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Accurate assessment of a student’s ability is the key task of a test. Assessments based on final responses
are the standard. As the infrastructure advances, substantially more information is observed. One of such
instances is the process data that is collected by computer-based interactive items and contain a student’s
detailed interactive processes. In this paper, we show both theoretically and with simulated and empirical
data that appropriately including such information in the assessment will substantially improve relevant
assessment precision.

Key words: Process data, ability estimation, automated scoring, Rao–Blackwellization.

The main task of educational assessment is to provide reliable and valid estimates of test tak-
ers’ ability based on their responses to test items. Much of the efforts in the past decades focused
on the item response theory (IRT) models, the responses of which are often dichotomous (cor-
rect/incorrect), polytomous (partial score), or nominal (e.g., response choice). The rapid advance-
ment of information technology has enabled the collection of various sorts of process data from
assessments, ranging from reaction times on multiple-choice questions to the log of problem-
solving behavior on computer-based constructed-response items. In particular, the sequence of
actions performed by test takers to solve a task, which documents the problem-solving process,
can contain valuable information on top of final responses, that is, dichotomous or polytomous
scores on how well the task was completed. The analysis of process data has recently gained
strong interest, with a wide range of model- and data-driven methods proposed to understand
the types of strategies that contribute to successful/unsuccessful problem-solving, identify the
behavioral differences between observed and latent subgroups, and assess the proficiency on the
trait of interest, et cetera (e.g., He & von Davier, 2016; LaMar, 2018; Liu et al., 2018; Xu et al.,
2018).

Process data often contain rich information about the test takers. Much of the literature
focuses on developing new research directions. In this paper, we try to answer the question
of how existing research could benefit from the analysis. Specifically, we develop a method to
incorporate the information in process data into the scoring formula. There are two key features to
consider inmeasurement, reliability and validity. The current paper focuses on the improvement in
reliability: We show that the process-incorporated latent ability estimate improves measurement
accuracy. In particular,wedemonstrate through simulation and empirical analyses that the process-
incorporated scoring rule yieldsmuch higher reliability than the IRT-model-based scoring rule. On
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the current empirical data. score based on two items’ process data on average could be as accurate
as that based on final scores on five items. Furthermore, we provide a theoretical framework under
which process-incorporated scores yield lower measurement error of test takers’ abilities under
certain regularity conditions. One particular challenge in process-incorporated scoring is that
process data record the entire problem-solving process, are highly unstructured and variable, and
reveal different aspects of a test taker, including construct-irrelevant characteristics. It is unclear
which part of the process is related to the particular trait of interest. Conventionally, it is up to
the domain experts to identify construct-relevant process features and derive scoring rules. The
proposed approach, on the other hand, considers an automated method: Features are extracted
through an exploratory analysis that typically lacks interpretation. We take advantage of the IRT
score, which serves as a guide for the scoring rule to yield an estimator for the measured trait.
The entire procedure does not require particular knowledge of the item design.

Process data are often in a nonstandard format difficult to directly analyze. We preprocess
the data by embedding each response process to a finite-dimensional vector space. There are
multiple methods to fulfill this task, including n-gram language modeling (He & von Davier,
2016), sequence-to-sequence autoencoders (Tang et al., 2021b), and multidimensional scaling
(Tang et al., 2021a). In this paper, we use features extracted from multidimensional scaling.

In the psychometrics literature, plenty of research has been conducted on the use of additional
information, such as response times, to improve measurement accuracy (e.g., Bolsinova & Tijm-
stra, 2018). To the authors’ best knowledge, this is the first piece of work to use problem-solving
log data to improvemeasurement accuracy. A literature that is remotely related to the current work
is automated scoring systems for constructed responses. Extensive research has been conducted on
automated scoring of essays, which aims at producing essay scores comparable to human scores
based on examinees’ written text (e.g., Attali & Burstein, 2006; Foltz et al., 1999; Page, 1966;
Rudner et al., 2006). Other than essay scoring, automated scoring engines have been developed for
scenario-based questions in medical licensure examinations (Clauser et al., 2000), constructed-
response mathematics problems (Fife, 2013), speaking proficiency examinations (Evanini et al.,
2015), and prescreening for post-traumatic stress disorder based on self-narratives (He et al., 2017,
2019). Many of these systems were shown to produce comparable scores to expert ratings. Read-
ers are referred to Bejar et al. (2016) and Rupp (Rupp (2018)) for comprehensive reviews of the
history, applications, conceptual foundations, and validity considerations of automated scoring
systems.

The proposed approach differs frommost automated scoring systems in its objective.Whereas
automated scoring systems are often designed to reproduce expert- or rubric-derived scores in an
automated and standardized manner, the purpose of the proposed Rao–Blackwellization approach
is not to reproduce the final scores but to refine the latent trait estimates based on original final
scores with the additional information from the problem-solving process.

The rest of the paper is organized as follows. Section1 describes the statistical formulation.
The proposed method for process-incorporated score refinement is introduced. Theoretical results
on mean squared error (MSE) reduction in latent trait estimation are presented. Section2 reports
the results of simulation studies that verify the theoretical findings. Section3 presents an empirical
example on the problem-solving in technology-rich environments (PSTRE) assessment in the 2012
Programme for the International Assessment of Adult Competencies (PIAAC) survey, where the
proposed method is compared to original response-based scoring in several aspects. A discussion
of the implications and limitations is provided in Sect. 4.
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1. Latent Trait Estimation with Processes and Responses

This section presents a generic framework for process-incorporated latent trait measurement.
Section 1.1 describes a statistical formulation that the current framework is built upon. Section 1.2
introduces the proposed Rao–Blackwellization approach and the specific procedures. Section 1.3
provides a theoretical analysis of the process-incorporated trait estimator.

1.1. Statistical Formulation

Consider a test of J items designed to measure a latent trait, θ . For an examinee, on each item
j , both the final item response and the action sequence for problem-solving are recorded. Denote
the item response by Y j , which can be a polytomous score ranging between 0 andC j , representing
different degrees of task completion. Further denote the action sequence by S j = (S j1, . . . , S j L j ),
where L j is the total number of actions performed on the item, and S jl is the lth action.

We consider the case where the action sequences record problem-solving details and thus
contain at least as much information as the final outcomes. In this case, the final item response can
be derived from the action sequence through a deterministic scoring rule f such that Y j = f (S j ).

Further suppose that the final responses to the J items are conditionally independent given θ and
follow some item response function (e.g., Lord, 1980)

P(Y j = y j | θ, ζ j ),

where ζ j is the parameters of item j .
For the present purpose of latent trait estimation, we assume that the item parameters (ζ j s)

have been calibrated and only the latent trait θ is unknown. Denote the pre-calibrated parameters
of item j by ζ̂ j . The latent trait θ for each individual can be estimated based on the response
from one or more items. Commonly used latent trait estimators include the maximum likelihood
estimator (MLE),

θ̂MLE = argmax
θ

∑

j

log(P(Y j = y j | θ, ζ̂ j )), (1)

the Bayesian expected a posteriori estimator (EAP), and the Bayesian modal estimator (BME),
i.e.,

θ̂EAP = E[θ | Y] and θ̂BME = argmax
θ

P(θ | Y), (2)

where P(θ | Y) ∝ p(θ)
∏

j P(Y j = y j | θ, ζ̂ j ) with p(θ) being the prior distribution (e.g., Kim
& Nicewander, 1993).

We aim at refining the θ estimator with a procedure that makes use of process data. Since
action sequences are in a non-standard format, instead of working directly with S j , we work with
the K -dimensional numerical features extracted from S j , denoted X j = (X j1, . . . , X jk) ∈ R

K .

There are no restrictions on the feature extraction method except that the produced features X j

must preserve the full information on the final response Y j , in other words, σ(Y j ) ⊆ σ(X j ), where
σ(·) denotes theσ -algebra generated by the randomvariable. Intuitively, this requires the extracted
features to preserve full information about the final score, such that the latter can be perfectly
predicted by the process data features. Feature extraction methods such as n-gram language
modeling (e.g., He&vonDavier, 2016;Qiao& Jiao, 2018),multidimensional scaling (MDS; Tang
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et al., 2021a), and recurrent neural network-based sequence-to-sequence autoencoders (Tang et al.,
2021b), which have documented performance in terms of near-perfect final response prediction,
canbe applied in practice. Even if the process does not contain completefinal outcome information,
the final outcome can always be added as an additional dimension of the process features, to
guarantee σ(Y j ) ⊆ σ(X j ).

1.2. Procedure

Let X = (X1, . . . ,XJ ) denote the process features from all J items and X− j the process
features from the J − 1 items excluding item j . Denote the latent trait estimate based on all J
final responses by θ̂Y, which can be obtained through the estimators in Eqs. (1) or (2). Further,
let θ̂Y j be the estimator derived from a single response outcome Y j , for instance, using the EAP
estimator in (2).

The final response-based trait estimator, θ̂Y, can be refined by the following procedures that
incorporate process features. The new estimator is denoted by θ̂X.

Procedure 1. (Construction of process-incorporated estimator)

1. For each j = 1, . . . , J :
• Regress θ̂Y j on X− j to obtain TX− j = E[θ̂Y j |X− j ].
• Regress θ̂Y on TX− j and Y j to obtain θ̂X− j = E[θ̂Y|TX− j , Y j ].

2. Compute the overall process-incorporated estimator, θ̂X = 1
J

∑J
j=1 θ̂X− j .

In practice, the explicit distributions of θ̂Y j |X− j and θ̂Y|TX− j , Y j are unknown. The two

conditional expectations, E[θ̂Y j |X− j ] and E[θ̂Y|TX− j , Y j ] in Procedure 1 are approximated on
finite samples using generalized linear models. Alternatively, deep neural networks may be con-
sidered to capture nonlinear relationships. Although J regressions are required for both steps, the
implementation may be paralleled to make it computationally efficient.

For illustration, consider a test of J binary items administered to N respondents. For respon-
dent i and item j , let si j and Yi j ∈ {0, 1} denote the response process and the response outcome,
respectively. Suppose that the response outcomes follow a two-parameter logistic model (2PL;
Birnbaum, 1968),

logit
(
P

(
Yi j = 1|θi

)) = a j (θi − b j ). (3)

The following steps provide a roadmap to implement Procedure 1.

(1) IRT parameter estimation: Fit the 2PL model on the binary outcomes {Yi j : i =
1, . . . , N , j = 1, . . . , J } to obtain the item parameter estimates {ζ̂ j = (â j , b̂ j ) : j =
1, . . . , J } using marginal maximum likelihood estimation.

(2) Process feature extraction: For each item j , extract features X1 j , . . . ,XN j from the
problem-solving processes S1 j , . . . , SN j . The MDS method (Tang et al., 2021a) or the
action sequence autoencoder (Tang et al., 2021b) in the ProcData R package (Tang
et al., 2020) can be used for this step.

(3) Response-based (baseline) latent trait estimation: One can choose from the commonly
used estimators described in (1) or (2). For each respondent i and item j , get the single-
item trait estimate θ̂i,Y j based on Yi j and ζ̂ j . Additionally, based on examinee i’s final

responses to all J items, Yi = (Yi1, . . . , Yi J ), and ζ̂ = (ζ̂ 1, . . . , ζ̂ J ), obtain θ̂i,Y.
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(4) First conditional expectations: For each j , fit a regression θ̂Y j ∼ X− j based on

{(Xi(− j), θ̂i,Y j ) : i = 1, . . . , N } to approximate E[θ̂Y j |X− j ] and calculate the fitted
values {Ti,X− j : i = 1, . . . , N }. For example, one can use ridge regression (Hoerl &
Kennard, 1970) with shrinkage parameter selected by cross-validation.

(5) Second conditional expectations: For each j , fit another regression θ̂Y ∼ (TX− j , Y j ).
One simple choice is ordinary least squares with (1, TX− j , Y j , TX− j Y j ) as predictors,
where TX− j Y j is the interaction term.

(6) Averaging step: The average of the fitted values {θ̂i,X− j : j = 1, . . . , J } in step (5) is

the final process-incorporated trait estimate, θ̂i,X, for respondent i .

1.3. Theoretical Analysis

In this subsection, we provide theoretical justifications for this procedure. In particular, we
elaborate a set of assumptions under which the process data score improves latent trait estimation
in terms of mean squared error. The first assumption requires the conditional expectation of θ̂Y j

given θ to be monotonically increasing. This assumption is satisfied by well-designed cognitive
items and latent trait estimators.

A1. (Monotonicity assumption)m j (θ) = E
[
θ̂Y j |θ

]
is monotone in θ and has a finite second

moment.

Secondly, we assume that the response outcome of item j is correlated with an individual’s
behaviors on other items only through themeasured trait θ and not through other latent or observed
traits. Since the process features can include rich information other than the measured trait, this
local independence assumption requires Y j to be “good”, in the sense that no construct-irrelevant,
persistent traits affect final performance. In otherwords,measurement error comes from sources of
random, instead of systematic error (AERA, APA, and NCME, 2014). For example, the process
features X− j may reflect a respondent’s computer usage habits, such as whether they tend to
double- or single-click on buttons. However, the final score, Y j , shall not differentiate individuals
with different clicking habits, as long as they have the same level of θ . We do allow Y j to be
very “rough” measurements, in other words, the measurement error can be large, as long as it is
due to random instead of systematic variations. Similarly, θ̂Y j can be biased and can have a large
standard error, as long as the monotonicity assumption (A1) is satisfied.

A2. (Local independence assumption) Conditioning on the latent trait θ , Y j and X− j are
independent.

Finally, we consider the distribution of the process features, X− j , given the measured trait.
Note that the problem-solving process can depend on traits other than θ . These unobserved,
construct-irrelevant traits are assumed random and integrated out from the probability density,
thus resulting in the conditional density of X− j given θ . We impose the usual exponential family
assumption on process features for technical development. This is equivalent to assuming the
existence of a unidimensional sufficient statistic of θ independent of sample size (Lehmann &
Romano, 2005). The natural parameter η j (θ) is assumed to be monotone so that there is no
identifiability issue for θ .

A3. (Exponential family assumption) The probability density function for features X− j for
each j takes the following form:

f (X− j |θ) = exp
{
η j (θ) Tj (X− j ) − A j (θ)

}
h j (X− j ), (4)
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where Tj (X− j ) is a sufficient statistic for θ and the natural parameter η j (θ) is monotone
in θ with a finite second moment.

Theorem 1 shows that the first step of our proposed procedure summarizes the process data
features to sufficient statistics.

Theorem 1. Under Assumptions A1–A3, TX− j is a sufficient statistic of X− j for θ .

Based on the sufficiency of TX− j , we can further show that θ̂X reduces the MSE of θ̂Y, as
stated in Theorem 2. The proof of this result uses the Rao–Blackwell theorem (Blackwell, 1947;
Casella & Berger, 2002) and also shows that every θ̂X− j produced by step 2 of the procedure

removes conditional variance and improves θ̂Y in terms of MSE. The proofs of Theorem 1 and
Theorem 2 are provided in Appendix.

Theorem 2. If assumptions A1-A3 hold for all J items, then

E[(θ̂X − θ)2|θ ] ≤ E[(θ̂Y − θ)2|θ ] for every θ. (5)

The MSE reduction by incorporating process features implies an increase in statistical effi-
ciency for estimating θ . Putting Theorem 2 in the psychometric context, the MSE reduction of θ

estimator translates to the reduction of conditional standard error of measurement at all possible
proficiency levels, therefore, higher measurement reliability. In practice, this allows one to derive
more reliable scores (i.e., latent trait estimates) for individuals in assessments. Alternatively, by
using the procedure to incorporate process data, one is able to achieve comparable measurement
precision to traditional outcome-based scoring with fewer items.

Here, we explain the rationale behind the assumptions and expected consequences of assump-
tion violation: Assumption A1 is the most important among all. It provides a crucial guide to
extracting the relevant part of the process information on the measured trait. This also suggests
that the final-response-based IRT model yields a valid estimator with random noise, written as
θ̂Y j = m j (θ) + ε j . Assumption A2 ensures that ε j is not predictable by the process data of other
items, and furthermore, ε j has zero mean across the population. Thus, if A2 is not valid, we
may expect a certain amount of bias introduced to the process estimator. A3 provides a technical
framework for us to discuss efficiency. We choose the natural exponential family because it is the
first-order approximation of a large class of parametric families.

2. Simulations

Simulation studieswere conducted to compare outcome- and process-incorporated estimators
of the latent trait.

2.1. Experiment Settings

We generated respondents’ latent trait θ1, . . . , θN independently from the standard normal
distribution. Given examinee i’s underlying true θi , the response process and the final response to
each item were then generated, both dependent on the latent trait θi . Specifically, for respondent
i and item j , the response outcome Yi j followed a Rasch model (Rasch, 1960),

logit
(
P

(
Yi j = 1|θi

)) = θi − b j . (6)

To generate the problem-solving process, we considered a Markov model and an action set of 26
English letters. Each letter represents 1 of 26 possible actions recorded at each time point. The
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probability transition matrix was distinct for each respondent-item pair and denoted as P(i j) =
(p(i j)

kl )1≤k,l≤M for the i th respondent and the j th item. Given the probability transition matrix,
we generated an action sequence starting from “A”, where the subsequent actions were sampled
according to P(i j) until the final state “Z” appears. Excluding the column for “A” and the row for
“Z”, the upper right (M − 1) × (M − 1) submatrix of P(i j) was computed according to

p(i j)
kl = exp(θi u

( j)
kl )

∑M−1
r=1 exp(θi u

( j)
kr )

, (7)

where (u( j)
kl )1≤k,l≤M−1 were generated independently from Uniform(−10, 10) for each item.

Each item’s action sequences hence depended on the underlying θ through the transition proba-
bilities between actions. Note that, by the current simulation design, the final response, generated
separately, was not a function of the process and hence not perfectly predictable from process.
To ensure the perfect predictability of response from process features on item j , we included the
final response as an additional dimension for the process features in subsequent analysis.

Two experiments were devised to evaluate the effect of sample size (N ) and test length
(J ). Experiment I considers four different sample sizes: N = 200, 500, 1000 and 2000. The
number of items J was fixed to three with difficulty parameters b1 = 0, b2 = 1, b3 = −1 in (6).
Each condition of N was replicated 100 times. Experiment II considers different test lengths. We
considered amaximumof 20 items and generated the difficulty parameter b j fromUniform(−1, 1)
for each item. Starting from two items, we added one more observed item for estimation in each
step until all 20 items were included. The sample size N was fixed at 2000.

MDS features were extracted from the response process on each item, with latent dimen-
sion K chosen by five-fold cross-validation from candidate values 10, 20, . . . , 50. To guarantee
perfect predictability of Y j by X j , the final response to each item was added as an additional
dimension to the process features. Following the illustration in Sect. 1.2, we first estimated the
item parameters b1, b2, b3 by marginal maximum likelihood estimation. Then, we used response
outcomes to calculate the baseline EAP estimator, θ̂Y, as well as the single-item response-based
EAP estimators, θ̂Y1, . . . , θ̂YJ . Note that by using the EAP, weminimize the posterior MSE. Ridge
regression (Tikhonov&Arsenin, 1977)was used for the first conditional expectation, E[θ̂Y j |X− j ],
and the shrinkage parameter was tuned to minimize the deviance in fivefold cross-validation. For
the second conditional expectation, E[θ̂Y|TX− j , Y j ], we regressed θ̂Y on (1, TX− j , Y j , TX− j Y j )

by ordinary least squares.

2.2. Results

The estimators θ̂Y and θ̂X were evaluated by two criteria, MSE and Kendall’s rank correlation
(τ ; Kendall, 1938). The MSE of an estimator θ̂ was calculated by

MSE(θ̂) = 1

N

N∑

i=1

(θ̂i − θi )
2, (8)

where θ̂i is the estimate for the i-th respondent, and θi is the true latent trait of respondent i . The
Kendall’s τ between estimated and true θ can also be calculated for both estimators. In contrast to
MSE, Kendall’s τ considers the extent to which the estimated ranking aligns with the true ranking
of latent trait, which is the interest of norm-referenced tests.

As shown in Fig. 1, the process-incorporated estimator (x-axis) outperformed the outcome-
based estimator (y-axis) in terms of both MSE and Kendall’s τ . In each subplot, the 100 points
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Figure 1.
Response-based (baseline) and process-incorporated estimators’ agreement with true θ across different sample sizes.

correspond to results from 100 replications. For smaller sample sizes of N = 200 or 500, theMSE
of the process-incorporated estimatorwas higher than that of the response-based estimator in some
replications. As the sample size increased, the proposed procedure consistently achieved smaller
MSE. The Kendall’s τ of the process-incorporated estimator was consistently higher than that
produced from the baseline estimator across sample sizes and replications, and the improvement
became more substantial when N increased. As shown in the subplot for N = 2000, with three
items, τ could increase from around 0.45 to over 0.60 after applying the procedure to incorporate
process information. Figure 2 takes a closer look at MSE by dividing respondents into 10 groups
based on their true latent trait, with N = 2000. Group 1 has the lowest θ and group 10 has the
highest θ .Within each group,we calculatedMSE for baseline and process-incorporated estimators
over the 100 simulated data sets. The boxplots show that for groups 2 to 9, the process-incorporated
estimator substantially reducedMSE. For examinees with extreme true θs (groups 1 and 10), both
estimators had larger errors.

Figure 3 displays the results of experiment II where test length was considered. In the left
panel, the MSE of the process-incorporated estimator (red line) remained below that of the
outcome-based estimator (black line) as the number of items increased from 2 to 20. The proposed
procedure reduced the MSE by over a half. The improvement in Kendall’s τ was also consistent
across different test lengths as shown in the right panel. For instance, when J = 7, Kendall’s τ

rose from 0.5 to 0.7 after the refinement.

3. Empirical Example: PIAAC PSTRE

The proposed approach for score refinement was further applied to the data collected from
the PSTRE assessment from the 2012 PIAAC survey. The empirical analyses were guided by two
overarching objectives. First, the performance of the response- and process-incorporated latent
trait estimators was compared, similar to the simulation studies. Second, because response-based
and process-incorporated estimators are expected to produce different latent ability estimates



SUSU ZHANG ET AL.

Figure 2.
Box plots of MSE in different strata of true θ (N = 2000).

Figure 3.
Simulation results of experiment II.

for the same examinee, we further examined the problem-solving patterns associated with large
discrepancies in response- and process-incorporated θ̂s. In the following subsections, a description
of the PIAAC PSTRE data is first provided, followed by the methods and findings from the
empirical analyses.
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Figure 4.
Home page of the PSTRE sample item. Reprinted from OECD Sample Questions and Questionnaire (https://www.oecd.
org/skills/piaac/samplequestionsandquestionnaire.htm).

3.1. The PIAAC PSTRE Data

Carried out by the Organization for Economic Co-operation and Development (OECD), the
PIAAC (e.g., Schleicher, 2008) is an international survey of the cognitive and workplace skills of
working-age individuals around the world. The first cycle of the PIAAC survey in 2012 assessed
three cognitive skills, namely literacy, numeracy, and PSTRE, on participants from 24 countries
and regions with ages between 16 and 65 years. In addition to the three cognitive assessments,
the participants were further surveyed on their demographic background and other information
related to their occupation and education.

The current study focuses on the PSTRE assessment, where individuals were administered
a series of computer-based interactive items. PSTRE ability refers to the ability to use digital
technology, communication tools, and the internet to obtain and evaluate information, communi-
cate with others, and perform practical tasks (OECD, 2012). Successful completion of the PSTRE
tasks requires both problem-solving skills and familiarity with digital environments. The test envi-
ronment of each item resembled commonly seen informational and communicative technology
(ICT) platforms, such as e-mail clients, web browsers, and spreadsheets. Test takers were asked
to complete specific tasks in these interactive environments. Individuals’ entire log of interactions
with each item was recorded as log data. In addition, based on the extent of task completion,
polytomous final scores were derived for each item.

A sample item that resembles PSTRE tasks is shown in Fig. 4. Respondents can read the task
instructions on the left side and work on the task in the simulated interactive environment on the
right. This item requires respondents to identify, from the five web pages presented on the screen,

https://www.oecd.org/skills/piaac/samplequestionsandquestionnaire.htm
https://www.oecd.org/skills/piaac/samplequestionsandquestionnaire.htm
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Figure 5.
Web page returned from clicking the second link (i.e., “Work links”) on the home page. Reprinted from OECD Sample
Questions and Questionnaire (https://www.oecd.org/skills/piaac/samplequestionsandquestionnaire.htm).

all pages that do not require registration or fees and to bookmark them. By clicking on each link,
they will be redirected to the corresponding website where they can learn more. For example,
clicking “Work Links” directs them to Fig. 5, and further clicking on “Learn More” directs them
to the page in Fig. 6. Once having finished working on the task, a test taker can click on the right
arrow (“Next”) on the bottom-left. A pop-up window will ask them to confirm their decision by
clicking “OK” or to return to the question by clicking “Cancel”. A respondent who clicked on
the aforementioned two links, bookmarked the page using the toolbar icon, and moved on to the
next question will have the recorded action sequence of “Start, Click_W2, Click_Learn_More,
Toolbar_Bookmark, Next, Next_OK”.

The computer-based version of the 2012 PIAAC survey randomly assigned each respondent
with two blocks of cognitive items, where each block consisted of a fixed set of items that assessed
either literacy, numeracy, or PSTRE proficiency. The current study uses the PSTRE response
and process data of individuals from five countries and regions, including the UK (England and
Northern Ireland), Ireland, Japan, the Netherlands, and the USA, whowere assigned to PSTRE for
both blocks. The five countries and regions were relatively similar in performance distribution on
the PIAAC PSTRE assessment. Each PSTRE block consisted of 7 items, and thus, the two blocks
total to 14 items. Note that a recorded action sequence of “Start, Next, Next_OK” indicates that
the test taker did not perform any action on the item and moved on to the next question. This type
of behavior can be regarded as omission and is distinguished from either credited or uncredited
responses. The current study excluded individuals who omitted any of the 14 items, resulting in a
total of 2304 test takerswho responded to all 14PSTRE items. For each item, the action sequence of

https://www.oecd.org/skills/piaac/samplequestionsandquestionnaire.htm
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Figure 6.
Web page returned from clicking “Learn More” on the “Work links” website. Reprinted from OECD Sample Questions
and Questionnaire (https://www.oecd.org/skills/piaac/samplequestionsandquestionnaire.htm).

each test taker was recorded, and a polytomous final score calculated based on predefined scoring
rubrics was available. PIAAC uses the final scores together with other demographic covariates
to obtain plausible values of individuals’ proficiency on PSTRE. Table 1 presents descriptive
information of the 14 PSTRE items, including the task names and the descriptive statistics of the
final scores and action sequences.

3.2. Overall Performance in Latent Proficiency Estimation

3.2.1. Evaluation Methods With empirical data, respondents’ true θs were unknown. The two
proficiency estimators were instead compared on their agreement with performance on a separate
set of items designed to measure the same trait. Specifically, the 14 PSTRE items were split into
two sets of 7 items.One set of 7 items, denoted the scoring set (Bs),was used to obtain the response-
and the process-incorporated estimators (θ̂ (s)

Y and θ̂
(s)
X ). A separate latent trait estimate, θ̂ (r)

Y , can
be obtained from the final responses to the remaining 7 items, denoted the reference set (Br ). Any
trait estimate obtained from the scoring set does not use reference set response information, and
θ

(r)
Y serves as an external criterion for evaluating θ̂

(s)
Y and θ̂

(s)
X . The 14 items can be partitioned into

scoring and reference sets in
(14
7

)
ways. We randomly chose 50 possible partitions and evaluated

the agreement on each partition. On a remark, the original two blocks of 7 items were thoughtfully
designed to be parallel. Here, the formswere scrambled formethod evaluation, where the resulting
partitions may no longer be comparable in specific content coverage, difficulty, and other item
characteristics, despite measuring a common unidimensional trait of PSTRE.

https://www.oecd.org/skills/piaac/samplequestionsandquestionnaire.htm
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Table 1.
Descriptive information of the 14 PIAAC PSTRE items.

Item ID Task name Final score Action types Sequence length
Score levels Median Min Max Median

U01a Party invitations 4 3 40 4 90 17
U01b Party invitations 2 1 47 4 132 29
U02 Meeting room 4 1 95 4 153 35
U03a CD tally 2 1 67 4 51 9
U04a Class attendance 4 0 615 4 304 49
U06a Sprained ankle 2 0 30 4 57 10
U06b Sprained ankle 2 1 26 4 51 18
U07 Book order 2 1 40 4 79 24
U11b Locate email 4 2 122 4 256 22
U16 Reply all 2 1 359 4 267 34
U19a Club membership 2 1 75 4 356 19
U19b Club membership 3 2 244 4 396 18
U21 Tickets 2 1 124 4 77 22
U23 Lamp return 4 3 133 4 139 25

Descriptive statistics calculated based on the 2304 participants without omission; Score levels: number of
ordinal response categories; Action types: the number of possible actions in the log data; Sequence length:
the number of actions recorded in a test taker’s process data.

Similar to the simulation study, the mean-squared deviation (MSE) with respect to θ̂
(r)
Y ,

MSE(θ̂ (s)) = 1

N

N∑

i=1

(θ̂ (s) − θ̂
(r)
Y )2, (9)

and the Kendall’s τ with θ̂
(r)
Y can be computed for each estimator produced from the scoring

set. Unlike the true θ , θ̂
(r)
Y is estimated based on final responses to only 7 items and contains

measurement error. The correlation between θ̂ (s) and θ̂
(r)
Y is hence attenuated by the reliability

of θ̂
(r)
Y , and the MSE of θ̂ (s) with respect to θ̂

(r)
Y is expected to deviate from the MSE of θ̂ (s)

with respect to true θ . Rather than interpreting the two evaluation metrics as the recovery of true
proficiency, they can instead be regarded as the split-half (Bs and Br ) agreement of latent trait
estimates, or, alternatively, as the strength of association between θ̂ (s) and performance on similar
tasks (θ̂ (r)

Y ). Lower MSE and higher Kendall’s τ hence suggest higher reliability.
On the scoring set, the response- and process-incorporated estimators were obtained follow-

ing similar procedures as in the simulation studies. Specifically, the dimension of the process
features was selected for each item by cross-validation, and the final score to each question was
added as an additional process feature to guarantee perfect predictability. To evaluate performance
under different test lengths, similar to experiment II, the number of items in Bs used for scoring
ranged from 2 to 7. Specifically, when only two items were used for scoring, it was assumed that
examinees’ processes and scores were observed only on the first two items. Subsequent items in
the scoring set were added one by one until all 7 items were used. Because the final responses
were polytomous, the generalized partial credit model (Muraki, 1992) was used to calibrate the
item parameters and to obtain the response-based θ estimates. Additionally, for the second con-
ditional expectation in Procedure 1, E(θ̂Y | TX− j , Y j ), the polytomous final response Y j was
dummy-coded as regressors in the second regression.
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Figure 7.
Response-based (baseline) and process-incorporated estimators’ MSE with respect to reference-set ability estimate on
the PIAAC data. x-axis is the number of items used for computing θ̂X and θ̂Y in the scoring set. Box plots represent the
distribution of MSE across the 50 partitions of Bs and Br .

3.2.2. Results Figure 7 compares the MSE of the response- and process-incorporated trait
estimators. Results are presented for different test lengths, ranging from 2 to 7 items, in the
scoring set. The green boxes correspond to the response-based (baseline) θ̂ (s), and the red boxes
correspond to the process-incorporated θ̂ (s). Each box plot in Fig. 7 represents the distribution of
theMSE across the 50 randomly sampled partitions of the 14 items into scoring and reference sets.
One can observe that for all test lengths, the process-incorporated latent trait estimator consistently
demonstrated smaller MSE, indicating higher agreement with the performance on an external set
of similar tasks (i.e., the reference set). In particular, with two items, the process-incorporated
estimator achieved comparable median MSE as the response-based estimator using five items.
With four or more items, the process-incorporated θ̂ consistently achieved similar, if not lower,
MSE than the response-based estimator using all 7 items.

The box plots for the Kendall’s τ of the two types of estimators are presented in Fig. 8. The
correlations with reference set performance were consistently larger using process-incorporated
scoring for all test lengths, suggesting that the rankings of latent ability estimates generated based
on the problem-solving processes were more similar to the rankings on reference set performance.
Again, scores based on processes required fewer items to achieve a given level of agreement. For
instance, with 4 items, the process-incorporated estimator achieved similar or higher Kendall’s τ

when compared to the response-based estimator with all 7 items. Attenuated by the reliability of
the reference set θ estimate, the absolute Kendall’s τ were mostly below .5. When compared to
the true θ , however, one would expect the correlation to be higher.

3.3. Performance by Degree of Process- and Response-Based Score Discrepancy

3.3.1. Evaluation Methods The comparisons above focused on the overall agreement of each
estimator with reference set performance. One may also be interested in how the two methods
perform for different types of examinees. In particular, it is worth evaluating the relative perfor-
mance of the two estimators when they disagree on an examinee’s latent proficiency ranking.
On each of the 50 partitions, we computed the process-incorporated and response-based esti-
mators using all 7 items on the scoring set. We further regressed the response-based θ̂

(s)
Y on the
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Figure 8.
Distribution of response-based (baseline) and process-incorporated Kendall’s τ with reference set performance across 50
partitions on the PIAAC data.

process-incorporated θ̂
(s)
X using OLS and computed each individual’s Studentized residual for the

regression. Individuals were then binned into 10 groups based on their deciles of the Studentized
residuals. The deciles of the Studentized residuals reflect the relative discrepancies in performance
ranking based on the two trait estimators: For individuals in the first decile, their performance
rankings based on process were much lower than that based on responses. Individuals in the 10th
decile, on the other hand, were ranked much higher based on responses than based on process.
Individuals closer to the middle (4th–6th decile) received similar rankings based on process and
responses. The MSEs of the two trait estimators with respect to θ̂

(r)
Y within each decile were then

computed.

3.3.2. Results The box plots of the MSEs with respect to reference set performance θ̂
(r)
Y across

the 50 partitions, separated by residual deciles, are shown in Fig. 9. When the two scores agree
on individuals’ rankings, the MSEs of θ̂

(s)
Y and θ̂

(s)
X were similar. However, as we move towards

the two ends where the two estimators started to disagree, the MSEs of the process-incorporated
estimator were remarkably lower than that of the response-based estimator. Intuitively, the two
estimators can be thought of as two judges, one judging individuals’ performance considering the
problem-solving processes, and the other judging solely based on the final outcome.When the two
judges disagree, the process-incorporated estimator consistently better predicted performance on
similar tasks.

3.4. Empirical Interpretations of Process- and Response-Based Score Discrepancy

3.4.1. Methods The results above suggest that the proposed process-incorporated latent trait
estimation procedures led to an increase in consistency with proficiency estimate on an external
set of items, and that the improvement appeared most significant for individuals whose process-
incorporated and response-based latent trait estimates disagreed most. One question worth asking
is how the proposed approach scores individuals differently compared to the response-based
counterpart. We explored this question by looking at the sequences of individuals whose process-
incorporated and response-based latent trait estimates disagreed the most, that is, those with the
highest or lowest Studentized residuals for θ̂Y ∼ θ̂X.
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Figure 9.
Distribution of MSEs with reference set latent trait estimate in each residual decile. Box plots are the distributions of
MSEs within each decile bin across the 50 partitions of scoring and reference sets.

This time, with the purpose of interpretation rather than performance evaluation, all 14 items
were used to obtain the two trait estimates. For the individuals in the bottom and top 10 of the
Studentized residuals, we visually examined their action sequences on the 14 items.

3.4.2. Results Figure 10 shows the scatter plot of each respondent’s θ̂X (x-axis) and θ̂Y (y-
axis). Blue triangles correspond to the 10 individuals with the highest Studentized residuals, when
regressing θ̂Y on θ̂X. These individuals received lower rankings based on processes than based
on final responses. For most of them, certain questions were successfully solved, but with less
efficient strategies: For instance, to look for the requested information from a long spreadsheet,
some of these examinees visually inspected every single entry, although a much more efficient
strategy is to use “Search” or “Sort” (e.g., items U03a, U19a). To reply to an email sent to a
group, some of them hand-typed the long list of email recipients, when they could simply press
“Reply to all” or copy-and-paste (e.g., item U16). Aside from inefficient strategy usage, a few
examinees also performed a large number of redundant steps, that is, actions that were not required
for successful task completion.

The red rectangles in Fig. 10, on the other hand, represent the 10 examinees with the lowest
Studentized residuals. These examinees received higher ranking based on their problem-solving
processes than based on final scores. Several common patterns were observed from their log
data: The first was partial completion, where the examinee performed some of the key steps on
a question, but, before reaching a credited response, proceeded to the next question by clicking
“Next, Next_OK”. An example is itemU16, which required sending an email to a list of recipients
containing some key information. Several of the 10 examinees created the email and filled in the
correct content and recipients, but they proceeded to the next question without clicking “Send”.
Another common pattern was careless mistakes, where the examinee demonstrated the required
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Figure 10.
Scatterplot of process-incorporated and response-based θ estimates with 14 items.

skills for completing the task but slipped on an item due to carelessness. For example, on item
U11b, which required sorting emails in the “Saved” folder, four of the ten examinees sorted
the emails in the “Inbox”, the default, wrong folder. Intuitively, occasional carelessness and
misinterpretation of question requirements, which lead to incorrect responses despite having the
requisite skills, may be regarded as one of many sources of random measurement error. With
additional information from the problem-solving processes incorporated, the proposed procedure
for process-incorporated scoring appeared less impacted by such sources of measurement error.

4. Discussions

4.1. Findings and Implications

Problem-solving processes contain rich information on individual characteristics, includ-
ing the measured construct. The current study introduces a method to refine outcome-based
latent trait estimates using the additional information from the problem-solving processes. A
Rao–Blackwellization approach was proposed for the score refinement. Aside from choosing an
appropriate IRTmodel for the final responses, the proposed approach is relatively data-driven and
does not involve prior specification of a measurement model for the problem-solving processes,
requiring less subjective inputs compared to expert-defined rubrics for process-incorporated scor-
ing.

The main theorem states that under some regularity conditions, the proposed approach can
lead to MSE reduction in latent trait estimation. Results from simulation studies corroborate the
theorem. An empirical study using the PIAAC PSTRE data further showed that the process-
incorporated latent trait estimate tended to have higher agreement with performance on similar
tasks, thus higher reliability, compared to the response-based trait estimate. In addition, in order
to achieve a particular level of reliability (i.e., MSE or τ with the external set of items), far
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fewer items would be required if the additional information from the problem-solving processes
is exploited for scoring.

While the improvement in reliability by incorporating process information was consistent
across test lengths, one particular merit of incorporating the process information into scoring lies
in its use for short tests: For short tests, the final responses alone can rarely generate reliable
trait estimates. Process information can thus be particularly useful for low-stakes computer-based
assessment scenarios, when the administration of long tests is unrealistic or burdensome.With the
additional information from problem-solving processes, the tests can be significantly shortened
without compromising measurement reliability. An example is interim formative assessments
during the learning process, where, after every one or few classes, instructors may want to learn
how well the students have mastered the recently taught contents. Administration of a long test
after every several classes can be very burdensome for the students and may interrupt the learn-
ing process. On the other hand, a relatively reliable latent ability estimate can be obtained if the
problem-solving processes to a few constructed response items are available. Although comput-
erized adaptive testing (CAT; e.g., Wainer et al., 2000) can also reduce the required test length
through the adaptive selection of test items tailored to individuals’ real-time proficiency estimates,
the construction of a CAT usually requires a large pre-calibrated item pool with hundreds of items,
which may be overly costly and hard to achieve for many smaller-scale and low-stakes assess-
ments. The production of a process-incorporated scoring rule, on the other hand, only requires
sufficient items for reliable measurement of latent proficiency and a sample size that is sufficient
for item parameter calibration, process feature extraction, and training the regression models.

4.2. Practical Considerations

The proposed approach could consistently improve test reliability. However, there are a
few caveats to its implementation, especially for examinations with higher stakes. First, in the
empirical study, the performance of the process- and response-based latent trait estimators was
evaluated using up to 7 items for scoring. The choice of up to 7 items was due to the limited
number of total items available (14) and the need to set aside a large enough reference set of
items used for evaluations. For an operational test, however, 7 items’ final responses are far
from sufficient for reliable measurement, and the measurement error in the final response-based
latent trait estimates can propagate to the process-incorporated scores through the conditional
expectation. Test developers are advised to employ a sufficiently large scoring set so that reliable
response-based latent trait estimates can be obtained.

Second, the proposed process-incorporated scoring approach aimed at improving the mea-
surement precision, or reliability, of the assessment through MSE reduction. The validity of the
scoring rule, however, is a separate critical issue that deserves further attention. Looking at the
empirical interpretations of the process-incorporated scores, it appeared that individuals were
scored higher based on processes when they gave up on the track to a correct response, demon-
strated partially correct responses, or slipped on the final response due to careless mistakes. In
these cases, increasing the individuals’ latent trait estimates may be reasonable, because each of
these patterns constitutes evidence of partial or full mastery of the required skills for completing
the tasks. Meanwhile, individuals who reached correct responses but with less efficient problem-
solving strategies received lower process-incorporated scores. Assigning different trait estimates
based on the choice of test-taking strategies may be more controversial: On the one hand, usage
of more efficient problem-solving strategies was found positively correlated with the final score
on other tasks in the empirical example, providing validity evidence on the use of such informa-
tion for proficiency assessment. From this perspective, problem-solving strategy information may
be incorporated into ability estimation similar to other types of collateral information, such as
response times (e.g., Bolsinova & Tijmstra, 2018; van der Linden, 2007) and other covariates in
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latent regression (e.g., von Davier et al., 2006). On the other hand, test takers may be unaware that
they are scored based on information aside from task completion, raising concerns about the face
validity and broader implications of the scoring criterion. At the same time, it raises test design
questions such as whether examinees should be instructed that their scores can be affected by the
problem-solving process. Evaluation of measurement validity would involve not only a search for
empirical evidence that support the use and interpretation of the scores but also the appraisal of
social consequences of score uses (Messick, 1989). At the same time, scoring algorithms based on
process data bring forth new validity and equity questions, such as whether different subgroups of
test takers behave similarly and how to evaluate potential algorithmic bias (e.g., Bejar et al., 2016;
Zumbo & Hubley, 2017). We leave the question of how to best assist experts with the validation
of data-driven latent proficiency estimators to future research.

Third, similar to item responsemodeling, the process-incorporated scoring rule should also be
generalizable to the population. Conceptually, many high-dimensional regression methods search
for a set of parameters that minimizes the expected loss at the population level instead of the finite
sample of training data. In the presence of noise in the process data, this mandates an adequate
sample size as well as variable selection to prevent overfitting.We recommend users adopt similar
simulation studies as in the current study, by manipulating the number and prevalence of possible
actions based on the actual item, to approximate the sample size requirement for implementing the
procedures. Measures should also be taken to prevent overfitting when one extracts the sufficient
statistic by fitting the high-dimensional regression model involving process features, for example,
by using variable selection in conjunction with cross-validation.

Lastly, to establish the theoretical results on improved measurement efficiency, several
assumptions were made in the current framework. One should note that, if some of the assump-
tions are violated, the efficiency results may be discounted, and several sources of bias may be
introduced to the estimator. One of such instances is when the final score on an item is affected
by systematic, construct-irrelevant variance. The presence of construct-irrelevant variance in the
process alone does not constitute an assumption violation: We conducted a small-scale simula-
tion study where the response process on each item was generated to depend on both θ and an
additional, construct-irrelevant trait, η ⊥ θ . As long as the final responses were independent of η,
the process-incorporated proficiency estimator remained uncontaminated by η. Furthermore, we
do expect that the proposed estimator improves upon the response-based estimator even beyond
the three assumptions. Although practical diagnostic procedures are not yet available for veri-
fying these assumptions by the data, in practice, practitioners could also perform an analysis as
demonstrated in the Empirical Example section, to get a sense of the potential improvement in
reliability by adopting the process-incorporated score.

4.3. Future Extensions

The methods for data-driven score refinement based on problem-solving processes can be
extended in several ways. To start, while the current study provides one approach to increasing
measurement reliability with process information, other methods, such as latent regression with
process as covariates and confirmatory models with both response and process indicators, may be
developed. Unlike the ordinal final outcomes which are designed to assess the measured trait, the
problem-solving process data is high-dimensional and can contain substantial construct-irrelevant
variance. For these parametric models, effective methods for variable selection will be needed to
parse out the signal (θ -related information) from the “noise”. Another potential extension of the
process-incorporated scoring method is to diagnostic assessments (e.g., Rupp et al., 2010), where,
instead of measuring individuals on the continuous proficiency continuum, the goal is to classify
individuals into latent classes based on their mastery status of discrete skills. Lastly, we excluded
observations with omissions in the current analysis, because missingness due to omissions often
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requires careful treatment in both item calibration and scoring (e.g., Frey et al., 2018; Rose et al.,
2017; Ulitzsch et al., 2020) which is beyond the scope of the current study. Omissions can entail
either good-faith attempts at a question or a lack of motivation, in which case, simply treating
it as wrong introduces construct-irrelevant variance to final response scoring. At the same time,
process data introduce new opportunities for disentangling different types of omissions. Future
research can examine how process data can be incorporated into the scoring of tests in the presence
of omissions.
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Appendix: Proofs of Theorem 1 and Theorem 2

To prove Theorem 1, we establish the following lemma.

Lemma 1. Let X be a nonconstant random variable, and f (·) and g(·) be strictly increasing
functions. Suppose that f (X) and g(X) have finite second moments. Then,Cov ( f (X), g(X)) > 0
.

Proof of lemma 1. Let Y be an independent and identically distributed (i.i.d.) copy of X . It is easy
to verify the following identity

Cov ( f (X), g(X)) = 1

2
E [( f (X) − f (Y )) (g(X) − g(Y ))] . (10)

Clearly, for any x and y, ( f (x) − f (y))(g(x) − g(y)) ≥ 0, and “ =′′ holds if and only if x = y.
Since P(X 
= Y ) > 0, the right-hand side of equation (10) must be positive. ��
Proof of Theorem 1. By Assumption A2 (local independence),

TX− j = E
[
θ̂Y j |X− j

]
= E

[
E

[
θ̂Y j |X− j , θ

]
|X− j

]
= E

[
E

[
θ̂Y j |θ

]
|X− j

]
= E

[
m j (θ)|X− j

]
.

Due to Assumption A3 (exponential family), the posterior distribution of θ given X− j depends
on X− j only through the sufficient statistic Tj (X− j ). In fact,

TX− j = E
[
m j (θ)|X− j

] = G j (Tj (X− j )),
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where G j (t) = E
[
m j (θ)|Tj (X− j ) = t

]
. Furthermore, by making use of the exponential family

form in Assumption A3 and the simple exchange of order of differentiation and integration, we
can show that

G ′
j (t) = Cov

[
m j (θ), η j (θ)|Tj (X− j ) = t

]
.

Since both m j and η j are strictly monotone, Lemma 1 implies that G ′
j (t) is strictly positive or

negative for all t and, therefore, G j is strictly monotone. In other words, there is a one-to-one
mapping between TX j and Tj (X− j ). ��
Proof of Theorem 2. From Theorem 1, we know that TX− j is a sufficient statistic of X− j for each

j . Since θ̂Y is a function of Y and σ(Y− j ) ⊆ σ(X− j ), the conditional distribution θ̂Y|TX− j , Y j is

free of θ . Therefore, we have E[θ̂Y|TX− j , Y j , θ ] = E[θ̂Y|TX− j , Y j ] = θ̂X− j . It follows from the

well-known Rao–Blackwell theorem (Casella & Berger, 2002) that θ̂X− j reduces the conditional
variance and

E[(θ̂X− j − θ)2|θ ] ≤ E[(θ̂Y − θ)2|θ ]

holds for every j and θ .
By Cauchy–Schwarz inequality, we get

E[(θ̂X − θ)2|θ ] ≤ E

⎡

⎣ 1

J

J∑

j=1

(θ̂X− j − θ)2|θ ] ≤ E[(θ̂Y − θ)2|θ
⎤

⎦ .
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