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One sentence summary (< 150 characters): 20 

A multi-region brain machine interface automatically detects pain with high accuracy and 21 

delivers ultrafast analgesia for acute and chronic pain. 22 

  23 



ABSTRACT 24 

Effective treatments for chronic pain remain limited. Conceptually, a closed-loop neural 25 

interface combining sensory signal detection with therapeutic delivery can produce timely 26 

and effective pain relief. Such systems are challenging to develop due to difficulties in 27 

accurate pain detection and ultrafast analgesic delivery. Pain has sensory and affective 28 

components, encoded in large part by neural activities in the primary somatosensory cortex 29 

(S1) and anterior cingulate cortex (ACC), respectively. Meanwhile, studies show that 30 

stimulation of the prefrontal cortex (PFC) produces descending pain control. Here, we have 31 

designed a brain-machine interface (BMI) combining an automated pain detection arm, 32 

based on simultaneously recorded local field potential (LFP) signals from the S1 and ACC, 33 

with a treatment arm, based on optogenetic activation or electrical deep brain stimulation 34 

(DBS) of the PFC in freely behaving rats. Our multi-region neural interface accurately 35 

detected and treated acute evoked pain and, more importantly, spontaneous pain associated 36 

with chronic pain. This neural interface performed with minimal delay and remained stable 37 

over time. Given the clinical feasibility of LFP recordings and DBS, our findings demonstrate 38 

the promising potential of BMIs for pain treatment. 39 

 40 

  41 



INTRODUCTION 42 

Closed-loop brain-machine interfaces (BMIs) link neural signals for a sensory or motor event with 43 

neuromodulation and have the potential to treat neuropsychiatric disorders(1-3). BMIs have 44 

produced promising results for treating epilepsy and motor neuron diseases(4-8). However, their 45 

application to sensory disorders have been limited by challenges in detecting accurate sensory 46 

signals and providing fast and effective behavioral feedback.  47 

 48 

Pain represents a unique challenge as well as an opportunity for BMI designs. Chronic pain is one 49 

of the most common sensory disorders, and it is defined by discrete episodes of pain that either are 50 

evoked by noxious stimuli or occur spontaneously(9). Current treatments are limited to scheduled 51 

pharmacological interventions and continuous spinal neuromodulation. These therapeutic options 52 

do not take into consideration the precise timing of individual pain episodes, resulting in frequent 53 

treatment delays and under- or overtreatment(10). Conceptually, a BMI approach is ideally suited 54 

to pain management by selectively targeting discrete nociceptive episodes. However, decoding 55 

pain signals remains challenging. Unlike other sensory modalities(11), there is no single target for 56 

pain representations(12-16). Among a distributed network of pain-processing regions, the primary 57 

somatosensory cortex (S1) is known to encode sensory-discriminative aspect of pain, including 58 

the location, timing, and quality of pain, whereas the anterior cingulate cortex (ACC) is known to 59 

play a key role in aversive response to pain(12-14, 17-20). Thus, an appealing strategy to decode 60 

pain is to integrate neural signals from multiple regions, with the S1 and ACC as the most relevant 61 

targets.  62 

 63 



Current BMI applications primarily rely on neuronal spikes to produce accurately decoded signals. 64 

However, individual spikes are difficult to record faithfully over a prolonged period of time, which 65 

is needed for the management of chronic pain. In contrast, local field potentials (LFPs), which 66 

represent the subthreshold synaptic activity from local neuronal populations(21, 22), are relatively 67 

stable in chronic recordings. Although their signal stability facilitates clinical applications, LFPs 68 

have only recently started to be used for population decoding for BMI applications(23-25). 69 

 70 

In terms of treatment targets, the prefrontal cortex (PFC) is an important center for top-down 71 

control of sensory experiences(26). Human and animal studies have shown that decreased activity 72 

in the PFC contributes to symptoms of chronic pain(27-32). Importantly, stimulation of excitatory 73 

neurons in the PFC can produce rapid inhibition of withdrawal reflexes and aversive responses to 74 

pain without substantial side effects(32-37), supporting the use of PFC as a potential therapeutic 75 

arm in BMI design. 76 

 77 

In this study, we have developed an LFP-based decoding strategy using recordings from rodent S1 78 

and ACC, and combined it with optogenetic or electrical stimulation of the PFC to form a multi-79 

region neural interface. We show that this neural interface can deliver analgesia with high 80 

sensitivity and specificity over a long period of time. 81 

 82 

RESULTS 83 

Design of a stable multi-region neural interface to detect and treat pain in real time 84 

The S1 is known to provide sensory information for noxious inputs(16). Previous studies have 85 

shown that neural spikes from this region may decode the onset of pain that is generated in the 86 



corresponding somatotopic area(38, 39). Meanwhile, studies indicate that the ACC, particularly 87 

the rostral ACC, regulates the affective component of pain and can be used to decode both the 88 

onset and intensity of pain(12, 13, 19, 39). At the same time, stimulation of the prelimbic PFC 89 

(PL-PFC) has been shown to activate top-down regulatory pathways to inhibit pain(32-37). Based 90 

on these studies, we developed a multi-region, closed-loop neural interface for nociceptive control 91 

by using a pain decoder based on concurrent neural signals from the ACC and S1 to trigger 92 

therapeutic stimulation of the PL-PFC in freely behaving rats (Fig. 1, A and B, and figs. S1 and 93 

S2). To decode pain onset, we recorded LFPs (21, 22), which are known to remain stable in chronic 94 

electrophysiological recordings (23-25). Here, we recorded LFPs simultaneously from the rostral 95 

ACC and the hind limb region of S1 (fig. S3A), while stimulating the contralateral hind paw of 96 

rats with either noxious pin pricks (PP) or non-noxious von Frey filaments (vF). From these neural 97 

signals, we could readily identify pain-evoked event-related potentials (ERPs) from the ACC and 98 

S1 (fig. S3A), indicating that nociceptive signals are contained within these two regions(12-14, 99 

17-20). We extracted the ERP latency on a trial-by-trial basis (see Supplementary Materials and 100 

Methods), and found that the ERP peak latency in the ACC was on average slightly longer than 101 

the latency in the S1, suggesting that nociceptive information arrived at the S1 before the ACC 102 

(fig. S3B), compatible with earlier reports(40-42). These results support the use of LFP signals 103 

from S1 and ACC to decode pain. 104 

 105 

We designed a model-based unsupervised learning approach to decode pain from multi-region 106 

LFP signals. Prior work has shown that spectral features from low gamma (30-50 Hz), high gamma 107 

(50-100 Hz), and ultra-high frequency (300-500 Hz) bands are particularly relevant for cortical 108 

pain processing(41-43). The ultra-high frequency power can be viewed as a proxy for multiunit 109 



activity (MUA). Thus, we computed frequency-dependent LFP power features and inputted these 110 

features into a real-time neural decoder based on a state space model (SSM) (Fig. 1, C to E; 111 

Supplementary Materials and Methods). In the presence of a noxious stimulus, the SSM 112 

identified a relative change in observed neural activity (Z-scored) from the baseline, and used this 113 

change in activity as a proxy for the acute pain signal. To optimize the specificity of pain detection, 114 

we designed a cross-correlation function (CCF, see Supplementary Materials and Methods) to 115 

track temporally coherent changes of pain-encoded LFP features in the S1 and ACC, as the use of 116 

concurrent signals from these cortical regions allowed us to capture both sensory and aversive 117 

components of pain(12-14, 17-20). This CCF combined the two SSM-inferred Z-scores derived 118 

separately from the ACC and S1 LFP features, and optimized the detection performance by 119 

adjusting the relative weights of each region’s contributions. For online BMI experiments, we used 120 

the CCF-based decoder to automatically detect the onset of nociceptive signal to trigger 121 

optogenetic or electrical stimulation of the PL-PFC to control pain (Fig. 1, A and B, and figs. S1 122 

and S2).  123 

 124 

We tested our decoding strategy in a set of pain assays. First, we delivered a noxious PP or non-125 

noxious 2g or 6g vF stimulus to the rat’s hind paw, while recording LFPs from the contralateral 126 

areas of the rostral ACC and the hind limb region of the S1 (Fig. 2A). As expected, rats showed a 127 

higher paw withdrawal rate in response to PP than to vF stimulations (Fig. 2B). In online 128 

experiments, our SSM decoder successfully detected the onset of noxious PP stimulus (Fig. 2C), 129 

as opposed to non-noxious vF stimulus (Fig. 2D). Using this method, we trained the decoder with 130 

a few calibration trials with PP and conducted online BMI behavior experiments that continuously 131 

and automatically detected the onset of pain signals (Fig. 2E). The detection rate for the noxious 132 



stimulus (PP) was higher than the non-noxious stimulus (2g or 6g vF) based on LFPs from ACC, 133 

S1 or a combination of ACC and S1 (the CCF method) (Fig. 2F). These results suggest that our 134 

decoding paradigm can detect “painful” stimuli and distinguish them from “non-painful” stimuli 135 

of varying intensities. The area under curve (AUC, see Supplementary Materials and Methods) 136 

was computed to further validate the detection accuracy of the system (Table S1). The results show 137 

that AUC values for detecting 2g vF or 6g vF are both at chance accuracy; in contrast, the AUC 138 

value for detecting PP is higher. In addition, detection using the CCF method is superior to 139 

decoding using either the ACC or S1 alone (Fig. 2F, Table S1). To further quantify the accuracy 140 

of the CCF-based decoding method, we compared the false detection rate produced by the CCF 141 

strategy with the false detection rate produced by single-region decoding methods. We found that 142 

the multi-region decoding strategy showed a substantial reduction in false detections (Fig. 2G), 143 

likely contributing to the enhanced specificity of CCF-based decoding. Such high true detection 144 

and low false detection rates are critical for a real-world implementation of a BMI system and 145 

demonstrates the importance of using multiple regions to optimize pain decoding.  146 

 147 

For therapeutic BMI applications, signal stability is critical. We tested the reliability of the LFP 148 

signals and found that our LFP-based decoding strategy maintained a high degree of accuracy over 149 

three months (Fig. 2H, fig. S4A). Furthermore, when we used the model parameters derived from 150 

day 1 of testing, we found that the same model was able to detect pain with high accuracy on day 151 

5, suggesting that the model parameters may not require frequent training or calibration (Fig. 2I, 152 

fig. S4B). Such signal and model fidelity for pain decoding are appealing for real-world 153 

applications with chronic neural recordings. 154 

 155 



Automated pain detection and analgesic delivery by the multi-region neural interface 156 

Having established the accuracy, specificity, and reliability of our CCF-based pain decoder, we 157 

coupled this decoder with optogenetic stimulation of pyramidal neurons of the PL-PFC (using a 158 

CaMKII promotor to express channelrhodopsin (ChR2)) to form an analgesic BMI (Fig. 1, A and 159 

B, and figs. S1 and S2). We used a conditioned place preference (CPP) assay to assess how this 160 

BMI could inhibit acute mechanical pain(19, 37, 40). In the preconditioning phase, animals moved 161 

freely between two chambers. During conditioning, we paired each chamber with a peripheral 162 

(noxious or non-noxious) stimulus in combination with BMI or various control optogenetic 163 

neurostimulation protocols (Fig. 3A). In the testing phase, we removed peripheral stimuli and 164 

neurostimulation and allowed the rats to move freely again. If the BMI treated pain, rats should 165 

prefer the chamber associated with the BMI during the testing phase. A CPP score was calculated 166 

by subtracting the time rats spent in the BMI-paired chamber during the preconditioning phase 167 

from the time they spent in the testing phase, to quantify the effects of BMI on reducing pain-168 

aversion. First, we compared noxious PP stimulation coupled with BMI-triggered optogenetic 169 

stimulation of the PL-PFC (BMI + PP) against PP coupled with random PL-PFC stimulation of 170 

matching duration and intensity (random neurostimulation + PP). Rats preferred the chamber 171 

associated with the BMI, suggesting that it reduced acute mechanical pain (Fig. 3B). We then 172 

repeated this experiment on rats that expressed yellow fluorescent protein (YFP), and found that 173 

YFP-treated control rats did not experience pain relief (fig. S5A). A comparison of the CPP scores 174 

highlighted the efficacy of the BMI in delivering analgesia (Fig. 3B). As a positive control, we 175 

compared manual activation of the PL-PFC directly following delivery of PP to the paw (manual 176 

+ PP) against random PL-PFC stimulation coupled with PP (random + PP). Here, we observed a 177 

preference for manual PL-PFC activation in ChR2 rats but not YFP rats (Fig. 3C and fig. S5B), 178 



compatible with earlier reports (33, 37). Results from Figs. 3B and 3C suggest the BMI worked as 179 

well as precise manual control of the PL-PFC. To confirm this finding, we compared BMI control 180 

of the PL-PFC in the presence of PP with manual control of PL-PFC in the presence of PP, and 181 

found that rats could not distinguish between the two treatments (Fig. 3D and fig. S5C). Finally, 182 

to demonstrate that the effects of the PL-PFC activation delivered by the BMI were specific to 183 

pain, we examined the rats’ preference for BMI in the presence of a non-noxious vF stimulus (by 184 

comparing BMI + 6g vF with random PL-PFC activation + 6g vF), and found that rats did not 185 

show a preference for either chamber (Fig. 3E and fig. S5D). These results support the specificity 186 

of the BMI in delivering pain control without substantial side effects. Furthermore, we found that 187 

BMI treatment also reduced firing rates of ACC neurons in response to noxious stimuli (fig. S6).  188 

 189 

We then tested this multi-region BMI on acute thermal pain using a Hargreaves test. We first 190 

delivered infrared (IR) stimulations at two different intensities – noxious IR 70 and non-noxious 191 

IR 10 – to the rats’ hind paws (Fig. 4A). Rats withdrew their paws 100% of the time with IR 70 192 

stimulations, compared to <10% of the time with IR 10 stimulations (Fig. 4B). Our multi-region 193 

LFP-based pain decoder successfully detected the onset of thermal pain before paw withdrawals 194 

in response to noxious stimulation (Fig. 4C), but not to non-noxious thermal stimulation (Fig. 4D). 195 

Similar to the decoding of mechanical pain, CCF-based pain decoding showed a lower (<10%) 196 

false positive detection rate than single-region decoding, while maintaining high (~80%) detection 197 

rate for noxious stimulations. This remained true even when non-noxious stimulations of varying 198 

intensities (IR 10 and 20) were administered, demonstrating the ability of the decoder to 199 

specifically distinguish pain episodes rather than different stimulus intensities (Fig. 4E, Table S2). 200 

Next, we tested the efficacy of this BMI in relieving thermal pain (fig. S7). We found the latency 201 



to paw withdrawal increased in the presence of neurostimulation driven by the multi-region BMI, 202 

and that the BMI achieved similar effects in reducing withdrawals as manually controlled 203 

constitutive PL-PFC activation (Fig. 4F). As expected, control rats that expressed YFP did not 204 

demonstrate pain relief (Fig. 4G). 205 

 206 

Closed-loop multi-region neural interface inhibits inflammatory pain 207 

Next, we tested whether this closed-loop multi-region neural interface can also treat chronic pain, 208 

using a well-known inflammatory pain model – Complete Freund’s Adjuvant (CFA) model. We 209 

injected CFA into the rats’ paws contralateral to the implanted recording electrodes (Fig. 5A, see 210 

Supplementary Materials and Methods). CFA-treated rats demonstrated persistent mechanical 211 

allodynia lasting 14 days (Fig. 5B), and showed higher rates of paw withdrawal in response to 6g 212 

vF (allodynia-inducing) stimulations than 0.4g vF (non-allodynic) stimulations (Fig. 5C). Our 213 

LFP-based decoding strategy reliably detected the onset of allodynic episodes (Fig. 5D). Again, 214 

the CCF method produced a lower rate of false detections, while maintaining relatively high 215 

decoding sensitivity (Fig. 5E, Table S2). Furthermore, we found that application of this BMI 216 

reduced mechanical allodynia in CFA-treated rats (Fig. 5F). 217 

 218 

Next, we tested the anti-aversive effects of BMI in the CFA model using the CPP assay (Fig. 6A). 219 

We paired the allodynic 6g vF stimulus with the BMI in one chamber and with random PL-PFC 220 

activation of matching duration and intensity in the opposite chamber. Rats expressing ChR2 221 

showed a preference for the BMI-paired chamber (Fig. 6B); YFP rats, in contrast, did not show 222 

any chamber preference (Fig. 6C and fig. S8A). To ensure that the anti-aversive effects of this 223 

BMI were specific to pain, we repeated the same experiments using a non-allodynic 0.4 g vF 224 



stimulus. In this case, neither ChR2 rats nor YFP rats showed any preference for the BMI treatment 225 

(Fig. 6, D and E, and fig. S8B).  226 

 227 

In addition to hypersensitivity to evoked stimulus, a key pathologic feature of chronic pain is tonic, 228 

or spontaneously occurring, pain. Currently, no assays can reliably identify the onset of these 229 

spontaneous pain episodes, rendering the timing of treatment exceedingly difficult, which results 230 

in either delayed, under- or overtreatment. We used a classic CPP to unmask tonic pain in CFA-231 

treated rats(33, 44, 45). In this assay, one of the chambers was paired with our multi-region BMI, 232 

and the other chamber was paired with random PL-PFC optogenetic stimulation. No peripheral 233 

stimuli were given, but the rats were conditioned for a prolonged period of time to unmask tonic 234 

pain episodes (Fig. 6F). We trained our multi-region decoder using noxious stimulations (PP), and 235 

then allowed the trained decoder to automatically detect tonic pain events in the absence of a 236 

peripheral stimulus (Fig. 6G). During conditioning, we paired one chamber with our BMI which 237 

used automated tonic pain detection to trigger optogenetic PL-PFC activation, and the other 238 

chamber with random PL-PFC stimulation. We found that after conditioning, CFA-treated rats 239 

preferred the chamber associated with the BMI, indicating that this treatment had a high likelihood 240 

of targeting tonic pain episodes, as opposed to random PL-PFC stimulations (Fig. 6H). YFP-241 

treated control rats did not demonstrate this preference (fig. S8C). CPP scores further quantified 242 

the efficacy of BMI in reducing the aversive response to tonic pain (Fig. 6I). These results strongly 243 

suggest that our multi-region neural interface could identify and treat spontaneous pain in a timely 244 

fashion.  245 

 246 

Closed-loop deep brain stimulation delivers on-demand analgesia 247 



While the use of optogenetics provides cell-type specific stimulation, it is not currently available 248 

for clinical application. To advance the translational value of our BMI, we replaced optogenetic 249 

stimulation of the PL-PFC with electrical deep brain stimulation (DBS), which has been safely 250 

implemented for human use(46-51). We combined electrical stimulation of the PL-PFC with the 251 

multi-region LFP-based decoder to produce a closed-loop BMI-triggered DBS system (Fig. 7A 252 

and fig. S9). First, we performed CPP to assess the efficacy of this system in treating acute 253 

mechanical pain (Fig. 7, B and C). We found that when presented with repeated noxious stimuli 254 

(PP), rats preferred the BMI-paired chamber to the chamber paired with randomly timed DBS, 255 

suggesting that BMI-triggered DBS inhibited mechanical pain (Fig. 7D). Furthermore, this BMI 256 

reduced acute thermal pain on the Hargreaves test (Fig. 7E). Next, we assessed the efficacy of this 257 

BMI-triggered DBS system in treating chronic pain. We found that our system reduced mechanical 258 

allodynia in CFA-treated rats (Fig. 7F). We then conducted CPP in the presence of an allodynia-259 

inducing stimulus (6g vF) (Fig. 7G). We found that when presented with allodynic stimuli, CFA-260 

treated rats preferred the BMI-paired chamber, suggesting that the neural interface reduced pain 261 

aversion (Fig. 7H). Finally, we conducted the CPP assay for spontaneous pain (Fig. 7I). We trained 262 

our multi-region decoder using the allodynic 6g vF stimulus, and then allowed the decoder to 263 

automatically detect tonic pain episodes and trigger therapeutic DBS during conditioning. We 264 

found that after conditioning, CFA-treated rats preferred the BMI-paired chamber to the chamber 265 

paired with randomly delivered DBS (Fig. 7J). Likewise, when we compared conditioning with 266 

BMI-triggered DBS vs no DBS, we found that CFA-treated rats preferred the BMI-paired chamber 267 

(fig. S10, A and B). These results suggest that BMI-triggered DBS can inhibit tonic pain. To ensure 268 

that this BMI produces no gross side effects, we examined stimulation effects on locomotion and 269 

found that it had none (fig. S10C).   270 



 271 

Closed-loop BMI inhibits chronic neuropathic pain  272 

To further validate the efficacy of our closed-loop multi-region neural interface for delivering 273 

analgesia, we tested it with a model of chronic neuropathic pain - the Spared Nerve Injury (SNI) 274 

model (Fig. 8A, see Supplementary Materials and Methods) (52). SNI produced persistent 275 

mechanical allodynia (Fig. 8B), but allodynia was inhibited by the application of the BMI (Fig. 276 

8C). In a CPP assay, one chamber was paired with the BMI, and the other chamber was paired 277 

with random PL-PFC electric stimulation of the same quantity and duration. No peripheral stimuli 278 

were administered, but rats were conditioned for a prolonged period of time to unmask tonic pain 279 

episodes (Fig. 8D). The decoder was trained using an allodynia-inducing stimulus (6.0g vF), and 280 

then allowed to automatically detect tonic pain events. We found that after conditioning, SNI-281 

treated rats preferred the BMI-paired chamber (Fig. 8E). These results in chronic neuropathic pain 282 

further validate our findings in the inflammatory pain model. 283 

 284 

DISCUSSION 285 

In this study, we have engineered a multi-region LFP-based neural interface to deliver pain relief. 286 

Our system uses recordings from multiple brain regions to enhance the coding specificity; it is 287 

stable over time and compatible with current electroencephalographic (EEG) or 288 

electrocorticographic (ECoG) data. This interface can produce almost instantaneous pain relief. 289 

While the use of this interface with optogenetic stimulation of pyramidal PL-PFC neurons supports 290 

cell-type specificity to enable mechanistic inquiries, its success with DBS opens the possibility for 291 

clinical application. 292 

 293 



There is not one single brain region that specifically processes pain information. Instead, different 294 

regions process different aspects of pain. To meet the challenge of accurate pain detection, we 295 

utilized a strategy that adapts to the unique multidimensional nature of the pain experience. We 296 

decoded pain based on neural signals simultaneously recorded from two different brain regions. 297 

Ascending nociceptive signals from the periphery are known to terminate in the ACC and S1. The 298 

ACC is well-known for processing the affective component of pain (12-15, 19, 38, 48, 53-57), and 299 

neural activity in this region has been previously used to decode the intensity and timing of pain(19, 300 

38, 40, 53). The S1, meanwhile, provides critical sensory information for pain in a somatotopic 301 

manner. Prior studies have further demonstrated that information flow between these two brain 302 

regions integrates sensory and affective information to give rise to the overall pain experience(40, 303 

41). In our study, the success of the multi-region neural interface in treating acute and chronic pain 304 

demonstrates the specificity of decoding based on concurrent signals from the S1 and ACC. Dual-305 

region decoding improves the specificity of pain detection, compared with previous studies that 306 

relied on single-region decoding (38, 58). Mechanistically, these results also confirm that these 307 

two regions together contribute to the experience of pain.  308 

 309 

Another key advance of our study is the use of LFPs to decode pain in real time. While spikes 310 

provide specific signals at the level of individual neurons, they are less stable over long time 311 

periods in freely behaving animals and in humans. LFPs provide an alternative solution for neural 312 

readout(59, 60). In our study, we were able to reliably record LFPs over a period of three months. 313 

This signal stability supports the use of LFPs for BMI applications in chronic recording conditions, 314 

which is crucial for the management of chronic pain and similar neuropsychiatric diseases. Our 315 

decoding model remains stable for five days post-training. The robustness of our model likely 316 



results from a combination of signal stability and the use of multi-region decoding, and it shows 317 

promise for clinical translation. Future studies, however, will show if such robustness could last 318 

even longer. 319 

 320 

A number of studies have shown that the PL-PFC provides pain inhibition through top-down 321 

projections as well as projections to other cortical areas(32-36). We have chosen this region as the 322 

therapeutic arm of our neural interface, as it is one of the few neural structures that can regulate 323 

both sensory and affective components of pain, especially in the context of nociceptive inputs. The 324 

success of our BMI in inhibiting both sensory withdrawal and pain aversion validates this choice. 325 

There is functional homology between the rodent PL-PFC and the dorsolateral PFC in primates(61, 326 

62), and thus our neural interface may be adapted to the dorsolateral PFC to provide demand-based 327 

treatment in chronic pain patients. Mechanistically, we found that optogenetic stimulation of the 328 

pyramidal neurons in the PL-PFC reduces pain, compatible with previous results(33, 34, 36, 37, 329 

63). In contrast, activation of inhibitory neurons in this region is known to enhance pain(32, 64). 330 

DBS does not directly target specific classes of neurons; however, at lower frequencies such as in 331 

the case of our study, it has been shown to enhance cortical outputs (65). 332 

 333 

False detections still occur in our study, and they are likely caused by the non-specificity of 334 

neuronal firings in the S1 and ACC, and/or by the non-stationarity of neural signals in freely 335 

behaving rats. We have shown that we can minimize false detections and improve specificity by 336 

integrating neural activities from two distinct brain regions that have complementary roles in pain 337 

processing. This approach supports the multidimensional nature of the pain experience. Each 338 

cortical region may process a unique aspect of pain, in addition to other behavioral functions. 339 



During a pain episode, however, multiple brain regions must activate/inactivate at the same time, 340 

and thus a decoder based on activities across multiple nodes of the pain network has a higher 341 

likelihood of improving specificity. This decoding approach can be extended to incorporate 342 

additional brain structures, such as the insular cortex, to further improve decoding specificity(66). 343 

In future studies, neural signals can also be combined with real-time behavioral analyses(67) to 344 

achieve even more sensitive and specific pain detection.  345 

 346 

The PFC has multiple functions. Thus, nonspecific effects can be expected with neuromodulation 347 

treatments deployed by PFC stimulation. Nonspecific side effects are a general issue for 348 

neuromodulation, and indeed, they have been observed with existing clinical applications of 349 

DBS(68, 69). There are two strategies to reduce non-specific effects: target highly pain-specific 350 

neural structure or neuron groups, or limit treatments to a defined period of time. Currently, there 351 

is not a single known target in the central nervous system that can reliably treat pain without any 352 

side effects. In this study, we have taken up the second strategy: our closed-loop, demand-based 353 

paradigm reduces side effects by restricting neuromodulation to the duration of the detected pain 354 

episodes, and as a result, we did not observe gross behavioral deficits. Future discoveries of 355 

neuronal populations with specific pain-regulatory functions may be adapted to our therapeutic 356 

interface to further improve treatment specificity. At the same time, our BMI can also be used to 357 

facilitate such discoveries. 358 

 359 

In our study, we have tested our therapeutic BMI for acute mechanical and thermal pain, as well 360 

as inflammatory and chronic neuropathic pain. The use of multiple preclinical pain models 361 

validates our treatment approach, and more importantly it provides a basis for human translational 362 



studies. For example, persistent localized inflammation and peripheral neuropathy are common 363 

causes of chronic pain in patients. The success of our system in these pain models also indicates 364 

that acute and chronic pain share certain mechanistic principles in cortical processing. LFP signals 365 

can be recorded from the brains of patients who undergo stereotaxic surgeries, as in the case of the 366 

mapping of epileptic foci, and DBS is an approved method for treating brain disorders. Thus, future 367 

work shall aim to translate our findings here to human studies to test the robustness of pain 368 

detection using cortical signals and to verify that a BMI can deliver adequate treatment. Such 369 

experiments can pave the way for closed-loop treatment for pain patients.  370 

 371 

Limitations of our work include false detection rates as discussed above and the feasibility for 372 

clinical applications of our system in its current form. While ECoG probes may be used to derive 373 

similar decoding results, further improvement of hardware design to enable a closed-loop system 374 

of decoding and stimulation is needed. In addition, refinement on the portability of our BMI system 375 

can further enable clinical application.  376 

  377 

In conclusion, we have designed and tested a multi-region neural interface that produces reliable 378 

detection and treatment of pain. The use of LFP signals allows our pain decoder to be compatible 379 

with ECoG or even EEG recordings. Given the clinical feasibility of EEG or ECoG recordings and 380 

DBS, adaptation of our technology can thus open new doors for treatment for patients who suffer 381 

from chronic debilitating pain.  382 

 383 

MATERIALS AND METHODS 384 

Study design 385 



The purpose of this study was to develop and test the performance of a closed-loop neural interface 386 

for pain. We hypothesized that our BMI could accurately detect acute pain episodes based on 387 

neural activity in the rodent cortex and modulate cortical areas to inhibit pain. Acute pain tests 388 

included thermal stimulations using the Hargreaves’ table and mechanical stimulations using 389 

pinprick and von Frey filaments. Mechanical stimulations were repeated on models of chronic 390 

inflammatory and neuropathic pain conditions modeled by CFA and SNI, respectively. Pain 391 

decoding was achieved through unsupervised machine learning of LFP data recorded from 392 

surgically implanted silicon probes in the S1 and ACC. Pain inhibition was achieved by 393 

optogenetic or deep brain stimulation of the PL-PFC and assessed by Hargreaves’ test, mechanical 394 

allodynia and CPA or CPP. In each pain experiment, the performance of the BMI system was 395 

compared with random or manually controlled stimulations or no stimulations as control. Sample 396 

size was informed by previous similar studies. Behavioral and neural data for each of our 397 

experiments were collected from N = 10 rats for optogenetic studies (5 ChR2 rats in treatment 398 

group and 5 YFP rats in control group), and N = 12 rats for DBS studies (7 rats in CFA group and 399 

5 rats in SNI group). Multiple experimenters in the laboratory participated in the experiment. One 400 

experimenter performed surgeries and randomly selected the treatment and control groups. Other 401 

experimenters blinded to the treatment conditions performed behavior experiments. No data was 402 

excluded. 403 

 404 

Statistical analysis 405 

Neural and behavioral data were analyzed offline through custom MATLAB (2018 version, 406 

MathWorks) scripts and GraphPad Prism version 8 software (GraphPad). Results were reported 407 

and analyzed as mean ± SEM.  Comparison between mean values of two groups were evaluated 408 



by two-tailed paired t-test, two-tailed unpaired t-test, and two-tailed Wilcoxon test. A one-way 409 

ANOVA with repeated measurements and post-hoc multiple pair-wise comparison Tukey’s tests 410 

was used to compare the mean differences of more than two groups. Differences were considered 411 

to be statistically significant when P < 0.05. Exact P values and sample sizes are shown in figure 412 

legends. 413 
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  654 



FIGURE LEGENDS 655 

Fig. 1. Design of a multi-region LFP-based neural interface for pain.  656 

(A) Schematic of experiments. The online closed-loop brain-machine interface (BMI) consists of 657 

three steps. In step ①, silicon probe arrays are implanted in the rat anterior cingulate cortex (ACC) 658 

and primary somatosensory cortex (S1) to record local field potentials (LFPs) simultaneously. In 659 

step ②, LFP signals are processed and sent to an automated decoder based on a state space model 660 

(SSM) to detect the onset of pain. In step ③, detected pain onset triggers neurofeedback in the 661 

form of optogenetic or electrical activation of the prelimbic prefrontal cortex (PL-PFC) to deliver 662 

pain modulation. (B) Placement of optic fiber or deep brain stimulating (DBS) electrode in the PL-663 

PFC and recording silicon probes in the ACC and S1. (C) Raw LFP signals were processed to 664 

compute three band-limited LFP power features for the ACC channel: {𝑦!,#$%%, 𝑦&,#$%%, 𝑦',#$%%} and S1 665 

channel: {𝑦!,#(! , 𝑦&,#(! , 𝑦',#(! } , where the index k denotes the k-th temporal window (bin size 100 ms). 666 

MUA: multi-unit activity (300-500 Hz). (D) Schematic of two SSMs used to independently infer 667 

the latent variables {𝑧#$%%}𝑣 and {𝑧#(!} from the LFP features {𝐘#$%%} and {𝐘#(!} of ACC and S1, 668 

respectively (see Supplementary Materials and Methods for details). The SSM is illustrated by 669 

a graphical model with a Markovian structure, in which each node denotes a random variable, and 670 

the arrow indicates statistical dependency between two random variables. (E) Illustration of a 671 

multi-region decoding strategy for pain onset. First, the Z-scores were derived from the latent 672 

variables {𝑧#$%%}  and {𝑧#(!}  (horizontal dashed lines denote the 95% confidence intervals for 673 

statistical significance). Next, a moving average cross-correlation function (CCF) was used to 674 

compute the correlation between the two Z-score series. The area beyond statistical significance 675 

(horizontal dashed lines) was computed to determine the change point (Supplementary Materials 676 



and Methods). When pain onset was detected, the decoder automatically triggered optogenetic or 677 

DBS stimulation to activate the PL-PFC.   678 



Fig. 2. The multi-region LFP-based neural interface inhibits acute mechanical and thermal 679 

pain. 680 

(A) Schematic of pain experiments demonstrating peripheral stimulation with either pin prick (PP) 681 

or von Frey filament (vF). LFP signals were recorded from ACC and S1 for pain detection, and 682 

optogenetic stimulation was administered to the PL-PFC for pain control. (B) Withdrawal response 683 

to mechanical stimulation, n = 10 rats; ****P < 0.0001, Wilcoxon Signed Rank test. (C) 684 

Illustration of mechanical pain onset detection using an LFP-based strategy. LFP features were 685 

computed from the ACC, S1, or both ACC and S1. The top two panels show single-channel LFP 686 

traces (white) overlying the spectrogram. The vertical dotted line indicates the onset of noxious 687 

peripheral stimulus (PP), and the vertical solid line indicates the time of paw withdrawal. The third 688 

and fourth panels show Z-scores (shaded areas denote the 95% confidence intervals) derived from 689 

the SSM-based decoder using LFPs recorded from ACC and S1, respectively (Methods). The two 690 

horizontal lines indicate the Z-score threshold ± 3.38. The fifth panel shows the cross-correlation 691 

function (CCF) between ACC and S1 from the third and fourth panels. The two horizontal dashed 692 

lines indicate the significance threshold. The bold triangle indicates the detection point. (D) Similar 693 

to panel c, except that the stimulus given is non-noxious (vF). (E) Demonstration of continuous 694 

online pain onset detection in a sample recording session. The vertical dotted line indicates the 695 

stimulus onset, and the vertical solid line indicates paw withdrawal. ¨ denotes true pain detection, 696 

* denotes false detection. (F) Comparison of detection rates between various non-noxious stimuli 697 

and noxious PP based on LFP decoding strategies using the ACC, S1 and combined (ACC + S1) 698 

signals. Each circle indicates data from one rat, n = 5 rats; ns, P > 0.05, **P < 0.01, ***P < 0.001 699 

and ****P < 0.0001, one-way ANOVA with repeated measures and post-hoc Tukey’s multiple 700 

comparison tests to compare decoding rates for 2g vF, 6g vF, PP stimulation using signals from 701 



the ACC, S1 or ACC+S1. (G) The false positive (FP) detection rate per minute. n = 5 rats; P = 702 

0.9679 (ACC vs S1), **P = 0.0036 (ACC vs ACC+S1), **P = 0.0036 (S1 vs ACC+S1), one-way 703 

ANOVA with repeated measures and post-hoc Tukey’s multiple comparison tests. (H) 704 

Comparison of detection rates based on LFP signals recorded in two different sessions, 3 months 705 

apart. Session 2 was recorded 3 months after session 1. Each pair of circles connected by a line 706 

indicates data from the same rat. We used the first 1-3 trials of each recording session to train the 707 

parameters of the SSM. n = 5 rats; *P = 0.0148 (ACC), P = 0.4651 (S1), P = 0.8650 (ACC+S1), 708 

paired t-test. (I) Comparison of detection rates based on model parameters set 5 days apart. We 709 

used the first 3 trials on Day 1 to train the parameters of SSM, and then used these same parameters 710 

to detect pain on the subsequent 5 days. n = 5 rats; P = 0.2339, one-way ANOVA with repeated 711 

measures and post-hoc Tukey’s multiple comparison tests.  712 

  713 



Fig. 3. The multi-region LFP-based neural interface inhibits acute mechanical pain 714 

(A) Schematic of conditioned place preference (CPP) assays to assess pain aversion. In a two-715 

chamber set up, during conditioning, one of the chambers was paired with treatment shown in red, 716 

and the opposite chamber was paired with control conditions shown in brown (see Supplementary 717 

Materials and Methods for details). (B) Left panel: Time spent in preconditioning and testing 718 

phases in BMI+PP vs random+PP paired chambers,  n = 5 rats; **P = 0.0016, paired t-test. Right 719 

panel: comparison of CPP scores of ChR2-expressing and YFP-expressing (control) rats (n = 5 720 

ChR2 rats and 5 YFP rats, **P = 0.0027, unpaired t-test). (C) Left panel: Time spent in 721 

preconditioning and testing phases in manual+PP vs random+PP paired chambers, n = 5 rats; *P 722 

= 0.013, paired t-test. Right panel: comparison of CPP scores of ChR2 and YFP rats (n = 5 ChR2 723 

rats and 5 YFP rats, **P = 0.0036, unpaired t-test). (D) Left panel: Time spent in preconditioning 724 

and testing phases in BMI+PP vs manual+PP paired chambers, n = 5 rats; P = 0.74, paired t-test. 725 

Right panel: comparison of CPP scores of ChR2 and YFP rats (n = 5 ChR2 rats and 5 YFP rats, P 726 

= 0.969, unpaired t-test). (E) Left panel: Time spent in preconditioning and testing phases in 727 

BMI+6g vF vs random+6g vF paired chambers, n = 5 rats; P = 0.46, paired t-test. Right panel: 728 

comparison of CPP scores of ChR2 and YFP rats (n = 5 ChR2 rats and 5 YFP rats, P = 0.428, 729 

unpaired t-test).   730 



Fig. 4. The multi-region neural interface inhibits acute thermal pain 731 

 (A) Schematic of thermal stimulation experiments, with infrared intensity (IR) set to either 70 732 

(noxious) or 10 (non-noxious). (B) IR 70 elicited paw withdrawals. n = 10 rats; ****P < 0.0001, 733 

Wilcoxon Signed Rank test. (C, D) Illustration of thermal pain onset detection using an LFP-based 734 

strategy, similar to panels 2C and 2D. (E) Comparison of the detection rate based on LFP decoding 735 

strategies using the ACC, S1, and combined (ACC + S1) signals. Each circle indicates data from 736 

a single rat. Comparison of the detection rates for three LFP-based decoding strategies. n = 5 rats; 737 

ns, P > 0.05, ***P < 0.001, ****P < 0.0001, one-way ANOVA with repeated measures and post-738 

hoc Tukey’s multiple comparison tests to compare decoding rates for IR 10, 20, 70 using signals 739 

from ACC, S1 or ACC+S1. (F) Comparison of paw withdrawal latency for ChR2 rats. n = 5 rats; 740 

**P = 0.0089 (No opto vs BMI opto), **P = 0.0044 (No opto vs Manual opto), P = 0.9176 (BMI 741 

opto vs Manual opto), one-way ANOVA with repeated measures and post-hoc Tukey’s multiple 742 

comparison tests. (G) Comparison of paw withdrawal latency for YFP control rats. n = 5 rats; P = 743 

0.5385 (No opto vs BMI opto), P = 0.9741 (No opto vs Manual opto), P = 0.7909 (BMI opto vs 744 

Manual opto), one-way ANOVA with repeated measures and post-hoc Tukey’s multiple 745 

comparison tests.  746 

  747 



Fig. 5. The multi-region neural interface performance in a chronic inflammatory pain model 748 
 749 
(A) Schematic of experiments in CFA-treated rats. (B) CFA injection caused mechanical allodynia, 750 

n = 10 rats (5 ChR2 rats and 5 YFP rats); ****P < 0.0001, one-way ANOVA with repeated 751 

measures and post-hoc Tukey’s multiple comparison tests. (C) Paw withdrawal rate with vF 752 

stimulation. n = 10 rats, ****P < 0.0001, paired t-test. (D) Illustration of the multi-region LFP-753 

based strategy for detecting the onset of evoked pain signal in a CFA-treated rat. Similar to panels 754 

2C and 2D. (E) A comparison of different LFP-based strategies for decoding the pain onset in the 755 

CFA model. Comparison of the detection rates for the noxious vs non-noxious stimulus, n = 10 756 

rats, ****P < 0.0001, paired t-test. Comparison of the detection rates for three LFP-based decoding 757 

strategies. For the noxious stimulus: n = 10 rats; P = 0.8139 (ACC vs S1), P = 0.9993 (ACC vs 758 

ACC+S1), P = 0.8231 (S1 vs ACC+S1). For the noxious stimulus: n = 10 rats; P = 0.4975 (ACC 759 

vs S1), *P = 0.0250 (ACC vs ACC+S1), **P = 0.0023 (S1 vs ACC+S1), one-way ANOVA with 760 

repeated measures and post-hoc Tukey’s multiple comparison tests. (F) Multi-region LFP-based 761 

BMI inhibited mechanical allodynia in CFA-treated rats. n = 5 rats; **P = 0.0026, paired t-test. 762 

  763 



Fig. 6. The multi-region neural interface inhibits chronic inflammatory pain 764 

(A) Schematic of CPP assays in CFA-treated rats. 6g vF represents noxious stimulation, 0.4g vF 765 

represents non-noxious stimulation. (B) Time spent in preconditioning and testing phases in 766 

chambers paired with BMI+6g vF vs random+6g vF, n = 5 rats; *P = 0.028, paired t-test. (C) 767 

Comparison of CPP scores of ChR2 and YFP rats, n = 5 rats; *P = 0.015, unpaired t-test. (D) Time 768 

spent in preconditioning and testing phases in chambers paired with BMI+0.4g vF vs random+0.4g 769 

vF, n = 5 rats; P = 0.392, paired t-test. (E) Comparison of CPP scores of ChR2 and YFP rats, n = 770 

5 rats; P = 0.527, unpaired t-test. (F) Schematic of the CPP experiment to test tonic pain in CFA-771 

treated rats. No peripheral stimuli were given. One chamber was paired with closed-loop BMI 772 

treatment, and the opposite chamber was paired with random PL-PFC activation of matching 773 

duration and intensity. (G) Demonstration of continuous decoding for spontaneous pain detection 774 

in the absence of peripheral stimuli. The first and second panels show the Z-score (shaded area 775 

denotes the 95% confidence intervals) derived from the LFP-based SSM decoder, where two 776 

horizontal dotted lines indicate the Z-score threshold ± 3.38. The third panel shows the cross-777 

correlation function (CCF) between the two Z-scores. Two horizontal dashed lines indicate the 778 

significance threshold. The two black triangles mark the detection onset of spontaneous pain. (H) 779 

Time spent in preconditioning and testing phases in chambers paired with BMI vs random 780 

stimulation, n = 5 rats; *P = 0.0266, paired t-test. (I) Comparison of CPP scores of ChR2 and YFP 781 

rats, n = 5 rats; **P = 0.0087, unpaired t-test.   782 



Fig. 7. A BMI-driven, closed-loop DBS inhibits acute and chronic inflammatory pain. 783 

(A) Placement of stimulating electrode in the PL-PFC and recording electrodes in the ACC and 784 

S1. (B) Schematic of pain experiments during mechanical stimulus delivery. (C) Schematic of 785 

CPP experiments to assess aversion to evoked pain using DBS. (D) Time spent in preconditioning 786 

and testing phase in chambers paired with BMI+PP vs random+PP, n = 7 rats; *P = 0.0207, paired 787 

t-test. (E) Schematic of thermal experiments in DBS rats. Top panel: schematic of the Hargreaves 788 

test (IR 70). Bottom panel: comparison of paw withdrawal latency during different experimental 789 

conditions. n = 7 rats; ***P = 0.001, paired t-test. (F) Top panel: schematic of the experiment. 790 

Bottom panel: 50% paw withdrawal threshold in the presence of BMI-driven DBS vs control (no 791 

DBS). n = 7 rats; ****P < 0.0001, paired t-test. (G) Schematic of the CPP assay to assess aversion 792 

to evoked pain. (H) Time spent in preconditioning and testing phases in chambers paired with 793 

BMI+vF vs random+vF, n = 7 rats; *P = 0.0194, paired t-test. (I) Schematic of the CPP experiment 794 

to test tonic pain in CFA-treated rats. (J) Time spent in preconditioning and testing phases in 795 

chambers paired with BMI vs random DBS, n = 7 rats; ****P < 0.0001, paired t-test.  796 

797 



Fig. 8. Closed-loop BMI reduces chronic neuropathic pain. 798 
 799 
(A) Schematic of pain experiments in SNI-treated rats. (B) SNI operation resulted in mechanical 800 

allodynia, n = 5 rats; ****P < 0.0001, one-way ANOVA with repeated measures and post-hoc 801 

Tukey’s multiple comparison tests. (C) Multi-region LFP-based BMI inhibited mechanical 802 

allodynia in SNI-treated rats. n = 5 rats; ***P = 0.0004, paired t-test. (D) Schematic of the CPP 803 

experiment to test tonic pain in SNI-treated rats.. (E) Time spent in preconditioning and testing 804 

phases in chambers paired with BMI vs random DBS, n = 5 rats; *P = 0.0231, paired t-test. 805 

 806 

 807 
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MATERIALS & METHODS 27 
Experimental protocol, data acquisition and BMI system architecture  28 

All experimental studies were performed in accordance with the New York University School of 29 

Medicine (NYUSOM) Institutional Animal Care and Use Committee (IACUC) to ensure minimal 30 

animal use and discomfort, license reference number: IA16-01388. Male Sprague-Dawley rats 31 

were purchased from Taconic Farms and kept at the vivarium facility in the NYU Langone Science 32 

Building, with controlled humidity, temperature, and 12-hr (6:30 AM–6:30 PM) light-dark cycle. 33 

Food and water were available ad libitum. Animals weighed 250 to 300 g upon arrival to the 34 

facility and were given 10 days on average to adjust to the new environment before the initiation 35 

of experiments.  36 

 37 

Virus construction and packaging 38 

Recombinant AAV (adeno-associated virus) vectors were serotyped with AAV1 coat proteins, and 39 

packaged at Addgene viral vector manufacturing facilities. Viral titers were 5×1012 particles/ml 40 

for AAV1.CaMKII.ChR2-eYFP.WPRE.hGH, and AAV1.CaMKII(1.3).eYFP.WPRE.hGH. 41 

 42 

Viral injection 43 

Before viral injection, rats were anesthetized with isoflurane (1.5 to 2%). In all experiments, the 44 

virus, as specified above, was delivered selectively to the prelimbic PFC (PL-PFC). We used a 26-45 

gauge 1 µL Hamilton syringe to inject 0.7 µL of the viral vector into the rat’s cortex at 46 

anteroposterior (AP) +2.9 mm, mediolateral (ML) ±1.6 mm, and dorsoventral (DV) −3.7 mm, with 47 

injector tips angled 17° toward the midline. The injection rate was kept at approximately 0.1 µl 48 

per 10 seconds. Afterwards, we left the microinjection needle in place for 10 minutes, raised it by 49 

1 mm, and left the needle in place for an additional 5 minutes. This minimized the spread of viral 50 



particles along the injection tract and allowed for uniform diffusion of the virus at the injection 51 

site. After the viral injection, the scalp was sutured, and the rats were given 2-4 weeks for recovery 52 

before optic fiber and electrode implantation.  53 

 54 

Prelimbic PFC optic fiber and silicon probe implantation surgery 55 

Optic fiber and electrode implantation surgery has been described in previous studies (37, 40). We 56 

designed a customized fiber optic ferrule to hold a 200 μm fiber in a 2.5 mm ferrule (Thorlabs) for 57 

PL-PFC optogenetic stimulation. Two 32-channel silicon probes (Buzsaki32-H32, NeuroNexus 58 

Technologies, or ASSY-116 E-1, Cambridge NeuroTech) were glued to 3D printed custom design 59 

drives, one used for ACC recordings, and the other for S1 recordings. During the implantation 60 

surgery, rats were anesthetized with isoflurane (1.5 to 2%). The silicon probes were implanted in 61 

the ACC (AP +2.7 mm, ML±1.6 mm, DV -2.0 mm with tips angle 20° toward the midline, fig. 62 

S1A) and the S1 (AP -1.5 mm, ML ±3.0 mm, DV -1.1 mm with angle 0°, fig. S1B). Optic fiber 63 

was implanted 0.5 mm above the PL-PFC viral injection spot (AP +2.9 mm, ML ±1.6 mm, DV -64 

3.2 mm, with tips angled 17° toward the midline, fig. S1C). On the contralateral side of the optical 65 

fiber implant, after the electrodes were implanted, we added silicone artificial dura gel (Cambridge 66 

NeuroTech) to protect the dura. Vaseline was used to cover the movable parts of electrodes, 67 

including silicon probe shanks, flexible cables, and drive shuttles. Both optic fiber and drives were 68 

fixed to the skull screws with dental cement. After surgery, the rats were given a week of recovery 69 

time before neural recordings. 70 

 71 

In vivo electrophysiological recordings and optogenetic stimulation 72 



Before testing, animals with chronic optic fiber and electrode implants were given 30 minutes to 73 

adapt to the recording chamber on a mesh or glass table. Silicon probes were connected to a 74 

motorized commutator (OPT/Carousel M Commutator 2LED-4DHST-TH, Plexon) through 32-75 

channel digital headstages (HST/32D, Plexon). The other end of the commutator was connected 76 

to the data acquisition system (Plexon). The optic fiber cannula was connected with a 465 nm blue 77 

light-emitting diode (LED) (OPT/LED_Blue_Compact_LC_magnetic, Plexon) through a mating 78 

sleeve (ADAF2, Thorlabs) and a fiber patch cable. The blue LED was mounted on the same 79 

carousel commutator by a magnet.  80 

 81 

Raw electrophysiological signals were recorded at 40 kHz through a 64-channel OmniPlex data 82 

acquisition system (Plexon). Additionally, the event time stamps, including pain stimulus events, 83 

pain onset detection events, and optogenetic stimulus events, were recorded through PlexControl 84 

(Plexon) for further offline data analysis.  85 

 86 

For optogenetic stimulation, we used OmniPlex digital 5V output to control the blue LED. The 87 

output power of the optic fiber tip was calibrated before the experiments. The parameters for 88 

optogenetic stimulation were 20 Hz with 10-ms pulse width and a duration of 5 s (33). 89 

          90 

During the recording, two cameras (DMK23U, Imaging Source; FDR-AX53, Sony) were used to 91 

record both the behavior of the rats and the online-decoding results of the BMI client software. At 92 

the beginning of each recording session, the cameras were synchronized with the neural recording 93 

by sending a signal marker. Long inter-trial intervals were used between trials to avoid behavioral 94 

or neural sensitization.  95 



 96 

Prelimbic PFC stimulating electrode and silicon probe implantation surgery 97 

Two 32-channel silicon probes (Buzsaki32-H32, NeuroNexus Technologies, or ASSY-116 E-1, 98 

Cambridge NeuroTech) were implanted as described above to record LFPs from the rat S1 and 99 

ACC. A twisted pair wire stimulating electrode (California Fine Wire Co., M259400) was 100 

implanted at the PL-PFC (AP +2.9 mm, ML ±1.6 mm, DV -3.7 mm, with tips angled 17° toward 101 

the midline, fig. S1D). The stimulating electrode and silicon probe drives were fixed to the skull 102 

screws with dental cement. After surgery, rats were given a week of recovery time before neural 103 

recordings. 104 

 105 

Electrical deep brain stimulation (DBS)  106 

For DBS, we used a World Precision Instruments A365 stimulus isolator to send a sequence of 107 

biphasic-square waves. The parameters for DBS were 20 Hz with 25 μA current amplitude and 108 

40% duty cycle, and the duration was 5 seconds (fig. S9). 109 

 110 

Multi-region neural interface development 111 

Our customized BMI software supported the hardware platform designed for online LFP decoding 112 

analysis and for providing a graphical user interface (GUI, fig. S2). Our software was run on a 113 

desktop PC (Intel Xeon E5-1620 CPU, 3.5 GHz, 48 GB memory, Window OS). The BMI system 114 

client software was used to manage the components and tasks, which includes the following 115 

modules: 1) configuration management, 2) data acquisition and buffering, 3) online 116 

training/decoding algorithms, 4) external device control, and 5) user interfaces. This software was 117 

developed using the C++ programming language with the software developing tool kit made by 118 



Plexon and other open-source software packages. In order to provide maximum flexibility while 119 

minimizing the maintenance complexity, the functional modules in the software were designed 120 

with encapsulation for decoupling purpose. In the GUI, users had the ability to select and change 121 

the LFP channels, and select the pain detection algorithm based on single or multiple brain regions.  122 

 123 

Event-related potential (ERP) analysis  124 

Event-related potentials (ERPs) are also referred to as “evoked potentials” when occurring soon 125 

after a stimulus. A cortical ERP reflects the coordinated behavior of a large number of neurons in 126 

relation to an external or internal event. Traditional ERP analysis is based on trial averaging, but 127 

we reported the ERP statistics here based on single-trial analyses. From LFP recordings, we 128 

identified the induced ERPs within a 5-s window after the stimulus onset (42). To account for 129 

signal variability across channels, we averaged the LFP signals across channels from one cortical 130 

area. We identified the peak of the ERP and defined the latency as the time between the stimulus 131 

onset and the ERP peak.  132 

   133 

LFP power spectrum analysis 134 

In single-trial analyses, we computed the power spectrogram in the time-frequency representation 135 

by using a moving window. Multi-tapered spectral analyses for LFP spectrogram were performed 136 

using the Chronux toolbox(70) (chronux.org). Specifically, we chose a half-bandwidth 137 

parameter W such that the windowing functions were maximally concentrated within [−W, W]. We 138 

chose W > 1/T (where T denotes the duration) such that the Slepian taper functions were well 139 

concentrated in frequency and had bias reducing characteristics. We used the tapers setup [TW, N] 140 

for the Chronux function setup, where TW is the time-bandwidth product, and N = 2 × TW−1 is 141 



the number of tapers. Since the taper functions are mutually orthogonal, they give independent 142 

spectral estimates. We used a moving window length of 0.5 s and a step size of 50 ms. We 143 

used TW = 5 for the LFP spectrogram. From the LFP spectrogram, we computed the Z-scored 144 

spectrogram, where the baseline mean was subtracted from the energy at each frequency (i.e., the 145 

row of the heatmap) and normalized by the baseline standard deviation at each frequency. The 146 

baseline was defined as the 5-s period before the stimulus presentation. 147 

 148 

Unsupervised machine learning analysis for detecting the onset of pain signals 149 

For the LFP features, we used band-pass filtering to extract band-limited signals (Fig. 1C) and 150 

computed the band-limited LFP power at the low gamma (30-50 Hz), high gamma (50-100 Hz) 151 

and ultra-high frequency ranges (300-500 Hz). The >300 Hz frequency range is also known as the 152 

spiking-band power or multiunit activity(60). The features were averaged by time (within a bin 153 

size) to generate a three-dimensional time series for a single selected LFP channel. In practice, we 154 

selected one channel from the ACC and one channel from the S1. The criteria of channel selection 155 

depended on the artifact, signal-to-noise ratio (SNR), or the spiking activity.  156 

 157 

We used an unsupervised machine learning method to detect the onset of pain. We developed this 158 

decoding strategy based on a state space model (SSM; Fig. 1D) or linear dynamical system (LDS). 159 

The SSM consists of a state equation and a measurement equation. In the state equation, we 160 

assumed that the ACC or S1 LFP-derived spectrotemporal features (i.e., amplitude of the band-161 

pass filtered signals at 30-50 Hz, 50-100 Hz, and 300-500 Hz) at the k-th time index (bin size: 100 162 

ms), represented by a vector 𝒚!, was driven by a univariate latent Markovian process 𝑧!  : 163 

𝑧! = 𝑎𝑧!"# + 𝜖! 164 



where 𝜖!  specifies a temporal Gaussian prior (with zero mean and variance s2) on the latent 165 

process, and 0<|a|<1 denotes the first-order autoregressive (AR) coefficient.  166 

         167 

In the measurement equation, we assumed that the measurement 𝒚!  was drawn from a linear 168 

Gaussian system 169 

𝒚! = 𝒄𝑧! + 𝒅 + 𝒗 170 

where 𝒅 denotes a constant; 𝒄 denotes the modulation coefficient; and 𝒗 denotes the uncorrelated 171 

Gaussian noise with zero mean and covariance matrix S. The latent variable 𝑧! was viewed as a 172 

common input that drives the pain responses in the measurement 𝒚!.           173 

          174 

We let Q denote all unknown model parameters, and we have developed an iterative expectation-175 

maximization (EM) algorithm to estimate latent states {𝑧!} (E-step) and unknown parameters 176 

Q={a, c, d, s2, S} (M-step). Details of this estimation procedure have been reported previously(38). 177 

In an online filtering operation, we used a Kalman filter to estimate the predicted latent state. The 178 

Kalman filter equations are given as follows(71): 179 

𝑧̂!|!"# = 𝑎𝑧̂!"#|!"# 180 

𝑄!|!"# = 𝑎%𝑄!"#|!"# + 𝜎% 181 

𝒚/!|!"# = 𝒄𝑧̂!|!"# + 𝒅 182 

𝑮! = 𝑄!|!"#𝒄&(𝑄!|!"#𝒄𝒄& + 𝚺)"# 183 

𝑧̂!|! = 𝑧̂!|!"# + 𝑮!(𝒚! − 𝒚/!|!"#) 184 

𝑄!|! = 𝑄!|!"#(1 − 𝑮!𝒄) 185 

where the subscripts k|k-1 and k|k denote the estimates from the prediction and filtering operations, 186 

respectively. Gk denotes the Kalman gain; 𝑧̂!|! and 𝑄!|! 	denote the posterior mean and variance 187 



of the latent state, respectively. Together, the recursive updates between prediction and filtering 188 

equations produced a sequential Bayesian estimate of the latent state 𝑧̂!|!.  We further computed 189 

the Z-score of the state estimate related to the baseline: Z_score = '"()*+('!"#$%&'$)
./('!"#$%&'$)

. In the training 190 

trial for model identification, the baseline was defined by the pre-stimulus 5-s period before the 191 

noxious stimulus onset. We monitored the time-varying Z-score to assess the significance of 192 

change point detection (Fig. 1E). The significance criterion of Z-score change was determined by 193 

a critical threshold. Using a 95% confidence interval, we detected a change when the lower bound 194 

of the Z-score was greater than 3.38 (i.e., Z-score−CI > 3.38) or the upper bound of Z-score was 195 

less than -3.38 (i.e., Z-score + CI < −3.38), where the confidence interval (CI) at each time point 196 

was derived from the state posterior variance 𝑄!|!. 197 

        198 

After independently deriving the Z-scores {𝑍!011} and {𝑍!.#} from the ACC and S1 LFP-derived 199 

features, respectively, we computed a moving-average cross-correlation function (CCF) between 200 

two Z-score traces (42) 201 

CCF! = (1 − 𝜌)CCF!"# + 𝜌(𝑍!011)2(𝑍!.#)3  202 

 203 

where 0 < ρ < 1 is a forgetting factor, 0.5 ≤ m, n ≤ 1 are the scaling exponents (default value: 0.5). 204 

The smaller the forgetting factor ρ, the smoother the CCF curve. A smaller exponent value would 205 

magnify the impact of a Z-score smaller than 1, while reducing the impact of a higher Z-score. 206 

When two Z-score traces followed a consistent trend, the CCF increased in absolute value; 207 

otherwise, it remained at the baseline. Furthermore, we computed the Z-score of CCF relative to 208 

the same baseline. We tracked the CCF area above the threefold standard deviation (SD) of 209 

baseline statistics. The area value would accumulate when the CCF was above the threshold, and 210 



reset to 0 when the CCF was below the threshold. We declared the change point – pain onset – 211 

when the accumulated area value exceeded a predefined threshold.  212 

 213 

Area under curve (AUC) analysis 214 

The ROC (receiver operating characteristic) curve is derived from a series of different binary 215 

classification methods (cutoff value or decision threshold), with the true positive rate (sensitivity) 216 

as the y-axis, and the false positive rate (1 - specificity) as the x-axis. AUC is defined as the area 217 

under the ROC curve and the coordinate axis. The value of this area cannot be greater than 1. The 218 

closer the AUC is to 1.0, the higher the authenticity of the detection method; when it is close to 219 

0.5, the authenticity is the lowest and it indicates a chance accuracy.  220 

 221 

Complete Freund’s Adjuvant (CFA) administration 222 

To induce chronic inflammatory pain, 0.1 mL of CFA (Mycobacterium tuberculosis, Sigma-223 

Aldrich) was suspended in a 1:1 oil saline emulsion and injected subcutaneously into the hind paw 224 

contralateral to the implanted recording electrodes. 225 

 226 

Spared Nerve Injury (SNI) Surgery 227 

As shown in previous studies(58), under anesthesia (isoflurane 2%), the lateral left thigh of the rat 228 

was incised, and the biceps femoris muscle was exposed to identify the sciatic nerve and its three 229 

distal branches (the common peroneal, tibial, and sural nerves, respectively). The common 230 

peroneal and tibial nerves were each tied off with nonabsorbent 5-0 silk sutures and transected. To 231 

avoid subsequent nerve regeneration, an additional 5mm of nerve distal to the point of transection 232 

were further resected. The sural nerve was left intact, to produce a state of increased sensitivity 233 



and hyperalgesia in the ipsilateral hind paw. The biceps femoris muscle was then closed with 4-0 234 

absorbable sutures and the skin incision was closed by surgical staples.   235 

 236 

Hargreaves test (Plantar test) 237 

The Hargreaves test was performed to observe the response of rats to acute thermal stimulation. 238 

We used a movable radiant heat-emitting device with an aperture of 10 mm (37370 plantar test, 239 

Ugo Basile) to provide acute thermal stimulation to the plantar aspect of the hind paw. The rats 240 

were placed in a plexiglass chamber on a Hargreaves glass table. After a period of adaptation to 241 

this set up, an IR intensity of 70 was used to provide noxious thermal stimulation; alternatively, as 242 

a control, an IR intensity of 10 was used to produce non-noxious thermal stimulation. IR stimuli 243 

were terminated by paw withdrawals or kept for a duration of 30 s. We conducted at least 5 trials 244 

to measure the paw withdrawal latency for each testing condition. The inter-trial interval was 245 

approximately 5 minutes. The paw withdrawal latency was automatically recorded.  246 

        247 

For online BMI experiments, 1-3 noxious stimulus tests ("calibration trials") were first performed 248 

on the SSM decoder to train the SSM model parameters.  249 

 250 

Mechanical allodynia test 251 

A Dixon up-down method with von Frey (vF) filaments was used to assess mechanical 252 

allodynia(58). Rats were placed in a plexiglass container over a mesh table and acclimated for 20 253 

minutes. 1-5 trials of the 6g vF stimulus was delivered to the hind paw of the rat to train the SSM. 254 

Subsequently the rats were allowed a period of rest to avoid hypersensitivity. A set with 255 

logarithmically incremental stiffness were then applied to the hind paw in order to calculate 50% 256 



withdrawal thresholds. vF filaments were applied to the plantar surface of the hind paw 257 

contralateral to the brain recording site.  258 

 259 

Conditioned place preference (CPP) test for evoked pain in naïve and CFA-treated rats 260 

CPP experiments were performed in a connected two-chamber device. A high-speed camera 261 

(Computar CS-Mount 2.8-12mm Varifocal Lens) was used to record a top-down view of animal 262 

movements in each chamber. Results were analyzed by the AnyMaze software (Stoelting Co.). 263 

Afterwards an independent experimenter visually verified these results by viewing the recorded 264 

video. The CPP protocol included preconditioning (baseline), conditioning, and testing phases. 265 

During 10-min preconditioning, the rat moved freely between the two chambers, and AnyMaze 266 

measured the time spent in each chamber. If the rats spent more than 500 s or less than 100 s in 267 

either chamber during the preconditioning phase, these results were not used in further testing. 268 

After decoder training, the rat was then conditioned with a different treatment in each chamber.  269 

           270 

During the conditioning phase, the animal was confined to one of the chambers. In both chambers, 271 

rats received peripheral stimulus. One of the chambers was paired with a treatment condition and 272 

the other chamber was paired with a control condition. Controls would be either no optogenetic 273 

stimulation, manually controlled stimulation (light was turned on by the experimenter prior to 274 

peripheral stimulations), or random optogenetic stimulation of matching intensity and duration. 275 

Treatment and control chamber pairings were counterbalanced. In naive rats, we used pin prick 276 

(PP) and 6g vF as noxious and non-noxious stimuli, respectively. In CFA rats, 6g vF (noxious) 277 

and 0.4g vF (non-noxious) were used to deliver peripheral stimulus to the hind paw, and the 6g vF 278 

stimulus was used to train the model.  279 



 280 

Finally, during the 10-min testing phase, the animal could move freely between the chambers 281 

without any external peripheral or optogenetic stimulations. We used the AnyMaze software to 282 

analyze the time the rats spent in each chamber at each phase to calculate the CPP score. The CPP 283 

score was defined by the difference in the time the rats spent in the chamber associated with the 284 

treatment condition between the testing and preconditioning phases. 285 

 286 

CPP test for spontaneous or tonic pain in CFA-treated rats 287 

To assess spontaneous or tonic pain induced by CFA, we adapted a traditional CPP assay (37, 44). 288 

The preconditioning and testing phase still lasted for 10 minutes, but the conditioning phase was 289 

prolonged to 60 minutes. During this conditioning phase, no peripheral stimulus was given. One 290 

of the chambers was paired with BMI-triggered optogenetic activation of the PL-PFC, whereas the 291 

other chamber was paired with the control condition (either randomly delivered optogenetic 292 

activations of matching duration and intensity or no optogenetic activation). Treatment and control 293 

chamber pairings were counterbalanced. During the testing phase (10 minutes), the rats were 294 

allowed to move freely.  295 

 296 

For all behavioral tests, the experimenter is blinded to the treatment condition of the animal. 297 

 298 

Immunohistochemistry 299 

Rats were deeply anesthetized with isoflurane and transcardially perfused with ice-cold phosphate 300 

buffer saline (PBS) followed by ice-cold 4% paraformaldehyde (PFA) in PBS. Brains were placed 301 

in PFA overnight to fix the tissue and then transferred to 30% sucrose in PBS for 3 days. Next, a 302 



Leica CM3050S cryostat (Leica Biosystems) was used to collect 20 μm coronal sections. Images 303 

containing electrodes were stained with cresyl violet and viewed using an Axio Zoom widefield 304 

microscope (Carl Zeiss). Sections were also made after viral transfer for opsin verification. 305 

  306 



 307 
Fig. S1. Histology showing viral expression, and optic fiber and silicon probe implantations. 308 

(A) Histology showing the location of representative electrodes implanted in the rat ACC, marked 309 

by a yellow circle. (B) Histology showing the location of representative electrodes implanted in 310 

the rat S1 (hind paw region), marked by a yellow circle. (C) Channelrhodopsin (ChR2) is expressed 311 

selectively in the PL-PFC. (D) Histology showing the location of representative stimulating 312 

electrode implanted in the rat PL-PFC, marked by a yellow circle.  313 



 314 
Fig. S2. Schematic of software design for a closed-loop multi-region LFP-based BMI. (A) 315 

Schematic of the brain machine interface (BMI). (B) Graphical user interface (GUI) of the BMI. 316 

Users can select the LFP channels and visualize LFP signals in real-time. Users have the option to 317 

select the detection strategy (based on the ACC, S1, or combination of both – the CCF method) 318 

and change the significance threshold criterion.  319 



 320 
Fig. S3. Pain-evoked event-related potentials (ERPs) analysis. (A) Illustration of concurrent 321 

LFP signals in the ACC and S1. ERPs are marked by black triangles. Onset of a noxious stimulus 322 

(pin prick, PP) is marked by vertical line. The traces mark the signal-channel trace, which shows 323 

a large overlap with the channel-averaged trace (shaded area denotes SEM). The red trace indicates 324 

ACC’s LFP signal and the blue trace indicates S1’s LFP signal. The double arrows mark the ERP 325 

latency. (B) Comparison of ERP latency between the ACC and S1 (n = 96 trials from 5 rats). On 326 

average, the ERP latency in the S1 was shorter than that of the ACC (n = 96; ****P < 0.0001, 327 

paired t-test).  328 



 329 
Fig. S4. False detection rate in cross session analysis. (A) Comparison of false detection rate 330 

based on LFP decoding strategies using the ACC, S1 and combined (ACC + S1) signals in Session 331 

1 and Session 2, n = 5; P = 0.6183 (ACC), P = 0.7292 (S1), P = 0.8133 (ACC+S1), paired t-test. 332 

(B) Comparison of FP detection rates based on model parameters set 5 days apart. We used the 333 

first 3 trials on Day 1 to train the parameters of SSM, and then used these same parameters to 334 

detect pain on the subsequent 5 days. n = 5; P = 0.6888, one-way ANOVA with repeated measures 335 

and post-hoc Tukey’s multiple comparison tests.  336 



 337 
Fig. S5. LFP-based BMI does not alter pain-aversive behaviors in YFP-treated (control) rats. 338 

(A) In the conditioned place preference (CPP) assay, during conditioning, one of the chambers 339 

was paired with BMI and PP, whereas the opposite chamber was paired with random PL-PFC light 340 

treatment of matching duration and intensity and PP. After conditioning, rats expressing YFP 341 

showed no preference for either chamber. n = 5; P = 0.988, paired t-test. (B) After conditioning, 342 

YFP rats showed no preference for either manually controlled light treatment or randomly 343 

delivered light treatment in the presence of PP. n = 5; P = 0.34, paired t-test. (C) After conditioning, 344 

YFP rats showed no preference for either BMI controlled light treatment or manually controlled 345 

light treatment in the presence of PP. n = 5; P = 0.915, paired t-test. (D) After conditioning, YFP 346 

rats showed no preference for either BMI controlled light treatment or randomly delivered light 347 

treatment in the presence of non-noxious 6g vF stimuli. n = 5; P = 0.945, paired t-test.  348 



 349 
Fig. S6. BMI treatment reduces the neural response to thermal noxious stimuli. (A) An 350 

example session showing neural spikes in the ACC in response to thermal stimuli during the 351 

Hargreaves’ test with BMI implementation. The top panel shows the Raster plots of pain-352 

responsive neurons in the ACC, and the bottom panel shows the average firing rate (Z-score) of 353 

these neurons. The vertical solid line indicates the onset of a noxious thermal stimulus (IR 70). 354 

The bold triangle indicates the pain detection point, and the blue horizontal line shows optogenetic 355 

PL-PFC activation triggered by the BMI. (B) An example session showing neural spikes in the 356 

ACC in response to thermal stimuli during the Hargreaves’ test without BMI implementation. (C) 357 

Compare the firing rate of 12 units within 3 seconds after detection under opto and no opto 358 

conditions. n = 12 units; ***P = 0.0005, paired t-test.  359 



 360 
Fig. S7. Schematic of acute thermal pain assays. First, 1-3 noxious stimulation trials 361 

("calibration trials") - when a noxious thermal stimulus (IR 70) is applied to the paws of a rat under 362 

the Hargreaves table - were performed to train the SSM model parameters. Next, 15 trials of three 363 

different testing conditions were applied randomly. The first condition was "no opto", where the 364 

system did not send any triggers for optogenetic stimulation during these trials. The second 365 

condition was "BMI opto", where the pain decoder in the BMI automatically turned on optogenetic 366 

stimulation of PL-PFC whenever a pain signal was detected. The time interval between detection 367 

and optogenetic stimulation onset was less than 1 ms. The third condition was "manual opto", 368 

where an experimenter manually turned on optogenetic stimulation right before the stimulus onset. 369 

  370 



 371 
Fig. S8. CPP results of CFA-treated YFP (control) rats. (A) After conditioning, YFP rats 372 

showed no preference for either BMI-triggered light treatment or randomly delivered light 373 

treatment in the presence of noxious 6g vF stimuli. n = 5; P = 0.9876, paired t-test. (B) After 374 

conditioning, YFP rats showed no preference for either BMI or randomly delivered light treatment 375 

in the presence of non-noxious 0.4g vF stimuli. n = 5; P = 0.5363, paired t-test. (C) After 376 

conditioning, YFP rats showed no preference for either BMI or randomly delivered light treatment 377 

on the tonic CPP test. n = 5; P = 0.4313, paired t-test.  378 



 379 
 380 

Fig. S9. Electrical deep brain stimulation (DBS) parameters. (A) The duration of each training 381 

trial of DBS was 5 s. DBS was delivered at a frequency of 20 Hz, with 25 μA current amplitude 382 

and 40% duty cycle. (B) Parameters of the DBS waveform.  383 



 384 
Fig. S10. The BMI-driven DBS provides specific treatment for CFA rats without obvious 385 

side effects. (A) Schematic of the CPP experiment to test tonic pain in CFA-treated rats. No 386 

peripheral stimuli were given. One chamber was paired with closed-loop BMI DBS, and the other 387 

chamber was paired with no DBS. (B) CFA-treated rats preferred the BMI chamber. n = 7; **P = 388 

0.0052, paired t-test. (C) DBS produced no locomotion defects. n = 7; P = 0.647, paired t-test.  389 



Table S1. Comparison of the area under curve (AUC) between various non-390 
noxious and noxious acute mechanical stimulus based on different LFP 391 
decoding strategies 392 
 393 

 ACC (mean ± s.e.m.) S1 (mean ± s.e.m.) CCF (mean ± 
s.e.m.) 

2g vF 
(non-noxious) 0.505 ± 0.045 0.571 ± 0.048 0.542 ± 0.017 

6g vF 
(non-noxious) 0.504 ± 0.025 0.554 ± 0.023 0.495 ± 0.038 

Pin prick 
(noxious) 0.752 ± 0.022 0.754 ± 0.023 0.808 ± 0.019 

 394 
 395 
 396 
  397 



Table S2. Comparison of the AUC between various non-noxious and noxious 398 
stimulus using a CCF decoding strategy 399 
 400 

 
Acute Thermal 
Stimulus (mean ± 

s.e.m.) 

Mechanical Stimulus 
in CFA Model 
(mean ± s.e.m.) 

Mechanical Stimulus 
in SNI Model  
(mean ± s.e.m.) 

 non-noxious 
(IR 10 or 0.4g vF) 0.46 ± 0.027 0.518 ± 0.036 0.498 ± 0.047 

 noxious 
(IR 70 or 6g vF) 0.74 ± 0.030 0.776 ± 0.035 0.778 ± 0.032 

 401 
 402 

 403 

 404 

 405 

Data file S1. Raw data. Provided as an Excel file. 406 
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