




mask can be used to estimate the irrelevant intensity vari-

ations which corrupt the signal of interest. Once we have

an estimate of those variations, we can learn a denois-

ing mapping to remove them from the recovered signals.

Our approach outperforms state-of-the-art methods on three

datasets across a range of HR and BR error measures and

also generalizes well to new data, even data recorded with

different imaging modalities, such as near-infrared (NIR),

without any additional training. Our proposed approach can

even recover very subtle waveform dynamics, such as the

clearly visible dicrotic notch and diastolic peaks, shown in

Fig. 2, which is currently challenging for video-based meth-

ods. Obtaining clean and more accurate waveforms is use-

ful for determining important health metrics, such as blood

pressure [8], which is infeasible with most existing meth-

ods. Our method also obtained cleaner breathing signals

compared to the baseline (Fig. 2). The idea of using the in-

verse attention regions is likely very useful in a wide range

of vision tasks, where the attention networks are used to

make temporal predictions, such as activity recognition or

video deblurring. However, in this work, we only focused

on the physiological measurement application.

The core contributions of this paper are to: (1) pro-

pose the use of inverse attention masks for generating esti-

mates of variations which corrupt the signals of interest, (2)

present a novel method for denoising camera-based physio-

logical measurement using this approach, (3) evaluate our

method on three datasets showing state-of-the-art perfor-

mance on pulse and breathing measurement, (4) demon-

strate that our approach generalizes to NIR data without

further training. Supplementary material, including code,

models, video examples, and additional experimental re-

sults, are provided with this submission.1

2. Related Work

Attention Mechanisms. Attention mechanisms pro-

vide a way for a model to learn which parts of an image

or a video “are relevant for the task at hand and attach a

higher importance to them” [37]. During training, the at-

tention weights are learned reflecting the importance of the

embedding features. Recently, transformer models, based

solely on attention mechanisms, have become popular [45].

In convolutional neural networks (CNNs) these attention

mechanisms typically form a spatial mask. These masks can

help practitioners understand the decision-making process

of a network [11]. In certain cases, the “fixations” of the at-

tention masks generated by computer models and by human

observers were very similar [32]. Attention mechanisms

can be used to connect layers; for example, one focuses

on temporal information (e.g., trained on flows) and an-

other focuses on spatial information (e.g., trained on RGB

1https://github.com/ewanowara/

benefitofdistraction

frames). Prior work has found that these crosslink layers

guide the spatial-stream to pay more attention to the human

foreground areas and can be less affected by background

clutter [43]. In physiological measurement, two-layer net-

works have been found to be effective as both color and mo-

tion information are valuable for extracting the subtle phys-

iological signal in the presence of corruptions [5]. While

attention mechanisms often work well, they are a simple

representation of which regions are important. However,

pixels outside these regions may provide useful context or a

strong prior about the corruptions present.
Camera-Based Physiology. Volumetric changes in

blood over time lead to subtle changes in light reflected

from the skin and subtle motion variations which can be

measured with a camera [40, 46]. The physiological signal

obtained from a video can be used to recover several metrics

and vital signs, including heart rate [34], heart rate variabil-

ity [35], breathing rate [35], blood oxygenation [41] and

pulse transit time [36]. NIR [30, 4] and thermal [12, 33]

cameras have also been successfully used for measuring

physiological signals in the dark. While there has been great

progress in measuring cardio-pulmonary signals in the vis-

ible range, estimating these can still be more accurate us-

ing thermal cameras [10, 6]. Unfortunately, the signals of

interest in camera-based physiological measurement are of-

ten very subtle and can be easily corrupted by noise due to

body motions and ambient lighting changes. Early work in

camera-based physiology used properties of the physiologi-

cal signal, e.g., the periodic nature [34] and hemoglobin ab-

sorption spectra [7, 48] to recover the underlying physiolog-

ical signal via de-mixing methods [16, 19, 20, 44]. Some of

these unsupervised methods make simple assumptions that

the pulse signal should be periodic (non-Gaussian) and that

any other source signals are noise (e.g., ICA [34]). Oth-

ers, such as POS [48], assume that the plane orthogonal

to skin contains the pulsatile physiological signal and non-

orthogonal planes contain specular reflections and noise.

Others have used physical skin models to learn a mapping

from color changes [24]. In these methods, the corruptions

affecting the signals were not modeled explicitly. Recently,

several groups have demonstrated that deep learning models

free from heuristic assumptions about the signal structure

can perform better, especially in presence of large motion

and other corruptions [5, 51, 39, 22, 26, 27, 50, 15]. These

end-to-end methods did not explicitly define the corruptions

either but rather learned to recover the physiological signal

in a fully supervised manner. We show that the performance

of a state-of-the-art model is significantly improved by us-

ing the distraction regions as explicit corruption estimates.

3. Benefiting from Distraction

Intuition. Let us consider a situation where we want to

recover a subtle temporal signal, p(t), from a video that has
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many additional sources of pixel changes. Each pixel either

belongs to a “foreground” region and it contains the signal

of interest, p(t), or it belongs to the “background” region

and it does not contain p(t). If a pixel is in the “foreground”,

we can write the intensity of the ith pixel, yi(t), as:

yi(t) = ai,0(t) + αi ∗ p(t) + βi ∗ q(t) + γi ∗ n(t)

where a0 is the base intensity of the video, p(t) is the

signal of interest, q(t) are the corruptions correlated in the

“foreground” and in the “background”, and n(t) is random

camera sensor noise. α, β, and γ modulate the strength of

the signal p(t), of the correlated corruptions, q(t), and of

the random noise, n(t), respectively.

The “foreground” in our application predominantly

refers to skin pixels on the face with the physiological sig-

nal, p(t). The signal, p(t), is not present in each pixel of

the video with the same strength, e.g., some facial regions

may be occluded by facial hair or they may have changes

resulting from body motions (e.g., eyes during blinking and

mouth during talking) [30, 14]. In the context of convolu-

tional attention networks, the strength of the signal, p(t), at

each pixel, α, is equivalent to weights in the learned atten-

tion mask for all pixels, showing which regions in the video

contain the signal of interest. We may not always know in

advance which pixels belong to the “foreground” and which

belong to the “background”. However, we can assume that

all pixels with α larger than a specified threshold in the at-

tention mask should belong to the “foreground”.

In addition to the physiological signal, p(t), the intensity

of the “foreground” also changes due to other variations,

not related to p(t) but affecting the quality of the recovered

signal, p(t). These variations may include the changing

illumination, or motion of the camera or the person, q(t),
and camera sensor noise, n(t). Camera sensor noise, n(t),
is random and is usually independent and identically dis-

tributed across all pixels. However, corruption q(t) is usu-

ally not random nor is it uniformly distributed in the video

frame. Instead, it is often statistically correlated with the

variations caused by the same source in the “background”.

On the other hand, if the pixel belongs to the “back-

ground”, it will contain similar intensity variations as the

“foreground” with the exception that it will not contain the

signal of interest, p(t). We consider the “background” to

encompass all regions not containing p(t):

yi(t) = ai,0(t) + βi ∗ q(t) + γi ∗ n(t)

The physiological signal strength present in the “fore-

ground” of the video is very small, with sub-pixel level am-

plitude. So, to extract it we need to identify the presence

of the signal in many pixels and combine them into a single

estimate to improve the SNR. If we can identify the “fore-

ground” pixels which contain p(t) and ignore other pixels,

as is done by the attention networks, we might obtain a good

estimate. The SNR of p(t) obtained from the “foreground”

regions in this manner will depend on the strength of p(t)
measured by α and the amount of corruption and random

noise measured by β and γ:

SNR(p) =
αi

βi + γi

It is usually hard to remove q(t) directly from the “fore-

ground” regions selected by the attention masks because

this corruption can be caused by diverse sources which are

hard to model and suppress. But it is easier to estimate the

related q(t) present in the “background”, which we can de-

fine to be any variation in the video that is not related to

p(t). The corruptions in the “foreground” and in the “back-

ground” may not be identical because there may be differ-

ent variations in these regions of the video. However, q(t)
present in the “foreground” and in the “background” are of-

ten caused by the same source (e.g., the motion of the head

affecting the skin, considered to be the “foreground”, and

hair pixels, considered to be the “background”) and their

variations will be similar. Therefore, if we can use only

the “background” pixels to estimate the correlated varia-

tions q(t) and their strength, β, we could suppress those

variations in the “foreground”, thereby increasing the SNR

of p(t) which now will be predominantly affected by the

random noise:

SNR(p) ≈
αi

γi

See Fig. 3 for an example of a signal denoised with our

approach jointly using the attention and inverse attention

masks compared to a signal obtained with a baseline using

only the attention masks. While the corruptions, q(t), in

the “foreground” and in the “background” are highly corre-

lated, their relationship may be non-linear and it is difficult

to model it explicitly, but it can be learned with a deep learn-

ing model. We use an LSTM network to learn to suppress

the corruptions, q(t), in a video, given an estimate of the

corruptions present in the “background”. The proposed ar-

chitecture is shown in Fig. 4. In practice, the correlation

between q(t) in the “foreground” and in the “background”

is not perfect and β cannot be perfectly estimated. There-

fore, the network can be trained to estimate these as well

as possible, but it will not be able to perfectly estimate and

remove all variations caused by motion and illumination.

Physiology and Corruption Encoder. Convolutional

attention network (CAN) [5] serves as an encoder in our

architecture and it provides an estimate of the physiological

signal obtained from “foreground” regions and the estimate

of the corruptions obtained from the “background” regions.

The CAN network consists of two components working to-

gether – the appearance and the motion models. The appear-

ance model is trained directly on the input video frames. It
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overlapping time windows for signals from each video by

finding the frequencies with maximum spectral energy in

the respective passbands. We evaluated the performance of

our proposed denoising approach across all time windows

using mean absolute error (MAE), root mean square error

(RMSE), Pearson’s correlation coefficient (ρ) between the

estimated HR and the ground truth HR, SNR of the esti-

mated physiological signals [7], and waveform mean abso-

lute error (WMAE) computed between the estimated and

the ground truth signal. See the supplementary material for

the definitions of the error metrics.

5. Results and Discussion

We compared four variants of our proposed approach to

nine state-of-the-art methods for recovering the pulse sig-

nal [34, 7, 16, 44, 28, 48, 20, 5, 19] and two methods for re-

covering the breathing signal [5, 41] (see the supplementary

material for implementation details). We compared training

our model with the corruption estimates obtained from the

“background” regions (“Distraction”) and without the cor-

ruption estimates as input (“No Corr.”). We can also directly

subtract the corruption estimate from the signal estimate ei-

ther in the time domain (“Wave. Sub.”), or compute the

power spectrum of the estimated corruption and signal and

subtract the corruption spectrum from the signal spectrum

(“Freq. Sub.”).

Heart Rate Estimation. Our method achieved better

performance compared to previous approaches, including

lower HR MAE, RMSE, and waveform MAE and higher

HR correlation (ρ) and SNR (see Table 1). On the AFRL

dataset, the MAE was reduced from 2.93 beats per minute

(BPM) to 2.25 BPM (25% reduction in error), and on the

MMSE-HR dataset, the MAE was reduced from 3.74 BPM

to 2.27 BPM (39 % reduction in error). This shows that in-

formation excluded by the attention mask can be success-

fully leveraged to remove diverse corruptions, leading to

substantial improvements in signal quality. Moreover, the

proposed denoising approach is able to recover the subtle

waveform dynamics, reducing the waveform MAE by more

than 50% on MMSE-HR. While simply subtracting the cor-

ruptions from the signals in the frequency domain often im-

proved the SNR, it did not usually improve the heart rate

estimates. Subtracting the corruption signal in the time do-

main performed even worse and often had a negative impact

on the SNR. All results were statistically significant (p <

0.01) – see supplementary material for F-test results.

Breathing Rate Estimation. In addition to estimating

HR, which is based on intensity variations in the skin, our

method can also be used to estimate BR which is based

on motion variations and it may be more challenging in

presence of body motions. Only the AFRL dataset [9] had

ground truth breathing signals, therefore we were not able

to evaluate our BR results on the other datasets. Our method

achieved a reduction in MAE from 3.68 BPM to 2.44 BPM

(a 34% error reduction) over the baselines and an increase

in SNR by 5.87 dB (Table 1).

True Benefit of Distraction Regions. Using our model

without the corruption estimates works well when the sig-

nals do not change much over time and when the corrup-

tion in the training and test sets is similar. For example,

training and testing on AFRL (Table 1) was not very dif-

ficult because the head motion was predictable. However,

including the distraction regions yielded improvements in

both HR and BR estimates when the physiological signal

varied abruptly over time or there was a large domain gap

between the training and test sets. For example, distraction

regions improved the performance on MMSE-HR which

has sudden pulse variations, uncontrolled motion, and the

presence of facial expressions; and on the more challeng-

ing NIR MR-NRIP dataset (Table 1). Moreover, including

the distraction regions improved the HR and BR estimation

accuracy when we trained our model only on the stationary

videos of AFRL (Task 1) which were free of major corrup-

tions and tested on videos with large random motions (Task

6), as shown in Table 2. The SNR was often higher in the

“No Corr.” condition because the LSTM simply produced a

smoother signal leading to greater sparsity in the frequency

domain and higher SNR. However, the dominant frequency

of that signal was often erroneous, resulting in worse MAE,

RMSE, and ρ. These results show that the corruption esti-

mates are useful beyond including an initial signal estimate

alone to the model.

Transfer Learning. NIR videos of MR-NIRP are more

challenging than RGB because the physiological signal is

an order of magnitude weaker in the NIR range compared to

the visible range, making it very prone to motion artifacts.

When trained solely on RGB videos (AFRL dataset) with-

out any fine-tuning, our method outperformed all the base-

lines across all five metrics on the NIR videos from the MR-

NIRP dataset. As shown in Table 1, the MAE dropped from

7.78 BPM to 2.34 BPM (70% reduction in error). Other

baseline methods require multiple color channels and there-

fore could not be compared on NIR videos.

Varying Head Motion. Our method also showed im-

provements on videos across all head motions of AFRL [9]

(see Table 3). For instance, on videos with an angular head

rotation of 30 deg/sec (Task 4) the HR MAE was reduced

from 2.82 BPM to 1.94 BPM (30% reduction in error) and

BR MAE was reduced from 4.85 BPM to 2.88 BPM (41 %

reduction in error).

Performance by Different Skin Type. We have also

broken down the results on MMSE-HR by skin type. Dark

skin types (V - VI) are more challenging because they

have lower iPPG SNR (see supplementary materials). Our

method achieves better performance across all skin types

and especially darker skin types (MAE [BPM] on skin type
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Table 1. Including the “distraction” regions improves heart rate (HR) and breathing rate (BR) results estimation.

Heart Rate Breathing Rate

AFRL MMSE-HR MR-NIRP(NIR) AFRL

Method MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE

Distraction 2.25 5.68 6.44 0.87 0.21 2.27 4.90 5.00 0.94 0.19 2.34 4.46 2.27 0.85 0.45 2.44 4.23 14.20 0.35 0.28

No Corr. 2.12 5.37 6.86 0.88 0.21 2.80 6.36 4.30 0.90 0.21 2.56 5.23 2.28 0.80 0.40 2.49 4.26 14.06 0.34 0.27

Freq. Sub. 2.92 6.67 3.66 0.82 0.24 3.97 9.93 4.49 0.76 0.57 8.58 17.59 -4.56 -0.11 0.31 5.03 7.45 7.78 0.12 0.31

Wave. Sub. 2.92 6.66 3.09 0.82 0.24 6.09 10.84 -4.75 0.71 0.55 8.83 17.00 -4.69 -0.17 0.31 4.98 7.40 7.76 0.12 0.30

MAICA [19] – – – – – 3.91 – – 0.86 – – – – – – – – – – –

RhythmNet [28] – – – – – – 5.49 – 0.84 – – – – – – – – – – –

PVM [20] – – – – – 4.38 – – 0.82 – – – – – – – – – – –

CAN [5] 2.93 6.69 3.36 0.82 0.23 4.06 9.51 0.63 0.77 0.52 7.78 16.8 -3.24 -0.03 0.36 4.86 7.32 8.33 0.10 0.27

POS [48] 4.36 9.45 0.73 0.74 0.45 3.90 9.61 2.33 0.78 0.39 – – – – – – – – – –

Tulyakov [44] – – – – – – 11.37 – 0.71 – – – – – – – – – – –

Li [16] – – – – – – 19.95 – 0.38 – – – – – – – – – – –

Tarassenko [41] – – – – – – – – – – – – – – – 3.68 5.52 -6.22 0.29 0.29

CHROM [7] 4.07 9.72 0.29 0.72 0.41 3.74 8.11 1.90 0.82 0.37 – – – – – – – – – –

ICA [34] 5.78 11.80 0.42 0.58 0.43 5.44 12.0 3.03 0.66 0.42 – – – – – – – – – –

Table 2. Training on AFRL Task 1 and testing on Task 6. The ig-

nored regions help when the training and test set are very different.

Heart Rate Breathing Rate

Method MAE RMSE SNR ρ WMAE MAE RMSE SNR ρ WMAE

Distraction 5.29 9.33 -2.07 0.70 0.32 4.28 6.00 5.93 0.10 0.34

No Corr. 5.61 9.72 -1.91 0.67 0.32 4.38 6.15 5.96 0.07 0.34

Table 3. Motion increasing from 1 to 6 on AFRL

Heart Rate MAE Breathing Rate MAE

Method 1 2 3 4 5 6 1 2 3 4 5 6

Distraction 1.06 2.11 1.79 1.94 2.50 4.78 1.42 1.86 1.88 2.88 2.87 4.15

No Corr. 1.14 1.90 1.80 3.39 2.04 4.52 1.47 1.95 1.68 2.96 2.99 4.15

Freq. Sub. 1.52 2.62 2.51 3.00 2.58 5.30 4.30 5.35 4.89 5.27 5.09 5.26

Wave. Sub. 1.57 2.59 2.53 3.03 2.72 5.09 4.31 5.24 4.88 5.17 5.08 5.19

CAN [5] 1.52 2.61 2.51 3.00 2.62 5.34 4.24 5.17 4.58 5.09 4.92 5.15

POS [48] 1.42 1.52 2.84 3.86 6.33 10.16 – – – – – –

CHROM [7] 1.33 1.62 2.87 2.82 3.91 11.86 – – – – – –

ICA [34] 2.18 2.64 4.74 4.93 7.02 13.18 – – – – – –

Tarassenko [41] – – – – – – 2.51 2.53 3.19 4.85 4.22 4.78

VI: Ours = 1.57, CAN = 8.77).

Inverse Mask Definition. We tested computing the in-

verse attention mask used to estimate the corruptions as

continuous or as binary values after thresholding. We also

compared using all three and individual RGB channels to

estimate the corruptions. However, we obtained compara-

ble results with different variants of the inverse attention

masks (see supplementary materials).

Importance of Different Distraction Regions. Certain

regions in the video may contain more useful information

about the sources of corruptions than others. For example,

regions closer to the face may contain more information

about the motion of the participant. We compared sepa-

rately using distraction regions closer to the face (center of

the frames) and further from the face (edges of the frames).

When the motion was small, all regions contributed simi-

larly to denoising (MAE = 1.08 BPM with center regions

and MAE = 1.07 BPM with edges). But when there was

large head motion, regions close to the head (center of the

frames) helped more (MAE = 6.53 BPM with center regions

and MAE = 8.74 BPM with edges). See supplementary ma-

terials for detailed results.

Performance on Subjects with Glasses. Interestingly,

we observed that our method performed very well on sub-

jects who wore glasses. The attention masks for subjects

with and without glasses were comparably good. However,

CAN performed worse on subjects with glasses and our ap-

proach offered a large improvement on those videos (MAE

[BPM] with glasses: Ours = 2.17, CAN = 3.33, and without

glasses: Ours = 2.55, CAN = 2.57). See supplementary ma-

terials for example attention masks and additional results.

6. Conclusion

We have presented a novel approach for generating cor-

ruption estimates from inverse attention masks to improve

camera-based physiological signal measurements. We hy-

pothesized that the corruptions affecting regions used by

the attention masks to compute the signal of interest would

likely be present in other regions in the video that are typ-

ically ignored by the attention masks. Our proposed de-

noising method outperformed all state-of-the-art methods in

heart rate and breathing rate estimation from videos. The re-

covered physiological signals were sufficiently clean to re-

cover even subtle waveform dynamics present in the ground

truth contact signals, including the dicrotic notch and the di-

astolic peaks. Moreover, our approach trained only on RGB

videos showed strong cross-dataset and cross-modality gen-

eralizability, outperforming the existing methods on chal-

lenging NIR videos.
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