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Abstract

Summary: In light of the NIMH’s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies
and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine
learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision
psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice
and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital
phenotyping in mobile mental health. In this paper, we provide a comprehensive review of the ML methodologies and applications
by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role
of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable
Al (XAI) and neuromodulation in a closed-human-in-the-loop manner, and highlight the ML potential in multimedia information
extraction and multimodal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight

ML opportunities in future research.
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computational psychiatry, neuroimaging, neurobiomarker, molecular biomarker, digital phenotyping, multimodal data fusion,

neuromodulation, causality, explainable Al (XAI), teletherapy

1. Introduction

Mental health issues are epidemic in the United States and
the world. According to the National Institute of Mental Health
(NIMH), nearly one in five American adults suffer from a form
of mental illness or psychiatric disorder (www.nimh.nih.gov/
health/statistics/). According to the Centers for Disease
Control and Prevention (CDC), The COVID-19 pandemic has
witnessed a significant impact on our lifestyle, and consider-
ably elevated adverse mental health conditions caused by fear,
worry and uncertainty '. Increased suicide rates, opioid abuse,
antidepressant usage have been observed in both adults and
teenagers. The diagnosis and treatment of mental health has im-
posed a burden to the healthcare system and the society. In the
United States alone, the economic burden of depression alone
is estimated to be at least $210 billion annually?. Precision
medicine (or personalized medicine) is an innovative approach
to tailoring disease prevention, diagnosis, and treatment that ac-
counts for the differences in subjects’ genes, environments, and
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lifestyles. The goal of precision medicine is to target timely
and accurate diagnosis/prognosis/therapeutics for the individu-
alized patient’s health problem, and further provide feedback
information to patients and surrogate decision-makers. Recent
decades have witnessed various degrees of successes in preci-
sion medicine, especially in oncology (Lancet, vol. 397, 2021,
p- 1781). Traditional diagnoses of mental illnesses rely on
physical exams, lab tests, psychological and behavioral eval-
uation. Meanwhile, precision psychiatry has increasingly re-
ceived its deserved attention>*. Although psychiatry has not
yet benefited fully from the advanced diagnostic and therapeu-
tic technologies that have an impact on other clinical special-
ties, these technologies have the potential to transform the fu-
ture psychiatric landscape.

The NIMH’s RDoC (Research Domain Criteria) initiative
aims to address the heterogeneity of mental illness and pro-
vide a biology-based (as opposed to symptom-based) frame-
work for understanding these mental illnesses in terms of vary-
ing degrees of dysfunction in psychological or neurobiological
systems; it attempts to bridge the power of multidisciplinary
(such as the genetics, neuroscience, and behavioral science) re-
search approaches>®. The current gold standard for diagnosis
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and treatment outcome in mental disorders—the DSM (Diag-
nostic and Statistical Manual of Mental Disorders) maintained
by the American Psychiatric Association (APA), is often based
on the clinician’s observations, behavioral symptoms and pa-
tient reporting, which are all susceptible to a high degree of
variability. Therefore, it is imperative to develop quantitative
neurobiological markers for mental disorders while accounting
for their heterogeneity and comorbidity.

One important goal in neuropsychiatry research is to identify
the relationship between neurobiological/neurophysiological
findings and clinical behavioral/self-report observations. Ma-
chine learning (ML) and artificial intelligence (AI) have gen-
erated growing interests in psychiatry because of their strong
predictive power and generalization ability for prognosis and
diagnosis applications”®°. The interest of applying ML/AI in
psychiatry has grown steadily in the past two decades, as re-
flected in the number of PubMed publications (Figure 1A). To
improve mental health outcome with digital technologies, the
so-called “digital psychiatry” focuses on developing ML/AI
methods for assessing, diagnosing, and treating mental health
issues . A recent global survey has indicated that psychiatrists
were somewhat skeptical that Al could replace human empathy,
but many predicted that ‘man and machine’ would increasingly
collaborate in undertaking clinical decisions, and psychiatrists
were optimistic that AI might improve efficiencies and access
to mental care, and reduce costs'!.

The past two decades have witnessed substantial growth of
ML applications for psychiatry in the literature, reflected in
many applications and reviews '>!3141516.17.18,19.2021,22 = A]_
though multiple reviews of ML for psychiatry are available, the
majority of reviews are restricted to relatively narrow scopes. In
this paper, we try to provide a comprehensive review of ML and
ML-powered technologies in mental health applications. Our
view is “modern” in a sense that the development of new tech-
nologies, consumer market demand, and public health crises
(such as COVID-19) have constantly redefined the role of ML
and reshaped our thinking in precision psychiatry. Specifically,
we will cover state-of-the-art methodological developments in
ML, multimodal neuroimaging, large-scale circuit modeling,
neuromodulation, and human-machine interface. Due to space
limitation, our reviewed literature is by no means exhaustive.
To distinguish our review from others, we will focus on sev-
eral issues central to the ML applications for psychiatry: gen-
eralizability, interpretability, causality, clinical and behavioral
integration.

Our view about this emerging field is cautiously optimistic
for several reasons. First, with increasing amount of data and
computational power, there is a growing demand for psychi-
atrists to use ML to reevaluate clinical, behavioral and neu-
roimaging data. The interests in mental health funding from
the industry have also grown substantially (Figure 1B). Second,
it is becoming increasingly important to leverage the power of
ML and develop explainable artificial intelligence (XAI) tools
for unbiased risk diagnosis, personalized medicine recommen-
dation, and precise neurostimulation. The integration of ML
with neuroimaging can potentially help us identify and vali-
date biomarkers in diagnosis and treatment of mental illnesses.
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Figure 1: (A) The number of PubMed publications with keywords “machine
Learning or AI” and ”psychiatry or mental health” in the title or abstract (Year
2000-2021). (B) Growth of mental health tech funding in the US market (Year
2017-2021, data source: cbinsights.com). (C) Human neuroimaging at various
spatial and temporal resolution (© IEEE, figure reproduced from?* with per-
mission).

Third, there is a growing demand of psychiatrists in the US, and
the shortage is even more acute in poorer countries?3. ML/AI
technologies may change the practice of psychiatry for both
clinicians and patients. Finally, advanced technologies such
as social media, multimedia, mobile and wearable devices also
call for the development of ML/AI tools to assist the assess-
ment, diagnosis or treatment of individuals who are mentally
ill or at risk. The meanings of ML and Al are relatively broad
in our current paper, and generally cover a wide range of ana-
lytic or predictive tools that are designed for finding structures
or regularity of data; therefore, ML under our discussion also
includes data mining and knowledge discovery. From now on,
we will use ML and Al interchangeably throughout the paper.

2. Background of Neuroimaging

2.1. Advances in Neuroimaging

Neuroimaging provides a window to probe human brains in
terms of both structural and functional forms, and offers vari-
ous resolutions to examine brain activity at macroscopic, meso-
scopic, and microscopic scales across spatial and temporal do-
mains (Figure 1C).



Our understanding of brain and behavior relationships has
expanded exponentially over the last few decades. While
this improvement may be attributed to a multitude of fac-
tors, advancement in neuroimaging has played a prominent
role?. Ranging from increased utilization of structural neu-
roimaging techniques to the significant scientific advancements
brought about by the increased availability of functional neu-
roimaging, these technologies have provided significant ben-
efits to improved understanding of neural correlates and dis-
covery of biomarkers in psychiatric disorders?®. Some of
the most common neuroimaging methods?’ for probing brain
function include the utilization of magnetic resonance imaging
(MRI), diffusion MRI (dMRI), functional MRI (fMRI), elec-
troencephalography (EEG), Magnetoencephalography (MEG),
electrocorticography (ECoG), functional near-infrared spec-
troscopy (fNIRS), and positron emission tomography (PET).
To date, EEG and fMRI are two most commonly used imaging
modalities for precision psychiatry. Specifically, EEG is low-
cost and easy-to-operate, making it more appealing for clinical
practice or home use.

2.2. Neuroimaging Analysis

These rich neuroimaging modalities allow us to comprehen-
sively probe brain functions. Numerous research efforts have
been devoted to revealing the neurobiological basis of vari-
ous psychiatric disorders using advanced neuroimaging anal-
yses. Under specifically designed cognitive paradigms, task-
related neuroimaging allow us to examine the relationship be-
tween brain activities (e.g., event-related potential and spectral
perturbation, and reward or emotional processing-related func-
tional activation?®?°) and cognitive dysfunctions. A promising
direction for probing brain function using neuroimaging is to
investigate brain connectivity (or connectome)?. Studying the
resting-state brain connectome provides an elegant way to char-
acterize the complex brain architecture and uncover brain dys-
functions in intrinsic brain networks?'. Increasing neuroimag-
ing studies suggest that functional connectivity may fluctuate,
rather than being stationary during an entire session of data col-
lection¥. Studies examining spatiotemporal dynamics of brain
networks have recently received growing attention and may re-
veal meaningful brain states associated with different psychi-
atric conditions3. Another promising approach to establish
robust biomarkers for psychiatry is to combine multiple neu-
roimaging modalities in a data-driven manner, which offers op-
portunities to exploit cross-modality complementary informa-

tion that a single modality approach may not capture 3.

2.3. Feature Engineering

The input data comprise features that are fed to ML algo-
rithms. All ML methods will benefit from proper feature engi-
neering (including but not limited to imputation, scaling, stan-
dardization, normalization, transformation and one-hot encod-
ing)®. Incorporating knowledge-driven feature engineering
into the analysis of specific neuroimaging modalities has shown
significant promise in enhancing the model performance and its
physiological interpretability. For instance, spatial filtering (or

source localization) followed by orthogonalizing the resulting
time series and calculating their power envelope correlations
can mitigate the effects of volume conduction and source leak-
age, which may lead to more accurate quantification of func-
tional connectivity in EEG or MEG 363738,

To fully understand the brain structural and functional or-
ganization, we argue that neuroimaging, when combined with
modern ML and other ML-powered technologies, can provide
powerful tools in advancing diagnosis, prognosis, and interven-
tion of psychiatric disorders.

3. How Can ML Help Psychiatry?

3.1. Psychiatry vs. Other Medicine Disciplines

The nature and etiology of mental illnesses remain unclear
and challenging to study. Traditional studies for the neurobiol-
ogy of psychiatric disorders have followed a categorical classi-
fication framework using a case-control design whereby all pa-
tients with a given diagnosis are compared with healthy individ-
uals. The symptom-based diagnosis covered hundreds of thou-
sands of different symptom combinations, which has caused ex-
tensive clinical heterogeneity 3>*°. It is increasingly recognized
that existing clinical diagnostic categories could misrepresent
the causes underlying mental disturbance. The conventional
case-control design often fails to match a clinically useful deci-
sion process in the absence of differential diagnostic specificity,
which is due to its limited strengths in delineating the signifi-
cant clinical and neurobiological heterogeneity of psychiatric
disorders. On the other hand, previous studies have broadly ex-
plored the group effects of neurobiology to explain its connec-
tion to behavior and disease. However, such group-level analy-
ses cannot fully capture individual-level brain abnormality that
is crucial for developing personalized medicine.

In addition, many psychiatric disorders may be considered
as falling along multiple dimensions. Co-occurrence of mul-
tiple psychiatric disorders might reflect different patterns of
symptoms resulting from shared risk factors and perhaps the
same underlying disease processes. The high comorbidity in
these disorders significantly affects the characterization of psy-
chopathology according to the traditional diagnostic categories.
Conventional studies focusing on a single diagnostic domain
are therefore insufficient in uncovering the neural correlates
of comorbidity among multiple disorders or identifying the di-
mensions of neural circuits and behavioral phenotypes.

3.2. Clinical Need Driving ML Applications in Mental Health

Despite the rapid progress in psychiatric studies, several ar-
eas appear highly underexplored but may carry substantial po-
tentials for achieving major breakthroughs toward precision
psychiatry.  First, the capacity to dissect inter- and intra-
individual variability is crucial for understanding the neural ba-
sis of variation in human cognition and behavior*'. Studies
focusing on the level of individuals may find greater success
over conventional group-level analyses. Translational study-
orientated approaches for psychiatric neuroimaging may further



Table 1: Categories of ML, concepts, typical methods, and their representative applications.

Learning category Concepts

Representative methods

Applications

Supervised Learning from labeled data SVM, random forest, Disease diagnosis, prognosis,
to predict class/clinical measures sparse learning, ensemble learning treatment outcome prediction
Unsupervised Learning from unlabeled data to uncover Hierarchical clustering, Disease subtyping, normative

structure and identify subgroups

K-means, PCA, CCA

modeling, identify behavioral
and neurobiological dimension

Semi-supervised Learning from both labeled and
unlabeled data to perform supervised

or unsupervised tasks

Multi-view learning,
Laplacian regularization,
Semi-supervised clustering

Multimodal analysis, Joint
disease subtyping and diagnosis,
Prediction with incomplete data

Deep Learning hierarchies and nonlinear mappings
of features for higher-level representations,
can be either supervised or unsupervised

CNN, Deep autoencoder, GCN,
RNN, LSTM, GAN

A large class of generic
learning problems

Reinforcement Solving temporal credit assignment problems,

optimal control, trial-and-error learning

Temporal difference learning, Q-learning,
actor-critic model, dynamic programming

Online control, modeling of decision
making and choiced behaviors

enhance the ability to find statistically significant effect sizes
that can be used in individuals*?.

Second, identifying subgroups (i.e., subtypes) in psychiatric
disorders may delineate disease heterogeneity. Increasing evi-
dence suggests that data-driven subtyping may drive novel neu-
robiological phenotypes associated with distinctive behavior
and cognitive functioning®®. These stratified phenotypes may
help improve the predictability of clinical outcomes and serve
as potential biomarkers for treatment selection’®. However,
subtyping analysis is widely viewed as hypothesis-generating
and poses significant challenges related to reproducibility and
physiological interpretability***. Linking subtype identifica-
tion to a particular outcome or question using well-designed
ML approaches is vital to address these challenges*.

Third, another promising area focuses on transdiagnostic
approaches to uncover neural correlates of specific domains
(such as cognition, arousal, and emotion regulation), which
have been implicated in psychopathology across the diagnos-
tic spectrum?®. Recent ML efforts have been dedicated to
identifying transdiagnostic brain dysfunctions and dimensions
of psychopathology to improve understanding of comorbidity
among psychiatric disorders*’#84%59 Importantly, leveraging
“big data” from a longitudinal perspective offers a promising
way to track the neurobiological and phenotypic trajectories
that have been rarely examined in previous cross-sectional psy-
chiatric studies’'”>3. Ultimately, such longitudinal studies
may help reveal the neural mechanism underlying the disease
progression, and provide new insights for the development of
timely interventions.

It should be noted that the presence of confounding effects
is one of the most critical challenges in psychiatry studies>*>°.
For example, the site effects or unmatched phenotypic informa-
tion (e.g., demographics and clinical measures) may distort the
apparent relationship between input features and output. Medi-
cations were also found to strongly alter brain activity and con-
nectivity 367, Therefore, inappropriately modeling those con-
founders can lead to erroneous findings. To date, mental health
studies have been done to control the impact of confounders on
biomarker quantification 8>,

These new frontiers in studying psychiatric disorders can be
substantially empowered by ML methodologies summarized in
Table 1. The applications include stratifying patients into clin-

ically meaningful subtypes, discovering novel transdiagnostic
disease dimensions, and tailoring treatment decisions to indi-
vidual patients. Together, these research outcomes can deliver
a significant promise in promoting the development of objective
biomarker-based precision psychiatry.

The applications of ML in psychiatry can be mainly catego-
rized according to their clinical purposes: diagnosis, prognosis,
treatment, and readmission. In contrast to most medical disci-
plines, traditional diagnoses in psychiatry remain restricted to
subjective symptoms and observable signs, and therefore call
for a paradigm shift. ML offers a new paradigm to achieve
automated and more objective assessments for various psy-
chiatric conditions. For disease diagnosis, supervised classi-
fication can be used to identify discriminative biomarkers that
distinguish a specific disorder from healthy condition or other
mental illnesses®. Unsupervised clustering is useful in iden-
tifying disease subtypes for dissect clinical and biological het-
erogeneity, thus offering new ways of defining psychiatric con-
ditions 36! For disease prognosis, classification models can
be built to distinguish different course trajectories (e.g., pro-
gressor versus non-progressor), whereas regression models are
useful for predicting symptom development during the course
of the disease®2. For treatment studies, individual responses
to the treatment can be predicted using classification methods
that distinguish responder from non-responder. Regression-
based approaches can also be utilized to predict changes in
post-treatment symptoms . For readmission evaluation, supet-
vised classification can be used to predict whether an individual
would be rehospitalized or to detect the relapse trajectory *+%°.
With a properly designed strategy, feature reduction/mapping
approaches and knowledge-driven feature engineering can be
integrated into the ML model training to identify more infor-
mative and interpretable biomarker patterns*?.

It should be noted that ML is an ever-growing big discipline,
and cover many categories and emergent topics, each with a
different technical focus. A standard taxonomy of ML typically
include supervised, unsupervised and reinforcement learning
paradigms®®%7. There are also various extensions or special
treatment of each category or combined (e.g., semi-supervised
learning, kernel learning, ensemble learning, deep learning).
Here, our rationale of reviewing specific ML methods is simply
based on their applicability in existing mental health applica-



tions.

In the following subsections, we will review several key ML
paradigms in mental health applications based on neuroimag-
ing, behavioral and clinical measurements. A tabular review of
representative applications is shown in Table 2. Specifically, we
focus on the review of neuroimaging-based psychiatric studies,
and detailed reviews of the other data domains (such as genetic,
clinical, behavioral, and social media data) will be presented
in later sections. For the sake of space limitation, we will not
include exhaustive reviews of all ML paradigms (such as re-
inforcement learning, active learning and transfer learning) in
this section, but rather provide some reference pointers when-
ever necessary.

3.3. Supervised and Unsupervised Learning

ML holds substantial promise in promoting research from
small case-control studies to those with large transdiag-
nostic samples, and from prior specified brain regions to
whole-brain circuit dysfunction for individual-level precision
medicine '°22%103 " Tn a new era of evidence-based psychiatry
tailored to individual patients, objectively measurable endophe-
notypes could allow for early disease detection, personalized
treatment selection, and dosage adjustment to reduce the bur-
den of disease'>!%+105 These promising applications in psy-
chiatric disorders have been enabled by leveraging the powerful
strength of modern ML techniques !>60:106:107,

Supervised Learning. Supervised learning, being the most
popularly used ML category, has been widely applied to
neuroimaging-based predictive modeling tasks for psychiatric
disorders '%. Classic supervised learning algorithms include lo-
gistic regression, support vector machine (SVM), and random
forest. Given the high-dimensional nature of neuroimaging
data, these approaches are commonly accompanied by a fea-
ture selection step to obtain low-dimensional representations.
Connectome-based predictive modeling'%'1° is one of such
approaches that combine simple linear regression and feature
selection to predict individual differences in traits and behav-
ior from connectivity data. LASSO provides an alternative ap-
proach that performs simultaneous feature selection and predic-
tion to learn a compact feature pattern for accurate prediction of
a specific disorder or clinical outcome®”. Relevance vector ma-
chine (RVM) builds upon a probabilistic framework by leverag-
ing automatic relevance determination to learn a sparse solution
and penalize unnecessary model complexity ''"''2, RVM has
recently demonstrated its strength in quantifying neuroimaging
biomarkers for PTSD diagnosis’* as well as for treatment out-
come prediction in depression®”. As an extension of the con-
ventional single-task methods, multi-task learning (MTL) ap-
proaches have been increasingly employed to exploit comple-
mentary features jointly from multiple views of neuroimaging
data 113114115

Due to the complex nature of the brain’s function, informa-
tive features may not be observable in the raw high-dimensional
feature space. To address this challenge, latent space-based su-
pervised learning has been developed to uncover latent dimen-
sions of neural circuits in psychiatric disorders. For example, a
sparse latent space regression algorithm tailored for EEG data

was developed to identify antidepressant-responsive brain sig-
natures in depression®. By jointly estimating the spatial fil-
ters and regression weights under a convex optimization frame-
work, the ML model was able to successfully reveal treatment-
predictive signatures in a low-dimensional latent space (see
Case Study 1 below). To address comorbidities among psychi-
atric disorders, dimensional approaches have been developed
using statistical models capable of discovering the complex lin-
ear relationship between high-dimensional datasets. For in-
stance, low-dimensional representations of depression-related
connectivity features have been successfully identified by ap-
plying canonical correlation analysis (CCA) to resting-state
fMRI (rs-fMRI) connectivity and clinical symptoms**. The dis-
covered representations defined two disease dimensions corre-
sponding to an anhedonia-related component and an anxiety-
related component, respectively. A similar dimensional anal-
ysis was also utilized to examine the neural correlates of neu-
ropsychiatric symptoms in dementia. Using CCA, two latent
modes were identified with distinct neuroanatomical bases of
common and mood-specific factors of the symptoms!'6. A
sparse CCA approach has been applied to reveal linked dimen-
sions of psychopathology and functional connectivity in brain
networks for psychiatric disorders*®. This approach success-
fully identified interpretable dimensions, involving mood, psy-
chosis, fear, and externalizing behavior, guided neural circuit
patterns across the clinical diagnostic spectrum. The partial
least squares (PLS) approach was also applied to identify latent
components linking a broad set of behavioral measures to func-
tional connectivity*®. The latent components defined distinct
dimensions with dissociable brain functional signatures, and
provided potential intermediate phenotypes spanning diagnos-
tic categories. These dimensional analytics hold great promise
in uncovering novel transdiagnostic phenotypes for developing
targeted interventions.

Ensemble Learning. Although ML approaches have been
extensively designed for supervised learning, using a single
model may not produce the optimal generalization perfor-
mance for a complex prediction task. By combining multi-
ple ML models to reduce variance, ensemble learning outper-
forms a single model in prediction and has proven successful
in discovering robust biomarkers for psychiatric disorders. For
instance, multi-atlas ensemble-learning algorithms have been
proposed for improved schizophrenia detection'!” and ASD
diagnosis’!. By utilizing multimodal neuroimaging including
sMRI, fMRI, and DTI, a bagging-based SVM produced signifi-
cant improvement in prediction of adult outcomes in childhood-
onset ADHD®. Based on the selective ensemble algorithm,
a sparse multi-view prediction model has been designed with
rs-fMRI connectivity for ASD diagnosis!'®; this model com-
bined multiple classifiers under a bootstrap framework and sig-
nificantly outperformed other single-model approaches.

Although sophisticated models of supervised learning often
produce better classification or prediction performance, their
interpretability decreases at the cost of increasing model com-
plexity. We will discuss the interpretable ML methods in more
detail later (Section 7). Additionally, labeled data require the
ground truth knowledge, which is not always accurate or re-



Table 2: Representative ML applications in psychiatry based on neuroimaging and clinical data.

Application  Learning category ML Method Mental Disorder Data type Reference
Supervised Classification, Deep  Dynamic GCN ADHD rs-fMRI + Phenotypic data  ©
Supervised Classification Ensemble learning ADHD Multimodal 0
Supervised Classification, Deep GCN ASD Task fMRI o
Supervised Classification, Deep  Ensemble learning + GCN ASD rs-fMRI 7
Supervised Classification PCA + LASSO Bipolar dMRI + Cognitive data 7
Supervised Classification RVM PTSD rs-fMRI 7
Supervised Classification, Deep  ICA + LSTM Schizophrenia fMRI 7
Diagnosis Supervised Classification SVM Schizophrenia sMRI 7
Supervised Classification, Deep CNN Depression rs-EEG 76
Supervised Classification, Deep ~ Autoencoder + DNN, SVM, Random forest ~ ASD rs-fMRI ”
Semi-supervised Classification =~ GNN ASD rs-fMRI + Phenotypic data %
Unsupervised, Subtyping Normative modeling + clustering PTSD rs-fMRI I
Unsupervised, Subtyping CCA + Hierarchical clustering Depression rs-fMRI 4
Unsupervised, Subtyping Sparse K-means PTSD, Depression rs-EEG 38
Unsupervised, Subtyping Latent class analysis ADHD Task fMRI 80
Supervised, Transdiagnostic Normative modeling + GP regression Multiple disorders rs-fMRI 81
Unsupervised, Transdiagnostic ~ Sparse CCA Multiple disorders rs-fMRI 8
Supervised, Transdiagnostic PLS Multiple disorders rs-fMRI 4
Supervised Classification GP classifier Depression Task fMRI
Supervised, Classification LASSO Psychosis rs-EEG 83
Supervised Classification SVM Psychosis, Depression  multimodal 84
Prognosis Supervised Classification, Deep DNN PTSD rs-fMRI / task f/MRI 85
o Supervised Classification SVM Schizophrenia sMRI 86
Supervised Classification, Deep  SVM, random forest, DNN Schizophrenia Task fMRI 87
Supervised Regression LASSO Substance use MRI/task fMRI 88
Supervised Regression, Deep SVR+LSTM PTSD MEG 8
Supervised Classification SVM ADHD SMRI %0
Supervised Classification SVM Psychosis SMRI ol
Supervised Classification GP classifier PTSD MRI/rs-fMRI 2
Supervised Classification SVM Schizophrenia rs-fMRI 93
Treatment - = . - o4
prediction Supervwed Class*ﬁcagon SVM i Depresspn rs-EEG o
Supervised Classification SVM + GP classifier Depression sMRI >
Supervised Regression Latent space learning Depression rs-EEG %
Supervised Regression RVM Depression Task fMRI 7
Supervised Regression MVPA ASD Task fMRI 8
Supervised Regression LASSO Anxiety rs-fMRI 9
Supervised Classification SVM Depression Multimodal o
. Supervised Classification Growth mixture modeling Depression Clinical data 05
Readmission - — — - 100
Supervised Classification Decision tree Bipolar EHR

Supervised Classification

Ensemble learning

Substance use

Phenotypic data

101

liable in the case of mental disorders. For instance, the skin
cancer diagnosis may rely on training samples that have been
biopsied and cataloged, leaving no doubt as to whether they are
malignant or not; however, there is no equivalent of the biopsy
in mental disorder.

Unsupervised Learning. Unsupervised learning relaxes the
assumption of labeled samples and can be useful e.g. for ex-
ploratory data analysis, feature engineering or cluster analysis.
Unsupervised learning aims to uncover the intrinsic data struc-
ture by either identifying potential clusters (e.g., using latent
class analysis or K-means clustering) or learning a feature map-
ping that satisfies certain criteria (e.g., using PCA). Identifying
patient subtypes offers a promising strategy to delineate neu-
robiological heterogeneity in psychiatric disorders®. With rs-
fMRI, hierarchical clustering was applied to successfully iden-
tify four subtypes of functional connectivity in depression*3.
These subtypes were found to correlate with differing clinical-
symptom profiles and predict responsiveness to brain stimula-
tion therapy. From rs-EEG, two transdiagnostic subtypes were
identified using sparse K-means clustering with distinct power
envelope connectivity patterns and found to respond differen-
tially to antidepressant medication and psychotherapy3®. As a
non-distance probability-based clustering approach, latent class
analysis has also been applied to discover subgroups in psychi-
atric disorders. A proof-of-concept study was conducted using
latent class analysis to identify ADHD subtypes from fMRI ac-
tivation profiles® and reveal that the subtype with attenuated

brain activity showed fewer behavior problems in daily life.
By leveraging data resources from multiple time points, psychi-
atric studies have been shifting from cross-sectional analysis to
longitudinal modeling?®. Finite mixture modeling became in-
creasingly popular for the analysis of longitudinally repeated-
measure data, which can identify latent classes following simi-
lar paths of temporal development '!>120, Typical finite mixture
models include growth mixture modeling, group-based trajec-
tory modeling, and latent transition analysis. The use of latent
growth mixture modeling (LGMM) and group-based trajectory
modeling has become increasingly popular in studying psychi-
atric disorders, such as depression, anxiety, and ASD. They of-
fer flexible ways to identify latent subpopulations that mani-
fest heterogeneous symptom trajectories 21122123 LGMM ap-
proaches have also been successfully used to predict the PTSD
course among the population at risk '>*. As an extension of la-
tent class analysis (LCA) to longitudinal data, latent transition
analysis (LTA) may predict the longitudinal service use for indi-
viduals with substance use disorder (SUD)'?. Together, these
approaches provide powerful tools to delineate longitudinal het-
erogeneity and the corresponding distinctive phenotypes during
the course of psychiatric disorders.

Semi-supervised Learning. Semi-supervised learning is an
ML approach that combines supervised learning and unsuper-
vised learning. Popular semi-supervised learning techniques in-
clude self-training, mixture models, co-training and multi-view
learning, graph-based methods, and semi-supervised cluster-



ing1?®. These methods have been increasingly applied to psy-
chiatric studies. By unifying autoencoder and classification, a
semi-supervised model was developed for ASD diagnosis 2.
A semi-supervised classification has been devised using graph
convolutional networks and applied to the population graph-
based diagnosis of ASD”3. A semi-supervised clustering has
also been designed by extending SVM with implicit cluster-
ing driven by a convex polytope to form a method called het-
erogeneity through discriminative analysis, which can achieve
joint disease subtyping and diagnosis!?®. This approach has
shown strength in delineating neurostructural heterogeneity in
bipolar and major depressive disorders (MDDs) 2%, schizophre-
nia'®, as well as in youth with internalizing symptoms'3!.
Additionally, semi-supervised learning has gained increasing
mental health applications in digital data from electronic health
records (EHRs), social media and mobile phones 132133134, See
Section 4 for a detailed discussion.

Normative modeling. Normative modeling is an emerg-
ing and innovative framework for mapping individual differ-
ences at the level of a single subject with respect to a reference
model 3. It has been increasingly used in mental health '*° to
parse the substantial neurobiological heterogeneity by quanti-
fying individual deviations. By building a normative model of
neuroimaging data on a large-scale healthy population, brain
abnormalities of individual patients can be quantified by ex-
amining their statistical differences from the distribution of the
norm. Gaussian process (GP) regression-based normative mod-
eling has been applied to quantify individual deviations and dis-
sect neurobiological heterogeneity in various psychiatric disor-
ders. With this tool, an association was successfully discov-
ered between transdiagnostic dimensions of psychopathology
and individual’s unique deviations from normative neurodevel-
opment in brain structure®'. By combining tolerance interval-
based normative modeling and clustering analysis, individual
abnormalities in rs-fMRI were accurately quantified to define
two stable subtypes in patients with PTSD’?. The two sub-
types showed distinct patterns of functional connectivity with
respect to the healthy population and differed clinically on lev-
els of reexperiencing symptoms. These novel data-driven ap-
proaches provide useful techniques to identify “abnormal” sub-
types in patients, thereby advancing clinical and mechanistic
investigations in psychiatric disorders. More recently, autoen-
coder model has been utilized to realize normative modeling for
detecting microstructural deviations in'¥7.

3.4. Deep Learning

Deep learning consists of a collection of methods that use
multi-layered-architecture (>2 hidden layers) artificial neural
networks for ML tasks. Through a specifically designed deep
neural network structure, high-level feature representations can
be learned from raw features. Deep learning thus holds promise
in offering an end-to-end analytic framework for disease diag-
nosis and prediction. With the advancement in neuroimaging
technologies, an increasing number of large-scale multi-center
datasets have been established for building powerful ML mod-
els to fully explore the informative feature representations from
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the complex brain and genomic data. By training on these large-
scale datasets, deep learning can learn robust neuroimaging rep-
resentations and outperform standard ML methods in a variety
of application scenarios in mental health 40:141,20,142,

Deep autoencoder. The deep autoencoder, also known as
stacked autoencoder (SAE), aims to learn latent representa-
tions of input data through an encoder and uses these repre-
sentations to reconstruct output data through a decoder. By
stacking multiple layers of autoencoders, deep autoencoder is
formed to discover more complicated and potentially nonlinear
feature patterns. Deep autoencoder has been applied to extract
low-dimensional features from the amplitude of low-frequency
fluctuations in fMRI 43, Clustering analysis with the latent fea-
tures uncovered by deep autoencoder further identified two sub-



types within major psychiatric disorders including schizophre-
nia, bipolar disorder, and MDD. A deep learning model was
also designed based on a sparse stacked autoencoder and ap-
plied to lower the dimensionality of fMRI connectivity. The
sparsity constraint used in this model yielded interpretable neu-
ral patterns for improved ASD diagnosis '“*. Deep autoencoder
has also been applied to implement normative modeling with
structural MRI for the quantification of individual abnormali-
ties in neuropsychiatric disorders, including schizophrenia and
ASD %>, The abnormal features extracted using the normative
model led to improved diagnosis performance compared with
the traditional case-control analysis. Recently, a deep contrast
variational autoencoder was used to extract neuroanatomical
features from MRI data to identify brain dysfunction that can
be attributed to ASD and not to other causes of individual vari-
ation 146,

Convolutional neural networks (CNNs). Different from
conventional multi-layer perceptron or autoencoder assigning a
different weight to each input feature, CNNs were designed to
better capture the spatial and local structure information from
pixels or voxels 197 Due to its strength in utilizing neigh-
borhood information to learn hierarchies of features '8, CNNs
have been one of the most successful deep learning models
applied in various medical applications. A diagnosis model
was established through EEG-based image construction cou-
pled with the CNN for accurate detection of MDD7®. This
model provided an end-to-end framework to successfully iden-
tify translational biomarkers from resting-state EEG in distin-
guishing depressive patients from healthy people. With whole-
brain structure MRI, a 3D CNN model has also been designed
to automatically extract multilayer high-dimensional features
for the diagnosis of conduct disorder '4°.

Graph neural networks (GNNs). Though deep learning
models have shown strengths in capturing complex neuroimag-
ing patterns, they may not generalize well to non-Euclidean
data types (e.g., brain networks). In contrast, GNNs pro-
vide a clever way of learning the deep graph structure of non-
Euclidean data, leading to enhanced performance in various
network neuroscience tasks'>’. For instance, a framework
based on graph convolutional networks (GCNs) has been de-
signed for the diagnosis of ASD”®. By building a population
graph that integrates rs-fMRI data as node features and phe-
notypic measures as edges, the designed model outperformed
other state-of-the-art methods. An inductive GNN model was
also devised to embed the graphs containing different proper-
ties of task fMRI and drive interpretable connectome biomark-
ers for ASD detection”®. More recently, a novel GNN model
was developed to incorporate dynamic graph computation and
feature aggregation of 2-hop neighbor nodes into graph convo-
lution for brain network modeling®. This dynamic GNN sig-
nificantly improved the performance in ADHD diagnosis and
revealed the circuit-level association between connectomic ab-
normalities and symptom severity.

Recurrent neural networks (RNNs). As a specific exten-
sion of the feed-forward neural network, RNN’s have the ability
to learn features and long-term dependencies from sequential
and time-series data. Long-short-term memory (LSTM) mod-

els are the most popular RNN and have shown advantages in
capturing temporal dynamic information of neuroimaging data
for various psychiatric disorder studies!>!. An LSTM-based
RNN architecture was built with the time course of fMRI-
independent components to exploit the temporal information,
which yielded an improved diagnosis of schizophrenia’. By
combining RNNs with other deep neural networks, novel ma-
chine learning models have also been proposed to model the
spatio-temporal dynamics in neuroimaging data. A spatio-
temporal CNN model was proposed for 4D modeling of fMRI,
with confirmed robustness in identifying key features in the de-
fault mode network 152, LSTMs have also been applied to incor-
porate multi-stage neuroimaging data into longitudinal analytic
frameworks for modeling the trajectories of psychopathology
development in various psychiatric disorders. A recent LSTM-
based model was built with MEG data to achieve accurate lon-
gitudinal tracking of pathological brain states and prediction of
clinical outcomes in PTSD®°.

Generative Adversarial Networks (GANs). As one type of
generative model, GANs have gained considerable attention in
computer vision and natural language processing and also be-
come increasingly popular in neuroimaging analysis '%7. GANs
consist of two competing neural networks (one as generator and
the other as discriminator) and can learn deep feature repre-
sentations without extensive labeled data. Due to this unique
advantage, GANs have been increasingly applied in data aug-
mentation to enhance the sample size for model training '>3.
Moreover, GANs have been used to impute missing values in
multimodal datasets, a common problem in psychiatric stud-
ies, rather than discarding an entire multivariate data point '>*.
The adversarial model has also been incorporated into other ML
models for specific applications in psychiatric studies. For in-
stance, the discriminative and generative components were in-
corporated in LSTM to form a multitask learning approach for
fMRI-based classification, which resulted in an improved diag-
nosis of ASD compared with the standard LSTM '>°. By inte-
grating GANs with group ICA, a functional connectivity-based
deep learning model was developed for the diagnosis of MDD
and schizophrenia '*. Specifically, the generator with fake con-
nectivity was trained to match the discriminator with real con-
nectivity in the intermediate layers, whereas a new objective
loss was determined for the generator to improve the diagno-
sis accuracy. More recently, a confounder-free deep learning
framework was designed by incorporating the concept of GAN
into the model training®®. This end-to-end approach is capable
of simultaneously learning informative features and controlling
for confounder effects to improve model performance.

The strength of deep learning algorithms is that they can
learn complex predictor-response mappings, but the power also
comes at the cost of requiring a very large sample size for model
optimization. This poses potential overfitting and interpretabil-
ity challenges in psychiatric applications°.

3.5. Key ML Concepts for Precision Psychiatry

Regardless of the ML paradigms in psychiatric applications,
there are some common themes that distinguish human intel-
ligence from automated or human-in-the-loop machine intelli-
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Figure 3: Concepts and major findings in case studies 1 and 2. (A) Illustration of the sparse EEG latent space regression (SELSER) framework in Case Study 1 for
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distinguishable by rs-fMRI connectivity patterns derived from an RVM-based classifier (© Springer Nature, figures are modified from3® with permission).

gence. In a recently published white paper “Machine intelli-
gence for healthcare”, four important features are emphasized
for ML systems '8, These concepts are broadly applicable to
precision psychiatry 1.

o Trustworthiness: the ability to access the validity and re-
liability of an ML-derived output across varying inputs and
environments. In other words, psychiatrists need to be able
to evaluate the limitations of an ML system and confidently
apply system-derived information for psychiatric evaluation.

e Explainability: the ability to understand and evaluate the
internal mechanism of a machine. The development of ML
systems will need to account for data quality, quality metrics
for the system’s functioning and impact, standards for appli-
cations in the environment, and future updates to the system.

o Usability: the extent to which an ML system can be used
to achieve specified goals with effectiveness, efficiency, and
patient satisfaction in multiple environments. These applica-
tions need to be scalable across multiple settings while pre-
venting additional burdens on providers and patients.

e Transparency and Fairness: the right to know and under-
stand the aspects of an input that could influence outputs

(clinical decision support) from the system. Such factors
should be available to the people who use, regulate, and are
affected by any type of care decision that employs the ML
system. The potential bias in the data or the system needs to
be identified and informed prior to decision making.

The first two features are related to interpretability, which we
will discuss in more detail in Section 7. The other two features
will be discussed in Section 9.

3.6. Case Studies

To help the reader get a concrete idea of the reviewed
ML techniques in psychiatric applications, here we present
several case studies to illustrate the strengths in predic-
tion/classification diagnosis analytics. These representative
case studies employ different ML strategies and cover different
data modalities, including rs-EEG, task fMRI, and ECoG.

Case Study 1: Sparse latent space learning for EEG-
based treatment prediction in depression. Antidepressants have
shown only modest superiority over placebo, which is partly be-
cause the clinical diagnosis of MDD encompasses biologically
heterogeneous conditions that relate differentially to treatment
outcomes. It is important to develop a robust neurobiological
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(Figures were adapted from '>” with permission).

signature for an antidepressant-responsive phenotype that deter-
mines which patients will benefit from medications. To address
the challenge, Wu et al.”® developed a sparse EEG latent space
regression (SELSER) model to predict the treatment outcome.
Specifically, SELSER optimizes the spatial filters and regres-
sion weights in conjunction under a convex optimization frame-
work, and identifies an antidepressant-responsive EEG signa-
ture for MDD (Figure 3A). The identified signature accurately
predicts antidepressant outcomes (n = 228). A neurophysi-
ologically interpretable cortical pattern was further observed
through a source mapping from the scalp spatial pattern, mainly
contributed by the right parietal-occipital regions and the lateral
prefrontal regions (Figure 3B). The validation on an indepen-
dent cohort showed that the treatment outcomes predicted by
the brain signature are significantly higher in a partial respon-
der group versus a treatment-resistant group, demonstrating its
further clinical utility in the broader construct of treatment re-
sistance in depression.

Case Study 2: Unsupervised learning-based identification of
neurophysiological subtypes in psychiatric disorders. Neuro-
biological heterogeneity has a substantial impact on treatment
outcome independent of pre-treatment clinical symptoms. For
example, although psychotherapy is currently the most effec-
tive treatment for PTSD, many patients are nonetheless non-
responsive and display differences in brain function relative to
responsive patients. Using sparse K-means clustering, Zhang
et al.?® developed a data-driven framework to achieve simulta-
neous feature selection and subtyping on the high-dimensional
power envelope connectivity of rs-EEG source-reconstructed
signals. This approach successfully identified two transdiag-
nostic subtypes with distinct functional connectivity patterns in

10

PTSD and MDD (n = 648), prominently within the frontopari-
etal control network and default mode network (Figure 3C). Im-
portantly, linear mixed models in an intent-to-treat analysis on
symptom severity revealed that the two subtypes differentially
responded to psychotherapy and antidepressant versus placebo.
An RVM-based classification analysis further confirmed that
the EEG connectivity-driven subtypes were distinguishable us-
ing rs-fMRI connectivity. The discriminative pattern identified
from fMRI was also consistent with the EEG connectivity pat-
tern (Figure 3D).

Case Study 3: Classification of anxious vs. non-anxious
brains from fear extinction learning task-based fMRI. Using
a neuroimaging cohort study (n = 304 adults, 92 anxiety pa-
tients, 74 trauma-exposed individuals, 138 matched controls),
Wen et al.'>7 examined how the fMRI activations of 10 brain
regions that were commonly activated during fear condition-
ing and extinction (Figure 4A) might distinguish anxious or
trauma-exposed brains from controls. They proposed a CNN
classifier (Figure 4B) to map fear-induced fMRI activities in
space and time to a prediction probability score indicating that
the subject belongs to the anxious group. The CNN achieved
an AUC of 0.84 +0.01, 0.75 £ 0.03 sensitivity, and 0.77 + 0.02
specificity in 5-fold cross-validation (Figure 4C), outperform-
ing other ML methods (e.g., SVM and random forest). The
prediction score was also found to correlate with the anxiety
sensitivity index (ASI) in the control group (Figure 4D). Fur-
thermore, control analyses were performed to demonstrate the
specificity of the fear network in discrimination (Figure 4E).

Case Study 4: Decoding mood state from multi-site intracra-
nial brain activity. From intracranial ECoG signals and simulta-
neously collected self-reported mood state measurements over
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multiple days in seven epilepsy patients, Sani et al.!> devel-
oped a dynamic state-space model (SSM) framework to track
the patients’ mood state variations over time (Figure 5A). The
modeling framework consists of unsupervised and supervised
learning components (Figure 5B). The spectro-spatial features
were extracted from the mood-predictive network within the
limbic brain region. The neural decoders were also highly pre-
dictive of the immediate mood scaler (IMS) points at the pop-
ulation level. Furthermore, the same trained decoder could be
used for mood state prediction across hours and days, and gen-
eralized across a wide range of IMS. In cross validation, the
decoders could predict IMS variations that covered 73% and
33 + 7.2% of the total possible IMS range across all seven sub-
jects and within individuals, respectively (Figure 5C). These
results suggest that ML-based decoders can predict mood state
variations from brain activity across multiple days of recordings
in patients.
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4. ML-powered Technologies for Psychiatry

ML can be applied to a wide range of digital platforms, in-
cluding software (e.g., mobile apps), hardware (e.g., wearable
devices, robots), social services (e.g., online chatbots) and clini-
cal practice (e.g., EHRs). In this section, we will review various
ML-powered technologies in the non-neuroimaging domains
and highlight the emerging digital platforms for precision psy-
chiatry.

A recent McKinsey study showed that use of telehealth has
increased by 38-fold as compared to the pre-COVID base-
line '%0. With a steep increase in teletherapy demand and con-
sumption, many companies (such as Talkspace and Headspace
Health) provide services that include chat-based conversations
with licensed mental health professionals. The definition of
teletherapy today has expanded to include these newer modali-
ties of care delivery. These advances in care delivery have en-
abled collecting massive amounts of text, audio and video data
on a regular basis, which was previously only available in con-
trolled research settings. Furthermore, the recent advancements
of natural language processing, speech, and video analysis tech-
nologies, combined with the ML tools, have generated numer-
ous innovations in this emerging field. The global psychiatrist
community is increasingly aware of these developments. For
example, a recent survey among more than 700 psychiatrists
showed that 49% believed that in the next 5-10 years, ML tech-
nology will help analyze patient information to establish prog-
nosis and 54% believed that this technology can help synthesize
patient information to reach a diagnosis'!.

ML can be applied across all stages of a patient’s jour-
ney '°1192: risk assessment, diagnosis, prognosis, treatment,
and relapse in a variety of disorders '3, where the analysis can
be applied to natural language, speech, facial expressions, body
language, social media, as well as traditional clinical surveys
and neuroimaging data'®!%*. Table 3 summarizes recent rep-
resentative studies that use ML to support various stages of
patient journey. Applying ML can build personalized models
that are optimized for each patient’, as opposed to traditional
models that are only optimized for group effects. Furthermore,
given the inter and intra-disorder variability between clinical di-
agnosis and symptoms, ML methods such as multi-task learn-
ing can be used to model differential diagnoses between disease
categories. All of these mentioned ML applications can be con-
sidered to be the first level of precision psychiatry.

However, the amount of precision that can be modeled us-
ing ML is far beyond the first level ">, During psychiatric
evaluation, psychiatrists may try to build a mental model of
what is going on in the patient’s life in about 30 minutes. They
aim to understand as much as possible about the patient’s his-
tory within a short time, define what “normal” looks like for
the patient, and identify deviations from the normal. This is
often done by asking questions to the patient and examining
their speech, body language, and behavioral responses. It is
very challenging and nearly unrealistic to expect psychiatrists
to build an accurate baseline model of the patient’s entire life
within such a short time span while interacting with the patient
in a compromised psychological state. ML can help by build-
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ing baseline models specific to each patient before their visit
and present the bounds for various observations as a reference
to psychiatrists during the exam '%7. This can be viewed as the
second level of precision psychiatry (Figure 6A). Take MDD as
an example, Figure 6B shows how ML can be applied at differ-
ent stages of a patient’s journey.

In the following subsections, we describe how ML can be
applied to clinically relevant data and to support one or more
stages of the patient’s journey.

4.1. Mobile and Sensing Technologies

The development of smartphones, smart watches and other
wearable sensing devices have enabled us to access more in-
formation about our physical and mental health than ever'3*.
Specifically, several types of signals are relevant for mental
health monitoring and assessment (Figure 7A):

e Behavioral and physical signals: location (e.g., GPS coordi-
nates), mobility (e.g., accelerometer)

e Multimedia signals: face expression, speech patterns

e Social signals: social interactions (e.g., call and text message
logs), communication patterns, engagement, online gaming

e Physiological signals: skin conductance, hear rate variability
(HRV), eye movement, electrodermal activity (EDA)

e Sleep activity: sleep duration, sleep staging, phone on/off
status

These signals have different implications and relevance to
mental illnesses. Although a single signal may not be in-
dicative of a mental disorder, combination of these physi-
cal/physiological/social cues may reveal important clues of in-
dividual mental health. In what follows, we will focus on the
analysis of multimedia, language, and social media data for de-
velopment of their mental health applications.
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4.2. Speech and Video Analyses

To date, voice and visual (video of facial expressions and
body language behaviors) data have gained increasing atten-
tion in the studies of mental disorders. ML technologies using
speech samples obtained from the clinic or accessed remotely
may help identify biomarkers to improve diagnosis and treat-
ment. Since the early days of practice, psychologists have al-
ready used auditory and visual cues to assist the diagnosis of
mental illnesses '®°. Furthermore, speech and video are not only
readily available in traditional teletherapy settings, but are also
easily interpretable as the most natural form of human commu-
nication.

Audio and speech features. Acoustic features derived from
audio data have been found to be relevant in many mental disor-
ders 78186 including speech analysis for patients with depres-
sion, bipolar, and schizophrenia. Table 4 lists some commonly
used acoustic features in the analysis of mental illnesses '8”.
These categories have enabled standardization and interpreta-
tion of ML-analyzed speech data in clinical applications.

Models built from speech-based features may be effective in
predicting the diagnosis of depression and suicidality '3¢. Ap-
plications for depression include predicting the presence, sever-
ity, and score 9176, These models use prosodic, spectral or
other features computed from raw speech data to quantify flat-
tered speech, slow speech and other relevant markers. The tar-
get outcome variable is derived from a clinically valid scale
such as a patient health questionnaire (PHQ-9). Furthermore,
models for suicidality that explore similar features have been
used in multi-class settings to differentiate among healthy, de-
pressed, and suicidal speech.

One key challenge in applying speech-based models in clin-
ical practice is the lack of longitudinal data validation in real-
world settings. However, this issue is starting to get addressed
in recent studies ¥, which detect manic and depressive speech
from recordings of outgoing calls from phone conversations
of consenting participants. Another challenge is the lack of



Table 3: Representative ML applications of multimedia data in mental disorders.

Study Data source(s) Patient journey stage ML approach Test sample size
Depression spectrum

168 Audio - clinical interviews Diagnosis CNN ensemble 47 speakers

169 Audio - answers to personal questions Diagnosis Transfer learning 3078 speakers

170 Audio - clinical interviews Diagnosis SVM w/ speech landmark features 47 speakers

171 Face video -reading & personal questions Diagnosis CNN 50 videos

172 Gait-only video - casual walking in a corridor ~ Diagnosis LSTM+CNN weighted fusion 40 videos

173 Language - answers to personal questions Diagnosis LSTM fine-tuned w/ health forum data 2425 subjects

174 Language - Facebook posts Risk assessment Logistic regression 68 patients

175 Audio, video - clinical interviews Diagnosis Transformer + multimodal fusion 56 subjects

Bipolar spectrum

176 Audio - verbal fluency tasks Relapse SVM 56 subjects
177 Sensor - GPS Diagnosis Linear regression 36 subjects
PTSD
78 Audio - clinical interviews Diagnosis Random forest 43 veterans
179 Audio, video, skin conductance Relapse SVM 110 subjects
Schizophrenia spectrum
T80 Audio - clinical interviews Diagnosis SVM 70 subjects
181 Video - neutral open-ended questions Diagnosis Logistic regression 16 subjects
182 Language - internet search queries Relapse Random forest 23 subjects
183 Audio, video - clinical interviews Diagnosis Gradient boosting 17 subjects

large labeled datasets for evaluating performance across vari-
ous methods. To this end, it is noted that companies like El-
lipsis Health '°*1%° have used deep learning and transfer learn-
ing to predict depression and anxiety scores with high accuracy
based on a large labeled dataset of over 10,000 unique speakers.
Human-level accuracy using only 20-30 seconds of audio clip
has been reported in some commercial applications to detect
depression 191192,

Visual features. Although body language and facial expres-
sions have always formed a key part of a psychiatric exam, ML
has only recently been applied to analyze such data objectively.
To date, most work has focused on suicidal ideation!®3, de-
pression 71194172 'schizophrenia ! and autism spectrum disor-
ders !>, Features derived from overall facial expression, eyes,
gait, and posture (Table 4) have been shown to be relevant
across many mental disorders.

Studies in suicidal ideation have mainly focused on using
interpretable ML for characterizing the disorder. This makes
the ML models more applicable in augmenting human care-
givers by bringing up specific insight that they would like to
measure. In depression studies, some approaches have also in-
volved fusion of video features derived from each frame that
are used to train a sequential DNN %, and some have used pre-
training to compensate a relatively small sample size of depres-
sion datasets '°7. While these models perform very well on the
same held-out test set, their clinical applications remain limited
due to a lack of interpretability. To improve interpretability, de-
pression activation maps were developed to highlight the facial
areas corresponding to the depression severity as learned by the
ML model '°®. Meanwhile, utilization of predefined features
has been most effective in providing interpretable results %197,

4.3. Natural Language Processing (NLP)

NLP techniques enable computers to analyze, understand,
and derive meaning from text and speech in a similar manner to
humans. NLP techniques can enable mental health profession-
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als to evaluate language patterns to help identify and predict
psychiatric illness (Table 4). Language is not only one of the
primary expressions of human behavior that carries a variety
of implicit and explicit markers relevant to mental health 205206,
but is also more abundantly available compared to speech data.
For example, social media platforms contain a large quantity of
real-world language data, whereas speech data are rarely avail-
able at that scale. There are two types of NLP applications
for detecting specific mental health symptoms. The first type
of applications is directly applied to the patient data, varying
from predicting the risk of suicide and early psychiatric read-
mission to identifying phenotypes and comorbidities. The sec-
ond type of applications is applied to EHR and clinical records
(tests, transcripts), which can be used for automating chart re-
views, clustering patients into phenotype subtypes, and predict-
ing patient-specific outcomes. The EHRs (including pathology
reports, lab results, clinical tests and clinical session transcripts)
are systematic collections of longitudinal, patient-centered clin-
ical records. Patients’ EHRs consist of both structured and un-
structured data. The structured data include information about a
patient’s diagnosis, medications, and laboratory test results, and
the unstructured data include information in the form of clinical
notes.

Massive EHR datasets have provided opportunities to adapt
ML approaches to track and identify target areas for quality im-
provement in mental health care. According to a 2015 national
survey, 61.3% of US psychiatrists use EHRs??7. The EHR lan-
guage is at least one level abstracted from the patient’s symp-
toms, consisting of clinical notes. However, the unique advan-
tage of EHR data is the ease with which demographic and so-
cioeconomic features can be combined with the language data.
Symptoms derived from free texts in EHRs have been used for
prediction of bipolar disorder?®!, situational aggression?’®, and
suicidal ideation?*®, with achieved comparable performance to
clinicians. Furthermore, discharge summaries from EHRs have
also been used to predict relapse?!°. Aside from symptoms, a



Table 4: Multimodal data features and their uses in mental health.

Features Example(s)

Relevant in mental disorder(s) Study

Acoustic

Source of sound features Jitter
Filtering features by vocal and nasal tracks
Spectral features of speech

Prosodic features of speech Pause duration

First resonant peak in the spectrum
Mel frequency cepstral coefficients

Increase with depression severity
increase with bipolar severity

A variety of disorders

Higher in schizophrenia

176
186
186

Video

Facial Smile duration, eyebrow movement, disgust expression Increased disgust expression in suicidal ideation 1
Eyes Gaze angle More non-mutual gazes in MDD 194
Gait Arm swing and stride Reduced arm swing in MDD 172
Posture Head pitch variance, upper body movements Reduced head movement in schizophrenia 200

Higher head movement in ASD 195

Language

Grandiosity Unrealistic sense of superiority Increased in bipolar 20T
Semantic coherence Flow of meaning Decreased in psychosis 202
Rumination Repetitive thought patterns Increased in MDD 203
Self-focus Self-referent information Increased in stress 204

variety of relevant mental health data (such as the intervention
status and physical health comorbidities) can be routinely ex-
tracted from EHRs using NLP methods?!!. Privacy concerns
around EHR data sharing remain one of the key challenges
in validating generalization of NLP methods. Encouragingly,
there has been a growing interest in using transformers for gen-
erating artificial mental health clinical notes to mitigate this is-
sue2!1212.

The advances in text-based mental health interventions (e.g.,
Talkspace and CrisisTextLine) have made transcripts of clinical
sessions easily amenable to NLP. Aside from developing mod-
els for detecting suicidal ideation?!3, NLP can also be applied
to these datasets to identify the population-level trend, such as
the increase in anxiety and decrease in quality of personal rela-
tionships during the COVID-19 pandemic?'*. Since language
data are ubiquitous, one of the NLP challenges in mental health
applications is data standardization. Depending on the task, dif-
ferent types of data may yield different levels of “signal”. For
example, to predict the first episode psychosis, language data
from clinical tests has higher performance compared to tran-
scripts of free speech?02. On the other hand, data collected from
“free-speech” samples for diagnostic purposes can be highly ef-
fective for developing a language-based depression screening
that generalizes well across various age groups !73203.190,

4.4. Social Media

To date, social media companies have collected a large
amount of language data which may contain clinically-relevant
information. This information can not only be extracted on a
population level, such as the notable rise in cognitive distortions
over time 21 but also be attributed on an individual level2°, all
of which have made social media a powerful tool to support
mental health risk assessment and diagnosis. Language from
Facebook posts, for example, has been shown to contain mark-
ers for depression. Rumination and sadness can be detected in
such data up to 6 months prior to a clinical diagnosis'7*. Mod-
els applied to Facebook and other social platforms (e.g., Twitter
and Reddit) have been successful in predicting the diagnosis of
psychosis, anorexia, anxiety, and stress levels 204217218 1 ad-
dition to the language analysis for the user posts and comments,
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ML models may also process media data such as Instagram im-
ages?!?, or integrate images and text to infer the user’s mental
state229-21°_ Entries of online search also form a complementary
and equally compelling dataset alongside social media activity.

Recent developments of transformer models, including those
learning multilingual language representations, have enabled
researchers to apply powerful NLP models to detect depression
or self-harm from social media data®?"??2, Furthermore, spe-
cialized language representations that were trained on mental
health specific conversations and became publicly available???,
have been shown to improve performance compared to non-
specific representations. Finally, an ML technique known as
transformers can assess text-responses via NLP and predict tra-
ditional subjective well-being measures approaching the theo-
retical upper limits in accuracy 2?4,

While social media solves the scale issue with millions of
samples available, most social media data lack clinically-valid
labels??®. Most reported studies have relied on using labels
from self-disclosure of mental illness, which are not only in-
accurate but also bring additional issues of defining a healthy
control. Despite the challenges, the validity of social media
data has been repeatedly proven to support mental health diag-
nosis and risk assessment.

4.5. Sensing Technologies and Mobile Mental Health

Smartphones, wearables and other devices equipped with
ambient sensors (Figure 7B) are increasingly capable of record-
ing physiological measurements that are known to affect mental
health?2%. In addition, some of the less obvious measurements
(such as keystroke usage patterns) have been shown to be impli-
cated in mental health??’-?28_ Additionally, online gaming be-
haviors, such as interaction patterns with non-player characters
(NPCs) and other game behavior patterns, can be used to mea-
sure cognitive performance and their relationship with mental
illness 22%:230,

Measurements from mobile sensors may constitute valuable
sources of mental heath data (Table 5), and can be useful at
various levels of granularity: from raw sensor data (e.g., the ac-
celerometer) to derived high-level features (such as psychomo-
tor activity). This has inspired many corporations to invent
technologies for detecting depression and cognitive decline
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Figure 7: Illustrations of ML-powered technologies for mental health. (A) ML
applications in mobile health. (B) Different types of data collection strategies
for digital measurement tools. (C) A technological infrastructure for the inte-
gration of digital measurement tools. Independent platforms for measurement
of health will have their own data repositories, depicted as clouds. This data
could be safely transferred across platforms using transfer tools such as secure
APIs (application program interfaces), depicted using dashed arrows. Such
tools could allow for both unidirectional and bidirectional movement of data.
ML can be applied to integrate all measures for clinical decision-making (pan-
els B and C are reproduced from '%* with permission).

based on data collected from their wearable devices?*!. Sensor-
based measurements are found to be correlated with high-stress
levels and a variety of ailments including depression, anxiety,
psychosis, and bipolar disorder?3??33. Since sensor-based data
are widespread and readily available, they offer an opportu-
nity to build baseline models for individual users, which can be
then used to identify significant physiological changes in users
and further inform clinical interventions. Devices that collect
various data streams from patients, such as surveys, cognitive
tests, social medial interactions, GPS coordinates, and behav-
ioral patterns (e.g., keyboard typing), have a great potential for
monitoring, managing and predicting the individual’s mental
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Table 5: Mobile sensor measurements and potential applications for mental
health monitoring.

Measurement Feature Effect in mental health
Movement Psychomotor agitation Increased in anxiety
Location Social avoidance Increased in MDD

Social activity ~ Call/text volume Reduced in MDD
Keystroke Keystroke latency Impaired in ADHD

Heart rate Heart rate variability Impaired in stress
Gaming NPC interactions Impaired in social anxiety

Table 6: Commercial and research platforms and services for mental health

applications.
Platform Primary data source Mental health appl.
WoeBot %0 Language Depression, Anxiety
Mindstrong?%’ Keystrokes Serious mental illness
Sonde Health'7° Voice Mental fitness
Ellipsis Health'®  Voice Stress
Amazon Halo?*! Voice Emotion detection
Apple Watch 2 Mobility, Sleep Depression
Alphabet Fitbit?*?  Skin conductance Stress
Kintsugi>*? Voice Depression, Anxiety
Bewie 23 Raw data from smartphone Multiple
MindDoc Language (ask daily question) Depression
Clarigent Health Voice Suicide risk

health?3*233, Overall, longitudinal quantification of these data
streams may result in clinically meaningful markers that can
be used to refine diagnostic processes, tailor treatment choices,
improve condition monitoring for actionable outcomes (such

as early signs of relapse), and develop new intervention mod-
el 236:237,238,239

4.6. Commercial and Research Platforms and Services

While studies have demonstrated promising results in ML
applications for the individual’s journey in mental health, the
broad applicability in clinical practice remains limited. Table 6
lists examples of platforms and services that use ML for mental
health applications. While most platforms focus on risk assess-
ment based on single modality, the initial commercial viability
of these platforms is still promising for the success of using
ML in mental health, because they enable a collection of large
amounts of data that can be used to further validate biomarkers.

There are between 10,000 to 20,000 smartphone apps that
digitize mindfulness or cognitive behavioral therapy (CBT)
techniques®*, allowing the user to engage in psychotherapy at
a greatly reduced price compared to in-person therapy. How-
ever, the quality is highly variable and the mechanisms used to
validate them is often dubious. Moreover, since this area is rela-
tively new, the industry and governmental standards to validate
such a technology are still in the early phase. We will briefly
outline two interrelated areas of development: digital measure-
ments and digital interventions.

Digital measurements. We are entering a new era of digital
psychiatry %243 In 2016, the Harvard professor Jukka-Pekka
Onnela coined the term digital phenotype®*®, which refers to
the use of mobile devices and other digital data sources to mea-
sure behavior and physiology for understanding brain activity
that is relevant to pathological states. These techniques uti-
lize measurement paradigms from translational neuroscience,



which were developed in laboratory settings such as direct
quantification of motor (i.e. movement, muscle activation) and
physiological activity (i.e. heart rate, electro-dermal response)
more than traditional clinical scales or self-report scales. The
advantage of this approach is that it better aligns with emerg-
ing knowledge of rapid-acting biological processes and pro-
vides high measurement accuracy through direct rapid sam-
pling, which is in contrast to traditional clinical measures that
are taken sporadically over a long period 247248249 These mea-
surement approaches have relevance in multiple areas including
treatment development, treatment selection, and ongoing mon-
itoring.

Medications that target mental health conditions have a sig-
nificant history of failure. Most psychiatric medications were
discovered capriciously rather than being developed based on
knowledge of the underlying biological mechanisms. As new
medications emerge from basic and translational neuroscience
research, both drug developers and clinicians struggle with how
to measure the effects of new treatments and how to properly
target old treatments. For example, traditional antidepressant
medications are designed to slowly titrate serotonin levels, re-
sulting in slow global effects over a 2-4 week period. Corre-
spondingly, measures of depression based on the DSM, query
about the presence of depressive states over a 2-week period.
New classes of anti-depressant such as ketamine and psilo-
cybinpsylocibin affect specific depressive symptoms in min-
utes. Further, the mechanistic effects, and thus the need for
measurement, is much more specific and granular. In fact,
most classes of anti-depressants including serotonin reuptake
inhibitors (SSRI) and psilocybinpsylocibin, and ketamine, act
on serotonin receptors that ultimately impact peripheral mo-
tor and physiological activity>%>!, Serotonin regulation will
likely have a direct effect on depression symptoms such as psy-
chomotor retardation, but the direct effect on feelings of guilt
is minimal. As such, methods used to directly measure motor
output have a higher likelihood of capturing both pathology and
treatment effects.

As an example, research effort has been dedicated to using
computer vision and voice to directly quantify motor activity.
Some recent work has demonstrated that digital phenotyping
parameters that reflect gross motor activity including speech
characteristics (rate of speech, tone) and facial/head movements
are associated with suicidal risk 22, SSRI response in MDD 253
negative symptomatology in schizophrenia®®, and Parkinso-
nian tremor?>*. Such approaches are now being commercial-
ized for all phases of drug development from proof-of-concept
to direct measurement in order to make decisions about ongo-
ing treatment needs. Such measures solve many of the current
problems in clinical measurement since they can be captured
remotely in an automated way. These measures can also be
captured at a much higher frequency and provide a sensitive
numeric value.

Meanwhile, these new approaches to measurement have sig-
nificant challenges. First, methods that are adapted from the
laboratory often lack the tight experimental control necessary
to interpret the data correctly. For example, a rapid change
in physiological responses (such as adrenaline and cortisol, or
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heart rate variability) can indicate stress, but also exercise or
other forms of exertion. Second, while the scientific basis of
these measurement paradigms may be sound, commercial ap-
proaches are rarely validated to the extent required to be of
clinical utility, or they are rarely sufficiently transparent in their
approach to be used for regulatory approval.

Digital interventions. The other rapidly emerging area of
mental health technology are digital approaches to clinical care.
We will briefly outline some of the leading approaches. Im-
portantly, digital approaches to clinical care are often aligned
with a digital measurement approach as these approaches are
”blind” without some sort of remote data. A number of com-
panies such as Mindstrong Health??’, TesoTrigger Health?>>,
and Headspace Health?®2%7 have attempted to integrate dig-
ital phenotyping to identify when patients are in acute clinical
need. However, it is unclear how accurate these methods are as
they are typically unpublished. This has led to the development
of models that can identify patterns in patient’s and clinician’s
language that are markers of improved outcomes>*%; these can
be further used to measure success of various therapy modali-
ties, treatment design, as well as to improve care quality >>°.

Digital therapeutics proposes the use of mobile devices to
offer CBT, mindfulness, or other validated psychotherapy in an
automated fashion. These app-based approaches undergo the
same clinical validation process as traditional medications, and
are often developed in collaboration with large drug develop-
ers. Examples that are in development or have received FDA
(Food and Drug Administration) approval include treatments
for SUD, ADHD, schizophrenia, ASD, MDD, PTSD, and gen-
eralized anxiety disorder (GAD)?°.

While digital therapeutics attempt to scale treatment, tele-
health aims to scale the treatment provider network. Mental
health treatment is an area where there are many effective treat-
ments but little access to treatment providers?®'. The issue of
access became most acute during the emergence of COVID-
19 when significant wide-spread mental health needs emerged
along with greatly decreased access to care. To address this
need, a large array of options have emerged, many reinforced by
the emergency COVID-19 Telehealth Act of 2021 that enabled
remote patient care?®?. These services, which are directly ac-
cessible to consumers, or more often, provided by a third-party
payer, provide access to professionals based on different mobile
platforms including text, voice, and video communication. Ser-
vices vary from mental health coaching provided by certified
professionals to mental health assessment provided by psychi-
atrists and psychologists. While still in their infancy, early ev-
idence has shown that telehealth services can perform at parity
with traditional in-person therapy 2%3.

Limitations. Although digital measurements have been
rapidly adopted in mental health applications, most of cur-
rent commercial Al applications for mental health have not
focused on neuroimaging data. This partially because of sev-
eral reasons. First, the data acquisition, quality, privacy and
security issues have not been sufficiently or satisfactorily ad-
dressed (see Discussion section), creating a gap between com-
mercial and laboratory settings. Second, the scalability of real-
time neuroimaging technology (such as EEG) are not yet quite



ready. Third, the lack of an automatic and efficient (e.g., cloud-
based) ML-powered neuroimaging data analysis pipeline also
creates a barrier for brain-state monitoring. Future integration
of portable EEG recordings and ML-powered platforms would
expand the horizon of mobile mental health and teletherapy.

5. Multimodal Data fusion in Diagnostic Analytics

A central goal of precision psychiatry is to integrate all clini-
cal, physiological, neuroimaging, and behavioral data to derive
reliable individualized diagnosis and therapeutics. Importantly,
health related data are produced daily, especially from personal
devices. The most essential effort in multimodal data analysis
tasks is to explore the relationship between modalities, com-
plementarity, shared versus modality-specific information and
other mutual properties. Multimodal data fusion techniques
present a framework to infer information how different data
modalities interact and can be integrated for improved disease
prediction 264.265.34 ' 1p this section, we will review several data
fusion methods in diagnostic analytics (Section 5.1). We will
focus on multimodal neuroimaging data (Section 5.2), and then
extend the discussion to other modalities including vocal and
visual expression data (Section 5.3).

5.1. Popular ML Methods for Multimodal Fusion

In the past decades, numerous research efforts have been ded-
icated to developing powerful ML methods for multimodal data
fusion266:267,34268.269 " §ome commonly used approaches are
summarized below.

Multivariate Correlation Analysis. Canonical correla-
tion analysis (CCA) is a standard statistical method based on
second-order statistics for data fusion. It aims at finding a pair
of linear transformations to drive latent variables (aka. canoni-
cal variates) that have maximized correlation between two dif-
ferent data modalities?’°. For a more general setting, multi-
set/multiway CCA (mCCA) has been developed as an extension
of the standard CCA to multimodal fusion by maximizing the
overall correlation among latent variables from more than two
sets of modalities?’!34, Similar to CCA, partial least squares
(PLS) and its extensions, i.e., multiway PLS (N-PLS), provide
alternative approaches to integrate multimodal data by maxi-
mizing the covariance between latent variables from different
modalities 272273,

Matrix and Tensor Factorization. Based on matrix and ten-
sor factorization techniques, joint blind source separation (BSS)
approaches have been developed and successfully applied to
multimodal fusion of biomedical data?’+?7. As a typical ex-
ample, joint independent component analysis (GICA) aims to
maximize the independence among jointly estimated compo-
nents from multiple modalities that are assumed to share the
same mixing matrix 2’3, The jICA approach involves concate-
nating modality features alongside each other and then per-
forming ICA on the composite feature matrix?’®. Indepen-
dent vector analysis (IVA) is another extension of ICA to mul-
tiple datasets. IVA makes use of dependence across datasets
by defining source component vectors concatenating a specific
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source estimated from multiple modalities 2”256, Coupled ma-
trix and tensor factorization (CMTF) was also developed to si-
multaneously factorize multiple datasets in the form of matrices
and high-orders tensors using tensor decomposition?’”, show-
ing strength in capturing the potential multilinear structure for
multimodal fusion. Besides extracting shared common compo-
nents, some multimodal fusion tasks are also interested in deriv-
ing individual components that are modality-specific. Common
and individual feature analysis (CIFA)2’® and joint and individ-
ual variation explained (JTVE)2” models have been proposed
to achieve this goal. By jointly decomposing multiple feature
matrices, CIFA and JIVE are able to simultaneously estimate
common and individual feature subspaces. A further extension
of CIFA has been achieved by leveraging high-order tensor fac-
torization?’*, which provides an efficient way to perform a mul-
tidimensional fusion of multiple data modalities.
Multi-Kernel Learning. Multi-kernel learning (MKL) has
won many successful applications in multimodal data fusion
due to the full utilization of multiple kernels that enable simul-
taneous learning from various modalities with heterogeneous
data?8028! Different kernels naturally correspond to different
modalities, such as neuroimaging, clinical, behavior, speech
features, etc., which may provide complementary information
to drive improved modal learning performance. The MKL
problem can be set as a linear combination of kernel matrices
or a nonlinear function with specified forms of regularization.
MKL may be designed under different ML models including
SVM, Gaussian process, and clustering. Among them, MKL-
SVM has been most popularly applied to integrate heteroge-
neous data modalities in studies of mental health 282:283,284,
Deep Learning-based Fusion. Cutting-edge deep learning
techniques have become increasingly popular for deep multi-
modal fusion?®. Data fusion through deep learning allows inte-
gration of multiple modalities based on learned high-level fea-
ture representations that are theoretically more comparable to
each other and more informative for predicting the targets 5.
By exploiting cross-modal manifolds as a feature graph, a deep
manifold-regularized learning model was recently designed to
integrate transcriptomics and electrophysiology data from neu-
ronal cells, and yield promising performance for phenotype pre-
diction?®’. Graph neural networks (GNNs) show capability in
information fusion for multimodal causability by defining ca-
sual links between features with graph structures, thereby en-
hancing the explainability of the derived multimodal feature
representation?%®, By extending GNNs to multimodal struc-
tures, deep representation approaches have also been designed

for integrating brain networks constructed from diverse modal-
ities 289-290201

5.2. Multimodal Neuroimaging Studies

Neuroimaging data types are intrinsically dissimilar in na-
ture, having different spatial and temporal resolutions?®®. In-
stead of feeding the entire data set into a combined analy-
sis, an alternate approach is to reduce each modality to low-
dimensional (latent) features of selected brain activity or struc-
ture and then explore associations across these feature sets
through variations across individuals. Exploiting such latent
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Figure 8: Summary of typical approaches for multimodal data fusion in psychi-
atry studies.

Multimodal Fusion
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feature representations from multiple neuroimaging modali-
ties for diagnosis has generally shown to improve performance
compared to using a single modality alone?®>. Multimodal
fusion allows for integration of neuroimaging data modalities
from different scales of spatial and temporal resolutions. Com-
bining multimodal neuroimaging offers an elegant way to ex-
ploit complementary information for more accurate and robust
characterization of brain dysfunctions, and hence is instrumen-
tal in optimal decisions for diagnosis, prognosis, and treatment
in psychiatry.

A combination of mCCA and jICA was successfully applied
to fMRI and DTI fusion in the diagnosis of schizophrenia and
bipolar disorder?”>. CMTF has been applied to identify diag-
nostic biomarkers of schizophrenia by integrating sMRI, fMRI,
and EEG?**, MKL-SVM has been successfully applied to in-
tegrate multimodal structural neuroimaging for predicting dif-
ferential diagnosis between bipolar and unipolar depression %3
and to combine sMRI and fMRI for improved classification of
trauma survivors with and without PTSD?%. More recently, it
also showed efficacy in the diagnosis of early adolescent ADHD
by integrating sSMRI, fMRI, and DTI?’. In learning low-
dimensional representations of fMRI and SMRI?*3 the fMRI
can be split into several independent component networks, each
treated as a separate modality along with the structural scan for
learning using autoencoders. Furthermore, MKL methods have
been used for diagnosing schizophrenia by combining mark-
ers from MRI and DTI?®. A multimodal graph convolutional
network (GCN) was designed to integrate functional and struc-
tural connectomics data for an improved prediction of pheno-
typic characterizations in ASD?%. By combining multiple typi-
cal neural network structures, multimodal deep learning models
have also been developed to effectively integrate fMRI connec-
tivity and sMRI features3%, and also genomic data"! for dis-
covering schizophrenia-associated brain dysfunction. Methods
for learning joint representations from neuroimaging and non-
neuroimaging data are still in early development3°?, and there
is an opportunity for ML methods to evolve for this task. For
example, transformer networks with late fusion can be used to
learn joint representations from various modalities such as EEG
and eye movement signals3%3.

5.3. Multimodal Fusion of Non-imaging Data

Multimodal approaches consist of combining data from var-
ious sources to jointly arrive at an answer. Given how little
is conclusively known about which type of data, neuroimaging,
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behaviors in mental illnesses. (B) Combining ML with novel molecular biol-
ogy technologies (for deep molecular phenotyping of brain plasticity) creates
opportunities to develop new mechanistic models for prevention and treatment
of clinical endophenotypes of mood and cognitive disorders.

social media, speech, video, and sensor data carry the most phe-
notypes for mental illnesses. Naturally, it makes sense to com-
bine the information from these data sources. In addition, this
enables modeling the inter-dependencies between these data
which may not be observable by a human expert at the same
time. For example, many features listed in Table 4 are known
to be relevant in depression; however, observing them simulta-
neously can be very challenging for a clinician. MKL and MTL
methods have been used to jointly learn from sensor and smart-
phone usage data to predict subjective well-being3**. The suc-
cess of transformer networks in jointly modeling video, speech,
and language data has catalyzed multimodal modeling in men-
tal health 3%, Multimodal modeling techniques can also be used
in characterizing symptoms such as emotion dysregulation3%,
loneliness %7 and sentiment analysis®%. In a prognostic study,
an SVM-based multimodal ML approach was developed to in-
tegrate clinical, neurocognitive, neuroimaging, and genetic in-
formation to predict psychosis in patients with clinical high-risk
states3*. Deep autoencoder-based fusion approaches have been
designed to integrate dynamics of facial and head movement
and vocalization, and successfully applied to the prediction of
depression severity 3.

6. ML for Molecular Phenotyping in Psychiatry

Molecular phenotyping is referred to as the technique of
quantifying pathway reporter genes (i.e. pre-selected genes that
are modulated specifically by metabolic and signaling path-
ways) in order to infer activity of these pathways. Mapping
genes and genomics to behaviors can identify risk factors and
biomarkers in mental disorders. The brain is the central or-
gan exposed to stressors and external behavioral interventions,



and is therefore vulnerable subject to changes in multiple in-
teracting biological networks at the systems level. ML meth-
ods may play an active role in capturing the complexities of
interacting variables within and across multiple levels (Fig-
ure 9A). For instance, at the molecular level, ML may help
identify mechanistic-based phenotyping models as new targets
for prevention and treatment of mood and cognitive disorders.
The advent of unbiased next-generation sequencing (NGS) has
prompted the development of bioinformatics and ML tools to
profile and decode large molecular datasets (e.g., transcrip-
tomics, epigenomics, metabolomics) at the genome-wide level
in health and disease states (Figure 9B). To date, increasing
applications of ML methods have integrated these multi-level
molecular datasets with clinical characteristics to map spe-
cific neurobiological substrates into the complexity of symptom
clusters, which may further help the classification of diseases,
prediction of treatment outcomes, and selection of personalized
treatment.

Animal models have been playing a vital role in precision
psychiatry for understanding disease mechanisms and predict-
ing treatment responses %311, Gene expression studies that in-
tegrate neuroscience, ML and bioinformatics approaches can
contribute to advancing understanding of the molecular basis
of MDD, and bridge the knowledge gap between animals and
humans. Using RNA sequencing assays and gene coexpres-
sion network analyses (based on hierarchical clustering to iden-
tify gene modules), differential gene expression profiles have
been shown across six key brain regions in post-mortem tis-
sues of MDD patients as compared to age and sex-matched
controls, along with remarkable sex differences in these molec-
ular pathways3'2. Recent work using RNA-sequencing as-
says at single nucleus resolution (SnRNA-seq) and t-distributed
stochastic neighbor embedding (t-SNE) analyses showed cell-
type specific transcriptomic profiles in the post-mortem dorso-
lateral prefrontal cortex (PFC) that are differentially regulated
in MDD cases®'3. TImportantly, these gene expression stud-
ies in humans were supported by findings in rodents showing
a brain that continually changes with experience’!*. Several
studies based on RNA-sequencing assays and bioinformatic
analyses have showed striking transcriptomic differences in the
ventral and dorsal hippocampus in the responses to stress—a
primary risk factor for multiple psychiatric diseases—with the
ventral hippocampus being sensitive not only to the effects of
stress31 but also a target for the responses to next-generation
anti-depressants 3'6-317,

The expansion of NGS to single-cell resolution assays pro-
vides opportunities for advanced bioinformatics and ML ap-
proaches to analyze large datasets, which include denoising
and dimensionality reduction, cell-type classification, gene
regulatory network inference, and multimodal data integra-
tion31831°_ For instance, the software toolkit for single cell ge-
nomics, Seurat (https://satijalab.org/seurat/), com-
bines unsupervised nonlinear dimensionality reduction, K-
nearest neighbor graph analysis for cell-type clustering, and
weighted nearest neighbor analysis for multimodal data inte-
gration*?°. Deep learning approaches, such as the deep autoen-
coder, provide analytic tools for denoising and dimensionality
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reduction *2!-322323_ Autoencoders can also be used in a super-
vised manner for transfer learning across datasets, such as to
learn the embedding from a larger previously-annotated dataset
and transfer this knowledge to cluster new datasets32*. The
combination of multimodal data generated from the simultane-
ous assessment of transcriptomic profiles with regulatory land-
scape or spatial location in the same single cell 32%-326:327:328 i
allow a deeper molecular characterization of discrete cellular
states 320,

Integration of multidimensional factors for new mecha-
nistic treatment models. It has been increasingly recognized
that mood and cognitive disorders are unlikely to be only con-
tributed by the brain. Instead, growing evidence has suggested
that they are system-level disorders affecting multiple interact-
ing biological pathways3??, involving the dynamic cross-talk
between the brain and the body. Using hierarchical clustering to
integrate in-vivo molecular measures of brain metabolism with
clinical symptoms in MDD patients, recent work has showed
that the specific neurobiological substrates map into discrete
clinical symptoms, including anhedonia®*’. Furthermore, the
integration of multidimensional factors spanning mitochondrial
metabolism, cellular aging, metabolic function, and childhood
trauma may provide more detailed signatures than individual
factors to predict longitudinal changes in depression severity in
response to the metabolic agents used as anti-depressant treat-
ment33!. Furthermore, deployment of multi-omics approaches
and a random forest classifier has achieved 85% sensitivity and
77% specificity in prediction of the PTSD status. This system-
level diagnostic panel of multiple molecular and physiological
measures outperformed separate panels composed of each indi-
vidual data type, showing certain mitochondrial metabolites as
the most important predictors 332333,

Another example of ML applications include the integra-
tion of multidimensional phenotypic measures to identify those
mechanisms that predispose apparently healthy individuals to
develop maladaptive coping strategies from those that confer
resilience. A recent study has used a high-throughput unbi-
ased automated phenotyping platform to collects more than
2000 behavioral features and applied supervised ML to mini-
mize Bayesian misclassification probability. The results have
demonstrated that such a rich set of behavioral alterations can
distinguish susceptible versus resilient phenotypes after expo-
sure to social defeat stress (SDS) in rodents33*33. Further-
more, the ML classifier may integrate a priori constructs (such
as the measures of anxiety and immune system function), and
predict whether a given animal developed SDS-induced social
withdrawal or remain resilient. Additionally, integration of fea-
tures can improve the classification sensitivity (~80%), which
is better than the performance derived from either individual
measure alone 3.

The development of personalized psychiatry strategies for di-
agnosis and treatment will benefit from meeting the demand
enforced by the recent advent of molecular biology protocols,
which may provide opportunities to capture CNS nanovesi-
cles (known as exosomes) and examine specific neurobiological
substrates (e.g., transcriptomic profiles). ML-based dynamic
network analyses will also enable us to link brain molecular tar-
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Figure 10: (A) A wide spectrum of interpretability in representa-
tive ML models.  (B) Schematic of the closed loop of neuroimag-
ing/modeling/neurostimulation.

gets and signaling pathways with other levels of analyses, and
to incorporate the brain-body relationship to redefine thinking
about the mechanisms throughout the complex disease course.

7. Explainable AI in Psychiatry

Explainable Artificial Intelligence (XAI) aims to provide
strong predictive values along with a mechanistic understand-
ing of Al by combining ML techniques with effective ex-
planatory techniques. XAI has found emergent applications
in medicine, finance, economy, security, and defense 337338 1
psychiatry, XAI can help clarify the link between neural cir-
cuits and behavior, and improve our understanding of therapeu-
tic strategies to enhance cognitive, affective, and social func-
tions 339340, XAI distinguishes the standard Al in two impor-
tant ways: (i) promote transparency, interpretability, and gener-
alizability; (ii) transform classical “black box” ML models into
“glass box” models, while achieving comparable or improved
performance. From the diagnosis or prognosis perspective, it is
crucial to know whether the ML solutions are explainable to the
point of providing mechanistic insights into the way brains ex-
ecute a particular function or complex behaviors. For instance,
an ML-produced classification function to predict a disease out-
come would need to not only report a probability outcome but
also address additional questions for the end-user: why is this
outcome instead of the alternative? How reliable is the out-
come? When will it fail if something is missing or misrepre-
sented? When and why is the prediction wrong? Accordingly,
a model with high interpretability is often accompanied with
parameter/structure/connectivity constraints or some prior do-
main knowledge. These explainable models can be continu-
ously adapted such that an iterative process may be required to
force ML methods to fit models with specific interpretations.
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7.1. Interpretability and Interpretable ML Models

A model is interpretable if its outcome and operation that
leads to the outcome can be understood by human users. In
terms of taxonomy, intrinsic interpretability of ML models is
attributed to their simple structures, such as short decision trees
or sparse linear models (Figure 10A). Post-hoc interpretabil-
ity is referred to the application of interpretation methods after
model training#! (online resource: https://christophm.
github.io/interpretable-ml-book/). Interpretation may
appear in different forms: (i) finite feature summary statistics,
(i1) meaningful model parameters, (iii) easy visualization of the
model outcome (e.g., feature summary or decision boundary).
Interpetabilty and explainability are two similar concepts and
sometimes used interchangeably. Interpretability often, but not
always implies explainability. A model is highly explainable if
it shares at least one of the following properties of explainabil-
ity3#!: high portability (regarding the range where the model
can be applied), high expressive power (regarding the model
strength in explaining the outcome), low translucency (regard-
ing the model dependency on specific conditions), low algorith-
mic complexity, and informative constraints. Generally, there is
a trade-off between model explainability and performance. For
instance, a constrained linear or bilinear model may fit many of
these criteria, but the linear model does not warrant a good per-
formance. Additionally, a model that is potentially explainable
does not guarantee explainability. For example, co-dependence
of input variables may make explanations ambiguous; latent
variables of probabilistic generative models may face the prob-
lem of “explaining away” 342, Here we briefly mention several
classes of interpretable ML models.

Hybrid rule-based ML models: This type of ML mod-
els can be used for generating rules, such as a deci-
sion rule set: IF (condition) THEN (outcome 1) ELSE
(outcome 2) statement, where the conditional clause will
be learned from data*3. This type of model has more expres-
sive power but less portability.

Constrained ML models: This type of ML models imposes
parameter constraints to avoid overfitting and enhance inter-
pretability. Examples of such include the constrained convo-
lutional filters in the CNN model**, or constrained mixture
models used for clustering3*. As a result, these constrained
models have low translucency.

Feedback ML models: ML models can be provided with
user feedback in the human-in-the-loop system, where the user
feedback is treated as a constraint in the optimization prob-
lem346-347 The feedback may appear as a form of rule sets that
are either known or unknown in advance. Feedback can also
help interpolate missing data and constrain the solution. Iter-
ating feedback-rule optimization steps can generate more accu-
rate rule sets. This type of model has good expressive power
and high portability.

7.2. Circuit-Level Modeling for Computational Psychiatry

Rooted in ML, computational psychiatry shares a similar
goal with XAI and tries to combine multiple levels and types
of computation with behavioral and neuroimaging data in an



effort to improve understanding, prediction and treatment of
mental illness3*8. The levels of computation range from short
to long timescales (minutes/hours/days/weeks) and focus on the
changes in brain activity and behavior. The types of compu-
tation vary from circuit-level modeling, data-driven analytics,
to theory-driven algorithmic development. Two complemen-
tary approaches have been proposed in computational psychi-
atry: (i) data-driven approaches, which apply ML methods to
high-dimensional multimodal data to tackle classification and
prediction problems (Section 3); (ii) theory-driven approaches
(such as reinforcement learning), which develop algorithmic or
mechanistic models to test hypotheses.

In the second approach, an important research topic is circuit-
level computational modeling of macroscopic or mesoscopic
brain dynamics for mentally ill brains in task or resting-state
conditions. 3930351 A common strategy is to first use a
biologically-inspired model to simulate neural activity based
on a network of interacting neural masses, and next, within
each brain area, to model the neuronal population activity as the
Wilson-Cowan neural mass model, with each consisting of ex-
citatory and inhibitory populations*?. Furthermore, individual
brain nodes are coupled together according to the empirically-
derived anatomical network®33. The computational model can
be driven by an empirical hypothesis or EEG/fMRI data.

One data-driven macroscopic level modeling approach is dy-
namic causal modeling (DCM). DCM has been widely used in
characterizing the effective connectivity of a functional network
based on task or resting-state fMRI33*3%3 where the model pa-
rameters are inferred from unsupervised learning. By incorpo-
rating prior knowledge or hypotheses of network connections,
DCM may reveal important brain mechanisms and offer exper-
imental predictions. One potential application of DCM is to
characterize the neural plasticity in human brains, especially
the change in functional connectivity informed by neuroimag-
ing studies. The functional connectivity can either change grad-
ually during the course of tasks or induced by neurostimula-
tion. These changes are often, but not always, associated with
changes in functional activation of specific brain regions.

8. Closing the Loop for Testing Causality Through Neu-
rostimulation

From the treatment perspective, it is critical to obtain an im-
proved understanding of brain dynamics that are responsible
for dysfunctional cognitive functions and maladaptive behav-
iors in mental illnesses. To find the hidden cause, the concept
of “causality” requires special attention in perturbing the brain
activity. Because of the complexity of the human brain and
brain-behavior relationship, adaptive closed-loop neurostimula-
tion provides a critical step to understand healthy and diseased
brains 336357,

Neuroimaging provides a passive sensing approach to ob-
serve the (correlational) brain-behavior relationship. However,
correlation is different from causation. Correlational dependen-
cies describe associations of measurements that experiments do
not control, whereas causal dependencies link a dependent vari-
able to an experimentally controlled variable. The key concept
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in causal inference is to introduce randomization to perturb the
mapping. The relationship between every dependable variable
and the randomized variable is causal, whereas the relationship
between non-randomized variables and behavior, remains cor-
relational®*®. Closed-loop experimental design would help to
test the potential causality>°°. In human experiments, we clas-
sify closed-loop testing into two categories: one being fully au-
tomated, and the other being closed-human-in-the-loop.

One big challenge in human psychiatric neuroscience is
the causality gap>®®. Statistical causality or Granger causal-
ity between two variables is not equivalent to brain-behavioral
causality. To identify an effective treatment strategy for mental
illnesses, it is critical to causally modulate neural circuitry that
is responsible for maladaptive behaviors. Human neuroimag-
ing alone only demonstrates correlations but not causation. To
understand the causal mechanisms, it is imperative to close
the loop in experiments by perturbing the brain circuits and
measuring its outcome, as commonly done in animal experi-
ments 33%3%_ Unfortunately, a rigorous and causal grounding of
clinical symptoms and behavior is still missing. Since the clini-
cal symptoms are diverse, how to define the dimension of brain
function that defines one or few clinical symptoms and how to
effectively manipulate them remains unknown. Furthermore,
closed-loop neurostimulation has a conceptual link to XAl for
mental health studies, and can be seen as an extension in the
design of human brain-machine interface (BMI) to causally test
the brain-behavior mapping >¢°.

Neuromodulation therapies have become increasingly popu-
lar in treating various neuropsychiatric and neurological disor-
ders. Temporally precise neurostimulation tools provide a plau-
sible means to perturb or stimulate the brain. Clinically used
neuromodulation methods include invasive deep brain stim-
ulation (DBS), noninvasive transcranial magnetic stimulation
(TMS), noninvasive transcranial direct/alternating current stim-
ulation (tDCS/tACS), and transcranial focused ultrasound stim-
ulation (tFUS). A review of advances in neuromodulation tech-
nologies for treating mental disorders can be found in the litera-
ture 361:362363 To date, repetitive TMS (rTMS) has been cleared
by the FDA for the treatment of depression and recently used
in the studies of neural functioning and behavior3%43%°, Along
this research line, ML may potentially help addressing three im-
portant questions (WHERE/WHEN/HOW) to achieve precision
neuromodulation in psychiatry.

For the WHERE question, depending on the neuromodual-
tion techniques, delivery of target-specific stimulation requires
active and scheduled stimulation strategies to identify behav-
iorally activated targets. In the case of depression, neurostimu-
lation can have multiple potential targets or modes of action %,
but how to identify the optimal target to achieve effective treat-
ment outcomes remains unexplored. For WHEN and HOW
questions, in comparison to open-loop stimulation, closed-loop
stimulation can deliver temporally precise stimulation triggered
by detected features, symptoms or the user demand. Traditional
neurostimulation strategies are designed in an on/off stimula-
tion fashion, where the stimulation is determined by preselected
parameters. However, these stimulation parameters may not be
optimal. To accommodate an adaptive subject-specific stimula-



tion strategy, adaptive stimulation uses neurofeedback to adjust
the stimulation parameters or control policy to achieve various
optimality criteria. Therefore, ML can play a guiding role in on-
line adaptive stimulation367-38-369 - For instance, the feedback
loop can analyze the neural signal’s oscillatory patterns or other
reliably detectable biosignals (e.g., biochemcial, electromyo-
graphic, and mechanical signals) to classify or detect the criti-
cal brain state for delivery of closed-loop neurostimulation37°.
Additionally, reinforcement learning can be applied to learn a
state-action value function to identify the best excitability brain
state, where the state corresponds to the neural activity (e.g.,
the amplitude of evoked potentials, characteristics of brain con-
nectivity) and the action corresponds to ON/OFF stimulation
mode 369371

Neurostimulation can not only induce changes in behavior,
but also induce plasticity in brain connectivity. Simultaneous
or post-neurostimulation neuroimaging provides a window of
examining the change in brain network connectivity patterns.
Brain connectivity and dynamics can be studied from a network
communication and control perspective3’>373. The distinction
between a healthy and a pathological brain can be characterized
by their different efficiency to route information between dis-
tributed brain nodes, to control or modulate the target node un-
der specific constraints, or to influence its behavior for perform-
ing specific tasks (“cognitive control”)3"*. Therefore, the well-
established network and graph theories can be used to study
the change in brain connectivity by a controller (neurostimula-
tor). Specifically, the control-theoretic models have also been
applied to quantify the response of brain networks to exoge-
nous and endogenous perturbations. Several important research
questions can be studied along this line: (i) Can a target node
stimulation rewire brain connectivity in evoked and steady-state
conditions? (ii) Can the neurostimulation-induced change of
evoked or resting-state brain connectivity distinguish a patho-
logical from a healthy brain? (iii) Given a controller’s energy
constraint, what is the optimal neurostimulation policy? Will
alternate or simultaneous neurostimulations at multiple sites in-
fluence the network connectivity more effectively or bring ad-
ditional benefit in treatment373? (iv) Can the induced brain pat-
terns or changes in network connectivity predict the treatment
outcome? ML may address these questions by providing indi-
vidualized treatment-response likelihood in precision psychia-
try 6.

Finally, we suggest that combining multiple efforts of XAI
and neurostimuatlion in the loop (“Neuroimaging — Circuit
modeling — Neurostimulation — Observing behaviors — Re-
vising models”, Figure 10B) will provide an effective path-
way towards better understanding of brain-behavior causation
as well as individualized precision treatment in psychiatry. For
instance, looping neuromodulation and DCM may provide a
way to test the impact of neurostimulation on neural plasticity
that underlies the change in adaptive or maladaptive behaviors.
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9. Discussion and Conclusion

9.1. Challenge and Opportunities

The past few decades have witnessed growing interests and
rapid developments in ML methods for precision psychiatry.
However, caution was also raised regarding the unrealistic hope
for ML applications in clinical practice '®-377, and the field is
still facing both conceptual and practical challenges.

At the conceptual level, first, the term “disorder” was used
to specifically avoid the term “disease,” implying that precise
mechanistic understanding is still missing in psychiatry; this
further makes it very difficult to build clinical inference models
for mental disorders. As a result, it is still infeasible to de-
velop treatments that target underlying physiological risk fac-
tors in a similar manner as other medical disciplines (e.g., treat-
ing hypertension in heart diseases). Furthermore, each men-
tal disorder has overlapping symptoms with varying degrees,
bringing difficulties to uniquely define the psychiatric disor-
der. Second, many disorders are presented as a spectrum (e.g.,
autism spectrum disorder, generalized anxiety spectrum, and
schizophrenia spectrum) and vary across different patients, cre-
ating a wide range of subtypes and subject variability within
the same type of mental disorder. Third, due to various genetic,
biochemical, and neuropathological factors, the same mental
disorder may have different causes and symptoms in different
age/gender/race populations. Fourth, overlapping symptoms
can be found in many mental disorders, making the diagno-
sis less precise or more error prone3’8. For example, changes
in sleep and energy level, often found in depression and gen-
erally measured using the PHQ-9 questionnaire, are very com-
mon across many other disorders. One goal in precision psy-
chiatry is to fully dissect the mechanisms and causally reveal
the many-to-one relationship. This can be catalyzed by rigor-
ous measurements and quantification of neural and behavioral
data relevant to mental health.

At the practical level, many challenges also remain in effec-
tive applications of ML for mental health.

Sample size. Datasets used in many ML applications have
a small sample size, especially by the standard of ML-based
speech/image/video applications. Neuroimaging data collec-
tion from mental health patients is limited to one-shot exam-
ples, which creates large data variability in addition to the in-
trinsic heterogeneity and disease comorbidity. Recent devel-
opments in foundation models and their mental health applica-
tions may help overcome this challenge—for example, by shar-
ing the pretrained language model??. However, further cau-
tion is needed to ensure appropriate validation methods on the
problem-specific data. Reproducibility is the main bottleneck
to biomarker discovery for any mental disorder.

Data quality. The lack of standardization in data acquisi-
tion and varying degrees of data quality present a challenge
in rigor and reproducibility. For example, studies using social
media data often rely on the mental disorder labels based on
users’ self-identification instead of rigorous clinical diagnosis.
This can lead to a post containing: “I am depressed”, being la-
beled as a depression sample regardless of the underlying clin-
ical symptoms. Terms such as “depressed” or “anxious” have



colloquial uses which can differ from clinical criteria, leading to
inaccurately labeled samples. Furthermore, collection of prop-
erly matched control samples remain difficult, given the diver-
sity of age, gender, race, education, family history and life style
among users. Furthermore, there are also intrinsic dataset bi-
ases during data collection3”.

Data privacy and security. Advances in sensing technolo-
gies enable us to collect a large amount of personal data, in-
cluding the location, face images, speech conversations, and
social interactions. However, how to store and process these
data without the leakage risk of privacy information remains
an important challenge. While research studies have rule and
regulation (e.g., internal review board) to assure the ethical use,
social media data are collected in a massive scale by companies.
Due to the lack of sufficient regulation, such data have not been
treated as personally identifiable information (PII) that can be
used to inform the user’s health, creating a major obstacle in se-
curing identifiable user data. To help alleviate this issue, regu-
lations in the United States such as the Health Insurance Porta-
bility and Accountability Act (HIPAA) can be used to govern
PII acquired by all social media companies and commercial en-
tities.

Social implications and environmental factors. Gender
and race are critical factors in mental health. According to
WHO, mental disorders have a long history of gender bias. In
terms of the gender risk factor, females are more likely to suffer
from depression and anxiety; whereas there is more prevalence
of autism in males. In terms of gender treatment bias, women
are more likely to be diagnosed with depression compared to
men, and women are more likely to be prescribed with mood
altering psychotropic drugs. ML may play a role in uncover-
ing the gender or race risk factor and minimize the diagnosis or
treatment bias related to these social factors.

Generalizability. The standard ML generalization issue be-
comes even more pronounced in mental health applications, es-
pecially due to the poor data quality and small sample size.
Most ML studies use cross-validation to report the performance
but lack independent validation datasets to assess generalizabil-
ity. Furthermore, very few studies test generalization across
data sources and experimental conditions. For example, it is
important to test how well ML models trained from speech data
from clinical interviews will perform on non-clinical speech
data.

Algorithmic bias. Digital mental health inherits a long his-
tory of bias in psychiatry, which can be found at all stages of a
patient journey 3%°. In addition to biological underpinnings, the
domains of data (such as language) also represent social under-
pinnings38!, and therefore it is important to consider how so-
cioeconomic factors may influence measurements. Using train-
ing and validation sets that are representative across all demo-
graphics can not only help address some of these issues, but
also uncover new symptom expressions in various groups. This
is even more important for ML approaches that inherit biases
from other ML models.

Interpretability. The ability to understand which latent fac-
tors contribute most to the outcome is the key for advancing
clinical understanding of mental disorders for mental health
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professionals as well as for establishing the trust for the users
of mental health technology. This is also an important dimen-
sion to improve “precision” in mental health. The choice of the
interpretation method3*°, either model-specific (such as analyz-
ing attention weights of a transformer) or model agnostic (such
as local interpretable model-agnostic explanations (LIME)), is
very specific to the nature of the problem. While various in-
terpretation methods can be used to identify model function-
ing, it is important to note that the interpretation results can
only be trusted as long as the issues of generalizability and
data quality are addressed. In other words, model interpretation
methods may produce erratic results with insufficient or poor-
quality data. Furthermore, there is always a “explainability-
performance” trade-off. For instance, deep learning may out-
perform traditional methods at the cost of reduced interpretabil-
ity. Despite the rapid progress in development of XAl and in-
terpretable ML techniques, the challenge of ML explainability
still remains psychiatric applications, especially when dealing
with data of mixed modality, data of high dimensionality, and
data measured at varying timescales.

Causal inference. Most ML applications in mental health
have focused on integrating information from multiple data
sources and reaching a diagnosis decision faster. However, di-
agnosing a mental disorder, even with a highly interpretable
model, neither speak to the underlying causes and nor have
limited implications on treating the causes. ML-based causal
inference methods > may help with “precision” treatment de-
sign83, Recent developments in ultra-high-field neuroimaging
with sufficient temporal and spatial resolution3** may provide
a means for developing inference models for mental disorders.

Clinical integration. It is important to consider the clini-
cal need from a user experience perspective, varying from the
mental health professionals using the application > to the men-
tally ill patients3%¢. Part of this work, such as conducting user
research in various demographics, lies outside of the ML do-
main; however, such cross-functional research can inform the
best practice in ML model development. This type of think-
ing with the end goal in mind is important for successful trans-
lation of precision psychiatry research to widespread clinical
practice®®”. Additionally, considering a possible disparity of
interests between the clinical and ML communities®”?, cross-
disciplinary dialogues and collaborations between two commu-
nities would help the deployment of ML solutions in clinical
practice.

Ethical considerations. ML applications in mental health
also raise important ethical considerations. For example, ML
models for risk assessment can lead to early screening that
may help with early treatment'?. However, when screening
techniques are available outside clinical settings, it can cre-
ate the risk of misinterpretation by patients, which may nega-
tively affect treatment-seeking behavior or trigger self-harming
thoughts in patients. Other ethical questions related to increas-
ing the risk of self-harm arise inherently from ML that use foun-
dation models like GPT-3 (Generative Pre-trained Transformer
3), which should be fully considered before deployment in clin-
ical settings 388,



9.2. Applications of New ML Technologies

In addition to the opportunities arising from addressing the
above-mentioned challenges, precision psychiatry is accompa-
nied by plenty of opportunities in future ML applications.

Data-centric approach. In the data-driven ML view (“ML
system = model/algorithm + data”), data are powerful. How-
ever, medical data are costly to collect and noisy. Currently,
there is an ML paradigm shift from model-centric to data-
centric (https://datacentricai.org/), which advocates
using good “small” data instead of simply collecting from big
but possibly noisy data. The good quality criteria include:
(i) consistency; (ii) coverage of important cases; (iii) inclu-
sion of timely feedback from user or production data. Un-
like the model-centric ML approach that focuses on modifying
the model/algorithm (while fixing the data) to improve the per-
formance, a data-centric ML approach involves building ML
systems with quality data, with a goal to systematically pro-
cess the data (while fixing the model) to improve the ML per-
formance**°. The modification of the available data may in-
clude data regeneration, data augmentation, and label refine-
ment strategies to improve data consistency. For instance, con-
fident learning has been proposed to estimate label uncertainty
and identify label errors, based on the principles of pruning
noisy data, counting with probabilistic thresholds to estimate
noise, and ranking examples to train with confidence®°. The
iterative process of two approaches can bootstrap the system
performance.

Data augmentation approach. To deal with the small sam-
ple size issue in patient data collection, one ML approach is
to create synthetic data (as a data augmentation strategy) or in-
crease the number of training instances*!. Deep learning meth-
ods such as GAN and its variants have served as a powerful tool
to generate synthetic brain scan images, speech, video, physio-
logical data, and EHRs*>%33%  However, unlike traditional
ML/computer vision studies, the value of synthetic training
samples remains unclear in psychiatric applications. Whether
ML-augmented samples can generate clinically meaningful and
diversified samples that match psychiatric heterogeneity would
require future in-depth investigations.

Automated learning approach. In contrast to the human-in-
the-loop solutions, automated machine learning (autoML) and
automated deep learning (autoDL) represent a new paradigm
that aims to automate the data analysis pipeline while minimiz-
ing the need of human intervention during the course of mod-
eling and training®». This has become increasingly important
since the volume of social media and multimedia data streams
is so overwhelming that even a small effort of human involve-
ment would make the task prohibitive.

Data integration approach. Integration of multimodal
data is critical for psychiatric diagnostics and monitoring.
Therefore, it is urgently needed to develop weakly super-
vised, interpretable, multimodal deep learning pipelines to fuse
histopathology, genomics, neuroimaging, and behavioral data,
as well as to develop multimodal fusion algorithms for speech,
video, and EHRs to assist both psychiatrists and patients. Be-
cause of the nature of multimodality, not all data can be quan-
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tified in the Euclidean space. Graph and geometric deep learn-
ing may play a role in this research direction®%37. Finally,
expert-augmented ML (EAML) methods that automatically ex-
tract problem-specific human expert knowledge and integrate
it with ML to build robust, dependable, and data-efficient pre-
dictive models will also have great potentials for psychiatric
applications 3%,

9.3. Conclusion

To date, there is still a lack of biomarkers and individu-
alized treatment guidelines for mental illnesses. In this re-
view, we have shown that ML technologies and data analyt-
ics can be used for various stages of a patient journey: de-
tection/diagnosis, prognosis, treatment selection/optimization,
outcome monitoring/tracking, and relapse prevention. We pre-
dict that the multimodal integration of neuroimaging, ML, ge-
netics, behavioral neuroscience, and mobile health will open
doors for new method developments and technology inventions.
First, making brain scans more accessible will be the key to
clinical applications of neuroimaging techniques. Using real-
time fMRI, ML can guide neurofeedback-based intervention
and provide closed-loop treatment or rehabilitation. As a “real-
time mirror” of psychiatry, mind-control intervention can im-
prove behavioral outcomes. Second, data-driven ML methods
can identify subtypes of symptoms and cognitive deficits, and
develop model-based phenotyping3®. Third, combination of
ML methods with large EHR databases may accommodate a
personalized psychiatry. Fourth, when developing ML-powered
technologies for psychiatry, it is imperative to consider con-
cerns and feedback from various stakeholders, including knowl-
edgeable experts (clinical and ML experts, technology or engi-
neer experts), decision-makers (hospital administrators, insti-
tutional leaders, state and federal government), and end users
(physicians, nurses, patients, friends and family)*%°. Finally,
an integration of medications, wearable devices, mobile health
apps, social support, and online education will be essential to
improve mental health and assist therapeutic outcomes in the
new era of digital psychiatry. Future precision psychiatry will
leverage ML and all technologies to provide individualized cus-
tom packages that are built upon the patient’s need and specific
pathology.
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Appendix: List of Acronyms
ADHD Attention-Deficit/Hyperactivity Disorder.
Al Artificial Intelligence.



APA American Psychiatric Association.
ASD Autism Spectrum Disorder.

ASI Anxiety Sensitivity Index.

BMI Brain Machine Interface.

BSS Blind Source Separation.

CBT Cognitive Behavioral Therapy.

CCA Canonical Correlation Analysis.

CDC Centers for Disease Control and Prevention.
CIFA Common and Individual Feature Analysis.
CMTF Coupled Matrix and Tensor Factorization.
CNN Convolutional Neural Network.

CNS Central Nervous System.

DBS Deep Brain Stimulation.
DCM Dynamic Causal Modeling.

dMRI Diffusion Magnetic Resonance Imaging.

DSM Diagnostic and Statistical Manual of Mental Disorders.

EAML Expert-Augmented Machine Learning.
ECoG Electrocorticography.

EDA Electrodermal Activity.

EEG Electrocencephalography.

EHR Electronic Health Record.

FDA Food and Drug Administration.
fMRI functional Magnetic Resonance Imaging.

fNIRS functional Near-Infrared Spectroscopy.

GAD Generalized Anxiety Disorder.
GAN Generative Adversarial Network.
GCN Graph Convolutional Network.
GNN Graph Neural Network.

GP Gaussian Process.

GPT-3 Generative Pre-trained Transformer 3.

HIPAA Health Insurance Portability and Accountability Act.

HRV Heart Rate Variability.
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ICA Independent Component Analysis.
ICD International Classification of Diseases.
IMS Immediate Mood Scaler.

IVA Independent Vector Analysis.

JICA Joint Independent Component Analysis.
JIVE Joint and Individual Variance Explained.

LCA Latent Class Analysis.
LGMM Latent Growth Mixture Modeling.

LIME Local Interpretable Model-agnostic Explanations.

LSTM Long Short-Term Memory.

LTA Latent Transition Analysis.

MDD Major Depressive Disorder.
MEG Magnetoencephalography.
MKL Multi-Kernel Learning.

ML Machine Learning.

MRI Magnetic Resonance Imaging.

MTL Multi-Task Learning.

NGS Next-Generation Sequencing.
NIMH National Institute of Mental Health.
NLP Natural Language Processing.

NPC Non-Player Characters.

PCA Principal Component Analysis.
PET Positron Emission Tomography.
PFC Prefrontal Cortex.

PHQ Patient Health Questionaire.
PII Personal Identifiable Information.
PLS Partial Least Squares.

PTSD Post-Traumatic Stress Disorder.

RDoC Reserach Domain Criteria.
RNN Recurrent Neural Network.
rTMS Repetitive Transcranial Magnetic Stimulation.

RVM Relevance Vector Machine.

SAE Stacked AutoEncoder.



SDS Social Defeat Stress.

SELSER Sparse EEG Latent Space Regression.
SSM  State Space Model.

SSRI Serotonin Reuptake Inhibitors.

SUD Substance Use Disorder.

SVM Support Vector Machine.

SVR Support Vector Regression.

t-SNE t-distributed Stochastic Neighbor Embedding.
tACS Transcranial Alternating Current Stimulation.
tDCS Transcranial Direct Current Stimulation.
tFUS Transcranial Focused Ultrasound Stimulation.

TMS Transcranial Magnetic Stimulation.

XAI EXplainable Artificial Intelligence.

Declaration of interests
The authors declare no competing financial interests.

Inclusion and diversity

We support inclusive, diverse, and equitable conduct of re-
search. One or more of the authors of this paper self-identifies
as a gender minority in their field of research. While citing
references scientifically relevant for this work, we also actively
worked to promote gender balance in our reference list.

References

[1] Czeisler, ME., Lane, R.L, Petrosky, E., Wiley, J.E, Christensen, A.,
Njai, R., etal. Mental health, substance use, and suicidal ideation during
the COVID-19 pandemic—United States, June 24-30, 2020. Morbidity
and Mortality Weekly Report 2020;69(32):1049.

[2] Greenberg, P.E., Fournier, A.A., Sisitsky, T., Simes, M., Berman, R.,
Koenigsberg, S.H., et al. The economic burden of adults with major
depressive disorder in the united states (2010 and 2018). Pharmacoeco-
nomics 2021;39(6):653-665.

[3] Insel, T.R., Cuthbert, B.N.. Brain disorders? precisely. Science
2015;348(6234):499-500.

[4] Fernandes, B.S., Williams, L.M., Steiner, J., Leboyer, M., Carvalho,
AF., Berk, M.. The new field of ‘precision psychiatry’. BMC Medicine
2017;15(1):1-7.

[5] Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn,
K., et al. Research domain criteria (RDoC): toward a new classification
framework for research on mental disorders. 2010.

[6] Insel, T.R.. The nimh research domain criteria (RDoC) project:
precision medicine for psychiatry. American Journal of Psychiatry
2014;171(4):395-397.

[7] Bzdok, D., Meyer-Lindenberg, A.. Machine learning for precision psy-
chiatry: opportunities and challenges. Biological Psychiatry: Cognitive
Neuroscience and Neuroimaging 2018;3(3):223-230.

[8] Zhou, Z., Wu, T.C.,, Wang, B., Wang, H., Tu, X.M., Feng, C..
Machine learning methods in psychiatry: a brief introduction. General
Psychiatry 2020;33(1):e100171.

[9] Allen, M., Salmon, A.. Synthesising artificial patient-level data
for open science-an evaluation of five methods. medRxiv preprint
2020;URL: https://doi.org/10.1101/2020.10.09.20210138.

26

[10]

[11]

[12]

[13]

[14]

[15

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Burr, C., Morley, J., Taddeo, M., Floridi, L.. Digital psychiatry: Risks
and opportunities for public health and wellbeing. IEEE Transactions
on Technology and Society 2020;1(1):21-33.

Doraiswamy, P.M., Blease, C., Bodner, K.. Artificial intelligence
and the future of psychiatry: Insights from a global physician survey.
Artificial Intelligence in Medicine 2020;102:101753.

Rutledge, R.B., Chekroud, A.M., Huys, Q.J.. Machine learning and
big data in psychiatry: toward clinical applications. Current Opinion in
Neurobiology 2019;55:152-159.

Chandler, C., Foltz, P.W., Elvevag, B.. Using machine learning in psy-
chiatry: the need to establish a framework that nurtures trustworthiness.
Schizophrenia Bulletin 2020;46(1):11-14.

Galatzer-Levy, LR., Ruggles, K.V., Chen, Z.. Data science in the
research domain criteria era: relevance of machine learning to the study
of stress pathology, recovery, and resilience. Chronic Stress 2018;2:1—
14.

Shatte, A.B., Hutchinson, D.M., Teague, S.J.. Machine learning in
mental health: a scoping review of methods and applications. Psycho-
logical Medicine 2019;49(9):1426-1448.

Su, C., Xu, Z., Pathak, J., Wang, F.. Deep learning in mental
health outcome research: a scoping review. Translational Psychiatry
2020;10(1):1-26.

Liu, G.D. Li, Y.C.,, Zhang, W., Zhang, L.. A brief review of arti-
ficial intelligence applications and algorithms for psychiatric disorders.
Engineering 2020;6(4):462-467.

Thieme, A., Belgrave, D., Doherty, G.. Machine learning in mental
health: A systematic review of the hci literature to support the develop-
ment of effective and implementable ml systems. ACM Transactions on
Computer-Human Interaction (TOCHI) 2020;27(5):1-53.

Durstewitz, D., Koppe, G., Meyer-Lindenberg, A.. Deep neural net-
works in psychiatry. Molecular Psychiatry 2019;24(11):1583-1598.
Koppe, G., Meyer-Lindenberg, A., Durstewitz, D.. Deep learn-
ing for small and big data in psychiatry. Neuropsychopharmacology
2021;46(1):176-190.

Hedderich, D.M., Eickhoff, S.B.. Machine learning for psychiatry:
getting doctors at the black box? Molecular Psychiatry 2021;26:23-25.
Bracher-Smith, M., Crawford, K., Escott-Price, V.. Machine learn-
ing for genetic prediction of psychiatric disorders: a systematic review.
Molecular Psychiatry 2021;26:70-79.

Allen, S.. Artificial intelligence and the future of psychiatry. IEEE
Pulse 2020;11(3):2-6.

Thukral, A., Ershad, F., Enan, N., Rao, Z., Yu, C.. Soft ultrathin sili-
con electronics for soft neural interfaces: A review of recent advances of
soft neural interfaces based on ultrathin silicon. IEEE Nanotechnology
Magazine 2018;12(1):21-34.

Etkin, A.. A reckoning and research agenda for neuroimaging in psy-
chiatry. American Journal of Psychiatry 2019;176(7):507-511.

Noda, Y., Barr, M.S., ElSalhy, M., Masuda, F., Tarumi, R., Ogyu,
K., et al. Neural correlates of delay discount alterations in addiction
and psychiatric disorders: a systematic review of magnetic resonance
imaging studies. Progress in Neuro-Psychopharmacology and Biologi-
cal Psychiatry 2020;99:109822.

Noggle, C.A., Davis, A.S.. Advances in neuroimaging. In: Under-
standing the Biological Basis of Behavior. Springer; 2021, p. 107-137.
Keren, H., O’Callaghan, G., Vidal-Ribas, P., Buzzell, G.A., Brotman,
M.A,, Leibenluft, E., et al. Reward processing in depression: a concep-
tual and meta-analytic review across fMRI and EEG studies. American
Journal of Psychiatry 2018;175(11):1111-1120.

Lukow, P, Kiemes, A., Kempton, M., Turkheimer, F., McGuire, P,
Modinos, G.. Neural correlates of emotional processing in psychosis
risk and onset—a systematic review and meta-analysis of fMRI studies.
Neuroscience & Biobehavioral Reviews 2021;128:780-788.

Smith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson,
M., Miller, K.L., et al. Functional connectomics from resting-state
fMRI. Trends in Cognitive Sciences 2013;17(12):666-682.

Woodward, N.D., Cascio, C.J.. Resting-state functional connectivity in
psychiatric disorders. JAMA Psychiatry 2015;72(8):743-744.

Ma, S., Calhoun, V.D., Phlypo, R., Adali, T.. Dynamic changes
of spatial functional network connectivity in healthy individuals and
schizophrenia patients using independent vector analysis. Neurolmage
2014;90:196-206.



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Rolls, E.T., Cheng, W., Feng, J.. Brain dynamics: the temporal
variability of connectivity, and differences in schizophrenia and ADHD.
Translational Psychiatry 2021;11(1):1-11.

Calhoun, V.D., Sui, J.. Multimodal fusion of brain imaging data: a
key to finding the missing link (s) in complex mental illness. Biological
Psychiatry: Cognitive Neuroscience and Neuroimaging 2016;1(3):230—
244.

Zheng, A., Casari, A.. Feature Engineering for Machine Learning.
O’Reilly Media, Inc; 2018.

Hipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M., Engel, AK..
Large-scale cortical correlation structure of spontaneous oscillatory ac-
tivity. Nature Neuroscience 2012;15(6):884-890.

Siems, M., Pape, A.A., Hipp, J.F., Siegel, M.. Measuring the corti-
cal correlation structure of spontaneous oscillatory activity with eeg and
meg. Neurolmage 2016;129:345-355.

Zhang, Y., Wu, W, Toll, R.T., Naparstek, S., Maron-Katz, A.,
Watts, M., et al. Identification of psychiatric disorder subtypes from
functional connectivity patterns in resting-state electroencephalography.
Nature Biomedical Engineering 2021;5(4):309-323.

Feczko, E., Miranda-Dominguez, O., Marr, M., Graham, A.M., Nigg,
J.T., Fair, D.A.. The heterogeneity problem: approaches to identify psy-
chiatric subtypes. Trends in Cognitive Sciences 2019;23(7):584-601.
Satterthwaite, T.D., Feczko, E., Kaczkurkin, A.N., Fair, D.A.. Pars-
ing psychiatric heterogeneity through common and unique circuit-level
deficits. Biological Psychiatry 2020;88(1):4.

Wang, D., Buckner, R.L., Fox, M.D., Holt, D.J., Holmes, A.J.,
Stoecklein, S., et al. Parcellating cortical functional networks in indi-
viduals. Nature Neuroscience 2015;18(12):1853-1860.

Walter, M., Alizadeh, S., Jamalabadi, H., Lueken, U., Dannlowski,
U., Walter, H., et al. Translational machine learning for psychiatric
neuroimaging. Progress in Neuro-Psychopharmacology and Biological
Psychiatry 2019;91:113-121.

Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri,
F., Meng, Y., et al. Resting-state connectivity biomarkers define neuro-
physiological subtypes of depression. Nature Medicine 2017;23(1):28—
38.

Marquand, A.F, Kia, S.M., Zabihi, M., Wolfers, T., Buitelaar, J.K.,
Beckmann, C.F.. Conceptualizing mental disorders as deviations from
normative functioning. Molecular Psychiatry 2019;24(10):1415-1424.
Feczko, E., Balba, N., Miranda-Dominguez, O., Cordova, M., Kar-
alunas, S., Irwin, L., et al. Subtyping cognitive profiles in autism spec-
trum disorder using a functional random forest algorithm. Neurolmage
2018;172:674-688.

Sargent, K., Chavez-Baldini, U., Master, S.L., Verweij, K.J., Lok, A,
Sutterland, A.L., et al. Resting-state brain oscillations predict cognitive
function in psychiatric disorders: A transdiagnostic machine learning
approach. Neurolmage: Clinical 2021;30:102617.

Barch, D.M.. The neural correlates of transdiagnostic dimensions of
psychopathology. American Journal of Psychiatry 2017;174(7):613—
615.

Xia, C.H., Ma, Z., Ciric, R., Gu, S., Betzel, R.F,, Kaczkurkin, A.N.,
et al. Linked dimensions of psychopathology and connectivity in func-
tional brain networks. Nature Communications 2018;9(1):1-14.
Kebets, V., Holmes, A.J., Orban, C., Tang, S., Li, J., Sun,
N., et al. Somatosensory-motor dysconnectivity spans multiple trans-
diagnostic dimensions of psychopathology.  Biological Psychiatry
2019;86(10):779-791.

McTeague, L.M., Rosenberg, B.M., Lopez, J.W., Carreon, D.M.,
Huemer, J., Jiang, Y., et al. Identification of common neural circuit dis-
ruptions in emotional processing across psychiatric disorders. American
Journal of Psychiatry 2020;177(5):411-421.

Wachinger, C., Nho, K., Saykin, A.J., Reuter, M., Rieckmann, A.,
Initiative, A.D.N., et al. A longitudinal imaging genetics study of neu-
roanatomical asymmetry in alzheimer’s disease. Biological Psychiatry
2018;84(7):522-530.

Vidal-Ribas, P., Benson, B., Vitale, A.D., Keren, H., Harrewijn, A.,
Fox, N.A., et al. Bidirectional associations between stress and reward
processing in children and adolescents: a longitudinal neuroimaging
study. Biological Psychiatry: Cognitive Neuroscience and Neuroimag-
ing 2019;4(10):893-901.

Roeckner, A.R., Oliver, K.I., Lebois, L.A., van Rooij, S.J., Stevens,

27

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

J.S.. Neural contributors to trauma resilience: a review of longitudinal
neuroimaging studies. Translational Psychiatry 2021;11(1):1-17.
Smith, S.M., Nichols, T.E.. Statistical challenges in “big data” human
neuroimaging. Neuron 2018;97(2):263-268.

Duncan, N.W., Northoff, G.. Overview of potential procedural and
participant-related confounds for neuroimaging of the resting state. Jour-
nal of Psychiatry and Neuroscience 2013;38(2):84-96.

Blume, W.T.. Drug effects on eeg. Journal of Clinical Neurophysiology
2006;23(4):306-311.

Linke, A.C., Olson, L., Gao, Y., Fishman, I, Miiller, R.A..
Psychotropic medication use in autism spectrum disorders may affect
functional brain connectivity. Biological Psychiatry: Cognitive Neuro-
science and Neuroimaging 2017;2(6):518-527.

Yu, M, Linn, K.A., Cook, P.A., Phillips, M.L., McInnis, M., Fava,
M., et al. Statistical harmonization corrects site effects in functional con-
nectivity measurements from multi-site fmri data. Human Brain Map-
ping 2018;39(11):4213-4227.

Zhao, Q., Adeli, E., Pohl, K.M.. Training confounder-free deep
learning models for medical applications. Nature Communications
2020;11(1):1-9.

Nielsen, A.N., Barch, D.M., Petersen, S.E., Schlaggar, B.L., Greene,
D.J.. Machine learning with neuroimaging: Evaluating its applications
in psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neu-
roimaging 2020;5(8):791-798.

Pelin, H., Ising, M., Stein, Fe.a.. Identification of transdiagnostic
psychiatric disorder subtypes using unsupervised learning. Neuropsy-
chopharmacology 2021;46:1895-1905.

Janssen, R.J., Mourdo-Miranda, J., Schnack, H.G.. Making indi-
vidual prognoses in psychiatry using neuroimaging and machine learn-
ing. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
2018;3(9):798-808.

Gao, S., Calhoun, V.D., Sui, J.. Machine learning in major depression:
From classification to treatment outcome prediction. CNS Neuroscience
& Therapeutics 2018;24(11):1037-1052.

Cearns, M., Opel, N., Clark, S., Kaehler, C., Thalamuthu, A., Heindel,
W., et al. Predicting rehospitalization within 2 years of initial patient ad-
mission for a major depressive episode: a multimodal machine learning
approach. Translational Psychiatry 2019;9(1):1-9.

Gueorguieva, R., Chekroud, A.M., Krystal, J.H.. Trajectories of re-
lapse in randomised, placebo-controlled trials of treatment discontinua-
tion in major depressive disorder: an individual patient-level data meta-
analysis. The Lancet Psychiatry 2017;4(3):230-237.

Murphy, K.P.. Machine Learning: A Probabilistic Perspective. MIT
Press; 2012.

Emmert-Streib, F., Dehmer, M.. Taxonomy of machine learning
paradigms: A data-centric perspective. WIREs Data Mining and Knowl-
edge Discovery 2022;2022:e1470.

Zhao, K., Duka, B., Xie, H., Oathes, D.J., Calhoun, V., Zhang,
Y.. A dynamic graph convolutional neural network framework reveals
new insights into connectome dysfunctions in ADHD. Neurolmage
2022;246:118774.

Luo, Y., Alvarez, T.L. Halperin, JM., Li, X. Multimodal
neuroimaging-based prediction of adult outcomes in childhood-onset
ADHD using ensemble learning techniques. NeuroImage: Clinical
2020;26:102238.

Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., et al.
Braingnn: Interpretable brain graph neural network for fMRI analysis.
Medical Image Analysis 2021;74:102233.

Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.. En-
semble learning with 3d convolutional neural networks for functional
connectome-based prediction. Neurolmage 2019;199:651-662.

Wu, M.J., Mwangi, B., Bauer, LE., Passos, I.C., Sanches, M.,
Zunta-Soares, G.B., et al. Identification and individualized prediction of
clinical phenotypes in bipolar disorders using neurocognitive data, neu-
roimaging scans and machine learning. NeuroImage 2017;145:254-264.
Zhu, H., Yuan, M., Qiu, C., Ren, Z., Li, Y., Wang, J., et al. Multi-
variate classification of earthquake survivors with post-traumatic stress
disorder based on large-scale brain networks. Acta Psychiatrica Scandi-
navica 2020;141(3):285-298.

Yan, W., Calhoun, V., Song, M., Cui, Y., Yan, H., Liu, S, et al.
Discriminating schizophrenia using recurrent neural network applied on



[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

time courses of multi-site fMRI data. EBioMedicine 2019;47:543-552.
Mikolas, P., Hlinka, J., Skoch, A., Pitra, Z., Frodl, T., Spaniel,
F, et al. Machine learning classification of first-episode schizophrenia
spectrum disorders and controls using whole brain white matter frac-
tional anisotropy. BMC Psychiatry 2018;18(1):1-7.

Uyulan, C., Ergiizel, T.T., Unubol, H., Cebi, M., Sayar, G.H.,
Nezhad Asad, M., et al. Major depressive disorder classification based
on different convolutional neural network models: Deep learning ap-
proach. Clinical EEG and Neuroscience 2021;52(1):38-51.

Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A.,
Meneguzzi, F.. Identification of autism spectrum disorder using deep
learning and the abide dataset. Neurolmage: Clinical 2018;17:16-23.
Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Guerrero, R., Glocker,
B., et al. Disease prediction using graph convolutional networks: ap-
plication to autism spectrum disorder and alzheimer’s disease. Medical
Image Analysis 2018;48:117-130.

Maron-Katz, A., Zhang, Y., Narayan, M., Wu, W., Toll, R.T., Na-
parstek, S., et al. Individual patterns of abnormality in resting-state
functional connectivity reveal two data-driven PTSD subgroups. Amer-
ican Journal of Psychiatry 2020;177(3):244-253.

Lecei, A., van Hulst, B.M., de Zeeuw, P., van der Pluijm, M., Ri-
jks, Y., Durston, S.. Can we use neuroimaging data to differentiate be-
tween subgroups of children with ADHD symptoms: A proof of concept
study using latent class analysis of brain activity. Neurolmage: Clinical
2019;21:101601.

Parkes, L., Moore, T.M., Calkins, M.E., Cook, P.A., Cieslak, M.,
Roalf, D.R., et al. Transdiagnostic dimensions of psychopathology ex-
plain individuals’ unique deviations from normative neurodevelopment
in brain structure. Translational Psychiatry 2021;11(1):1-13.

Schmaal, L., Marquand, A.F, Rhebergen, D., van Tol, M.J., Ruhé,
H.G., van der Wee, N.J,, et al. Predicting the naturalistic course of major
depressive disorder using clinical and multimodal neuroimaging infor-
mation: a multivariate pattern recognition study. Biological Psychiatry
2015;78(4):278-286.

Ramyead, A., Studerus, E., Kometer, M., Uttinger, M., Gschwandtner,
U., Fuhr, P, et al. Prediction of psychosis using neural oscillations
and machine learning in neuroleptic-naive at-risk patients. The World
Journal of Biological Psychiatry 2016;17(4):285-295.

Koutsouleris, N., Dwyer, D.B., Degenhardt, F., Maj, C., Urquijo-
Castro, MLE, Sanfelici, R., et al. Multimodal machine learning work-
flows for prediction of psychosis in patients with clinical high-risk syn-
dromes and recent-onset depression. JAMA Psychiatry 2021;78(2):195—
209.

Sheynin, S., Wolf, L., Ben-Zion, Z., Sheynin, J., Reznik, S., Key-
nan, J.N, et al. Deep learning model of fMRI connectivity predicts
PTSD symptom trajectories in recent trauma survivors. Neurolmage
2021;238:118242.

Nieuwenhuis, M., Schnack, H.G., van Haren, N.E., Lappin, J., Mor-
gan, C., Reinders, A.A., et al. Multi-center MRI prediction models:
Predicting sex and illness course in first episode psychosis patients. Neu-
rolmage 2017;145:246-253.

Smucny, J., Davidson, I., Carter, C.S.. Comparing machine and deep
learning-based algorithms for prediction of clinical improvement in psy-
chosis with functional magnetic resonance imaging. Human Brain Map-
ping 2021;42(4):1197-1205.

Bertocci, M.A., Bebko, G., Versace, A., Iyengar, S., Bonar, L.,
Forbes, E.E., et al. Reward-related neural activity and structure pre-
dict future substance use in dysregulated youth. Psychological Medicine
2017;47(8):1357-1369.

Zhang, J., Wong, S.M., Richardson, J.D., Jetly, R., Dunkley, B.T..
Predicting PTSD severity using longitudinal magnetoencephalography
with a multi-step learning framework. Journal of Neural Engineering
2020;17(6):066013.

Chang, J.C., Lin, H.Y,, Lv, J., Tseng, W.Y.I., Gau, S.S.F.. Regional
brain volume predicts response to methylphenidate treatment in individ-
uals with ADHD. BMC Psychiatry 2021;21(1):1-14.

Koutsouleris, N., Meisenzahl, E.M., Davatzikos, C., Bottlender, R.,
Frodl, T., Scheuerecker, J., et al. Use of neuroanatomical pattern classi-
fication to identify subjects in at-risk mental states of psychosis and pre-
dict disease transition. Archives of General Psychiatry 2009;66(7):700—
712.

28

[92]

(93]

[96]

(98]

[100]

[1o1]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Zhutovsky, P., Thomas, R.M., Olff, M., van Rooij, S.J., Kennis, M.,
van Wingen, G.A., et al. Individual prediction of psychotherapy out-
come in posttraumatic stress disorder using neuroimaging data. Trans-
lational Psychiatry 2019;9(1):1-10.

Cao, B., Cho, R.Y, Chen, D., Xiu, M., Wang, L., Soares, J.C.,
et al. Treatment response prediction and individualized identification of
first-episode drug-naive schizophrenia using brain functional connectiv-
ity. Molecular Psychiatry 2020;25(4):906-913.

Zhdanov, A., Atluri, S., Wong, W., Vaghei, Y., Daskalakis,
Z.J., Blumberger, D.M., et al. Use of machine learning for pre-
dicting escitalopram treatment outcome from electroencephalography
recordings in adult patients with depression. JAMA Network Open
2020;3(1):e1918377-e1918377.

Redlich, R., Opel, N., Grotegerd, D., Dohm, K., Zaremba, D., Biirger,
C., et al. Prediction of individual response to electroconvulsive therapy
via machine learning on structural magnetic resonance imaging data.
JAMA Psychiatry 2016;73(6):557-564.

Wu, W, Zhang, Y, Jiang, J., Lucas, M.V, Fonzo, G.A., Rolle,
C.E., etal. An electroencephalographic signature predicts antidepressant
response in major depression. Nature Biotechnology 2020;38(4):439—
447.

Fonzo, G.A., Etkin, A., Zhang, Y., Wu, W., Cooper, C., Chin-
Fatt, C., et al. Brain regulation of emotional conflict predicts antide-
pressant treatment response for depression. Nature Human Behaviour
2019;3(12):1319-1331.

Yang, D., Pelphrey, K., Sukhodolsky, D., Crowley, M., Dayan, E.,
Dvornek, N., et al. Brain responses to biological motion predict treat-
ment outcome in young children with autism. Translational Psychiatry
2016;6(11):e948—e948.

Reggente, N., Moody, T.D., Morfini, F., Sheen, C., Rissman, J,,
O’Neill, J., et al. Multivariate resting-state functional connectivity pre-
dicts response to cognitive behavioral therapy in obsessive—compulsive
disorder. Proc Natl Acad Sci USA 2018;115(9):2222-2227.

Edgcomb, J., Shaddox, T., Hellemann, G., Brooks III, J.O.. High-
risk phenotypes of early psychiatric readmission in bipolar disorder with
comorbid medical illness. Psychosomatics 2019;60(6):563-573.

Morel, D., Kalvin, C.Y., Liu-Ferrara, A., Caceres-Suriel, A.J., Kurtz,
S.G., Tabak, Y.P.. Predicting hospital readmission in patients with men-
tal or substance use disorders: a machine learning approach. Interna-
tional Journal of Medical Informatics 2020;139:104136.

Cearns, M., Hahn, T., Baune, B.T.. Recommendations and future
directions for supervised machine learning in psychiatry. Translational
Psychiatry 2019;9(1):1-12.

Grzenda, A., Kraguljac, N.V., McDonald, W.M., Nemeroff, C.,
Torous, J., Alpert, J.E., et al. Evaluating the machine learning liter-
ature: a primer and user’s guide for psychiatrists. American Journal of
Psychiatry 2021;178(8):715-729.

Tai, A.M., Albuquerque, A., Carmona, N.E., Subramanieapillai, M.,
Cha, D.S., Sheko, M., et al. Machine learning and big data: Impli-
cations for disease modeling and therapeutic discovery in psychiatry.
Artificial Intelligence in Medicine 2019;99:101704.

Aafjes-van Doorn, K., Kamsteeg, C., Bate, J., Aafjes, M.. A scoping
review of machine learning in psychotherapy research. Psychotherapy
Research 2021:;31(1):92-116.

Sui, J., Jiang, R., Bustillo, J., Calhoun, V.. Neuroimaging-based indi-
vidualized prediction of cognition and behavior for mental disorders and
health: methods and promises. Biological Psychiatry 2020;88(11):818—
828.

Zhang, L., Wang, M., Liu, M., Zhang, D.. A survey on deep learn-
ing for neuroimaging-based brain disorder analysis. Frontiers in Neuro-
science 2020;14:779.

Cho, G., Yim, J., Choi, Y., Ko, J., Lee, S.H.. Review of machine
learning algorithms for diagnosing mental illness. Psychiatry Investiga-
tion 2019;16(4):262.

Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J.,
Chun, M.M., et al. Functional connectome fingerprinting: identifying
individuals using patterns of brain connectivity. Nature Neuroscience
2015;18(11):1664-1671.

Shen, X., Finn, E.S., Scheinost, D., Rosenberg, M.D., Chun, M.M.,
Papademetris, X., et al. Using connectome-based predictive modeling
to predict individual behavior from brain connectivity. Nature Protocols



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

2017;12(3):506-518.

Tipping, M.E.. Sparse Bayesian learning and the relevance vector ma-
chine. Journal of Machine Learning Research 2001;1(6):211-244.
Zhang, Y., Zhou, G., Jin, J., Zhao, Q., Wang, X., Cichocki,
A.. Sparse bayesian classification of EEG for brain—-computer inter-
face. IEEE Transactions on Neural Networks and Learning Systems
2015;27(11):2256-2267.

Ma, Q., Zhang, T., Zanetti, M.V., Shen, H., Satterthwaite, T.D.,
Wolf, D.H., et al. Classification of multi-site mr images in the pres-
ence of heterogeneity using multi-task learning. Neurolmage: Clinical
2018;19:476-486.

Xiao, L., Stephen, J.M., Wilson, T.W., Calhoun, V.D., Wang, Y.P.
A manifold regularized multi-task learning model for iq prediction from
two fMRI paradigms. IEEE Transactions on Biomedical Engineering
2019;67(3):796-806.

Kim, M., Min, E.J., Liu, K. Yan, J., Saykin, A.J., Moore,
J.H., et al. Multi-task learning based structured sparse canonical cor-
relation analysis for brain imaging genetics. Medical Image Analysis
2022;76:102297.

Kwak, S., Park, S., Kim, J, Park, S., Lee, J.Y.. Multivariate neu-
roanatomical correlates of behavioral and psychological symptoms in
dementia and the moderating role of education. Neurolmage: Clinical
2020;28:102452.

Kalmady, S.V., Greiner, R., Agrawal, R., Shivakumar, V.,
Narayanaswamy, J.C., Brown, M.R., et al. Towards artificial intel-
ligence in mental health by improving schizophrenia prediction with
multiple brain parcellation ensemble-learning. NPJ Schizophrenia
2019;5(1):1-11.

Wang, J., Zhang, L., Wang, Q., Chen, L., Shi, J., Chen, X, et al.
Multi-class asd classification based on functional connectivity and func-
tional correlation tensor via multi-source domain adaptation and multi-
view sparse representation. IEEE Transactions on Medical Imaging
2020;39(10):3137-3147.

Elmer, J., Jones, B.L., Nagin, D.S.. Using the beta distribution in
group-based trajectory models. BMC Medical Research Methodology
2018;18(1):1-5.

van der Nest, G., Passos, V.L., Candel, M.J., van Breukelen, G.J..
An overview of mixture modelling for latent evolutions in longitudinal
data: Modelling approaches, fit statistics and software. Advances in Life
Course Research 2020;43:100323.

Ellis, J.D., Rabinowitz, J.A., Wells, J., Liu, FE., Finan, P.H., Stein,
M.D., et al. Latent trajectories of anxiety and depressive symptoms
among adults in early treatment for nonmedical opioid use. Journal of
Affective Disorders 2022;299:223-232.

Ulvenes, P, Soma, C.S., Melsom, L., Wampold, B.E.. A latent
trajectory analysis of inpatient depression treatment. Psychotherapy
2022;59(1):113-124.

Waizbard-Bartov, E., Ferrer, E., Heath, B., Rogers, S.J., Nordahl,
C.W,, Solomon, M., et al. Identifying autism symptom severity trajec-
tories across childhood. Autism Research 2022;.

Schultebraucks, K., Shalev, A.Y., Michopoulos, V., Grudzen, C.R.,
Shin, S.M., Stevens, J.S., et al. A validated predictive algorithm of
post-traumatic stress course following emergency department admission
after a traumatic stressor. Nature Medicine 2020;26:1064—1088.
Crable, E.L., Drainoni, M.L., Jones, D.K., Walley, A.Y., Hicks, J.M..
Predicting longitudinal service use for individuals with substance use
disorders: A latent profile analysis. Journal of Substance Abuse Treat-
ment 2022;132:108632.

Chapelle, O., Scholkopf, B., Zien, A.. Semi-Supervised Learning.
MIT Press; 2009.

Yin, W, Li, L., Wu, EX.. A semi-supervised autoencoder for autism
disease diagnosis. Neurocomputing 2022;483:140—147.

Varol, E., Sotiras, A., Davatzikos, C., Initiative, A.D.N., et al. Hy-
dra: Revealing heterogeneity of imaging and genetic patterns through a
multiple max-margin discriminative analysis framework. NeuroImage
2017;145:346-364.

Yang, T., Frangou, S.,Lam, R.W,, Huang, J., Su, Y., Zhao, G., et al.
Probing the clinical and brain structural boundaries of bipolar and major
depressive disorder. Translational Psychiatry 2021;11(1):1-8.
Honnorat, N., Dong, A., Meisenzahl-Lechner, E., Koutsouleris, N.,
Davatzikos, C.. Neuroanatomical heterogeneity of schizophrenia re-

29

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

(142]

[144]

[145]

[146]

(147]

[148]

[149]

[150]

[151]

vealed by semi-supervised machine learning methods. Schizophrenia
Research 2019;214:43-50.

Kaczkurkin, A.N., Sotiras, A., Baller, E.B., Barzilay, R., Calkins,
M.E,, Chand, G.B., et al. Neurostructural heterogeneity in youths with
internalizing symptoms. Biological Psychiatry 2020;87(5):473-482.
Beaulieu-Jones, B.K., Greene, C.S., et al. Semi-supervised learning
of the electronic health record for phenotype stratification. Journal of
Biomedical Informatics 2016;64:168—178.

Yazdavar, A.H., Al-Olimat, H.S., Ebrahimi, M., Bajaj, G., Banerjee,
T., Thirunarayan, K., et al. Semi-supervised approach to monitoring
clinical depressive symptoms in social media. In: Proceedings of the
2017 IEEE/ACM International Conference on Advances in Social Net-
works Analysis and Mining 2017. 2017, p. 1191-1198.

Dong, G., Tang, M., Cai, L., Barnes, L.E., Boukhechba, M.. Semi-
supervised graph instance transformer for mental health inference. In:
Proc. 20th IEEE International Conference on Machine Learning and Ap-
plications ICMLA). IEEE; 2021, p. 1221-1228.

Rutherford, S., Kia, S.M., Wolfers, T., Fraza, C., Zabihi, M., Dinga,
R., et al. The normative modeling framework for computational psychi-
atry. Nature Protocols 2022;:1-24.

Marquand, A.F, Rezek, I., Buitelaar, J., Beckmann, C.F.. Understand-
ing heterogeneity in clinical cohorts using normative models: beyond
case-control studies. Biological Psychiatry 2016;80(7):552-561.
Chamberland, M., Genc, S., Tax, C.M., Shastin, D., Koller, K.,
Raven, E.P, et al. Detecting microstructural deviations in individuals
with deep diffusion MRI tractometry. Nature Computational Science
2021;1(9):598-606.

Guggenmos, M., Schmack, K., Veer, .M., Lett, T., Maria Sekutowicz,
M.S., Garbusow, M., et al. A multimodal neuroimaging classifier for
alcohol dependence. Scientific Reports 2020;10:298.

Beaulieu-Jones, B.K., Greene, C.S.. Semi-supervised learning of the
electronic health record for phenotype stratification. Journal of Biomed-
ical Informatics 2016;64:168—178.

Shen, D., Wu, G., Suk, H.I.. Deep learning in medical image analysis.
Annual Review of Biomedical Engineering 2017;19:221-248.

Abrol, A., Fu, Z., Salman, M., Silva, R., Du, Y., Plis, S., et al.
Deep learning encodes robust discriminative neuroimaging representa-
tions to outperform standard machine learning. Nature communications
2021;12(1):1-17.

Quaak, M., van de Mortel, L., Thomas, R.M., van Wingen, G.. Deep
learning applications for the classification of psychiatric disorders using
neuroimaging data: systematic review and meta-analysis. Neurolmage:
Clinical 2021;30:102584.

Chang, M., Womer, FY., Gong, X., Chen, X, Tang, L., Feng, R.,
et al. Identifying and validating subtypes within major psychiatric disor-
ders based on frontal-posterior functional imbalance via deep learning.
Molecular Psychiatry 2021;26(7):2991-3002.

Almughim, F, Saeed, F. ASD-SAENet: a sparse autoencoder,
and deep-neural network model for detecting autism spectrum disor-
der (ASD) using fMRI data. Frontiers in Computational Neuroscience
2021;15:27.

Pinaya, W.H., Mechelli, A., Sato, J.R.. Using deep autoencoders
to identify abnormal brain structural patterns in neuropsychiatric dis-
orders: A large-scale multi-sample study. Human Brain Mapping
2019;40(3):944-954.

Aglinskas, A., Hartshorne, J.K., Anzellotti, S.. Contrastive ma-
chine learning reveals the structure of neuroanatomical variation within
autism. Science 2022;376(6597):1070-1074.

Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M.,
Khan, M.K.. Medical image analysis using convolutional neural net-
works: a review. Journal of Medical Systems 2018;42(11):1-13.
Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.. Convolutional
neural networks: an overview and application in radiology. Insights into
Imaging 2018;9(4):611-629.

Zhang, J., Li, X., Li, Y., Wang, M., Huang, B., Yao, S, et al.
Three dimensional convolutional neural network-based classification of
conduct disorder with structural mri. Brain Imaging and Behavior
2020;14(6):2333-2340.

Bessadok, A., Mahjoub, M.A., Rekik, I.. Graph neural networks in
network neuroscience. arXiv preprint arXiv:210603535 2021;.
Durstewitz, D., Huys, Q.J., Koppe, G.. Psychiatric illnesses as dis-



[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]
[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

orders of network dynamics. Biological Psychiatry: Cognitive Neuro-
science and Neuroimaging 2021;6(9):865-876.

Zhao, Y., Li, X., Huang, H., Zhang, W., Zhao, S., Makkie, M., et al.
4D modeling of fMRI data via spatio-temporal convolutional neural net-
works (ST-CNN). IEEE Transactions on Cognitive and Developmental
Systems 2020;12(3):451.

Lashgari, E., Liang, D., Maoz, U.. Data augmentation for deep-
learning-based electroencephalography. Journal of Neuroscience Meth-
ods 2020;346:108885.

Shang, C., Palmer, A., Sun, J., Chen, K.S., Lu, J., Bi, J.. Vigan:
Missing view imputation with generative adversarial networks. In: 2017
IEEE International Conference on Big Data (Big Data). IEEE; 2017, p.
766-775.

Dvornek, N.C., Li, X., Zhuang, J., Duncan, J.S.. Jointly discrimi-
native and generative recurrent neural networks for learning from fMRI.
In: International Workshop on Machine Learning in Medical Imaging.
Springer; 2019, p. 382-390.

Zhao, J., Huang, J., Zhi, D., Yan, W., Ma, X, Yang, X., et al. Func-
tional network connectivity (FNC)-based generative adversarial network
(GAN) and its applications in classification of mental disorders. Journal
of Neuroscience Methods 2020;341:108756.

Wen, Z., Marin, M.F,, Blackford, J.U., Chen, Z.S., Milad, M.R..
Fear-induced brain activations distinguish anxious and trauma-exposed
brains. Translational Psychiatry 2021;11(1):1-10.

Cutillo, C.M., Sharma, K.R., Foschini, L., Kundu, S., Mackintosh,
M., Mandl, K.D.. Machine intelligence in healthcare—perspectives on
trustworthiness, explainability, usability, and transparency. NPJ Digital
Medicine 2020;3(1):1-5.

Sani, O.G., Yang, Y., Lee, M.B., Dawes, H.E., Chang, E.F., Shanechi,
M.M.. Mood variations decoded from multi-site intracranial human
brain activity. Nature Biotechnology 2018;36(10):954-961.

Bestsennyy, 0., Gilbert, G., Harris, A., Rost, J.
Telehealth: A quarter-trillion-dollar  post-covid-19  reality?
2021. URL: https://www.mckinsey.com/industries/

healthcare-systems-and-services/our-insights/

[172]

[173]

[174]

[175]

[176]

(177

[178]

[179]

[180]

[181]

telehealth-a-quarter-trillion-dollar-post-covid-19-reality.

Lee, E.E., Torous, J., De Choudhury, M., Depp, C.A., Graham, S.A.,
Kim, H.C., et al. Artificial intelligence for mental health care: clinical
applications, barriers, facilitators, and artificial wisdom. Biological Psy-
chiatry: Cognitive Neuroscience and Neuroimaging 2021;6(9):856-864.
Moustafa, A.A.. Big Data in Psychiatry and Neurology. 2021.
Graham, S., Depp, C., Lee, E.E., Nebeker, C., Tu, X., Kim, H.C,,
et al. Artificial intelligence for mental health and mental illnesses: an
overview. Current Psychiatry Reports 2019;21(11):1-18.

Abbas, A., Schultebraucks, K., Galatzer-Levy, LR.. Digital mea-
surement of mental health: challenges, promises, and future directions.
Psychiatric Annals 2021;51(1):14-20.

Bickman, L.. Improving mental health services: A 50-year journey from
randomized experiments to artificial intelligence and precision mental
health. Administration and Policy in Mental Health and Mental Health
Services Research 2020;47(5):795-843.

Wilkinson, J., Arnold, K.F., Murray, E.J., van Smeden, M., Carr,
K., Sippy, R., et al. Time to reality check the promises of ma-
chine learning-powered precision medicine. The Lancet Digital Health
2020;2(12):e677-e680.

Barron, D.. Reading Our minds: The rise of Big data psychiatry.
Columbia Global Reports; 2021.

Viazquez-Romero, A., Gallardo-Antolin, A.. Automatic detection of
depression in speech using ensemble convolutional neural networks. En-
tropy 2020;22(6):688.

Harati, A., Shriberg, E., Rutowski, T., Chlebek, P, Lu, Y.,
Oliveira, R.. Speech-based depression prediction using encoder-weight-
only transfer learning and a large corpus. In: Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP’21).
IEEE; 2021, p. 7273-72717.

Huang, Z., Epps, J., Joachim, D.. Investigation of speech landmark
patterns for depression detection. IEEE Transactions on Affective Com-
puting 2019;.

Zhu, Y., Shang, Y., Shao, Z., Guo, G.. Automated depression diagno-
sis based on deep networks to encode facial appearance and dynamics.
IEEE Transactions on Affective Computing 2017;9(4):578-584.

30

[182]

[183

[184]
[185]

[186]

[187]

[188]

[189]

[190]

[191]

Shao, W., You, Z., Liang, L., Hu, X., Li, C., Wang, W., et al. A multi-
modal gait analysis-based depression detection system. IEEE Journal of
Biomedical and Health Informatics 2021;.

Lu, Y., Harati, A., Rutowski, T., Oliveira, R., Chlebek, P., Shriberg,
E.. Robust speech and natural language processing models for depres-
sion screening. In: Proc. IEEE Signal Processing in Medicine and Biol-
ogy Symposium (SPMB). IEEE; 2020, p. 1-5.

Eichstaedt, J.C., Smith, R.J., Merchant, R.M., Ungar, L.H., Crutchley,
P., Preotiuc-Pietro, D., et al. Facebook language predicts depression in
medical records. Proceedings of the National Academy of Sciences USA
2018;115(44):11203-11208.

Sun, H., Liu, J., Chai, S., Qiu, Z., Lin, L., Huang, X., et al. Multi-
modal adaptive fusion transformer network for the estimation of depres-
sion level. Sensors 2021;21(14):4764.

Weiner, L., Guidi, A., Doignon-Camus, N., Giersch, A., Bertschy,
G., Vanello, N.. Vocal features obtained through automated methods
in verbal fluency tasks can aid the identification of mixed episodes in
bipolar disorder. Translational Psychiatry 2021;11(1):1-9.

Palmius, N., Tsanas, A., Saunders, K.E., Bilderbeck, A.C., Geddes,
J.R., Goodwin, G.M., et al. Detecting bipolar depression from geo-
graphic location data. IEEE Transactions on Biomedical Engineering
2016;64(8):1761-1771.

Marmar, C.R., Brown, A.D., Qian, M., Laska, E., Siegel, C., Li,
M., et al. Speech-based markers for posttraumatic stress disorder in us
veterans. Depression and Anxiety 2019;36(7):607-616.
Mallol-Ragolta, A., Dhamija, S., Boult, T.E.. A multimodal approach
for predicting changes in ptsd symptom severity. In: Proceedings of the
20th ACM International Conference on Multimodal Interaction. 2018,
p. 324-333.

Tahir, Y., Yang, Z., Chakraborty, D., Thalmann, N., Thalmann,
D., Maniam, Y., et al. Non-verbal speech cues as objective mea-
sures for negative symptoms in patients with schizophrenia. PLoS One
2019;14(4):¢0214314.

Abbas, A., Yadav, V., Smith, E., Ramjas, E., Rutter, S.B., Be-
navidez, C., et al. Computer vision-based assessment of motor func-
tioning in schizophrenia: Use of smartphones for remote measurement
of schizophrenia symptomatology. Digital Biomarkers 2021;5(1):29-36.
Birnbaum, M.L., Van Meter, A., Chen, V., Rizvi, A.F., Arenare, E.,
De Choudhury, M., et al. Utilizing machine learning on internet search
activity to support the diagnostic process and relapse detection in young
individuals with early psychosis: feasibility study. JMIR Mental Health
2020;7(9):e19348.

Birnbaum, M.L., Abrami, A., Heisig, S., Ali, A., Arenare, E.,
Agurto, C., et al. Acoustic and facial features from clinical interviews
for machine learning-based psychiatric diagnosis: Algorithm develop-
ment. JMIR Mental Health 2022;9(1):24699.

Abdullah, S., Choudhury, T.. Sensing technologies for monitoring
serious mental illnesses. IEEE MultiMedia 2018;25(1):61-75.
Kraepelin, E.. Manic depressive insanity and paranoia. The Journal of
Nervous and Mental Disease 1921;53(4):350.

Low, D.M., Bentley, K.H., Ghosh, S.S.. Automated assessment of
psychiatric disorders using speech: A systematic review. Laryngoscope
Investigative Otolaryngology 2020;5(1):96—-116.

Eyben, F., Scherer, K.R., Schuller, B.W., Sundberg, J., André,
E., Busso, C., et al. The geneva minimalistic acoustic parameter set
(GeMAPS) for voice research and affective computing. IEEE Transac-
tions on Affective Computing 2015;7(2):190-202.

Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J.,
Quatieri, T.F.. A review of depression and suicide risk assessment using
speech analysis. Speech Communication 2015;71:10-49.

Karam, Z.N., Provost, E.M., Singh, S., Montgomery, J., Archer,
C., Harrington, G., et al. Ecologically valid long-term mood monitor-
ing of individuals with bipolar disorder using speech. In: Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE; 2014, p. 4858-4862.

Rutowski, T., Shriberg, E., Harati, A., Lu, Y., Oliveira, R., Chle-
bek, P.. Cross-demographic portability of deep NLP-based depression
models. In: Proc. IEEE Spoken Language Technology Workshop (SLT).
1EEE; 2021, p. 1052-1057.

Kesari, G.. Al can now detect depression from your voice,
and it’s twice as accurate as human practitioners. 2021. URL:



[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

https://wuw.forbes.com/sites/ganeskesari/2021/05/24/
ai-can-now-detect-depression-from-just-your-voice/
?sh=7baeal6a4c8d.

Lovett, L.. Sonde launches voice API to detect mental ill-
ness. 2021. URL: https://www.mobihealthnews.com/news/
sonde-launches-voice-api-detect-mental-illness.
Galatzer-Levy, 1., Abbas, A., Ries, A., Homan, S., Sels, L., Koes-
mahargyo, V., et al. Validation of visual and auditory digital markers
of suicidality in acutely suicidal psychiatric inpatients: Proof-of-concept
study. Journal of Medical Internet Research 2021;23(6):e25199.

Song, S., Shen, L., Valstar, M.. Human behaviour-based automatic de-
pression analysis using hand-crafted statistics and deep learned spectral
features. In: Proc. 13th IEEE International Conference on Automatic
Face & Gesture Recognition (FG 2018). IEEE; 2018, p. 158-165.

de Belen, R.AJ., Bednarz, T., Sowmya, A., Del Favero, D.. Com-
puter vision in autism spectrum disorder research: a systematic re-
view of published studies from 2009 to 2019. Translational Psychiatry
2020;10(1):1-20.

Chen, Q., Chaturvedi, I, Ji, S., Cambria, E.. Sequential fusion of facial
appearance and dynamics for depression recognition. Pattern Recogni-
tion Letters 2021;150:115-121.

He, L., Niu, M., Tiwari, P., Marttinen, P., Su, R., Jiang, J., et al. Deep
learning for depression recognition with audiovisual cues: A review. In-
formation Fusion 2022;80:56-86.

Zhou, X, Jin, K., Shang, Y., Guo, G.. Visually interpretable repre-
sentation learning for depression recognition from facial images. IEEE
Transactions on Affective Computing 2018;11(3):542-552.

Smrke, U., Mlakar, I, Lin, S., Musil, B., Plohl, N., et al. Language,
speech, and facial expression features for artificial intelligence—based
detection of cancer survivors’ depression: Scoping meta-review. JMIR
Mental Health 2021;8(12):e30439.

Abbas, A., Hansen, B.J., Koesmahargyo, V., Yadav, V., Rosenfield,
P.J., Patil, O., et al. Facial and vocal markers of schizophrenia measured
using remote smartphone assessments: Observational study. JMIR For-
mative Research 2022;6(1):¢26276.

Castro, V.M., Minnier, J., Murphy, S.N., Kohane, I., Churchill, S.E.,
Gainer, V., et al. Validation of electronic health record phenotyping
of bipolar disorder cases and controls. American Journal of Psychiatry
2015;172(4):363-372.

Morgan, S.E., Diederen, K., Vértes, PE., Ip, S.H., Wang, B., Thomp-
son, B., et al. Natural language processing markers in first episode
psychosis and people at clinical high-risk. Translational Psychiatry
2021;11(1):1-9.

Rutowski, T., Shriberg, E., Harati, A., Lu, Y., Chlebek, P., Oliveira,
R.. Depression and anxiety prediction using deep language models and
transfer learning. In: Proc. 7th International Conference on Behavioural
and Social Computing (BESC). IEEE; 2020, p. 1-6.

Kim, J., Lee, J., Park, E., Han, J.. A deep learning model for detecting
mental illness from user content on social media. Scientific Reports
2020;10:11846.

Rezaii, N., Wolff, P, Price, B.H.. Natural language processing in
psychiatry: the promises and perils of a transformative approach. The
British Journal of Psychiatry 2022;:1-3.

Le Glaz, A., Haralambous, Y., Kim-Dufor, D.H., Lenca, P, Billot, R.,
Ryan, T.C., et al. Machine learning and natural language processing in
mental health: Systematic review. Journal of Medical Internet Research
2021;23(5):e15708.

National electronic health records survey: 2015 specialty and over-
all physicians electronic health record adoption summary tables.
2015. URL: https://www.cdc.gov/nchs/data/ahcd/nehrs/
2015_nehrs_ehr_by_specialty.pdf.

Van Le, D., Montgomery, J., Kirkby, K.C., Scanlan, J.. Risk prediction
using natural language processing of electronic mental health records in
an inpatient forensic psychiatry setting. Journal of Biomedical Informat-
ics 2018;86:49-58.

Walsh, C.G., Ribeiro, J.D., Franklin, J.C.. Predicting suicide at-
tempts in adolescents with longitudinal clinical data and machine learn-
ing. Journal of Child Psychology and Psychiatry 2018;59(12):1261—
1270.

Rumshisky, A., Ghassemi, M., Naumann, T., Szolovits, P., Castro, V.,
McCoy, T., et al. Predicting early psychiatric readmission with natural

31

[211

[212]

[213]

[214]

[215

[216]

[217

[218

[219]

[220]

[221

[222

[223]

[224]

[225

[226]

[227]

[228

[229]

[230

language processing of narrative discharge summaries. Translational
Psychiatry 2016;6(10):e921-e921.

Stewart, R., Velupillai, S.. Applied natural language processing in
mental health big data. Neuropsychopharmacology 2021;46(1):252.
Ive, J., Viani, N., Kam, J.,, Yin, L., Verma, S., Puntis, S., et al.
Generation and evaluation of artificial mental health records for natural
language processing. NPJ Digital Medicine 2020;3(1):1-9.

Bantilan, N., Malgaroli, M., Ray, B., Hull, T.D.. Just in time crisis
response: suicide alert system for telemedicine psychotherapy settings.
Psychotherapy Research 2021;31(3):289-299.

Raveau, M.P, Goiii, J., Rodriguez, J., Paiva, I., Barriga, F., Her-
mosilla, M.P,, et al. Natural language processing of helpline chat data
before and during the pandemic revealed significant decrease in self-
image appreciation and changes in other traits. Preprints 2022;.

Bollen, J., Ten Thij, M., Breithaupt, F., Barron, A.T., Rutter, L.A.,
Lorenzo-Luaces, L., et al. Historical language records reveal a surge
of cognitive distortions in recent decades. Proc Natl Acad Sci USA
2021;118(30):€2102061118.

Bathina, K.C., Ten Thij, M., Lorenzo-Luaces, L., Rutter, L.A., Bollen,
J.. Individuals with depression express more distorted thinking on social
media. Nature Human Behaviour 2021;5(4):458-466.

Guntuku, S.C., Buffone, A., Jaidka, K., Eichstaedt, J.C., Ungar, L.H..
Understanding and measuring psychological stress using social media.
In: Proceedings of the International AAATI Conference on Web and So-
cial Media; vol. 13. 2019, p. 214-225.

Rissola, E.A., Losada, D.E., Crestani, F. A survey of computa-
tional methods for online mental state assessment on social media. ACM
Transactions on Computing for Healthcare 2021;2(2):1-31.

Hinsel, K., Lin, LW, Sobolev, M., Muscat, W., Yum-Chan, S.,
De Choudhury, M., et al. Utilizing instagram data to identify usage
patterns associated with schizophrenia spectrum disorders. Frontiers in
Psychiatry 2021;12:691327.

Birnbaum, M.L., Norel, R., Van Meter, A., Ali, A.F.,, Arenare, E.,
Eyigoz, E., et al. Identifying signals associated with psychiatric illness
utilizing language and images posted to facebook. NPJ Schizophrenia
2020;6(1):1-10.

El-Ramly, M., Abu-Elyazid, H., Mo’men, Y., Alshaer, G., Adib, N.,
Eldeen, K.A,, et al. CairoDep: Detecting depression in arabic posts
using bert transformers. In: Proc. Tenth International Conference on
Intelligent Computing and Information Systems (ICICIS). 2021, p. 207—
212.

Martinez-Castafio, R., Htait, A., Azzopardi, L., Moshfeghi, Y.. BERT-
based transformers for early detection of mental health illnesses. In:
Proc. International Conference of the Cross-Language Evaluation Forum
for European Languages. 2021, p. 189-200.

Ji, S., Zhang, T., Ansari, L., Fu, J., Tiwari, P., Cambria, E.. Mental-
bert: Publicly available pretrained language models for mental health-
care. arXiv preprint: arXiv:211015621 2021;.

Kjell, O.N., Sikstrom, S., Kjell, K., Schwartz, H.A.. Natural lan-
guage analyzed with ai-based transformers predict traditional subjective
well-being measures approaching the theoretical upper limits in accu-
racy. Scientific Reports 2022;12(1):1-9.

Chancellor, S., De Choudhury, M.. Methods in predictive techniques
for mental health status on social media: a critical review. NPJ Digital
Medicine 2020;3(1):1-11.

Garcia-Ceja, E., Riegler, M., Nordgreen, T., Jakobsen, P., Oedegaard,
K.J., Tgrresen, J.. Mental health monitoring with multimodal sens-
ing and machine learning: A survey. Pervasive and Mobile Computing
2018;51:1-26.

Dagum, P.. Digital biomarkers of cognitive function.
Medicine 2018;1(1):1-3.

Zulueta, J., Piscitello, A., Rasic, M., Easter, R., Babu, P, Lange-
necker, S.A., et al. Predicting mood disturbance severity with mobile
phone keystroke metadata: a biaffect digital phenotyping study. Journal
of Medical Internet Research 2018;20(7):€9775.

Mandryk, R.L., Birk, M.V.. The potential of game-based dig-
ital biomarkers for modeling mental health. JMIR Mental Health
2019;6(4):e13485.

Dechant, M., Frommel, J., Mandryk, R.. Assessing social anxiety
through digital biomarkers embedded in a gaming task. In: Proc. 2021
CHI Conference on Human Factors in Computing Systems. 2021,.

NPJ Digital



[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]
[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

Winkler, R.. Apple is working on iphone fea- mahargyo, V., et al. Validation of visual and auditory digital markers
tures to  help  detect  depression, cognitive  decline. of suicidality in acutely suicidal psychiatric inpatients: Proof-of-concept
2021. URL: https://www.wsj.com/articles/ study. Journal of Medical Internet Research 2021;23(6):¢25199.
apple-wants-iphones-to-help-detect-depression-cognitive-d4¢2iiheAlsharr cAs-Ssaylel 1632%466Q1V., Koesmahargyo, V., Aghjayan, A.,
Seppild, J., De Vita, I, Jimsd, T., Miettunen, J., Isohanni, M., Marecki, S., et al. Remote digital measurement of facial and vocal
Rubinstein, K., et al. Mobile phone and wearable sensor-based mhealth markers of major depressive disorder severity and treatment response: a
approaches for psychiatric disorders and symptoms: systematic review. pilot study. Frontiers in Digital Health 2021;3:28.

JMIR Mental Health 2019;6(2):e9819. [254] Zhang, L., Koesmahargyo, V., Galatzer-Levy, .. Estimation of clinical
Chikersal, P., Doryab, A., Tumminia, M., Villalba, D.K., Dutcher, tremor using spatio-temporal adversarial autoencoder. In: Proc. 25th In-
J.M,, Liu, X., et al. Detecting depression and predicting its onset using ternational Conference on Pattern Recognition (ICPR’20). IEEE; 2021,
longitudinal symptoms captured by passive sensing: a machine learning p. 8259-8266.

approach with robust feature selection. ACM Transactions on Computer- [255] Ewbank, M.P., Cummins, R., Tablan, V., Bateup, S., Catarino, A.,
Human Interaction (TOCHI) 2021;28(1):1-41. Martin, A.J., et al. Quantifying the association between psychotherapy
Torous, J., Kiang, M.V., Lorme, J., Onnela, J.P, et al. New tools content and clinical outcomes using deep learning. JAMA Psychiatry
for new research in psychiatry: a scalable and customizable platform 2020;77(1):35-43.

to empower data driven smartphone research. JMIR Mental Health [256] Economides, M., Martman, J., Bell, M.J., Sanderson, B.. Im-
2016;3:e5165. provements in stress, affect, and irritability following brief use of
Mohr, D.C., Zhang, M., Schueller, S.M.. Personal sensing: under- a mindfulness-based smartphone app: a randomized controlled trial.
standing mental health using ubiquitous sensors and machine learning. Mindfulness 2018;9(5):1584-1593.

Annual Review of Clinical Psychology 2017;13:23-47. [257] Kunkle, S., Yip, M., Hunt, J., Watson, X., Udall, D., Arean, P,
Huckvale, K., Venkatesh, S., Christensen, H.. Toward clinical digi- et al. Association between care utilization and anxiety outcomes in
tal phenotyping: a timely opportunity to consider purpose, quality, and an on-demand mental health system: Retrospective observational study.
safety. NPJ Digital Medicine 2019;2(1):1-11. JMIR Formative Research 2021;5(1):e24662.

Insel, T.R., Cuthbert, B.N.. Digital phenotyping: a global tool for [258] Ewbank, M., Cummins, R., Tablan, V., Catarino, A., Buchholz, S.,
psychiatry. World Psychiatry 2018;17(3):276-277. Blackwell, A.. Understanding the relationship between patient lan-
Benoit, J., Onyeaka, H., Keshavan, M., Torous, J.. Systematic review guage and outcomes in internet-enabled cognitive behavioural therapy:
of digital phenotyping and machine learning in psychosis spectrum ill- A deep learning approach to automatic coding of session transcripts.
nesses. Harvard Review of Psychiatry 2020;28(5):296-304. Psychotherapy Research 2021;31(3):300-312.

Mendes, J.P.M., Moura, 1L.R., Van de Ven, P., Viana, D., Silva, EJ.S., [259] Flemotomos, N., Martinez, V.R., Chen, Z., Creed, T.A., Atkins,
Coutinho, L.R., et al. Sensing apps and public data sets for digital D.C., Narayanan, S.. Automated quality assessment of cognitive be-
phenotyping of mental health: Systematic review. Journal of Medical havioral therapy sessions through highly contextualized language repre-
Internet Research 2022;24(2):¢28735. sentations. PLoS One 2021;16(10):e0258639.

Prochaska, J.J., Vogel, E.A., Chieng, A., Kendra, M., Baiocchi, M., [260] Patel, N.A., Butte, A.J.. Characteristics and challenges of the clinical
Pajarito, S., et al. A therapeutic relational agent for reducing problem- pipeline of digital therapeutics. NPJ Digital Medicine 2020;3(1):1-5.
atic substance use (woebot): development and usability study. Journal [261] Insel, T.R.. Bending the curve for mental health: technology
of Medical Internet Research 2021;23(3):e24850. for a public health approach. American Journal of Public Health
Bohn, D.. Amazon announces halo, a fitness band 2019;109(S3):S168-S170.

and app that scans your body and voice. 2020. URL: [262] Folk, J.B., Schiel, M.A., Oblath, R., Feuer, V., Sharma, A., Khan,
https://www.theverge.com/2020/8/27/21402493/ S., et al. The transition of academic mental health clinics to telehealth
amazon-halo-band-health-fitness-body-scan-tone-emotion-activityhusihgethe covid-19 pandemic. Journal of the American Academy of
fitbit, . Understand your stress so you can manage it. 2022. URL: Child & Adolescent Psychiatry 2022;61(2):277-290.
https://wuw.fitbit.com/global/us/technology/stress. [263] Wagner, B., Horn, A.B., Maercker, A.. Internet-based versus face-
Kintsugi, . Kintsugi for health plans. 2022. URL: https:// to-face cognitive-behavioral intervention for depression: a random-
kintsugihello.com/for-health-plans. ized controlled non-inferiority trial. Journal of Affective Disorders
Auxier, B., Bucaille, A., Westcott, K.. Mental health goes mobile: 2014;152:113-121.

The mental health app market will keep on growing. 2021. URL: [264] Lahat, D., Adali, T., Jutten, C.. Multimodal data fusion: an
https://www2.deloitte.com/us/en/insights/industry/ overview of methods, challenges, and prospects. Proceedings of the
technology/technology-media-and-telecom-predictions/ IEEE 2015;103(9):1449-1477.
2022/mental-health-app-market.html. [265] Croitor-Sava, A., Martinez-Bisbal, M., Laudadio, T., Piquer, J., Celda,
Torous, J., Bucci, S., Bell, I.H., Kessing, L.V., et al. The growing field B., Heerschap, A., et al. Fusing in vivo and ex vivo nmr sources of
of digital psychiatry: current evidence and the future of apps, social information for brain tumor classification. Measurement Science and
media, chatbots, and virtual reality. World Psychiatry 2021;20(3):318— Technology 2011;22(11):114012.

335. [266] Adali, T., Levin-Schwartz, Y., Calhoun, V.D.. Multimodal data fusion
Onnela, J.P., Rauch, S.L.. Harnessing smartphone-based digital pheno- using source separation: Two effective models based on ICA and IVA
typing to enhance behavioral and mental health. Neuropsychopharma- and their properties. Proceedings of the IEEE 2015;103(9):1478-1493.
cology 2016:41(7):1691-1696. [267] Adali, T., Levin-Schwartz, Y., Calhoun, V.D.. Multimodal data fusion
Stein, D.J., Fineberg, N.A., Chamberlain, S.R.. Mental health in a using source separation: Application to medical imaging. Proceedings
digital world. Elsevier; 2021. of the IEEE 2015;103(9):1494-1506.

Abbas, A., Schultebraucks, K., Galatzer-Levy, LR.. Digital mea- [268] Calhoun, V., Sui, J., Qi, S.. Multimodal fusion signature as transdiag-
surement of mental health: Challenges, promises, and future directions. nostic psychiatric biomarker. Biological Psychiatry 2020;87(9):S37.
Psychiatric Annals 2021;51(1):14-20. [269] Zhang, Y.D., Dong, Z., Wang, S.H., Yu, X., Yao, X., Zhou, Q.,
Galatzer-Levy, LR., Bryant, R.A.. 636,120 ways to have posttraumatic et al. Advances in multimodal data fusion in neuroimaging: overview,
stress disorder. Perspectives on Psychological Science 2013;8(6):651— challenges, and novel orientation. Information Fusion 2020;64:149-187.
662. [270] Correa, N.M., Adali, T., Li, Y.O., Calhoun, V.D.. Canonical correla-
Jacobs, B.L.. Serotonin, motor activity and depression-related disor- tion analysis for data fusion and group inferences. IEEE Signal Process-
ders. American Scientist 1994;82(5):456-463. ing Magazine 2010;27(4):39-50.

Gigliucei, V., O’'Dowd, G., Casey, S., Egan, D., Gibney, [271] de Cheveigné, A., Di Liberto, G.M., Arzounian, D., Wong, D.D.,
S., Harkin, A.. Ketamine elicits sustained antidepressant-like ac- Hjortkjaer, J., Fuglsang, S., et al. Multiway canonical correlation anal-
tivity via a serotonin-dependent mechanism. Psychopharmacology ysis of brain data. NeuroImage 2019;186:728-740.
2013;228(1):157-166. [272] Chen, X., Wang, Z.J., McKeown, M.. Joint blind source separation
Galatzer-Levy, 1., Abbas, A., Ries, A., Homan, S., Sels, L., Koes- for neurophysiological data analysis: Multiset and multimodal methods.

32



[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

[290]

[291]

[292]

[293]

[294]

IEEE Signal Processing Magazine 2016;33(3):86-107.

Silva, R.F, Plis, S.M.. How to integrate data from multiple biological
layers in mental health? In: Personalized Psychiatry. Springer; 2019, p.
135-159.

Zhou, G., Zhao, Q., Zhang, Y., Adali, T., Xie, S., Cichocki, A..
Linked component analysis from matrices to high-order tensors: Appli-
cations to biomedical data. Proceedings of the IEEE 2016;104(2):310—
331.

Calhoun, V.D., Adali, T.. Feature-based fusion of medical imaging
data. IEEE Transactions on Information Technology in Biomedicine
2008;13(5):711-720.

Calhoun, V.D., Liu, J., Adali, T.. A review of group ICA for fMRI
data and ICA for joint inference of imaging, genetic, and ERP data.
NeuroImage 2009;45(1):S163-S172.

Acar, E., Bro, R., Smilde, A.K.. Data fusion in metabolomics us-
ing coupled matrix and tensor factorizations. Proceedings of the IEEE
2015;103(9):1602-1620.

Zhou, G., Cichocki, A., Zhang, Y., Mandic, D.P. Group compo-
nent analysis for multiblock data: Common and individual feature ex-
traction. IEEE Transactions on Neural Networks and Learning Systems
2015;27(11):2426-2439.

Lock, E.F., Hoadley, K.A., Marron, J.S., Nobel, A.B.. Joint and
individual variation explained (JIVE) for integrated analysis of multiple
data types. The Annals of Applied Statistics 2013;7(1):523.
Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y.. Simplemkl.
Journal of Machine Learning Research 2008;9:2491-2521.

Mariette, J., Villa-Vialaneix, N.. Unsupervised multiple kernel learning
for heterogeneous data integration. Bioinformatics 2018;34(6):1009—
1015.

Squarcina, L., Castellani, U., Bellani, M., Perlini, C., Lasalvia, A.,
Dusi, N., et al. Classification of first-episode psychosis in a large cohort
of patients using support vector machine and multiple kernel learning
techniques. Neurolmage 2017;145:238-245.

Dyrba, M., Grothe, M., Kirste, T., Teipel, S.J.. Multimodal analysis
of functional and structural disconnection in a lzheimer’s disease using
multiple kernel svm. Human Brain Mapping 2015;36(6):2118-2131.
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Initiative, A.D.N.,
et al. Multimodal classification of alzheimer’s disease and mild cognitive
impairment. Neurolmage 2011;55(3):856-867.

Ramachandram, D., Taylor, G.W.. Deep multimodal learning: A sur-
vey on recent advances and trends. IEEE Signal Processing Magazine
2017;34(6):96-108.

Zhou, T., Thung, K.H., Zhu, X., Shen, D.. Effective feature learning
and fusion of multimodality data using stage-wise deep neural network
for dementia diagnosis. Human Brain Mapping 2019;40(3):1001-1016.
Nguyen, N.D., Huang, J., Wang, D.. A deep manifold-regularized
learning model for improving phenotype prediction from multi-modal
data. Nature Computational Science 2022;2(1):38-46.

Holzinger, A., Malle, B., Saranti, A., Pfeifer, B.. Towards multi-modal
causability with graph neural networks enabling information fusion for
explainable ai. Information Fusion 2021;71:28-37.

Dsouza, N.S., Nebel, M.B., Crocetti, D., Robinson, J., Mostofsky,
S., Venkataraman, A.. M-GCN: A multimodal graph convolutional net-
work to integrate functional and structural connectomics data to predict
multidimensional phenotypic characterizations. In: Medical Imaging
with Deep Learning. PMLR; 2021, p. 119-130.

Zhang, W., Zhan, L., Thompson, P., Wang, Y.. Deep representa-
tion learning for multimodal brain networks. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention.
Springer; 2020, p. 613-624.

Kong, Z., Sun, L., Peng, H., Zhan, L., Chen, Y., He, L.. Multiplex
graph networks for multimodal brain network analysis. arXiv preprint
arXiv:210800158 2021;.

Tulay, E.E., Metin, B., Tarhan, N., Arikan, M.K.. Multimodal
neuroimaging: basic concepts and classification of neuropsychiatric dis-
eases. Clinical EEG and Neuroscience 2019;50(1):20-33.

Sui, J., Pearlson, G., Caprihan, A., Adali, T., Kiehl, K.A., Liu,
J., et al. Discriminating schizophrenia and bipolar disorder by fusing
fMRI and DTT in a multimodal CCA+ joint ICA model. NeuroImage
2011;57(3):839-855.

Acar, E., Schenker, C., Levin-Schwartz, Y., Calhoun, V.D., Adali, T..

33

[295]

[296]

[297]

[298]

[299]

[300]

[301]

[302]

[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

Unraveling diagnostic biomarkers of schizophrenia through structure-
revealing fusion of multi-modal neuroimaging data. Frontiers in Neuro-
science 2019;13:416.

Vai, B., Parenti, L., Bollettini, I., Cara, C., Verga, C., Melloni,
E., et al. Predicting differential diagnosis between bipolar and unipolar
depression with multiple kernel learning on multimodal structural neu-
roimaging. European Neuropsychopharmacology 2020;34:28-38.
Zhang, Q., Wu, Q.,Zhu, H., He, L., Huang, H., Zhang, J., et al. Mul-
timodal mri-based classification of trauma survivors with and without
post-traumatic stress disorder. Frontiers in Neuroscience 2016;10:292.
Zhou, X., Lin, Q., Gui, Y., Wang, Z. Liu, M., Lu, H.
Multimodal MR images-based diagnosis of early adolescent attention-
deficit/hyperactivity disorder using multiple kernel learning. Frontiers
in Neuroscience 2021;15.

Geenjaar, E., Lewis, N., Fu, Z., Venkatdas, R., Plis, S., Calhoun, V..
Fusing multimodal neuroimaging data with a variational autoencoder.
In: Proc. 43rd Annual International Conference of the IEEE Engineering
in Medicine & Biology Society (EMBC). IEEE; 2021, p. 3630-3633.
Liu, J., Wang, X., Zhang, X., Pan, Y., Wang, X., Wang, J.. Mmm:
classification of schizophrenia using multi-modality multi-atlas feature
representation and multi-kernel learning. Multimedia Tools and Appli-
cations 2018;77(22):29651-29667.

Plis, S.M., Amin, M.E,, Chekroud, A., Hjelm, D., Damaraju, E., Lee,
H.J., et al. Reading the (functional) writing on the (structural) wall: Mul-
timodal fusion of brain structure and function via a deep neural network
based translation approach reveals novel impairments in schizophrenia.
Neurolmage 2018;181:734-747.

Rahaman, M.A., Chen, J., Fu, Z., Lewis, N, Iraji, A., Calhoun,
V.D.. Multi-modal deep learning of functional and structural neuroimag-
ing and genomic data to predict mental illness. In: Proc. 43rd Annual
International Conference of the IEEE Engineering in Medicine & Biol-
ogy Society (EMBC). IEEE; 2021, p. 3267-3272.

Akhonda, M., Levin-Schwartz, Y., Calhoun, V.D., Adali, T.. As-
sociation of neuroimaging data with behavioral variables: A class of
multivariate methods and their comparison using multi-task fMRI data.
Sensors 2022;22(3):1224.

Wang, Y, Jiang, WB., Li, R, Lu, B.L.. Emotion transformer fu-
sion: Complementary representation properties of EEG and eye move-
ments on recognizing anger and surprise. In: Proc. IEEE International
Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 2021,
p. 1575-1578.

Jaques, N., Taylor, S., Sano, A., Picard, R.. Multi-task, multi-kernel
learning for estimating individual wellbeing. In: Proc. NIPS Workshop
on Multimodal Machine Learning, Montreal, Quebec; vol. 898. 2015,
p. 3.

Lam, G., Dongyan, H., Lin, W.. Context-aware deep learning for multi-
modal depression detection. In: Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2019, p.
3946-3950.

Parra, F., Benezeth, Y., Yang, F.. Automatic assessment of emotion
dysregulation in american, french, and tunisian adults and new develop-
ments in deep multimodal fusion: Cross-sectional study. JMIR Mental
Health 2022;9(1):e34333.

Doryab, A., Villalba, D.K., Chikersal, P., Dutcher, J.M., Tumminia,
M., Liu, X, et al. Identifying behavioral phenotypes of loneliness and
social isolation with passive sensing: statistical analysis, data mining
and machine learning of smartphone and fitbit data. JMIR mHealth and
uHealth 2019;7(7):e13209.

He, J., Mai, S., Hu, H.. A unimodal reinforced transformer with
time squeeze fusion for multimodal sentiment analysis. IEEE Signal
Processing Letters 2021;28:992-996.

Dibeklioglu, H., Hammal, Z., Cohn, J.F.. Dynamic multimodal mea-
surement of depression severity using deep autoencoding. IEEE Journal
of Biomedical and Health Informatics 2017;22(2):525-536.

Herzog, D.P., Beckmann, H., Lieb, K., Ryu, S., Miiller, M.B.. Under-
standing and predicting antidepressant response: Using animal models
to move toward precision psychiatry. Frontiers in Psychiatry 2018;9:512.
Bale, T.L., Abel, T., Akil, H., Jr., W.A.C., Moghaddam, B., Nestler,
E.J., etal. The critical importance of basic animal research for neuropsy-
chiatric disorders. Neuropsychopharmacology 2019;44(8):1349-1353.
Labonté, B., Engmann, O., Purushothaman, I., Menard, C., Wang, J.,



[313]

[314]

[315]

[316]

[317]
[318]

[319]

[320]

[321]

[322]

[323]

[324]

[325]

[326]

[327]

[328]

[329]

[330]

[331]

[332]

[333]

Tan, C., et al. Sex-specific transcriptional signatures in human depres-
sion. Nature Medicine 2017;23(9):1102-1111.

Nagy, C., Maitra, M., Tanti, A., Suderman, M., Théroux, J.F,
Davoli, M.A., et al. Single-nucleus transcriptomics of the prefrontal
cortex in major depressive disorder implicates oligodendrocyte precur-
sor cells and excitatory neurons. Nature Neuroscience 2020;23(6):771—
781.

McEwen, B.S., Bowles, N.P, Gray, J.D., Hill, M.N., Hunter, R.G.,
Karatsoreos, I.N., et al. Mechanisms of stress in the brain. Nat Neurosci
2015;18(10):1353-63.

Floriou-Servou, A., von Ziegler, L., Stalder, L., Sturman, O., Privitera,
M., Rassi, A, et al. Distinct proteomic, transcriptomic, and epigenetic
stress responses in dorsal and ventral hippocampus. Biological Psychia-
try 2018;84(7):531-541.

Bigio, B., Mathe, A.A., Sousa, V.C., Zelli, D., Svenningsson, P,
McEwen, B.S., et al. Epigenetics and energetics in ventral hippocam-
pus mediate rapid antidepressant action: Implications for treatment re-
sistance. Proc Natl Acad Sci USA 2016;113(28):7906-7911.

Flight, M.H.. Antidepressant epigenetic action. Nat Rev Neurosci
2013;14(4):226.

Stuart, T., Satija, R.. Integrative single-cell analysis. Nature Reviews
Genetics 2019;20(5):257-272.

Petegrosso, R., Li, Z., Kuang, R.. Machine learning and statisti-
cal methods for clustering single-cell rna-sequencing data. Briefings in
Bioinformatics 2020;21(4):1209-1223.

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck William M., I., Zheng,
S., Butler, A, et al. Integrated analysis of multimodal single-cell data.
Cell 2021;184(13):3573-3587.

Amodio, M., van Dijk, D., Srinivasan, K., Chen, W.S., Mohsen, H.,
Moon, K.R., et al. Exploring single-cell data with deep multitasking
neural networks. Nature Methods 2019;16(11):1139-1145.

Eraslan, G., Simon, L.M., Mircea, M., Mueller, N.S., Theis, EIJ..
Single-cell rna-seq denoising using a deep count autoencoder. Nat Com-
mun 2019;10(1):390.

Wang, D., Gu, J.. Vasc: Dimension reduction and visualization of
single-cell rna-seq data by deep variational autoencoder. Genomics Pro-
teomics Bioinformatics 2018;16(5):320-331.

Wang, J., Agarwal, D., Huang, M., Hu, G., Zhou, Z., Ye, C., etal.
Data denoising with transfer learning in single-cell transcriptomics. Nat
Methods 2019;16(9):875-878.

Cao, J., Cusanovich, D.A., Ramani, V., Aghamirzaie, D., Pliner,
H.A., Hill, AJ., etal. Joint profiling of chromatin accessibility and gene
expression in thousands of single cells. Science 2018;361(6409):1380—
1385.

Chen, S., Lake, B.B., Zhang, K.. High-throughput sequencing of the
transcriptome and chromatin accessibility in the same cell. Nat Biotech-
nol 2019;37(12):1452-1457.

Vickovic, S., Eraslan, G., Salmén, F., Klughammer, J., Stenbeck, L.,
Schapiro, D., et al. High-definition spatial transcriptomics for in situ
tissue profiling. Nat Methods 2019;16(10):987-990.

Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Mur-
ray, E., Vanderburg, C.R., et al. Slide-seq: A scalable technology for
measuring genome-wide expression at high spatial resolution. Science
2019;363(6434):1463-1467.

Nasca, C., Rasgon, N., McEwen, B.. An emerging epigenetic frame-
work of systemic and central mechanisms underlying stress-related dis-
orders. Neuropsychopharmacology 2019;44(1):235-236.

Nasca, C., Dobbin, J., Bigio, B., Watson, K., de Angelis, P., Kautz,
M., et al. Insulin receptor substrate in brain-enriched exosomes in sub-
jects with major depression: on the path of creation of biosignatures of
central insulin resistance. Molecular Psychiatry 2021;26(9):5140-5149.
Nasca, C., Barnhill, O., DeAngelis, P., Watson, K., Lin, J., Beasley,
J., et al. Multidimensional predictors of antidepressant responses: In-
tegrating mitochondrial, genetic, metabolic and environmental factors
with clinical outcomes. Neurobiol Stress 2021;15:100407.

Dean, K.R., Hammamieh, R., Mellon, S.H., Abu-Amara, D., Flory,
J.D., Guffanti, G., et al. Multi-omic biomarker identification and valida-
tion for diagnosing warzone-related post-traumatic stress disorder. Mol
Psychiatry 2020;25(12):3337-3349.

Schultebraucks, K., Qian, M., Abu-Amara, D., Dean, K., Laska,
E., Siegel, C., et al. Pre-deployment risk factors for ptsd in active-

34

[334]

[335]

[336]

[337]

[338]

[339]

[340]

[341]

[342]

[343]

[344]

[345]

[346]

[347]

[348]

[349]

[350]

[351]

[354]

[355

duty personnel deployed to afghanistan: a machine-learning approach
for analyzing multivariate predictors. Mol Psychiatry 2021;26(9):5011—
5022.

Lorsch, Z.S., Ambesi-Impiombato, A., Zenowich, R., Morganstern,
I, Leahy, E., Bansal, M., et al. Computational analysis of multidi-
mensional behavioral alterations after chronic social defeat stress. Biol
Psychiatry 2021;89(9):920-928.

Alexandrov, V., Brunner, D., Hanania, T., Leahy, E.. High-throughput
analysis of behavior for drug discovery. European Journal of Pharma-
cology 2015;750:82-89.

Nasca, C., Menard, C., Hodes, G., Bigio, B., Pena, C., Lorsch,
Z., et al. Multidimensional predictors of susceptibility and resilience to
social defeat stress. Biol Psychiatry 2019;86(6):483-491.

Gunning, D., Aha, D.. DARPA’s explainable artificial intelligence
(XAI) program. AI Magazine 2019;40(2):44-58.

Roessner, V., Rothe, J., Kohls, G., Schomerus, G., Ehrlich, S., Beste,
C.. Taming the chaos?! using eXplainable Artificial Intelligence (XAI)
to tackle the complexity in mental health research. 2021.
Thorsen-Meyer, H.C., Nielsen, A.B., Nielsen, A.P., Kaas-Hansen,
B.S., Toft, P.P.,, Schierbeck, J., et al. Dynamic and explainable machine
learning prediction of mortality in patients in the intensive care unit: a
retrospective study of high-frequency data in electronic patient records.
The Lancet Digital Health 2020;2(4):e179-e191.

Sheu, Y.h.. Illuminating the black box: Interpreting deep neural network
models for psychiatric research. Frontiers in Psychiatry 2020;:1091.
Molnar, C.. Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. 2022. URL: https://www.amazon.com/
Interpretable-Machine-Learning-Making-Explainable/dp/
BO9TMWHVB4.

Pearl, J.. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Elsevier; 1988.

Letham, B., Rudin, C., McCormick, T.H., Madigan, D.. Interpretable
classifiers using rules and bayesian analysis: Building a better stroke
prediction model. Annals of Applied Statistics 2015;9(3):1350-1371.
Li, Y., Murias, M., Major, S., Dawson, G., Dzirasa, K., Carin, L.,
et al. Targeting EEG/LFP synchrony with neural nets. In: Guyon, I,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., et al., editors. Advances in Neural Information Processing Systems;
vol. 30. Curran Associates, Inc.; 2017,.

Zou, 1.Y., Adams, R.P.. Priors for diversity in generative latent variable
models. In: Advances in Neural Information Processing Systems (NIPS)
25.2012,.

Nair, R., Mattetti, M., Daly, E., Wei, D., Alkan, O., Zhang, Y.. What
changed? interpretable model comparison. In: Proc. Int. Joint Conf.
Artificial Intelligence (IICAT’21). 2021.,.

Daly, E., Mattetti, M., Alkan, O., Nair, R.. User driven model ad-
justment via boolean rule explanation. In: Proc. 35th Conf. Artificial
Intelligence (AAAI’21). 2021, p. 5896-5904.

Huys, Q.J., Maia, T.V,, Frank, M.J.. Computational psychiatry as a
bridge from neuroscience to clinical applications. Nature Neuroscience
2016;19(3):404-413.

Breakspear, M.. Dynamic models of large-scale brain activity. Nature
Neuroscience 2017;20(3):340-352.

Murray, J.D., Demirtag, M., Anticevic, A.. Biophysical modeling of
large-scale brain dynamics and applications for computational psychia-
try. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
2018;3(9):777-787.

Papadopoulos, L., Lynn, C.W., Battaglia, D., Bassett, D.. Relations
between large-scale brain connectivity and effects of regional stimula-
tion depend on collective dynamical state. PLoS Computational Biology
2020;:¢1008144.

Wilson, H.R., Cowan, J.D.. Excitatory and inhibitory interactions in
localized populations of model neurons. Biophysical Journal 1972;12:1—
24.

Chaudhuri, R., Knoblauch, K., Gariel, M.A., Kennedy, H., Wang,
X.J.. A large-scale circuit mechanism for hierarchical dynamical pro-
cessing in the primate cortex. Neuron 2015;88(2):419-431.

Friston, K., Harrison, L., Penny, W.. Dynamica causal modeling.
NeuroImage 2003;19:1273-1302.

Friston, K., Kahan, J., Biswal, B., Razi, A.. A DCM for resting state
fMRI. Neurolmage 2014;94:396—407.



[356]

[357]

[358]
[359]

[360]

[361]

[362]

[363]

[364]

[365]

[366]

[367]

[368]

[369]

[370]

[371]

[372]

[373]

[374]

[375]

[376]

[377]

Chen, Z.S., Pesaran, B.. Improving scalability in systems neuroscience.
Neuron 2021;109(11):1776-1790.

Nasr, K., Haslacher, D., Dayan, E., Censor, N., Cohen, L.G.,
Soekadar, S.R.. Breaking the boundaries of interacting with the human
brain using adaptive closed-loop stimulation. Progress in Neurobiology
2022;216:102311.

Jazayeri, M., Afraz, A.. Navigating the neural space in search of the
neural code. Neuron 2017;93(5):1003-1014.

Etkin, A.. Addressing the causality gap in human psychiatric neuro-
science. JAMA Psychiatry 2018;75(1):3-4.

Fellous, J.M., Sapiro, G., Rossi, A., Mayberg, H., Ferrante, M.. Ex-
plainable artificial intelligence for neuroscience: behavioral neurostim-
ulation. Frontiers in Neuroscience 2019;13:1346.

Lewis, PM., Thomson, R.H., Rosenfeld, J.V., Fitzgerald, P.B..
Brain neuromodulation techniques: a review. The Neuroscientist
2016;22(4):406-421.

Romei, V., Thut, G., Silvanto, J.. Information-based approaches
of noninvasive transcranial brain stimulation. Trends in Neurosciences
2016;39(11):782-795.

Lo, M.C., Widege, A..
next generation treatments for psychiatric illness.
2017;29:191-204.

Chen, A., Oathes, D.J., Chang, C., Bradley, T., Zhou, Z., Williams,
L., et al. Causal interactions between fronto-parietal central execu-
tive and default-mode networks in humans. Proc Natl Acad Sci USA
2013;110(49):19944-19949.

Hobot, J., Klincewicz, M., Sandberg, K., Wierzcho, M.. Causal
inferences in repetitive transcranial magnetic stimulation research: chal-
lenges and perspectives. Frontiers in Human Neuroscience 2021;14:574.
Akhtar, H., Bukhari, F., Nazir, M., Anwar, M.N., Shahzad,
A.. Therapeutic efficacy of neurostimulation for depression: tech-
niques, current modalities, and future challenges. Neuroscience Bulletin
2016;32(1):115-126.

Pineau, J., Guez, A., Vincent, R., Panuccio, G., Avoli, M.. Treat-
ing epilepsy via adaptive neurostimulation: a reinforcement learning ap-
proach. International Journal of Neural Systems 2009;19(4):227-240.
Tafazoli, S., MacDowell, C.J., Che, Z., Letai, K.C., Steinhardt,
C.R., Buschman, T.J.. Learning to control the brain through adap-
tive closed-loop patterned stimulation. Journal of Neural Engineering
2020;17(5):056007.

Gao, Q., Naumann, M., Jovanov, I, Lesi, V., Kamaravelu, K., Grill,
W.M,, et al. Model-based design of closed loop deep brain stimulation
controller using reinforcement learning. In: Proc. 2020 ACM/IEEE 11th
International Conference on Cyber-Physical Systems (ICCPS). IEEE;
2020,doi:10.1109/ICCPS48487.2020.00018.

Hebb, A.O., Zhang, J.J., Mahoor, M.H., Tsiokos, C., Matlack, C.,
Chizeck, H.J., et al. Creating the feedback loop: closed-loop neurostim-
ulation. Neurosurgery Clinics of North America 2014;25(1):187-204.
Bauer, R., Gharabaghi, A.. Reinforcement learning for adaptive thresh-
old control of restorative brain-computer interfaces: a Bayesian simula-
tion. Frontiers in Neuroscience 2015;9:36.

Tang, E., Bassett, D.S.. Control of dynamics in brain networks. Re-
views of Modern Physics 2018;90(3):031003.

Srivastava, P., Nozari, E., Kim, J.Z., Ju, H., Zhou, D., Becker,
C., et al. Models of communication and control for brain networks:
distinctions, convergence, and future outlook. Network Neuroscience
2020;4(4):1122-1159.

Zhang, X., Braun, U., Tost, H., Bassett, D.S.. Data-driven approaches
to neuroimaging analysis to enhance psychiatric diagnosis and ther-
apy. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging
2020;5(8):780-790.

Fox, M.D., Buckner, R.L., Liu, H., Chakravarty, M.M., Lozano,
AM., Pascual-Leone, A.. Resting-state networks link invasive and
noninvasive brain stimulation across diverse psychiatric and neurolog-
ical diseases. Proc Natl Acad Sci USA 2014;111(41):E4367-E4375.
Zandvakili, A., Philip, N.S., Jones, S.R., Tyrka, A.R., Greenberg,
B.D., Carpenter, L.L.. Use of machine learning in predicting clinical
response to transcranial magnetic stimulation in comorbid posttraumatic
stress disorder and major depression: a resting state electroencephalog-
raphy study. Journal of Affective Disorders 2019;252:47-54.
Vollmer, S., Mateen, B.A., Bohner, G., Kirdly, F.J., Ghani,

Closed-loop neuromodulation systems:
Int Rev Psych

R,

35

[378]

[379]

[380]

[381]

[382]

[383]

[384]

[385]

[386]

[389]

[390]

[391]

[392]

[393]

[394]

[395]
[396]

[397]

[398]

[399]

[400]

Jonsson, P., et al. Machine learning and artificial intelligence research
for patient benefit: 20 critical questions on transparency, replicability,
ethics, and effectiveness. BMJ 2020;368.

Kessler, R.C., Chiu, W.T., Demler, O., Walters, E.E.. Prevalence,
severity, and comorbidity of 12-month DSM-IV disorders in the na-
tional comorbidity survey replication. Archives of General Psychiatry
2005;62(6):617-627.

Born, J., Beymer, D., Rajan, D., Coy, A., Mukherjee, V.V., Manica,
M., et al. On the role of artificial intelligence in medical imaging of
COVID-19. Patterns 2021;2(6):100269.

Pendse, S.R., Nkemelu, D., Bidwell, N.J., Jadhav, S., Pathare, S.,
De, M., et al. From treatment to healing: Envisioning a decolonial
digital mental health. In: Proc. CHI Conference on Human Factors in
Computing Systems (CHI’22). 2022,.

Palaniyappan, L.. More than a biomarker: could language be a biosocial
marker of psychosis? NPJ Schizophrenia 2021;7(1):1-5.

Luo, Y., Peng, J., Ma, J.. When causal inference meets deep learning.
Nature Machine Intelligence 2020;2(8):426-427.

Prosperi, M., Guo, Y., Sperrin, M., Koopman, J.S., Min, J.S., He, X,
et al. Causal inference and counterfactual prediction in machine learning
for actionable healthcare. Nature Machine Intelligence 2020;2(7):369—
375.

Neuner, I., Veselinovi¢, T., Ramkiran, S., Rajkumar, R., Schnell-
baecher, G.J., Shah, N.J.. 7T ultra-high-field neuroimaging for mental
health: an emerging tool for precision psychiatry? Translational Psychi-
atry 2022;12(1):1-10.

Rajpurkar, P, Chen, E., Banerjee, O., Topol, E.J.. Al in health and
medicine. Nature Medicine 2022;28:1-8.

Grande, D., Mitra, N., Iyengar, R., Merchant, R.M., Asch,
D.A., Sharma, M., et al. Consumer willingness to share personal
digital information for health-related uses. JAMA Network Open
2022;5(1):e2144787-e2144787.

Davidson, B.I.. The crossroads of digital phenotyping. General Hospital
Psychiatry 2022;74:126-132.

Korngiebel, D.M., Mooney, S.D.. Considering the possibilities and
pitfalls of generative pre-trained transformer 3 (gpt-3) in healthcare de-
livery. NPJ Digital Medicine 2021;4(1):1-3.

Polyzotis, N., Zaharia, M.. What can data-centric ai learn from data and
ml engineering? arXiv preprint: arXiv:211206439 2021;URL: https:
//arxiv.org/pdf/2112.06439.pdf.

Northcutt, C., Jiang, L., Chuang, I.. Confident learning: Estimating
uncertainty in dataset labels. Journal of Artificial Intelligence Research
2021;70:1373-1411.

Chen, R.J., Lu, M.Y., Chen, T.Y., Williamson, D.F.,, Mahmood, F.
Synthetic data in machine learning for medicine and healthcare. Nature
Biomedical Engineering 2021;5(6):493-497.

Lan, L., You, L., Zhang, Z., Fan, Z., Zhao, W., Zeng, N., et al.
Generative adversarial networks and its applications in biomedical in-
formatics. Frontiers in Public Health 2020;8:164.

Geng, D., Alkhachroum, A., Bicchi, M.A.M., Jagid, J.R., Cajigas, I.,
Chen, Z.S.. Deep learning for robust detection of interictal epileptiform
discharges. Journal of Neural Engineering 2021;18(5):056015.
Weldon, J., Ward, T., Brophy, E.. Generation of synthetic electronic
health records using a federated gan. arXiv preprint arXiv:210902543
2021;.

Chen, L., Xia, C., Sun, H.. Recent advances of deep learning in
psychiatric disorders. Precision Clinical Medicine 2020;3(3):202-213.
Zhang, Z., Cui, P, Zhu, W.. Deep learning on graphs: A survey. IEEE
Transactions on Knowledge and Data Engineering 2022;34:249-270.
Bronstein, M.M., Bruna, J., Cohen, T., Velickovi¢, P.. Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:210413478 2021;.

Gennatas, E.D., Friedman, J.H., Ungar, L.H., et al. Expert-augmented
machine learning. Proc Natl Acad Sci USA 2020;117:4571-4577.
Habtewold, T.D., Rodijk, L.H., Liemburg, EJ., Sidorenkov, G.,
Boezen, H.M., Bruggeman, R., et al. A systematic review and nar-
rative synthesis of data-driven studies in schizophrenia symptoms and
cognitive deficits. Translational Psychiatry 2020;10(1):1-24.

Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V.X., Finale
Doshi-Velez, K.J., et al. Do no harm: a roadmap for responsible ma-
chine learning for health care. Nature Medicine 2019;25:1337-1340.



