope, and/or drainage area, following methods 

such as RivWidthCloud (Yang et al., 2020), RivaMap (Isikdogan et al., 

Fig. 2.Methodology outline. On the left panel, the beaded catchment classiication is outlined, while on the right the beaded reach object detection worklow is 

outlined. Input to the classiication involves the beaded streams found in the previous Arp et al. (2015) study, alongside permafrost and catchment data. The classiier 

is irst trained on known beaded and non-beaded catchments, then applied globally to the remaining catchments to predict a binary beaded/non-beaded decision 

tree. An example of a typical alluvial and beaded stream is shown in the center of the panel; both are often found in near proximity to each other, thus a “beaded” 

catchment does not preclude alluvial streams within. On the right panel, the beaded reach detection worklow includes iltering imagery to the catchments and image 

quality ilters, then proceeding with image processing, chipping, and labeling of the training data. Like the catchment classiication, the object detection algorithm 

(YOLOv5) is trained on known beaded imagery that were manually digitized, and then applied globally to detect beaded stream reaches. 
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2017), and TauDEM (Tarboton, 1997). However, a challenge with this 

approach  is  generating  an  accurate  water  mask,  along  with  the 

computational time associated with generating the river network across 

thousands of catchments. Beaded streams, unlike larger rivers and lakes, 

tend to have a different spectral signal, and can be dificult to mask with 

common  indexes  such  as  the  modiied  normalized  difference  water 

index.  Although  thresholding  can  help  solve  this  issue  (Cooley  et  al., 

2017b; Lu et al., 2021; Yang et al., 2014), it is still possible that some 

beaded streams might be confused for vegetation or small unconnected 

ponds. 

Instead of detecting beaded streams from a pixel-based method such 

as index thresholding, an alternative approach is through object detec-

tion, a computer vision technique. Unlike a classiication algorithm and 

object-based image analysis, object detection is a technology that de-

tects instances of semantic objects, such as detecting loating objects in 

rivers (Kale and Chaczko, 2015), identifying invasive ish species (Zhang 

et al., 2016), or in this case mapping beaded stream reaches. Given the 

task  at hand of detecting beaded streams  globally, this approach was 

promising in that it avoided having to distinguish irst water masks and 

river  networks,  and  from  there  beaded  networks  within  an  entire 

catchment full of hydrologically diverse features, and focused instead on 

solely detecting beaded streams, providing an end-to-end methodology. 

Combined, our catchment classiication and beaded reach detection 

using computer vision enabled us to eficiently map beaded stream lo-

cations throughout the pan-Arctic. Below we provide further details on 

our classiication methods, object detection algorithm, and metrics for 

evaluating these methods. 

3.1. Catchment identiication methods 

To  identify  beaded  catchments,  we  classiied  all  MERIT  Hydro 

catchments  within  the  pan-Arctic  domain  as  either  beaded  or  non- 

beaded using the rpart R package which implements classiication and 

regression trees (CART) following Breiman et al. (2017). Variables used 

in the classiication include catchment properties (area, upstream area, 

slope,  and  river  width)  as  well  as  permafrost  properties  from  NSIDC 

(land  type,  permafrost  extent).  To  train  the  classiier,  we  identiied 

MERIT Hydro catchments that overlapped with Arp et al. (2015) beaded 

stream locations (375 in total), and randomly selected an additional 462 

MERIT catchments, which were then manually classiied as either bea-

ded or non-beaded from visual inspection of Google Satellite imagery 

(©2022  Landsat/  Copernicus,  Maxar  Technologies,  Map  data ©2022 

Google). Arp et al. (2015) identiied beaded streams through a nested 

survey approach, scanning cloud-free, ice-free imagery in Google Earth, 

as  well  as  aerial  transects  in  the  North  Slope  of  Alaska,  and  high- 

resolution photography in the Fish Creek watershed in Alaska. Each of 

the Arp et al. (2015) stream locations were manually inspected using 

Google Satellite imagery to conirm the presence of a current beaded 

stream.  From  the  combined  837  classiied  catchments,  we  randomly 

split approximately half of the data into training (433 catchments) and 

validation (404 catchments). Of these 837 catchments, 379 were bea-

ded, 375  identiied from Arp  et al.  (2015) locations, and  4 identiied 

from  manual  inspection  of  the  462  catchments  that  were  randomly 

selected (the remaining 458 were classiied as non-beaded). From here, 

we trained the CART decision tree classiier to predict differences be-

tween beaded and non-beaded catchments across the pan-Arctic from 

our 433 training catchments, with the goal of reducing the total area of 

high-resolution imagery needed for object detection. We validated this 

approach on the 404 validation catchments. 

There are two main processes in building the regression tree for the 

CART model. First, the single variable which best separates beaded and 

non-beaded streams is chosen, and the data is then recursively separated 

into subgroups, until the subgroups reach a minimum size, or no further 

improvement is made. The second process uses cross-validation to trim 

back the tree, reducing the complexity. Each split is based on the Gini 

impurity  index  (Breiman  et  al.,  1984),  which  is  calculated  as  the 

probability  of  mislabeling  an  element  (or  catchment  in  this  case) 

assuming that element is randomly labeled from the distribution of all 

classes in the set (in this case beaded and non-beaded). 

This  approach  also  provides  conidence  values  for  the  degree  to 

which  catchments  have  been  classiied  as  beaded  or  non-beaded, 

allowing  us  the  lexibility  to  further  narrow  or  expand  the  range  of 

possible beaded streams. For this analysis, a standard binary classiica-

tion threshold of 0.50 for the conidence value was used to discriminate 

beaded from non-beaded catchments, where all conidence values >0.50 

indicate a CART-classiied beaded stream. Thus, all catchments classi-

ied as beaded were included. Following the CART model training (re-

sults described below), we classiied all pan-Arctic catchments as either 

possibly  beaded  (98,147  catchments)  or  non-beaded  (318,205  catch-

ments), approximately reducing the total area fourfold. 

3.2. Image processing methods 

We  identiied  71,831  PlanetScope  images  from  May–August  2021 

that covered these possibly beaded catchments after iltering for cloud 

coverage,  snow  coverage,  visibility,  clearness,  and  the  type  of  instru-

ment, quality, ground, and asset ilter. Each of these ilters are deined in 

PlanetScope  metadata  (Planet  Team,  2022).  During  these  summer 

months, ice break-up in the river channels generally occurs by mid-June, 

generating peak lows, and stream temperatures typically start declining 

mid-August (Heim et al., 2016). These iltered images cover 90% of the 

potential  catchments  (88,250  out  of  98,147),  and  there  was  no 

discernible spatial pattern to the catchments where beaded imagery of 

suficient quality was not available, thus this omission is spatially non- 

biased.  Data  were  limited  to  summer  2021  to  take  advantage  of  the 

latest Planet sensors and limit the quantity of this commercial product 

needed. 

To  identify  beaded  reaches  within  these  images,  we  used  object 

detection methods. Object detection methods can be broadly split into 

neural network approaches that rely on deep learning, and non-neural 

approaches.  Deep  neural  networks  constitute  some  of  the  latest  ad-

vancements in the ield and tend to perform better than traditional, non- 

neural  algorithms  (Erhan  et  al.,  2014; Zhao  et  al.,  2019). Zhao  et  al. 

(2019) classify generic object detection (locating and classifying objects 

in bounding boxes) into two main subcategories: regional and regres-

sion/classiication. The regional method irst generates regions to clas-

sify, then classiies each region into different categories, and includes 

popular  methods  such  as  R-CNN  (Girshick  et  al.,  2014),  Fast  R-CNN 

(Girshick, 2015), Faster R-CNN (Ren et al., 2015), and Mask R-CNN (He 

et  al.,  2017).  The  regression/classiication  approach  adopts  a  uniied 

framework to both categorize and locate objects at once, allowing for 

real-time  detection,  and  include  algorithms  such  as  MultiBox  (Erhan 

et  al.,  2014),  SSD  (Liu  et  al.,  2016),  and  YOLO  (Jocher  et  al.,  2021; 

Redmon  et  al., 2016; Redmon and  Farhadi,  2016,  2018; Wang et  al., 

2021). 

YOLO (Jocher et al., 2021), or You-Only-Look-Once, uses an artiicial 

neural network to predict the probability that the object it is trained to 

ind (e.g., beaded streams) is within a bounding box that exactly bounds 

the feature. Thus, YOLO does not yield polygons or rasters of beaded 

stream  outlines  as  in  traditional  object-oriented  classiications,  but 

instead gives a probability conidence that there is exactly one beaded 

stream reach within each YOLO bounding box. These boxes encompass 

the entirety of the detected feature, and therefore there is a 1:1 mapping 

of  the  number  of  bounding  boxes  to  the  number  of  beaded  stream 

reaches. 

YOLO makes its predictions after “looking once” at each image using 

non-max suppression, a technique to select the best bounding box out of 

potential  overlapping bounding  boxes  to avoid  objects  detected  more 

than  once  (Redmon  and  Farhadi,  2016).  YOLO’s  conidence  score  is 

computed as the product of conditional class probability (in this case the 

probability that the box contains a beaded stream) and the box coni-

dence  score  (or  the  accuracy  of  the  area  and  location  of  the  box). 
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Because  the  algorithm “only  looks  once” it  can  be  optimized  faster 

compared with other object detection algorithms, with similar or higher 

accuracy  rates  (Srivastava  et  al.,  2021; Tan  et  al.,  2022).  We  chose 

YOLOv5 (ocher et al., 2021), one of the latest versions of YOLO, for this 

study based on these published results. 

Our  goal  in  this  study  is  to  detect  the  beaded  streams  within  the 

catchments  classiied  as  possibly  beaded  in Section  3.1.  Each  Planet-

Scope image within the 88,250 catchments (71,831 images- some im-

ages covered multiple catchments) was cropped to the catchment ile, 

equalized  to  ensure  the  image  was  visible  with  suficient  contrast  by 

standardizing the histogram, converted to 8-bit imagery, and chipped 

to smaller 512 512 pixel images. This resulted in a total of 2,188,531 

individual  chips  for  classiication.  This  chipping  produces  standard 

images that run quickly with computer vision and is essentially inverse 

mosaicking. 

PlanetScope images containing a known beaded stream derived from 

the Arp  et  al.  (2015) study  were  manually  inspected  through  the 

LabelMe  Annotation  tool  (Wada,  2022)  to  conirm  the  presence  of 

beaded  streams  within  the  training  chips,  yielding  1093  image  chips 

with a beaded stream (Fig. 3). For each chip, we labeled (other common 

terms for this process include digitally identiied and digitized) bea-

ded streams by drawing a unique box for each beaded reach. Here we 

deine a beaded reach as a section of a beaded stream where the beaded 

pattern and width were consistent. For example, if both a tributary and a 

larger  connecting  stream  were  beaded,  one  bounding  box  would 

encompass  each  branch  for  a  total  of  two  boxes.  Any  streams  that 

exhibited a pool-chute structure that appeared to be low order streams 

were included. Each of the annotated images from LabelMe were then 

cross-checked and converted to the YOLO format through the Robolow 

Annotation Tool (https//robolow.com/). 

These labeled boxes associated with individual PlanetScope image 

chips represent the training objects for YOLO. For this study, we used a 

single-class classiication, only training on beaded streams, instead of 

creating multiple training classes of other features also present in Arctic 

catchments (e.g., alluvial streams, ponds, lakes, roads). This simpliied 

the generation of manually digitized datasets and reduced the compu-

tational cost required for training and classiication within the YOLOv5 

algorithm,  likely  at the  slight  cost  of commission  error accuracy,  dis-

cussed further in results and discussion. 

Following image preprocessing, we then trained the YOLOv5 algo-

rithm  (ocher  et  al.,  2021)  with  the  1093  training  chips.  Hyper-

parameters needed to train the algorithm include the size of the training 

set (batch size) and number of times the model will work through the 

training set (epochs). To train YOLOv5, we relied on a standard batch 

size of 12, with 300 epochs, although the algorithm stopped improving 

after only 147 epochs. Training the model was relatively fast (approxi-

mately 1 h in total) with 1 graphics processing unit (P). P pro-

cessing  is  necessary  for  this  study,  and  therefore  access  to  Ps  is  a 

prerequisite for this work as CP processing YOLOv5 on 71,831 images 

would be computationally extensive. 

Within  YOLOv5  training,  the  algorithm uses  the  manually labeled 

bounding  boxes  of  known  beaded  streams  to  reine  the  prediction  of 

beaded stream reaches for each trained image chip. Therefore, we do not 

input  beaded  stream  objects  or  outlines  into  the  training-  we  use  a 

manually drawn bounding box around each beaded stream. To test the 

risk  of  overitting,  we  divided  the  training  chips  using  a  70/20/10 

training/testing/validation split and compared results from 10 random 

samples of this split. From the 10 training samples, the training model 

Fig.  3.Beaded  catchment  classiication  results.  On 

top,  the  tree  diagram  shows  the  splits  created  from 

the training  data (half  of the  dataset of  beaded and 

non-beaded  catchments).  ariables  are  shown  in 

boxes and ordered from most important (top) to least 

important (bottom). The values or attributes of each 

split are shown in bold, e.g. for the irst split, data is 

categorized as either land type g, l, ld, or r, or as 

f or o. The legend  explains each of  the land  type 

(Land)  and  permafrost  extent  (Perm.Ext)  acronyms. 

Slope  is in  units of m/m,  width in m,  and area  and 

upstream  area  (p.Area)  in  km2.  The  number  of 

stream  catchments  correlated  with  each  split  are 

shown circled in numbers and are denoted as either 

beaded (green) or alluvial/non-beaded (pink). Shown 

in  the  bottom  are  the  confusion  matrices  for  the 

training  (left)  and  validation  (right)  datasets,  along 

with the overall accuracy. (For interpretation of the 

references to colour in this igure legend, the reader is 

referred to the web version of this article.)   
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with the median accuracy was chosen for the beaded reach detection so 

as not to overstate the results. 

After training Lv5, we applied the computer vision model to the 

71,831 PlanetScope images, chipped into >2 million discrete images, to 

identify  beaded  reaches,  summarizing  them  into  a  total  number  of 

beaded stream catchments. e deine a beaded stream catchment as a 

catchment that likely contains one or more beaded streams as identiied 

from  both  our  catchment  classiication  AND  computer  vision  object 

detection. ur analysis is focused on beaded catchments, as opposed to 

beaded stream reaches or bounding boxes, in order to be able to compare 

with pan-Arctic beaded catchments and the river networks identiied in 

the Arp et al. (2015) study. 

e  estimate  the  total  beaded  catchment  count  from  both  the 

catchment classiication and beaded reach detection from Lv5. To 

arrive at this count, we irst compiled all the beaded catchments iden-

tiied from the classiication and predicted beaded reach boxes within 

those  catchments.  If  a  catchment  contained  a  beaded  stream  with  a 

Lv5  conidence  score  of  0.1  we  identify  it  a  possibly  beaded 

catchment.  From  there,  we  account  for  commission  and  omission 

through  the  testing  and  training  results,  described  in  greater  detail 

below. 

3.3. Training metrics 

To validate both our CART regression training and L, we rely 

mainly rely on omission and commission errors, as well as an overall 

accuracy metric, deined below for CART:  

omissionCART
Non beaded catchmentpred beaded

Beaded catchmentvalid
(2)  

commissionCART
Beaded catchmentpred non beaded

Beaded catchmentpred
(3) 

For the CART analysis, accuracy refers to the proportion of correctly 

categorized beaded and non-beaded catchments over the total number 

of predicted catchments. e deine our omission error as the proportion 

of  beaded  catchments  misclassiied  as  non-beaded  out  of  the  total 

number of beaded catchments, while our commission error is the pro-

portion  of  non-beaded  catchments  misclassiied  as  beaded  out  of  the 

total number of all catchments classiied as beaded. 

accuracy L

Beaded boxpred beaded

Beaded boxvalid Beaded boxpred non beaded
() 

Accuracy  for  L  refers  to  the  number  of  correctly  identiied 

beaded reaches divided by the sum of total beaded reaches in the vali-

dation set and misclassiied non-beaded reaches. A beaded stream was 

deemed to be “correctly identiied” so long as a portion of the predicted 

and  actual  bounding  box  overlapped.  Traditional  object  detection 

typically calculates error and accuracy in terms of the area of overlap, 

but in this case any overlap was considered a positive outcome, since our 

goal  is  to  map  the  locations  of  beaded  streams,  and  not  necessarily 

outline them with a high degree of precision. 

This  accuracy  metric  helps  simplify  our  commission  and  omission 

errors into one value, but often a suite of error metrics and accuracies are 

used in computer vision work (Padilla et al., 2020), which we compute 

here: 

recallL

Beaded boxpred beaded

Beaded boxvalid
(5)  

precision L

Beaded boxpred beaded

Beaded boxpred
(6) 

Recall and precision are identical to our omission and commission 

error formulas, with the exception that now we are referring to beaded 

boxes encompassing beaded reaches, not catchments. From these met-

rics,  we  can  also  compute  the  average  precision  (mAP),  or  the  mean 

precision over a range of recall values for a conidence threshold of 0.5. 

For our inal estimate of beaded catchments, we combine the omission 

and  commission  errors  from  both  the  catchment  classiication,  image 

download, and object detection:  

commission 1

(
Beaded Catchmentpredbeaded

Beaded Catchmentpred

Beaded boxpredbeaded

Beaded boxpred

)

(8)  

where 
Beaded Catchmentpred beaded

Beaded Catchmentvalid 
represents the fraction of correctly identi-

ied  beaded catchments divided  by the  true number of  beaded catch-

ments  (or  bounding  boxes  in  the  second  half  of  E. 7).  In  E. 8,  the 

formula is identical, except the denominator now represents the total 

number  of  predicted  catchments  or  bounding  boxes,  including  those 

incorrectly identiied, and here we do not factor in the error from the 

image availability. Together, these errors represent the percentage of all 

beaded streams that were likely to be missed from the analysis, and the 

percentage of alluvial or non-beaded streams or regions misclassiied as 

a beaded stream from the combination of both the catchment classii-

cation and object detection. 

. Results 

.1. Catchment classiication accuracy and indings 

e  tested  our  CART  classiier  on  our  set  of  testing  catchments, 

inding an accuracy of 83.66%, with 1.80% omission error and 22.16% 

commission  error  (Fig.  3).  Here  we  are  primarily  concerned  with 

omission, as we are identifying potential locations for further computer 

vision  work  to  assess  whether  or  not  a  beaded  stream  exists  with  a 

catchment. Commission error is therefore acceptable provided it does 

accuracyCART
Beaded catchmentpred beaded Non beaded catchmentpred non beaded

Beaded catchmentpred Non beaded catchmentpred
(1)   

omission
catchments with imagery

total catchments
1

(
Beaded Catchmentpred beaded

Beaded Catchmentvalid

Beaded boxpred beaded

Beaded boxvalid

) 

(7)   
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not produce too large a global surface, but omission error will propagate 

into our inal analysis. Therefore, we begin our process with up to 15% 

underestimation of catchments containing beaded streams based on our 

omission accuracy. Applying this classiier on our global data identiied 

98,147  catchments,  or  roughly  of  all  pan-Arctic  catchments,  as 

“possibly beaded.” 

As shown in Fig. 3, our classiication showed that the variable that 

most distinguished beaded and alluvial streams in the training dataset 

was landcover, with lowlands (f’) and inland seas (o’) associated with 

beaded streams, and glaciers, land and inland lakes associated with al-

luvial  streams.  Within  the  lowland  and  inland  sea  category,  beaded 

streams were further distinguished by continuous permafrost coverage 

and catchments with areas >26 km2, or if permafrost was discontinuous, 

semicontinuous, or isolated, in catchments with areas >69 km2. 

4.2. Object detection accuracy and indings 

In training YOLOv5 on our manually identiied beaded stream ob-

jects, we found accuracies ranging between 76.2% and 99.2%, with a 

mean  accuracy  of  84.9%  across  our  ten  samples,  indicating  some 

sensitivity  to  the  training  sample.  The  training  model  mean  average 

precision  (mAP)  is  0.716,  while  the  precision  (commission  error)  is 

0.805, and the recall value (omission error) is 0.737. To put the mAP 

value in context, mAP values range from 0 to 1, with 1 representing a 

perfect detection. Representative YOLOv5 mAP values for classiication 

on the Microsoft COCO (Common Objects in Context; Lin et al., 2014) 

Fig. 4.Object detection training and validation. Panel A displays four sample PlanetScope image chips in near infrared false colour composite. The yellow boxes 

mark labeled bounding boxes, manually digitized for training, and the cyan dashed boxes represent the predicted bounding boxes from the YOLO algorithm. Depicted 

values are the probability that each box accurately encompasses a beaded stream. Panel B shows results from the training, validation, and testing sets. Predicted 

boxes are classiied as “correct” if they overlap with a labeled box (top left image on the left), and “extra” if they do not (top left image on the right). If no predicted 

box overlaps with a labeled bounding box, then it is marked as “missed”. “0.1” represents values from all predicted boxes with a beaded conidence >0.1 (10%); 

likewise, “0.25” represents all predicted boxes with a conidence value >25%. Panel C shows the cumulative density function (CDF) of beaded stream conidence 

values from the testing, training, and validation datasets. Three example extra’ bounding boxes showing misclassiied non-beaded stream features are displayed 

below in Panel D, denoted by turquoise boxes that do not overlap with beaded stream boxes, shown in yellow. (For interpretation of the references to colour in this 

igure legend, the reader is referred to the web version of this article.) 
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benchmark dataset ranged between 0.457 and 0.727 at a 0.5 conidence 

threshold (Jocher et al., 2021). Thus, our mAP value of 0.716 is at the 

higher end of training results from the COCO dataset, implying adequate 

performance. 

Fig. 4 displays results from YOLOv5 training on this median model 

across two conidence score thresholds, 0.1 and 0.25, which include all 

predicted bounding boxes with overall conidence scores greater than 

those thresholds. As the threshold shifts from 0.1 to 0.25, the percentage 

of omission (missed) and commission (extra) errors change accordingly, 

with  omission  increasing  and  commission  decreasing.  Unlike  the 

catchment  level  classiication,  both  errors  propagate  into  the  overall 

mapping  of  beaded  streams,  but  the  conidence  scores  help  us  better 

estimate  the  rate  of  commission  and  omission.  In  terms  of  the 

distribution of the conidence scores, approximately half of all predicted 

beaded reach bounding boxes have conidence scores between 0.1 and 

0.35 ±0.05  depending  on  the  dataset,  as  shown  in  the  cumulative 

density function plot in Fig. 4. 

As the rate of omission is low using the 0.1 conidence threshold (0%, 

3.4%,  and  1%  omission  for  training,  validation,  and  testing,  respec-

tively), we rely on this value for the remaining images in the prediction 

set. Our commission errors at the 0.1 conidence threshold are higher 

(10.2%, 12.3%, and 15.1%), indicating that we could expect approxi-

mately 10–15% of our predicted boxes to misclassify a non-beaded ob-

ject as a beaded stream, or in our case exactly 18 ‘extra’ boxes in our 

testing dataset. Of these 18 ‘commission’ boxes, with examples shown in 

Fig. 4 Panel D, misclassiied non-beaded features include small alluvial 

Fig.  5.Beaded  reach  predictions.  Panel  A 

displays  a  map  of  the  pan-Arctic  domain 

with  the Arp  et  al.  (2015) beaded  stream 

locations  shown  in  yellow,  along  with  the 

bounding  boxes  of  predicted  streams  color-

ized  by  the  conidence  value, ranging  from 

0.1  to  0.93.  Panels  B-D  show  three  beaded 

stream locations identiied by both the Arp 

et  al.  (2015) study  (manually  outlined  in 

yellow)  and  this  study,  shown  in  predicted 

bounding boxes. Panels E-G display beaded 

streams newly identiied in this study, while 

Panels  H-J  show  misclassiied  streams. 

Panels  B-J  are  all  underlain  by  Google  sat-

ellite imagery (©2022 Landsat/ Copernicus, 

Maxar Technologies, Map data ©2022 Goo-

gle),  which  helps  to  capture  some  of  the 

variety  in  appearance  of  beaded  and  high 

latitude small streams. (For interpretation of 

the references to colour in this igure legend, 

the reader is referred to the web version of 

this article.)   
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streams with widths <5 m (7 boxes), larger alluvial streams (width >10 

m;  4  boxes),  and  wetland  and  loodplain  areas  (7  boxes).  No  lakes, 

ponds,  or  roads,  were  misclassiied  as  beaded  streams,  justifying  our 

single class approach. 

From  the  remaining  YOLOv5  predictions,  aggregated  to  a  total 

number of catchments, we can set informed bounds on the number of 

global  beaded  stream  catchments,  which  is  our  160,866  catchments 

+32,500 for probable commission error – 54,900 for probable omission 

error  for  a  total  of  138,500 ±43,700  catchments.  This  estimate  of 

138,500 ±43,700 beaded catchments is likely an overestimation, but 

we  infer  that  the  true  number  is  nevertheless  orders  of  magnitude 

greater than the Arp et al. (2015) initial estimate, who estimated 1900 

beaded stream networks. These beaded networks may overlap several 

catchments,  but  likely  on  the  order  of  0.5–10  catchments  per  stream 

network,  not  50–100  as  would  be  needed  here  if  only  1900  beaded 

networks existed. By design, commission is a greater source of error than 

omission because of our choices of thresholds and desire to locate all 

beaded streams, hence our likely overestimation. Fig. 5 below displays 

results from the object detection, a visual comparison between the Arp 

et  al.  (2015) streams  and  detection  from  this  study,  as  well  as  some 

examples of correctly and incorrectly identiied beaded streams. 

The  beaded  catchments  we  identiied  are  primarily  in  continuous 

permafrost (70.5%), but several beaded streams were identiied in semi- 

continuous  (5.5%),  discontinuous  8.5%),  and  isolated  permafrost 

(4.4%) catchments. In terms of land type, less than expected were found 

in lowlands (42.1%). This result is both a factor of the initial tree clas-

siication,  which  identiied  57.9%  as  lowland,  and  the  beaded  reach 

object detection, which predicted beaded reaches in 74% of lowlands. 

Fig. 6 below contextualizes our catchment indings in regard to slope, 

stream order, permafrost coverage, and continental coverage compared 

with the Arp et al. (2015) study. 

Error in our estimation of beaded stream locations arises from three 

main sources: 1) the catchment level classiication, 2) image availability 

and 3) the beaded stream object detection. The majority of this error 

comes from catchment level classiication, with omission and commis-

sion  errors  of  17.36%  and  22.2%  respectively,  whereas  the  image 

availability  contributes  an  approximate  10%.  For  the  YOLO  object 

detection errors, for omission we ind values of 1% and for commission 

we ind 15.25%. From all three error sources combined, we expect an 

omission error of 20.2%, and a commission error of 34.1%. 

5. Discussion 

We  present  the  irst  global  map  of  Arctic  beaded  streams  by 

combining a supervised classiication and a recent advancement in ob-

ject detection algorithms with high-resolution satellite data. From our 

indings, we estimate that beaded streams are more common than pre-

viously  thought,  occupying  138,500 ±43,700  catchments  globally. 

Further, we ind that an estimated 30% of beaded streams reside outside 

of the continuous permafrost zone, conirming indings from Tarbeeva 

and Surkov (2013) who noted the presence of beaded streams outside of 

continuous  permafrost.  The  range  of  catchment  slopes  and  upstream 

areas  is  much  larger  than  previously  thought,  as  is  catchment  size, 

implying  more  heterogeneity  within  beaded  stream  distribution  than 

previously identiied within the Arp et al. (2015) study. 

From our CART analysis, we learned that the attributes most closely 

attributed  with  the  beaded  and  alluvial  training  data  in  order  of 

importance are land type, permafrost coverage, and catchment area. 

Encouragingly, our classiication indings trained on the Arp et al. 

(2015) study generally match indings from other beaded stream liter-

ature, which  note the  high presence of beaded streams in continuous 

permafrost  regions  in  lowlands  and  low-slope  regions,  and  ind  that 

beaded streams tend to arise from larger catchments with drainage areas 

>1 km2 compared to alluvial hillslope channels (Arp et al., 2012; Far-

quharson  et  al.,  2016).  In  areas  outside  of  lowlands  or  inland  seas, 

beaded streams are again distinguished by a larger catchment area, as 

well as continuous permafrost, catchment river widths <22 m, slopes 

<0.0064 m/m, and upstream areas <37 km2, and if not, catchment areas 

>43 km2. 

These  indings  are  not  representative  of  all  beaded  streams,  and 

several of the beaded stream catchments found in the Arp et al. (2015) 

study used in this training set were not identiied from our regression 

Fig.  6.Comparison  of  catchment  properties.  The 

table in Panel A displays the number of catchments, 

slope  (m/m),  stream  order  (1–6),  percent  of  catch-

ments  in  continuous  permafrost  regions  (%),  and 

percent  of  catchments  within  North  America,  Asia, 

and Europe respectively. Results are presented for the 

Arp et al. (2015) study and this study. The catchment 

distributions (slope and stream order) are signiied by 

the  mean ±the  standard  deviation.  Panel  B  shows 

the distribution of each study in terms of the number 

of catchments in each continent, and Panel C shows 

the  distribution  of  permafrost  and  landcover  scaled 

across each study. *For the Arp et al. (2015) row, we 

include the number of catchments that one or more 

identiied  streams  (375),  with  the  number  of  esti-

mated  stream  networks  (1900)  and  include  their 

estimated  values  for  the  percentage  of  beaded 

streams across geographic regions.   
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trees (15 out of 210 catchments in the training set, and 25 out of 169 in 
the test set). Further, these categorizations may also be biased towards 
the set of beaded streams the Arp et al. (2015) study identified. To avoid 
some of this bias, several attributes or variables of the catchments were 
purposefully not included, including latitude, longitude, continent, 
distance to known beaded streams, or other variables that may have 
geospatially biased the end results. However, while this regression tree 
does not likely encompass all beaded stream catchments, it significantly 
helped to narrow the scope of pan-Arctic regions, and the choices within 
the regression tree are largely confirmed by trends from literature. 
Despite the credibility of these findings, the catchment level classifica-
tion remains the largest source of error throughout this workflow, 
revealing that detecting beaded streams through catchment properties 
has its limitations. 

On the other hand, detecting beaded streams through the YOLO al-
gorithm provided relatively accurate results, when combined with 
multiple thresholds, although the accuracy of results was sensitive to the 
training data. In general, this approach was largely suitable to the task of 
identifying beaded reaches throughout the pan-Arctic, with fast training 
and prediction times of around 0.02 s per chipped image using 1 GPU 
with 40 cores and 60 GB of memory. When comparing catchments 
identified from the YOLOv5 algorithm with the catchments identified in 
the Arp et al. (2015) study, we find that catchments identified here have 
higher slope and stream order than the catchments identified in the Arp 
et al. (2015) study, and lower permafrost coverage and catchment area. 
The initial estimates of the distribution of beaded streams throughout 
North America, Russia (Asia) and Europe within the Arp et al. (2015) 
study are for the most part similar to our estimates here, and similar to 
the regional distribution of all catchments, but with slightly more bea-
ded catchments identified in Europe than North America, as visualized 
in the Panel B of Fig. 6. Possibly the largest difference is within the 
percentage of beaded streams within continuous permafrost regions 
shown in Fig. 6 Panel C, indicating that our work implies a larger per-
centage of streams outside of continuous permafrost. 

Although our computer vision work was both quick and efficient, 
there were some challenges associated with applying computer vision to 
the task at hand of identifying beaded streams. One limitation in 
particular was having to rely on boxes to outline the training data, as 
they encapsulated mostly land surrounding the beaded streams, and it 
was difficult to follow the morphology of the stream reaches with just a 
box. Further, the output of bounding boxes made it challenging to 
translate our findings into a succinct value of beaded streams, or beaded 
stream networks, hence we conducted most of our analysis at the beaded 
catchment level. At this catchment level, our ability to quantify beaded 
stream characteristics is thus limited to passing on catchment-wide 
characteristics such as land cover and permafrost cover from other 
data sources, and the strength of our analysis is limited by the as-
sumptions between the relationship of MERIT Hydro-observable rivers 
and small beaded streams, and the uniformity of catchment land and 
permafrost cover. 

To more accurately characterize and delineate beaded streams, we 
could have relied on a more traditional geomorphology approach of 
detecting streams from digital elevation model stream burning that may 
detect stream networks easier, but at the cost of computation time and 
potentially accuracy as well (Lu et al., 2020). Instead of object detection, 
another approach within computer vision is image segmentation, which 
would classify individual pixels within an image as beaded or non- 
beaded, enabling a closer look at properties such as the area and 
shape of beaded streams. Given the relative width of beaded streams 
(~6 m) compared to the pixel size of a PlanetScope image (3 m) sub- 
pixel classification would be needed to accurately map beaded 
streams. In this case, we chose the faster, more efficient method of object 
detection, with output of bounding boxes rather than pixel-level clas-
sification, but note that continued work, possibly with higher-resolution 
imagery, could explore these methods as well. Further access to GPU 
clusters and the continued translation of computational efficiency from 

computer science to the sciences is also needed to make some of this 
work feasible. 

In general, the suite of methods relied on within this study (classi-
fication, object detection, confidence thresholds, what denotes a beaded 
stream in training) is sensitive. Throughout this method, we made many 
informed choices regarding the selection of classification training data, 
permafrost and landcover variables, PlanetScope image thresholds, and 
computer vision algorithms, and each of these choices impacted and 
likely introduced errors to our outcome. Ultimately, our choice was to 
err on the side of commission, and thus we based our decisions on 
attempting to include as many beaded streams in our final output as 
possible. A potential downside of allowing higher commission error is 
reducing the computational efficiency of YOLO, but the reduction of 
speed was not an impediment to our goals, as the intent of this study was 
not near real-time detection, and we rely on GPU processing. 

Other limitations of this study include the limitations on the number 
of high-resolution Planet images we were able to access, process, and 
download. If obtaining and downloading high resolution imagery 
everywhere throughout the pan-Arctic was possible, we could have 
relied solely on the computer vision method, instead of first classifying 
catchments via a CART classifier, which we introduced to limit the total 
area we downloaded imagery for. We were also limited by the amount of 
beaded stream training data we had access to, as identifying streams 
beyond the Arp et al. (2015) set was difficult, hence the need for auto-
mation in this study. Future studies and mapping of beaded streams 
could hopefully iterate from the data and locations we have provided 
here, to further improve our error metrics. 

Other potential future directions for this work include increasing the 
number of classes used in the training data, for both the catchment level 
classification and/or the beaded object detection work. For example, we 
could have classified catchments as beaded, alluvial, and lake, or clas-
sified bounding boxes as containing beaded streams, alluvial streams, or 
wetlands to try and decrease our commission error. Although our likely 
commission is high at 34.1% with the 0.1 confidence threshold, a silver 
lining of this commission error is that we have also identified likely 
water features and rivers throughout the pan-Arctic domain that are also 
unmapped, even if they might not be technically beaded, as most of our 
misclassified predicted boxes in the testing set were other, relatively 
small Arctic streams. Using this methodology with a wider set of training 
data may be helpful for detecting and mapping various types of small 
Arctic streams and headwater streams beyond beaded streams. 

Although our uncertainties are large, they vastly improve upon our 
current understanding of the locations of beaded streams, and by 
combining varying confidence thresholds, we can better understand the 
effects of our commission and omission errors on the total prediction. 
Further, these results demonstrate the potential of applying computer 
vision to high-resolution satellite imagery to map and identify surface 
water on a global scale at high spatial resolution. 

6. Conclusion 

Beaded streams are a common feature of permafrost-ridden land-
scapes, but to date they are not globally studied or extensively mapped. 
By relying on recent advances in computer vision and high-resolution 
satellite imagery, we predict the location of beaded streams with an 
estimated 20.2% omission rate, resulting in the first global mapping of 
beaded streams in the region. We characterize differences between 
beaded and non-beaded streams and confirm that a large majority of 
beaded streams are in continuous permafrost in lowland regions, but 
that more than previously thought are in discontinuous permafrost re-
gions. In total we estimate that beaded streams can be found within one 
third of all pan-Arctic catchments (138,500 out of 417,189). Addition-
ally, we provide further evidence towards the high prevalence of beaded 
streams within Russia and demonstrate the potential of computer vision 
for addressing gaps in hydrologic understanding of small Arctic rivers. 
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