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Abstract 
Objective: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality. 
Although lots of effort has been made in identifying clinical risk factors for SUDEP in the literature, there are 
few validated methods to predict individual SUDEP risk. Prolonged post-ictal EEG suppression (PGES) is a 
potential SUDEP biomarker, but its occurrence is infrequent and requires epilepsy monitoring unit admission.  
We use machine learning methods to examine SUDEP risk using interictal EEG and ECG recordings from 
SUDEP cases and matched living epilepsy controls. 
 
Methods. This multicenter, retrospective, cohort study examined interictal EEG and ECG recordings from 30 
SUDEP cases and 58 age-matched living epilepsy patient controls. We trained machine learning models with 
interictal EEG and ECG features to predict the retrospective SUDEP risk for each patient. We assessed ross-
validated classification accuracy and AUC (area under receiver operating characteristic curve).  
 
Results: The logistic regression (LR) classifier produced the overall best performance, outperforming the 
support vector machine (SVM), random forest (RF), and convolutional neural network (CNN). Among the 30 
SUDEP patients (14 female; mean age [SD], 31 [8.47] years) and 58 living epilepsy controls (26 female [43%]; 
mean age [SD] 31 [8.5] years), the LR model achieved a median AUC of 0.77 (interquartile range [IQR], 0.73-
0.80) in 5-fold cross-validation using interictal alpha and low gamma power ratio of the EEG and heart rate 
variability (HRV) features extracted from the ECG. The LR model achieved a mean AUC of 0.79 in leave-one-
center-out prediction.  
 
Conclusions: Our results support that machine learning-driven models may quantify SUDEP risk for epilepsy 
patients, future refinements in our model may help predict individualized SUDEP risk and help clinicians 
correlate predictive scores with the clinical data. Low-cost and noninvasive interictal biomarkers of SUDEP 
risk may help clinicians identify high-risk patients and initiate preventive strategies. 
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INTRODUCTION  
 
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related mortality (>3,000 
deaths/year in the US), and the second leading neurological cause of lost patient life-years 1-4. SUDEP usually 
occurs during sleep and death are unwitnessed 5,6. Treatment-resistant patients have the highest SUDEP risk. 
There are currently no validated biomarkers to predict individual SUDEP risk. Risk reduction strategies include 
convulsive seizure control and nocturnal monitoring 3,7,8. Generalized tonic-clonic seizure (GTCS) frequency 
and nocturnal convulsions are leading SUDEP risk factors 9-12. Supervision during sleep may reduce SUDEP 
risk. Prolonged post-ictal EEG suppression (PGES) is a potential SUDEP biomarker 13-16 but requires epilepsy 
monitoring unit admission.  The cost and potential risk limit PGES, which is available in <5% of epilepsy 
patients 4. Further, non-seizure SUDEP cases can occur,17 supporting, the need for interictal biomarkers of 
SUDEP risk. 
 
Resting-state functional magnetic resonance imaging (fMRI)18,19 may detect activity in brainstem 
cardiopulmonary centers and their cortical connections. Altered resting-state functional connectivity between 
cortical-subcortical brain regions is implicated in SUDEP20. Large-scale functional brain networks may alter 
neuronal dynamics, detectable on interictal EEG. Further, heart rate variability (HRV) is a biomarker of 
autonomic dysfunction and potentially SUDEP risk 21-25. We recently demonstrated altered HRV in SUDEP 
cases compared to matched controls 23. Combining both EEG and ECG measures may improve the efficacy 
of prediction models. Critically, interictal EEG and ECG are low cost and widely available. 
 
Machine learning has strong predictive power and promising potentials for applications of medical and 
neurological disorders 26-28, and has been increasingly applied to clinical diagnosis and prognosis. Machine 
learning methods are used for EEG-based seizure detection 29, but infrequently to predict SUDEP risk30-32,33. 
We applied machine learning methods to analyze interictal EEG and ECG recordings to assess individualized 
SUDEP risk. We aimed to identify biomarkers of SUDEP risk and correlate the classification score with clinical 
variables. We conducted data-driven SUDEP classification and survival analyses and verified the machine-
learning models using a retrospective multicenter data cohort.  
 
 
MATERIALS AND METHODS  
 
Study population and cohort 
This multicenter, retrospective, case-control study identified SUDEP cases among patients admitted to eight 
tertiary epilepsy monitoring units (EMUs) of the MS-BioS Study Group, including the Royal Melbourne 
Hospital, Austin Hospital, St. Vincent’s Hospital, Melbourne, Australia; NYU Langone Health, NY Presbyterian 
Hospital/Columbia University, New York; University of Cincinnati, Cincinnati; Yale New Haven Hospital, New 
Haven; and Johns Hopkins Medical Center, Baltimore). Patients who underwent video EEG monitoring (VEM) 
with >21-scalp electrodes using the 10-20 System and lead II of a standard 12-lead ECG.  
  
Each center identified patients aged 6 months to 65 years with ³1 electroclinical seizure recorded over a 2-
11-year consecutive period.25 All patients were followed for ³5 years.  Epilepsy-related deaths were reviewed 
with available records, medical examiner/coronial and autopsy findings to determine cause of death.  We 
included definite and probable SUDEP cases based on current criteria 34.  
  
For each SUDEP case, two living epilepsy controls were matched according to admission age (±4 years), sex, 
EMU admission year (±1 year) from the EMU cohort at each center. Epilepsy controls had documented 
contact in the medical record within six months of screening or were identified as not deceased from national 
death records. 



  
Demographic and clinical data 
For all cases, demographic and clinical data including epilepsy and seizure classification; seizure frequency; 
age of onset; antiseizure medications (ASMs), epilepsy surgery or neuromodulation; other medications; and 
medical history (e.g., cardiovascular and psychiatric disorders) were obtained from medical record review at 
EMU admission. 
  
Recording selection 
EEG sampling rate ranged between 256 and 512 Hz. We identified 10-minute interictal segments from non-
rapid-eye-movement (NREM) sleep and 10-minute segment from wakefulness during VEM for each case, 
typically from the first 24-hours of VEM. For most of the studies, we were limited to review of archived EEG 
which did not include the complete recording and just snippets that were selected for archiving by the clinician. 
Sleep segments were chosen at random that preceded at least 1 hour before or after a non-convulsive seizure 
or 6 hours before or after a convulsive seizure. During wakefulness, EEG was collected when subjects were 
at free of muscle and movement artefact. These artefact-free segments were chosen by a well-trained 
epileptologist or a research scientist, but were done without the knowledge of any hypothesis. We excluded 
the immediate post-ictal period, which was defined as ³6 hours following tonic-clonic seizures (TCS) and ³1 
hour for all other seizure types. EEG and ECG recordings were converted from the proprietary formats to the 
ASCII format using Persyst 13 (Prescott, Arizona, United States). Similarly, 10-min interictal segments of 
stable ECG were selected from both NREM sleep and wakefulness (exactly the same time of EEG recordings) 
for each subject 25. 
 
 
Off-line EEG and ECG feature computation 
For each EEG group signal, we performed band-pass filtering (1-100 Hz), and then computed the relative 
power ratio at six frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), low 
gamma (30-50 Hz), high gamma (50-100 Hz). The spectral power was calculated using fast Fourier transform 
(FFT) with a multi-taper estimator on the entire 10-min recordings. To account for the measurement variability 
between subjects or centers, we used the relative power percentage and power ratio to calibrate. For instance, 
the feature derived from the low gamma band was defined as: 
 

relative_low_gamma_power = /01	34554	60178	(:;<=;	>?)
A804B	A4CB	60178	(D<D;;	>?)

, 

low_gamma_power_ratio =
relative_low_gamma_power	(SLEEP)
relative_low_gamma_power	(WAKE)

 

 
We used the EEG power ratio for the between-subject EEG power calibration purpose. To reduce the feature 
dimensionality and avoid overfitting, we clustered scalp EEG electrode channels into nine groups (Figure 1A 
and Supplementary Methods). In total, we had 6´9=54 (frequency´group) power ratio features for an 
individual subject. To further reduce the number of power ratio features, we ranked these EEG features using 
a linear support vector machine (SVM) classifier (i.e., polynomial kernel with degree 1). The SVM weights 
associated with individual features determined their relative importance 35. We further selected the most 
discriminative features (“alpha_power_ratio” and “low_gamma_power_ratio") among specific channel groups.  
      To analyze ECG recordings, we computed a set of standardized linear (time and frequency-domain) and 
nonlinear ECG features (a total of 24 ECG-HRV features per subject, see Supplementary Methods and Figure 
S1), and then optimized features. For the sake of feature calibration, we again computed each HRV feature’s 
sleep/wake ratio so that the actual feature was dimensionless. While using the EEG and ECG feature ratios, 
we did not impose any statistical independence criterion and resorted on an unbiased feature selection 
procedure. The flowchart of EEG/ECG data analytics is shown in Figure S2. 
 
 



Machine learning methods 
We tested multiple standard machine learning methods, including the logistic regression (LR) classifier, linear 
support vector machine (SVM), and random forest (RF). In all classification methods, the binary label 0/1 
represents the non-SUDEP/SUDEP identity in this retrospective study. To alleviate overfitting, simpler models 
were preferred because of small sample size. 
 
 
Feature selection  
In offline classification task, we considered frequency-specific power ratio features in sleep and wake EEG; 
and sleep ECG-HRV features. For combined EEG and ECG features, we conducted two systematic 
approaches to select features. We trained all features with an LR, SVM and RF classifiers with an L1 norm 
sparsity constraint, and identified relevant features associated with nonzero regression coefficients after 1000 
runs. Next, we retrained the classifier with fewer features without the L1 norm.   
 
          To assess online SUDEP risk, we adopted a sliding window to extract features of the EEG during sleep 
and then applied the standard machine learning classifiers to the data from each moving window. We 
employed a parametric CNN architecture (Figure S3) with one-dimensional convolutional filters to model the 
power, frequency and phase relationships between EEG channels 36. 
 
         It is noted that we did not include any clinical measurement as the predictive features for two reasons. 
First, we would like to provide an unbiased analysis without using the clinical diagnostics; instead, we only 
correlated the predicted risk probability with the clinical variables in the post-hoc analysis. Second, missing 
data of clinical variables were present in many subjects in this study. 
 
Survival analysis 
The clinical variable EMU-to-SUDEP interval (ranged between 0.5 to 10 years) defined the time from EMU 
recording to the SUDEP incident. To characterize the EMU-to-SUDEP risk in the SUDEP group, we used Cox 
proportional hazards model with an imposed an L1 norm sparsity constraint: 𝜆(𝑡|𝑋R) = 𝜆;exp	(𝑋R𝛽), where 𝜆; 
is baseline hazard, 𝑋R are covariates for 𝑖-th subject, and 𝛽 is the regression parameter. The survival analysis 
was aimed to predict the EMU-to-SUDEP interval with both EEG and ECG features. We used the LASSO 
method to select the candidate EEG and ECG features 37. Because of missing data in some SUDEP patients, 
no other clinical variable was used in the survival analysis. The sparsity constraint on 𝛽	improved the survival 
model generalization. The regularization parameter 𝛼	was estimated by a grid search followed by 5-fold cross 
validation. We used the concordance index (range 0-1) as the goodness-of-fit assessment, where 1 implies 
the perfect prediction.  
 
 
Performance evaluation  
The sensitivity, specificity, accuracy and AUC (area under the receiver operating characteristic curve) were 
calculated for all machine learning classifiers. Median AUC and IQR (25% and 75% percentiles) were 
computed using 5-fold cross validation with 1000 random repeats. In leave-one-center-out prediction, we used 
the data from 7 centers to train the model and one center to test the model.  
 
 
Statistical analysis 
Data were analyzed with custom software written in MATLAB and Python. Statistical significance of 
parametric or nonparametric tests used in all analyses was set at P<0.05. Multiple comparisons were 
corrected using Bonferroni correction. To promote rigor and reproducibility, the data analytic software is 
shared online (https://github.com/aaronh314/SUDEP). 
 



 
 
RESULTS  
 
Study population  
Table 1 presents demographic data on the study population (for individual center data, see Table S1) 25. Data 
for cases and controls were collected at EMU admission, except for surgical intervention(s) and Engel 
outcome, collected at last follow-up. The interval between VEEG and SUDEP was 0.5 to 10 years.  
 
We analyzed EEG recordings from 30 SUDEP patients and 58 living epilepsy controls. A subset of 83 subjects 
had 10-min interictal sleep EEG recordings (In one SUDEP case and four controls, interictal EEG recordings 
during sleep were unavailable). Furthermore, 76 subjects (26 SUDEP and 50 controls) from this subset had 
both interictal sleep and wake EEG recordings, and 70 out of these 76 subjects had clean ECG recordings. 
 
 
TABLE 1. Demographic and clinical characteristics of the study population (modified from Ref. 25) 

Characteristic 
SUDEP 
Cases 
(n=30) 

Living Epilepsy 
Controls 
(n=58) 

 P-value 

Age – yr, median [IQR] 34 [24, 40] 34 [25, 40]  1.0 
Male gender, n (%) 16 (53.3%) 29 (50%)  0.176 
Race, n (%) 0.447 

White 25 (83.3%) 43 (74.1%)   
Black/African American 3 (10%) 6 (10.3%)   
Asian 1 (3.3%) 3 (5.2%)   
Other 1 (3.3%) 4 (6.9%)   
Unknown 0 (0%) 2 (3.4%)   

Epilepsy classification, n (%)                                          0.527 
Focal 25 (83.3%) 48 (82.8%)   
Generalized 4 (13.3%) 9 (15.5%)   
Combined focal and generalized 1 (3.3%) 1 (1.7%)   
Unknown 0 (0%) 0 (0%)   

Etiology, n (%) 0.583 
Structural/Metabolic 15 (50%) 24 (41.4%)   
Genetic/Presumed Genetic 3 (10%) 8 (13.8%)   
Unknown 12 (40%) 26 (44.8%)   

Antiseizure medications on admission, n (%) 0.847 
None 0 (0%) 2 (3.4%)   
Monotherapy 4 (13.3%) 11 (19%)   
Polytherapy (≥2) 26 (86.7%) 45 (77.6%)   

Age of onset ‡– yr, median [IQR] 10 [2, 16] 12 [3, 21]  0.571¶ 
Disease duration – yr, median [IQR] 17 [12, 33] 14 [5, 29]  0.083¶ 
EMU to SUDEP time – yr, median [IQR] 2 [4, 6] n/a  n/a 
Lifetime tonic-clonic seizure (TCS) frequency§, n (%)  

None 3 (10%) 15 (25.9%)  0.231* 
≥1, but <6 3 (10%) 15 (25.9%)  0.231* 
≥6, but <50 5 (16.7%) 5 (8.6%)  0.273* 
 ³50 7 (23.3%) 2 (3.4%)  0.016* 
Unknown 12 (40%) 21 (36.2%)  n/a 

Outcome of surgical intervention, n (%)  
Engel I 1 (3.3%) 8 (13.8%)  0.264* 



Engel II 1 (3.3%) 5 (8.6%)  0.624* 
Engel III 3 (10%) 2 (3.4%)  0.566* 
Engel IV 3 (10%) 1 (1.7%)  0.324* 
Unknown 4 (13.3%) 1 (1.7%)  n/a 

Cardiovascular disease, n (%) 
Hypertension 3 (10%) 4 (6.9%)  0.696 
Cardiac arrhythmia  1 (3.3%) 0 (0%)  0.356 
Structural heart disease 3 (10%) 0 (0%)  0.042 
Sleep apnea 0 (0%) 1 (1.7%)  1.0 

Psychiatric comorbidity, n (%) 
Anxiety disorder 0 (0%) 7 (12.1%)  0.047 
Depression 2 (6.7%) 16 (27.6%)  0.015 

Medication for psychiatric disorder, n (%) 
Antipsychotic 3 (10%) 2 (3.4%)  0.343 

Abbreviation: IQR, interquartile range; EMU, epilepsy monitoring unit. 
‡ Age of onset unknown in two (3.4%) epilepsy controls. 
¶ P-value calculated with a two-sample Wilcoxon rank-sum test. 
§ Includes both focal-to-bilateral tonic-clonic seizures (TCS) and generalized tonic-clonic seizures (GTCS). 
* Statistical significance corrected p-value following Holm-Bonferroni adjustment for multiple comparisons. 
 
 
 
 
Feature selection, classification and survival analysis 
We computed three sets of features: (i) EEG frequency-power ratios during sleep and wake states; (ii) ECG-
HRV features, and (iii) sliding window-based sleep EEG features only. For each set, we ranked individual 
features to compare classification utility. From the combined features (i) and (ii), we identified an optimal 
subset and compared cross-validated accuracy (Figure S4). The optimal set of EEG+ECG features varied 
between 2 and 5, and we reported the statistics using 3. We trained classifiers using single or combined 
features separately. For the L1 regularized LR classifier using features (i)+(ii), the significant coefficients 
include alpha power ratio, high gamma power ratio, and HRV lf/hf power ratio (Figure S5).  
       
In off-line classification, the LR and SVM classifiers achieved comparable or non-significantly different results. 
The best 5-fold randomized cross-validated AUC (median 0.77, IQR, 0.73-0.80; 1000 Monte Carlo runs) was 
based on the LR classifier (Figure 2A and Table 2). Combining EEG and ECG features slightly improved 
performance for most classifiers, suggesting features are complementary. The low gamma power ratio was 
significantly higher in the SUDEP patients (especially for EMU-to-SUDEP < 5 years) than controls; most 
significant in temporal lobes (i.e., EEG groups 4-6; Figure 1F). The alpha power ratio was significantly lower 
in SUDEP cases versus controls (Figure 1G). Therefore, low gamma and alpha power ratio from specific 
regions were most discriminative SUDEP risk features. As a comparison, we also trained ML classifiers using 
ECG features alone (n=70, based on the same feature selection procedure). After feature ranking, we 
selected the most discriminative four ECG-HRV features (“lfnu”, “hfnu”, “sd1”, “ratio_sd2_sd1”) for 
classification analysis, and the cross-validated AUC results were as follows: LR median 0.65 (IQR, 0.61-0.69), 
SVM median 0.55 (IQR, 0.47-0.62), and RF median 0.58 (IQR, 0.52-0.65).  
 
 
We performed simulated “on-line” classification based on sleep EEG recordings and found classification 
accuracy degraded compared to off-line classification. We optimized the window size and features (Figure 
S6), and achieved the best 5-fold cross-validated AUC 0.64 from the LR classifier. The CNN achieved a 
median AUC 0.60 (IQR, 0.57-0.64), sensitivity 0.45 (IQR, 0.38-0.52), specificity 0.66 (IQR, 0.59-0.73), and 
accuracy 0.55 (IQR, 0.52-0.57). The simple LR classifier achieved the overall best AUC performance. To test 



the model stability in sleep EEG signal non-stationarity, we trained the LR classifier with the first half of sleep 
EEG and tested the second half; results were comparable, mean cross-validated AUC 0.74 (Figure S7). 
 
 
 
 
 
TABLE 2. Comparison of model performance (median [IQR]) in 5-fold cross-validation   
Feature set  # SUDEP + control Model AUC Sensitivity Specificity Accuracy 

(i)+(ii) 
(i) 
(iii) 

70 = 24 + 46 
76 = 26 + 50 
83 = 29 + 54   

LR 
 

0.77 [0.73,0.80] 
0.75 [0.73,0.78] 
0.64 [0.60,0.67] 

0.63 [0.59,0.67] 
0.64 [0.60,0.70] 
0.73 [0.65,0.79] 

0.69 [0.66,0.72] 
0.68 [0.64,0.72] 
0.39 [0.29,0.49] 

0.65 [0.62,0.69] 
0.66 [0.64,0.69] 
0.55 [0.50,0.59] 

(i)+(ii) 
(i) 
(iii) 

70 = 24 + 46 
76 = 26 + 50 
83 = 29 + 54   

SVM 0.74 [0.70,0.78] 
0.74 [0.68,0.78] 
0.61 [0.53,0.66] 

0.65 [0.57,0.71] 
0.70 [0.59,0.79] 
0.73 [0.59,0.79] 

0.64 [0.58,0.71] 
0.59 [0.53,0.64] 
0.40 [0.29,0.49] 

0.64 [0.60,0.68] 
0.63 [0.58,0.68] 
0.53 [0.50,0.57] 

(i)+(ii) 
(i) 
(iii) 

70 = 24 + 46 
76 = 26 + 50 
83 = 29 + 54   

RF 0.71 [0.66,0.76] 
0.61 [0.57,0.66] 
0.59 [0.54,0.64] 

0.67 [0.62,0.72] 
0.58 [0.54,0.62] 
0.52 [0.45,0.59] 

0.66 [0.59,0.71] 
0.61 [0.54,0.66] 
0.63 [0.58,0.69] 

0.66 [0.62,0.70] 
0.59 [0.55,0.63] 
0.57 [0.53,0.62] 

 (iii) 83 = 29 + 54   CNN 0.60 [0.57,0.64] 0.45 [0.38,0.52] 0.66 [0.59,0.73] 0.55 [0.52,0.57] 
 
 
In the leave-one-center-out prediction setting, only data from seven centers were used to train the model, 
followed by the validation on the held-out data from the remaining one center. In this case, the LR classifier 
had mean AUC of 0.734 (min: 0.5, max: 1.0) and mean accuracy of 0.55 (min: 0.25, max: 0.9) (Table S2). 
Thus, the mean AUC result was comparable with the standard 5-fold cross-validation analysis, suggesting 
moderate generalization at different settings.   
 
In survival analysis within the SUDEP at-risk patients, we obtained the averaged concordance index of 0.687 
from 5-fold cross validation (min: 0.44, max: 0.90) from the regularized Cox proportional hazard model with a 
sparsity constraint. This result was comparable to SUDEP group classification accuracy. The significant 
coefficients include relative alpha power, the mean heart rate (HR) and the low frequency (LF) power of HRV.  
 
 
Interpretation of classification results   
The AUC statistic can assess diagnostic ability with dichotomous outcomes. Our best off-line AUC 
performance was 0.74-0.77, acceptable considering the small sample size 38. Clinically, the sample size is 
crucial to interpret statistical significance 39,40. Among the SUDEP patients, the median prediction score 
showed a negative trend by correlating with the EMU-to-SUDEP time (Figure 2B, Pearson’s correlation r =-
0.38, n=26, p=0.054, SVM; r =-0.36, p=0.07, LR). SUDEP patients with short-latency (EMU-to-SUDEP time 
< 5 years) were more accurately classified than those with long-latency (³5 years). Furthermore, SUDEP 
epilepsy patients with EMU-to-SUDEP time >7 years were misclassified (i.e., treated as false negatives), 
suggesting that they were closer to living epilepsy controls than other patients with relatively lower SUDEP 
risk. Epilepsy controls misclassified by LR had low/high gamma power higher in all channels. Additionally, 
16.7% of the false positive group, had depression, and 6.7% of the true positive group had depression; 33% 
of the true negative group had depression. A third of the false positive group had Developmental Delay/Static 
Encephalopathy, and 40% of the true positive group had Developmental Delay/Static Encephalopathy; 18% 
of true negatives had Developmental Delay/Static Encephalopathy (Table S3).  
 
       The CNN can extract informative spatio-spectral features from multichannel EEG data. As the epileptic 
brain often shows synchronized sleep EEG patterns across brain regions, convolutional filters (2-4 pairs) in 
the CNN aimed to capture the cross-spectral (amplitude and phase) features between EEG electrodes. To 



help visualize these filters, we projected the respective amplitude and phase shift at the same central 
frequency onto the brain topographies of spatial patterns. The spatial patterns of “amplitude map” indicates 
the importance at specific channel, whereas the spatial patterns of “phase shift map” indicates the relative 
phase lagging (Figure 2C and Supplementary Methods). At the low frequency (~12.5 Hz), the peak amplitude 
was grouped around the frontal-temporal lobe electrodes, where the frontal electrodes had a phase lead 
compared to the central/parietal/occipital electrodes. At the gamma frequency (~33.4 Hz), the peak amplitude 
was around the temporal lobe, where the occipital electrodes had a phase lag with respect to other electrodes. 
 
 
DISCUSSION 
Our study demonstrates that machine learning tools using interictal EEG and ECG can help distinguish high-
risk from low-risk SUDEP patients. Our feature selection procedure identified key interictal EEG or ECG-HRV 
features in assessing individual SUDEP risk. The CNN extracted complex nonlinear spatiospectral features 
in sleep EEGs. We plan to refine our model on prospectively ascertained SUDEP and control cohorts. 
Development of SUDEP biomarker-informed preventive strategies will be the subject of future investigation.  
 
Recently, it has been suggested that ictal biomarkers for PGES/SUDEP based on seizure generation and 
termination 41,42. It is possible that the ictal episodes may carry the most predictive power for SUDEP risk 
assessment. However, it remains uncertain if SUDEP risk can be predicted from interictal epileptiform 
discharges (IEDs) in sleep 43,44. We identified robust differences in EEG sleep/wave power ratio features in 
low gamma, high gamma and alpha bands between SUDEP and control patients. The effect was pronounced 
over frontotemporal regions in the scalp EEG recordings, which may correlate with seizure-onset regions; 
however, detailed investigations are still required to unravel their relationship. An intracranial EEG study has 
shown that gamma oscillations precede seizure onset zone IEDs 45; relative high sleep/wake gamma power 
ratio may reflect the more frequent IED activity in the SUDEP group. Cross-frequency coupling (e.g., delta-
gamma phase-amplitude coupling) may improve prediction 46. Future studies by integration of multi-stage and 
multimodal neuroimaging may reveal mechanisms of SUDEP. Furthermore, systematical investigations of the 
EEG relationship between ictal seizure episodes and interictal episodes will be valuable to understand their 
contributions to SUDEP. Challenges remain for collection such dataset and development of proper data 
analytics. 
 
Abnormalities in HRV are linked to sudden cardiac death and SUDEP risk. Patients with drug-resistant 
epilepsy have more autonomic dysfunction, lower awake HRV and greater variances between wake and sleep 
states than drug-responsive patients23. We found reduced LF HRV power was reduced in SUDEP cases and 
predicted SUDEP latency 25. LF reflects sympathetic and parasympathetic activity. Combining EEG and ECG, 
improved predictive power over EEG.  Analyses combining interictal EEG and new ECG features may improve 
individual SUDEP prediction 47.  Large sample size can greatly improve machine learning.  
 
Advancing machine learning models of SUDEP risk will benefit from integration of clinical, imaging and 
interictal physiological data.  Seizure pathways change on circadian and slower timescales 48, suggesting that 
analyzing multiple timescales may provide improve individualized SUDEP prediction, and potentially peak 
periods of SUDEP risk within circadian or ultradian cycles.  Multimodal data fusion techniques can reveal how 
data modalities interact 49 and improve SUDEP prediction 50. Greater sample size would greatly improve 
clinical prognosis and decision 51-53.  
 
Finally, it is also worth pointing out the limitations of our study. Our sample size was relatively small, which 
may lead to overfitting and limits interpretation. Additionally, the selected EEG and ECG segments were 
relatively short, and did not cover multiple-day or multiple-session recording samples. We did not assess post-
ictal EEG suppression nor correlate their features with interictal EEG-derived features. Although we have 
conducted leave-one-center-out validation, the current study did not validate methods on an external patient 



population. Finally, our retrospectively acquired cohort prevents validating the classifiers using continuous 
video-EEG recordings.    
 
 
CONCLUSION 
The results of this analysis suggest that machine learning methods can identify the risk of SUDEP in individual 
patients in a retrospective multicenter cohort study based on interictal EEG recordings. Combining interictal 
EEG and ECG-HRV features improves the classification performance. A simple LR classifier produces the 
overall best classification performance in randomized five-fold cross-validation and leave-one-center-out 
prediction settings. The CNN can potentially extract multichannel sleep EEG features used for online SUDEP 
risk assessment. Further studies are warranted to validate the results in larger and more diverse cohorts. The 
incorporation of other parameters associated with SUDEP (e.g. respiratory measurements and electrodermal 
activity) may improve the accuracy of models for individual prediction of SUDEP risk. 
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FIGURE 1. (A) Clustering scalp EEG electrodes (10-20 International System) into nine channel groups (G1-
G9). (B) Comparison of channel-averaged EEG low gamma sleep/wake power ratios between SUDEP 
Patients and age-matched living epilepsy controls (SUDEP vs. control 1, ** p=0.0033, paired t-test; SUDEP 
vs. control 2, * p=0.0251). (C) Comparison of subject-averaged EEG low gamma sleep/wake power ratios 
between SUDEP patients and age-matched living epilepsy controls (****, p<0.0001, paired t-test). (D, E) 
Similar to panels B and C, except for the alpha band (panel D: n.s., p=0.258 and p=0.719; panel E: ** p=0.009 
and * p=0.039, paired t-test). (F) Comparison of EEG low gamma sleep/wake power ratios between SUDEP 
patients and age-matched controls in nine EEG channel groups (**, p=0.0012, two-way ANOVA test; error 
bar denotes SEM). (G) Similar to panel F, except for the alpha band (**, p=0.048, two-way ANOVA test).     
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FIGURE 2. (A) Mean ROC curve (mean AUC = 0.77, IQR: 0.73-0.80; LR classifier) obtained from SUDEP vs. 
non-SUDEP classification based on combined EEG and ECG features. Diagonal line shows the chance level 
(AUC = 0.5). (B) The mean SUDEP prediction score correlated negatively with the EMU-to-SUDEP time 
among the SUDEP group (Pearson’s correlation r =-0.38, n=26). Color coded points represent patients from 
8 different centers. (C) Visualization and projection of two pairs of convolutional filters in the CNN onto the 
brain topographies of spatial patterns. The spatial patterns of “amplitude map” indicates the importance at 
specific channels, whereas the spatial patterns of “phase shift map” indicates the relative phase lagging.  
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Supplementary Material  
 
Supplementary Methods 
 
EEG and ECG preprocessing and feature selection 
Since the EEG data were collected from multiple centers, the recording equipments were not uniform. To 
accommodate the variability and unify the format of EEG data, we divided EEG channels into 9 groups: G1 
('FP1', 'F7', 'F9'), G2 ('FP2', 'F8', 'F10'), G3 ( 'FZ', 'F3', 'F4'), G4 ('T7', 'T9', 'A1'), G5 ('T8', 'T10', 'A2'), G6 ('CZ', 
' C3', 'C4'), G7 ('P7', 'P9', 'O1'), G8 ('P8', 'P10', 'O2'), G9 ('PZ', 'P3', 'P4 '). This division served two purposes. 
First, the whole brain area was evenly divided into 9 groups on the scalp (Figure 1A). Second, regardless of 
the EEG equipment, and each subject had at least one EEG channel from each channel group. When there 
were two or three EEG channels within each group, we averaged the data across these channels. Additionally, 
we further standardized the temporal information. Due to different sampling rates used in various EEG 
recordings, we resampled all EEG signals with 250 Hz. In total, we computed 6´9=54 (frequency´group) 
power ratio features per subject. 
 
For ECG signals, we computed a total of 24 linear and nonlinear features for heart rate variabilty (HRV) 1,2:  
 
Time-domain features 
mean_nni 
sdnn 
sdsd  
rmssd 
 
median_nni 
 
cvsd 
cvnni 
mean_hr 
max_hr 
min_hr 
std_hr  

Mean of consecutive R-R intervals 
Standard deviation of all consecutive normal R-R intervals 
Standard deviation of differences between R-R intervals 
Square root of the mean of the sum of the squares of differences 
between adjacent normal R-R intervals 
Median of absolute values of successive differences of R-R 
intervals 
RMSSD/mean_nni 
Coefficient of variation, sdnn/mean_nni 
Mean of heart rate 
Maximum of heart rate 
Minimum of heart rate 
Standard deviation of heart rate 

 
Frequency-domain features 
vlf 
lf 
hf 
lf_hf_ratio  
lfnu 
hfnu 
total_power 

Very low frequency (0-0.04 Hz) parameter 
Low frequency (0.04-0.15 Hz) HRV parameter 
High frequency (0.15-0.4 Hz) HRV parameter 
LF/HF ratio 
LF power of HRV expressed in normal units 
HF power of HRV expressed in normal units 
Total spectral power 

 
Nonlinear-domain features 
csi 
cvi 
Modified_csi 
sd1 
Sd2 
Ratio_sd2_sd1 

Cardiac sympathetic index  
Cardiac vagal index  
Modified CSI 
Standard deviation along the minor axis of Poincare plot 
Standard deviation along the major axis of Poincare plot 
SD2/SD1 ratio 

 



 
Details of CNN training and testing 
For the CNN architecture, we used one stream that received N-channel raw EEG time series input with W-s 
duration (downsampled at 200 Hz; resulting in a sample size of 200´W). For each stream, we had a set of 
one-dimensional convolution filters with finite filter length, thereby generating a set of convolution filters (wth 
size of m×N). Specifically, the j-th (j=1,···, m) convolution filter 𝑓Y

(Z)	had a parametric form as a product of 
cosine function and Gaussian-shape kernel 3 
 

𝑓Y
(Z)(𝜏) = 𝐴Y

(Z) cos _𝜔(Z)𝜏 + 𝜙Y
(Z)c exp	(−𝛽Y

(Z)𝜏e) 
 
where the frequency 𝜔(Z) and the precision parameter 𝛽Y

(Z) > 0	were shared across EEG channels (indexed 
by c), which resembled he real part of a complex Morelet wavelet. In our application, we have tested m=2-4 
and used a smallest size m=2 for better interpretability. These two parameters defined the spectral propeties 
of the filter, where 𝜔(Z) controled the center of frequency and 𝛽Y

(Z) controlled the time-frequency resolution 
tradeoff. The amplitude 𝐴Y

(Z) > 0	and phase shift 𝜙Y
(Z)	were defined for the j-th filter at the c-th channel (or 

channel group). The output of each convolution filter was a filtered signal acrossed all N channels  
 

ℎ(Z) =i𝑓Y
(Z)(𝑡)⨂𝑥Y(𝑡)

l

YmD

 

 
The filtered output was passed by a rectified linear unit (ReLU), followed by a max pooling operation. Finally, 
the feature was flattened, concatenated and sent to the the output layer, which computed a softmax function 
to produce a prediction score beween 0 (non-SUDEP) and 1 (SUDEP).  
      To construct the training samples, we specified a window size to create non-overlapping independent 
“snippets” from each subject’s 5-min interictal sleep EEG recording. The cross-entropy loss function was used 
to assess the CNN training convergence 
 

𝐿 = i −[𝑦qlog	𝑦rq + (1 − 𝑦q)log	(1 −	𝑦rq)]
u4vwx	yz?7

qmD

 

 
Where 𝑦q	and 𝑦rq	denote the target and predicted value for the k-th training sample, respectively. We used 
the batch size of 128. 
       To train the CNN, we used the Adam algorithm to perform gradient descent optimization 4, using a 
learning rate parameter of 0.1. To avoid overfitting, we also adopted the dropout strategy (probability 0.5) to 
randomly select the percentage of channels. 
       During testing, we again used a non-overlapping sliding window and fed multichannel EEG time series 
into the trained CNN. We computed the prediction scores in the consecutive windows, and then computed an 
average score by temporal smoothing across multiple sliding windows. 
 
 
Selection and impact of window duration    
The choice of temporal window duration reflected the timescale of interest for the multichannel EEG features. 
During sleep, EEG oscillations are dominated by slow frequency (<40 Hz). We systematically optimized the 
window duration to achieve the best performance.   
 
 
Visualization and interpretation of convolution filters 



To visualize the learned spatiospectral features, we mapped the m×N convolutional filters onto m brain 
topographies of spatial patterns 3. Each filter consisted of a spatial pattern of learned amplitude {𝐴Y

(Z)}	and 
phase shift {𝜙Y

(Z)}, with a specific center frequency 𝜔(Z). For the spatial patterns of “amplitude map”, a large 
value indicates the importance at specific channel or brain region.  For the “phase shift map”, a value beween 
0 and 𝜋	indicates relative phase leading, whereas a value between 𝜋 and 2𝜋 indicates relative phase lagging.  
 
 
Discussion 
The parametric CNN model used in the curent paper is motivated from the convolutional neural network (CNN) 
and deep learning 3,5. Recently, CNNs and recurrent neural networks (RNNs) have been adopted to learn 
multichannel EEG representations 6,7, in temporal, spectral and spatial domains. Several deep learning 
models have been proposed in the literature for epilepic EEG signal classificaiton 8-11, but none of them 
focused on interictal EEG recordings. As most deep learning models have a large number of model 
parameters, it is subject to overfitting in the presence of a small training sample size. One effective strategy 
is to impose a sparsity constraint on the parameterized convolutional filter structure onto the deep learning 
model 3,12. Additionally, available methods can be applied to assess the importance or sensitivity of features 
for the outcome of the deep learning models 13. With an increasing number of training sample size, the CNN 
model can potentiall improve the online risk assessment based on interictal EEG during sleep, while offering 
interpretable neural signatures extracted from the convolutional filters. Finally, explainable AI and explainable 
deep learning may provide an interface for neurologogists to uncover the state of “epileptic brain”. 
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TABLE S1: Number of SUDEP and control epilepsy patients from eight centers and leave-one-center-
out performance  

Center # SUDEP 
at-risk 

# non-SUDEP 
controls 

AUC & Accuracy (LR classifier) 
(iii)  

(n=83) 
(i)  

(n=76) 
(i)+(ii) 
(n=70) 

Melbourne (RMH) 5 (3 F) 8 (4 F) 0.72 [0.68,0.76]  
0.60 [0.50,0.60] 

0.56 [0.44, 0.56] 
0.50 [0.50,0.67] 

0.50 [0.00, 0.50] 
0.25 [0.25 0.25] 

Melbourne (Austin) 6 (3 F) 12 (6 F) 0.64 [0.61,0.72] 
0.58 [0.50,0.67] 

0.78 [0.75, 0.81] 
0.75 [0.67,0.75] 

0.96 [0.92, 1.00] 
0.90 [0.80, 0.90] 

Melbourne (St. Vincent) 2 (1 F) 4 (2 F) 0.50 [0.50,0.50] 
0.25 [0.25,0.50] 

1.00 [1.00, 1.00] 
0.50 [0.50, 1.00] 

1.00 [1.00, 1.00] 
0.50 [0.50, 0.50] 

Columbia University 7 (4 F) 14 (8 F) 0.72 [0.67,0.78] 
0.67 [0.58, 0.75] 

0.69 [0.64, 0.72] 
0.67 [0.58, 0.75] 

0.69 [0.64, 0.72] 
0.67 [0.67, 0.75] 

New York University 2 (0 F) 4 (0 F) 0.75 [0.75,1.00] 
0.75 [0.50, 0.75] 

0.75 [0.75, 1.00] 
0.75 [0.50, 0.75] 

1.00 [0.75, 1.00] 
0.75 [0.50, 0.75] 

Yale University 5 (2 F) 10 (4 F) 0.36 [0.28,0.44] 
0.40 [0.30, 0.40] 

0.80 [0.72, 0.84] 
0.70 [0.60, 0.70] 

0.72 [0.68, 0.76] 
0.60 [0.50, 0.60] 

Johns Hopkins University 1 (0 F) 2 (0 F) 0.75 [0.75,1.00] 
0.50 [0.50, 1.00] 

1.00 [0.00, 1.00] 
0.50 [0.00, 0.50] 

0.00 [0.00, 0.00] 
0.00 [0.00, 0.00] 

University of Cincinnati 2 (1 F) 4 (2 F) 1.00 [1.00,1.00] 
0.75 [0.50, 0.75] 

0.75 [0.75, 1.00] 
0.75 [0.50, 0.75] 

1.00 [1.00, 1.00] 
0.75 [0.75, 0.75] 

Total  30 (14 F) 58 (26 F) Mean: 0.68, 0.56 Mean: 0.79,0.64 Mean: 0.73,0.55 
 
 
TABLE S2: Comparison of three machine learning classifiers in leave-one-center-out AUC using 
features (i)+(ii) 

Center # Total tested 
subjects 

(SUDEP+control) 

AUC 
(SVM classifier) 

AUC  
(RF classifier) 

AUC  
(LR classifier) 

Melbourne (RMH) 2+5 0.50 [0.25, 0.50] 0.50 [0.25, 0.50] 0.50 [0.00, 0.50] 
Melbourne (Austin) 5+12 0.88 [0.80, 0.96] 0.76 [0.66, 0.88] 0.96 [0.92, 1.00] 
Melbourne (St. Vincent) 1+1 1.00 [1.00, 1.00] 0.00 [0.00, 0.00] 1.00 [1.00, 1.00] 
Columbia University 6+13 0.69 [0.61, 0.72] 0.64 [0.60, 0.71] 0.69 [0.64, 0.75] 
New York University 2+4 1.00 [0.75, 1.00] 1.00 [0.75, 1.00] 1.00 [0.75, 1.00] 
Yale University 5+8 0.71 [0.64, 0.76] 0.56 [0.46, 0.60] 0.72 [0.68, 0.76] 
Johns Hopkins University 1+1 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 
University of Cincinnati 2+2 1.00 [1.00, 1.00] 0.75 [0.75, 0.75] 1.00 [1.00, 1.00] 
Total  24+46 = 70 Mean: 0.723 Mean: 0.526 Mean: 0.734 
 
 
 
TABLE S3: Statistics of misclassified subjects with depression or developmental delay/static 
encephalopathy  
  Depression Developmental Delay/Static 

Encephalopathy 
False Positive 16.7% 33% 
True Positive 6.7% 40% 
True Negative 33% 18% 
 
 



 
Figure S1. Comparison of ECG heart rate variability (HRV) statistics between SUDEP patients and age-
matched living epilepsy controls. (A) lfnu. (B) hfnu. (C) lf. (D) lf/hf ratio. (E) min_hr. (F) std_hr.   
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Figure S2. Schematic flowchart of EEG/ECG data analytics in SUDEP risk assessment. 
 

 
 
 
 
 
 
 
Figure S3. Schematic diagram of convolutional neural network (CNN) for sleep EEG spatiospectral 
feature extraction, as applied to sliding-window based SUDEP risk assessment. During sleep, 
multichannel EEG signals were fed to the CNN, which consists of convolution filters, max pooling and flatten 
operations. These spatiospectral EEG features (mapped onto a brain topography of spatial patterns in heat 
map) were further sent to a fully connected layer to compute a predictive score between 0 and 1 in the softmax 
output layer. At the final decision stage, temporal smoothing was applied to the sliding predictive scores to 
produce a SUDEP risk assessment.  
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Figure S4. Cross-validated AUC statistics with the number of selected EEG+ECG features. The error 
bar denotes the SD based on 1000 Monte Carlo runs in the L1 regularized LR classifier.  
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Figure S5. Mean regression coefficients associated with EEG and ECG features used in L1 regularized 
LR classifier. 

 
 



 
 
Figure S6. Impact of sliding window duration on online classification performance. In each condition, 
the box plot statistics were computed based on Monte Carlo runs (n=1000 in LR, and n=100 in CNN). 
 

 
 
 
 
Figure S7. Classification performance was stable in the presence of sleep EEG signal non-stationarity. 
ROC curves were computed based on training the first half of sleep EEG data and testing the second half of 
sleep EEG data. Diagonal line indicates the chance level. 
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Appendix 1: MS-BioS Study Group  

Name Location Role Contribution 

Dale C. Hesdorffer, PhD Columbia University, 

New York, United 

States 

Principal 

investigator 

Contributed to the acquisition of data. 

Sylwia Misiewicz, Ed.M 

 

Columbia University, 

New York, United 

States 

Research 

coordinator 

Contributed to the acquisition of data. 

Lucy Mendoza, CCRP University of 

Cincinnati, Cincinnati, 

United States  

Research 

coordinator 

Contributed to the acquisition of data. 

 


