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Microeukaryotes (protists) serve fundamental roles in the marine environment as

contributors to biogeochemical nutrient cycling and ecosystem function. Their activities

can be inferred through metatranscriptomic investigations, which provide a detailed view

into cellular processes, chemical-biological interactions in the environment, and ecological

relationships among taxonomic groups. Established workflows have been individually put

forth describing biomass collection at sea, laboratory RNA extraction protocols, and

bioinformatic processing and computational approaches. Here, we present a compilation

of current practices and lessons learned in carrying out metatranscriptomics of marine

pelagic protistan communities, highlighting effective strategies and tools used by

practitioners over the past decade. We anticipate that these guidelines will serve as a

roadmap for new marine scientists beginning in the realms of molecular biology and/or

bioinformatics, and will equip readers with foundational principles needed to delve into

protistan metatranscriptomics.
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INTRODUCTION

Metatranscriptomics, or community gene expression profiling, offers a window into transcript pool

composition within mixed microbial assemblages. This information can be used to infer taxon-

specific physiology and elucidate links between cell metabolism and ecosystem function. When

applied to marine systems, it may offer information on the biogeochemical and ecological roles of

community members across ecosystems and environmental conditions. Marine metatranscriptomic
studies to date have been conducted across spatial and temporal scales (e.g., Sun et al., 2020; Becker

et al., 2021; Cohen et al., 2021; Coesel et al., 2021; Groussman et al., 2021; Harke et al., 2021;

Muratore et al., 2022), and in concert with experimental incubations/microcosms in which key
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biological, chemical and/or physical parameters are manipulated

(e.g., Alexander et al., 2015b; Bertrand et al., 2015; Lampe et al.,

2018). Such metatranscriptomic investigations into marine

protists have expanded our understanding of their nutrient

physiology (Alexander et al., 2015a; Pearson et al., 2015;

Lampe et al., 2018; Caputi et al., 2019; Kolody et al., 2019),
nutritional modes (Hu et al., 2018; Lambert et al., 2021), coastal

bloom dynamics (Gong et al., 2017; Ji et al., 2018; Metegnier

et al., 2020), and contributions to ocean biogeochemistry

(Carradec et al., 2018; Cohen et al., 2021).

Marine meta-omic studies, or community omic analyses

performed in the environment, emerged in the 2000s with the
first successful applications of shotgun DNA sequencing to

microbial communities of the open ocean (Venter et al., 2004;

Rusch et al., 2007). Early marine meta-omic studies relied upon

high-throughput Sanger and second generation sequencing (454

pyrosequencing and SOLiD) platforms (Venter et al., 2004;

Rusch et al., 2007; Gilbert et al., 2008; McCarren et al., 2010;
Stewart et al., 2010), with the first metatranscriptomic study

focusing on marine microeukaryotes released in 2012 (Marchetti

et al., 2012). Pyrosequencing and SOLiD platforms were later

replaced by Illumina bridge amplification-based sequencing as a

result of unparalleled throughput, low error rates, and mid-range

read lengths (~2 x 150 bp, paired-end) that were longer than

SOLiD (~85 bp), but shorter than pyrosequencing and Sanger
sequencing (>400 bp) (Liu et al., 2012; Ambardar et al., 2016;

Wilms, 2021). The price of sequencing has continued to

decrease, while the degree of throughput has increased (Muir

et al., 2016).

Marine metatranscriptomic initiatives have greatly benefited

from the expansion of reference sequence libraries derived from
laboratory isolates, such as the Marine Microbial Eukaryote

Transcriptome Sequencing Project (MMETSP) (Keeling et al.,

2014; Caron et al., 2017). The MMETSP database is composed of

over 678 protistan transcriptomes from 405 unique strains (Krinos

et al., 2021) and is widely used in current marine omic workflows

(e.g., Lampe et al., 2018; Kolody et al., 2019; Groussman et al., 2021;

Krinos et al., 2022). Oceanographic field expeditions such as Tara
Oceans (Carradec et al., 2018) and bioGEOTRACES (Biller et al.,

2018) are leveraging this database and other recently generated

eukaryotic transcriptomes and genomes to uncover the taxonomic

and functional roles of protists across ocean basins (Carradec et al.,

2018; Alexander et al., 2021; Weissman et al., 2021; Blaxter et al.,

2022; Delmont et al., 2022). These large field datasets describing the
biographical and functional distribution of protists consist of

sequence data, taxonomic and functional annotations, and

contextualizing environmental metadata, and serve as invaluable

community resources for researchers, students, and the public to use

(Biller et al., 2018; Carradec et al., 2018; Villar et al., 2018).

The computational biology landscape is rapidly evolving as

more efficient bioinformatic tools are developed and pipelines
become more easily accessible. There has been a concerted

community effort towards increasing reproducibility of data

analysis by documenting protocols, archiving code and raw

data, and making bioinformatic data products available to

scientific audiences (Sandve et al., 2013; Tully et al., 2021).

These resources are invaluable to new practitioners lacking

formal training in molecular biology, computational biology,

and/or statistics.

The interdisciplinary oceanographic community in particular

would benefit from a comprehensive overview that emphasizes

current approaches used to conduct microeukaryote
metatranscriptomics. Here we present a compiled resource

highlighting the latest practices and procedures, from sample

collection to computational analysis. This effort complements

other valuable environmental metatranscriptomic reviews that

have been recently published (e.g., Shakya et al., 2019; Mukherjee

and Reddy, 2020; Zhang et al., 2021; Wilms, 2021; Kolody et al.,
2022). We anticipate these recommendations will continue to

evolve in the coming years, and encourage researchers to explore

current sequencing platform options and bioinformatic

workflows, and to consult updated versions of tool

documentation before beginning new analyses. It may be

particularly valuable for those with a microbial ecology and/or
oceanography background to engage in discussions and apply

principles learned from computational biologists (and vice versa)

to effectively innovate across these subfields. Our descriptions of

protocols, pipelines and tools are not intended to be technical

accounts but rather a descriptive guide for beginning and

returning practitioners, and readers are referred to individual

publications for further details.

SAMPLE ACQUISITION

Collection and Filtration of Microbial
Communities From Pelagic Seawater
The seawater volumes required to obtain suitable biomass for

metatranscriptomic sequencing varies depending on the
ecosystem. In offshore waters, volumes ~10 L or greater are

generally recommended, while coastal systems supporting

higher biomass require much lower volume (Table 1). Sample

volumes that are too low have been shown to skew relative

abundances of 16S rRNA amplicon sequences, with volumes >1

L generally encouraged (Padilla et al., 2015); this is likely also true

for metatranscriptomic data, though has not yet been
systematically verified.

While larger seawater volumes are ideal for the collection of

sufficient biomass, the logistics of processing samples in the field

(e.g., shipboard) must also be considered. Nucleic acid sample

collection from seawater requires rapid filtration and

preservation (Frias-Lopez et al., 2008), otherwise RNA
degradation or unintended changes in the RNA pool may

occur (Gallego Romero et al., 2014; Kolody et al., 2022), and

cells may metabolically respond to changes in light and

temperature during long collection times. Peristaltic pumps in

conjunction with 47-142 mm in-line filter manifolds or Sterivex

(Millipore) filters enable large volumes to be filtered rapidly and

effectively (Table 1). Notably, filters may clog as biomass
accumulates, especially for small filter size fractions, impacting

filter effectiveness and sample quality. The filtration time may be

reduced by splitting volumes across multiple filters. It is
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important to consider pump pressure levels during the filtration

process, as high pressure could rupture cells before preservation,
leading to RNA loss.

Increasingly, underwater battery-operated McLane filtration

pumps (Saito et al., 2014), Lagrangian-like Environmental

Sample Processors (Scholin et al., 2017; Kolody et al., 2019),

Autonomous Underwater Vehicles (Breier et al., 2020), and

other sensors (Ottesen, 2016) capable of in situ filtration at
ambient temperature and pressure are being utilized. High-

volume pumping mechanisms offered by McLane pumps and

AUVs in particular are ideal for concentrating large amounts of

biomass. These in situ approaches are useful for deep sea

sampling, where depressurization during traditional seawater

collection and processing may result in inaccurate assessments

of community dynamics (Edgcomb et al., 2016). Filtration time is
likely still important to consider in study designs using

underwater pumps, as long filtrations may result in an

integrated metatranscriptomic signal over time as biomass

aggregates. With any sampling system used, the time needed to

recover filters and preserve samples should be minimized (< 1
hour, if possible) to prevent RNA degradation.

Typical filter fraction size ranges for marine protists span 0.8 -

200 mm (Pesant et al., 2015) and generally align with the

plankton size fractions (Omori and Ikeda, 1992). In some

studies, no upper bound size threshold is used, and

multicellular eukaryotes are included in the analysis (Table 1).
It’s important to note that the specific size fraction used to

capture protists will vary depending on the group of organisms

intended to collect, with characterized smaller protists such as

the green algae Ostreococcus approximately ~1 mm in diameter

(Derelle et al., 2006), and members of the Foraminifera on the

larger end of the size spectrum at >150 mm (Lo Giudice Cappelli

and Austin, 2019). Size-fractionated filtering can be an
advantageous strategy for capturing multiple distinct plankton

size classes (Villar et al., 2018), in which filter membranes are

either stacked and separated by backing filters, or arranged

TABLE 1 | Field processing procedures in recent marine microeukaryote metatranscriptomic studies.

Analysis Region Approx.

Seawater

volume (L)

Filtration

type

Porosity

(mm)

Filter type RNA

extraction

Library

prep

Sequence

platform

Reference

Experimental North Pacific

Subtropical Gyre

60 Shipboard 5-200 Polycarbonate Qiagen

RNeasy Mini

Kit

poly-A

selection

Illumina

HiSeq

Alexander et al.,

2015b

Experimental Ross Sea 0.45 Shipboard >0.2 Sterivex Life

Technologies

TRIzol

rRNA

depletion &

poly-A

selection

Illumina

HiSeq

Bertrand et al.,

2015

Experimental Northeast Pacific &

California Current

8 Shipboard >0.8 Polyethersulfone Invitrogen

ToTALLY

RNA Kit

poly-A

selection

Illumina

HiSeq

Lampe et al.,

2018; Cohen

et al., 2017

Temporal North Pacific

Subtropical Gyre

7 Shipboard 0.2-100 Polycarbonate Invitrogen

ToTALLY

RNA Kit

poly-A

selection

Illumina

NextSeq

Coesel et al.,

2021;

Groussman

et al., 2021

Temporal California Current 1 Environmental

Sample

Processor

(ESP)

>5 Polyvinylidene

fluoride

Invitrogen

mirVana

miRNA

Isolation kit

poly-A

selection

Illumina

HiSeq

Kolody et al.,

2019

Spatial & Temporal North Pacific

Subtropical Gyre

20 Shipboard 5-200 Polycarbonate Qiagen

RNeasy Mini

Kit

poly-A

selection

Illumina

HiSeq

Harke et al.,

2021; Becker

et al., 2021

Spatial Global 100 -

150,000

Shipboard &

plankton nets

0.8–5, 5–

20, 20–

180, 180-

2000

Polycarbonate NucleoSpin

RNA Midi kits

poly-A

selection

Illumina

HiSeq

Carradec et al.,

2018; Caputi

et al., 2019

Spatial central Pacific Ocean 100-1,000 Underwater

McLane

pumps

3-51 Acrylic Life

Technologies

TRIzol

rRNA

depletion &

poly-A

selection

Illumina

HiSeq

Cohen et al.,

2021

Spatial San Pedro Ocean

Time-series (coastal

Southern California)

1.5 - 3.5 Shipboard 0.7-80 GF/F Qiagen DNA/

RNA AllPrep

kit

poly-A

selection

Illumina

HiSeq

Hu et al., 2018

Spatial & Temporal CalCOFI grid

(Southern California

Current)

4 Shipboard 0.22 Sterivex Machery-

Nagel

NucleoMag

RNA kit

rRNA

depletion &

poly-A

selection

Illumina

HiSeq &

NovaSeq

Rabines et al.,

2020a, Rabines

et al., 2020b

The Analysis column indicates the type of metatranscriptional analysis performed, with “Experimental” representing incubations performed at sea, “Temporal” indicating surveys across

time, and “Spatial” referring to studies across horizontal (latitudes, longitudes) or vertical (depth) zonations. “Shipboard” filtration type refers to either vacuum or peristaltic pump devices

used in shipboard laboratories directly following seawater collection.
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serially in separate filter manifolds. This approach may be

valuable in concentrating biomass from specific groups of

interest, but is imperfect as filters aggregate biomass especially

with large seawater volumes, and smaller than intended particles

may be captured on filters (Cohen et al., 2021). It is furthermore

difficult to directly compare gene expression across these distinct
size fractions, though may be approximated using biomass

normalizations (Dupont et al., 2015).

Filter membranes made of polyethersulfone or polycarbonate

are commonly used, and allow sufficient resuspension of material

during the RNA extraction procedure (Table 1). RNA rapidly

degrades, and instant RNA stabilization achieved via flash
freezing with liquid nitrogen is recommended prior to storage

at -80°C (Alvarez et al., 2015). If -80°C storage is not available on

ships, RNA can be stored up to 1 week at room temperature, 1

month at 4°C, or indefinitely at -20°C using the RNAlater

(Invitrogen) preservative reagent. However, RNAlater may

result in inadvertent physiological changes in the RNA pool
(Passow et al., 2019). Care should be taken in evaluating available

storage mechanisms in the field and the potential risks

of preservatives.

Biological replicates are generally required to determine

statistical differences in gene expression and physiology across

treatments or spatial zonation, but logistic constraints onboard

research vessels often prevent repeat collection of seawater. In
addition, microbial communities at a given location, depth, and

time of day can rapidly shift due to the heterogeneous and highly

dynamic nature of the ocean environment, complicating efforts

to obtain replicated snapshots of community composition and

function. This can however represent natural biological

variability in a system, and samples collected from the same
location may indeed serve as replicates, depending on the study

objectives and spatial scope. Researchers may instead prioritize

additional sampling depths, locations, or time points to capture

transcript pools with high resolution. Samples collected from

similar latitudes and depths may reflect similar biological

properties, thus demonstrating oceanographic consistency

across space and time (Cerdan-Garcia et al., 2021; Hogle et al.,
2021). High frequency sampling may identify metabolic trends

that either change on a diel cycle (e.g., energy partitioning), or

are unaffected by temporal dynamics (e.g., chronic nutrient

stress). In particular, there is significant diel periodicity in

metabolic processes carried out by protists in surface waters

(Kolody et al., 2019; Becker et al., 2021; Groussman et al., 2021),
and time of day should therefore be considered in

sampling designs.

RNA Extraction Procedure
RNA extractions frommicroeukaryotic cells collected onto filters

may be performed using popular commercially available kits

(Table 1). Common modifications include the addition of silica

or zirconia beads to lysis buffer and bead-beating to assist with
the physical disruption of cell walls during the RNA extraction,

which is useful for hard-shelled protists. Total RNA yields and

quality may be estimated using a Nanodrop spectrophotometer

(Thermo Scientific), though a Qubit fluorometer (Invitrogen),

Bioanalyzer (Agilent) or Tapestation (Agilent) will produce more

accurate estimates of RNA concentration, especially at lower

concentrations (Hussing et al., 2018). The RiboGreen (Promega)

fluorescent nucleic acid stain is another suitable option for RNA

quantification with high sensitivity (Jones et al., 1998). The

Bioanalyzer and Tapestation will additionally provide

information on RNA quality, including RNA integrity number
(RIN) scores, which reflect degree of RNA degradation. High RIN

scores represent high quality RNA (Schroeder et al., 2006). RIN

scores above 7 are encouraged for Illumina library preparation,

although low RNA yields and partial degradation that occurs

during the seawater filtration process may make it difficult to reach

high RIN scores (Alberti et al., 2017). However, certain protocols
allow modifications for low RIN RNA to be used in the library

preparation process.

In addition to relative transcript abundances obtained

through metatranscriptomic sequencing, approaches have been

developed to estimate transcript copies L-1 to more directly relate

metabolic information to biogeochemical measurements, and to
circumvent limitations inherent to relative analyses (Satinsky

et al., 2013; Gifford et al., 2014). Custom-built plasmids or

commercially available mRNA internal standards (e.g., ERCC

Spike-In [Thermo Scientific], ArrayControl RNA Spikes

[Invitrogen], Sequins [Garvan Institute of Medical Research])

can be added to lysis buffer during the initial stages of the RNA

extraction, and will reflect losses during the laboratory
procedure. Assuming the exact volume filtered is known, the

number of added mRNA standard copies sequenced can be used

to estimate transcript concentration in the sample (Satinsky

et al., 2013; Gifford et al., 2014; see below). Increasing the

number of distinct mRNA standards spiked will strengthen the

copies-to-sequences estimation. An appropriate rule of thumb is
to add the mRNA spike concentration at a target ratio of ~1% the

total RNA pool (Gifford et al., 2014). Note that the number of

RNA copies per cell may differ by organism, with larger cells

generally containing higher RNA concentrations (Marguerat and

Bähler, 2012). Transcript pools furthermore fluctuate over the

course of a day, with phytoplankton groups under different diel

transcriptional regulation (Groussman et al., 2021). These factors
may contribute to the copies L-1 estimate among taxa not fully

scaling with absolute cell densities. It is recommended to collect

direct information on biomass, including pigments and/or cell

counts (flow cytometry, fluid imaging, microscopy, etc), to

provide environmental context for transcript-derived copies L-1.

Sequencing Platforms & Library
Preparation
Popular and cost effective second generation sequencing

technology platforms for metatranscriptomics include Illumina
Miseq and Hiseq (Table 1), with these older platforms being

replaced by the newer and more efficient Nextseq and Novaseq.

Novaseq currently offers the greatest output (~20 billion reads

per run), with the Miseq platform still offering the longest read

lengths (2 x 300 base pairs) but Novaseq not far behind with 2 x

250 base pairs possible using the Novaseq SP flow cell.
For mRNA-Seq studies performed with the Illumina

platform, RNA is converted to cDNA and fragmented as part
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of the sequencing library preparation process. It is important to

ensure that the sequencing library preparation method chosen

enriches for protein-coding RNA, or messenger RNA (mRNA),

because the majority of the total RNA pool in eukaryotes consists

of ribosomal RNA (rRNA) (Bush et al., 2017). Two approaches

may be used: rRNA depletion, in which rRNA is removed and
non-coding RNA and mRNA remain, and polyadenylated RNA

(poly-A) selection, in which mRNA containing poly-A tails

(characteristic of eukaryotic mRNA) is selected along with

other poly-A-containing non-coding RNA (Cui et al., 2010).

The methods differ in resulting RNA pools, coverage, and

quantitative accuracy (Zhao et al., 2018), with poly-A selection
yielding more protein-coding sequences at a given sequencing

depth (Chen et al., 2020). A key difference is that rRNA depletion

will select for mRNA from both microbial prokaryotes and

eukaryotes, while poly-A selection will be biased towards

eukaryotes containing poly-adenylated mRNA. Additionally,

rRNA depletion better recovers important eukaryotic organelle
transcripts without selection bias. These non-target sequences

may provide valuable information especially regarding plastid

expression (Smith, 2013), such as Rubisco and cytochrome

oxidase, which are of biogeochemical interest (Dupont et al.,

2015; Kolody et al., 2022). It is unclear whether these non-target

sequences are truly able to be used comparatively across samples

or whether the level of non-poly-A RNA contamination differs
depending on sample matrix or other factors. Both rRNA

depletion and poly-A selection are commonly used in marine

microeukaryote studies (Table 1), and should be selected based

on specific scientific goals and interests. Note that when

analyzing metatranscriptomes processed using rRNA depletion,

recovery of eukaryotes might be low, and prokaryotes may
constitute the majority of the sequence library. Popular

methods for rRNA depletion include Ribo-Zero (Illumina) and

riboPOOLs, which are available in custom mixtures to reduce

rRNA from phylogenetically diverse species (siTOOLS Biotech).

Approximately 0.1 - 1 mg of total RNA is suggested for

standard whole transcriptome library preparation prior to

second generation sequencing using the TruSeq Stranded
mRNA library prep kit (Illumina), and as low as 25 ng using

the newer Stranded mRNA Prep kit (Illumina). Both of these kits

capture poly-adenylated mRNA. In many oligotrophic regions,

especially deeper in the water column, obtaining high

concentrations of RNA is not feasible given sampling and

experimental design limitations. Specialized cDNA library
preparation kits are compatible with input material as low as

250 pg total RNA in which additional linear amplification cycles

are performed, such as with the SMART-Seq v4 Ultra Low Input

RNA Kit (Clontech). Although more expensive, the SMART-Seq

v4 approach produces similar results to those obtained using

larger RNA input (Song et al., 2018) and is a suitable option for

low RNA yields from oligotrophic or otherwise low biomass
regions of the ocean. Intriguingly, the SMART-Seq protocol

appears to capture a non-negligible pool of prokaryotic

transcripts despite enrichment for poly-A RNA, although this

has not been explicitly tested across library preparation kit

methods; a systematic comparison using natural marine

communities will be important for determining whether library

preparation biases are occurring. Due to these overt differences

in resulting sequence libraries between library preparation

methods and mRNA enrichment strategies, it is not

recommended to mix and match methods in a single

experimental dataset.
An alternative aquatic metatranscriptomic approach is

sequencing the entire RNA pool. This method provides

valuable information on transcriptionally active taxonomic

community members through dominant rRNA reads, with

limited insights into the functional composition gained

through the abundant mRNA captured (McCarren et al., 2010;
Shi et al., 2012; Baker et al., 2013; Lanzén et al., 2013; Wu et al.,

2013). This method is therefore most appropriate when

functional characterization is of secondary importance to

taxonomic composition.

Third generation sequencing platforms are gaining in

populari ty and hold great potentia l for long read
metatranscriptomic sequencing with high accuracy and

throughput, without PCR amplification bias or short read

assembly challenges (Kerkhof, 2021). In contrast to the

Illumina library preparation process in which RNA is required

to be converted to cDNA, third generation sequencing

technology can sequence RNA molecules directly. These

applications to the marine environment are nascent and still
being developed, with current limitations including relatively

high read error rate and inter-run variability (Semmouri et al.,

2020). However, preliminary findings show successful

application to marine pelagic zooplankton communities, with

high predicted protein content (Semmouri et al., 2020).

Metatranscriptomes generated using third generation
sequencing platforms will have the added benefit of detecting

long 18S rRNA molecules in the sequenced RNA pool, providing

a direct assessment of community composition alongside

predicted proteins (Semmouri et al., 2020).

BIOINFORMATIC PIPELINE
RECOMMENDATIONS

After RNA is collected from field sites, extracted in the

laboratory, and sequenced, the bioinformatic process begins

(Figure 1). Oceanographic research publications are generally

required to include field and lab-based methods in enough detail

to enable reproducibility. Unfortunately, details regarding

bioinformatic tool usage are not always included in study
methods, and it can therefore be difficult for others to replicate

analyses and determine how each step of the bioinformatic

pipeline influences downstream biological interpretations. In

addition, many tools and pipelines are not created with

microeukaryotes in mind, and special parameters, settings, or

considerations may need to be applied. Typically tools are chosen

for a specific research question or purpose, meaning that one
researcher ’s approach may not be suitable in other

circumstances. Therefore, disclosing details and reasoning for

performing these critical computational steps will help the
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broader community evaluate the method. It is especially helpful

to include a short justification for the method chosen in study

descriptions. This transparency will reduce the steep learning

curves in computational biology by encouraging such consistent
practices and open data sharing policies.

There has been a concerted effort in the biological data

science community to adhere to FAIR (findable, accessible,

interoperable, reusable) principles in order to improve

reproducibility (Garcia et al., 2020), and the oceanographic

community is beginning to benefit from the adoption of these

practices. In addition to fostering a culture of open data and
enabling broader usage of data products, there is tremendous

value in making computational code, pipelines, protocols and

intermediate products available to new data scientists that are

beginning their bioinformatic pursuits.

One avenue for this is sharing analysis and visualization code

accompanying published studies on public servers, such as
GitHub or personal websites, which is increasingly done by

marine microbial ecologists. Code is most useful when

annotated to facilitate readability, which is effectively done

using rendered reports (Markdown) with RStudio and Jupyter

Notebook. Tools such as Binder allow users to work in exact

coding environments used to produce data, including loaded

pre-requisites and input variables accessible through a website.
Documentation in the form of personal blogs that accompany

analyses are ideal tools for conveying underlying concepts

FIGURE 1 | Flow chart of a metranscriptomic pipeline designed for marine microeukaryotes (right). Visual depiction of the main workflow steps, including cell

extraction, sequencing, assembly, read mapping, and annotations (left). Example annotations are shown for three phytoplankton taxa (Ellis et al., 2017, Cohen et al.,

2017, Wu et al., 2019, Rao, 2020). Note that many predicted proteins do not correspond to a known functional annotation. Example graphics and statistical

approaches used to investigate metatranscriptomic output (bottom): Ordinations may be created using orthologous groups or functional annotations aggregated to

the taxonomic level of interest. Heatmaps are constructed using normalized gene expression and can be subset to include biostatistically or biologically relevant

genes. Heatmaps and ordinations are useful in identifying similarities among sampling groups. 2D section plots show differences in the relative abundance of gene

expression across space (or time), highlighting shifts in ecological strategies. MA plots are created using normalized gene expression corresponding to taxonomic/

functional annotations or orthologous groups, and are useful in assessing differential expression between pairwise experimental treatments or groupings. Networks

are built using normalized gene expression corresponding to taxonomic/functional annotations or orthologous groups, and highlight co-occurring genes. They can be

paired with metadata to identify groups of genes correlated with environmental parameters. Stacked barplots represent the relative community composition across

samples, and can be produced using raw reads or normalized read counts (e.g., TPM) associated with contigs and/or predicted proteins.
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anddetailed thought processes going into analytical decisions,

which are valuable educational resources for others in the

microbial ecology field (e.g., polarmicrobes.org/antarctica-blog,

merenlab.org/posts). Raw sequences are typically required to be

uploaded to public repositories before publication, such as the

National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA), and intermediate data files

including assemblies, annotations, and read counts can

similarly be shared on open-access repositories (e.g., Zenodo).

In addition to these avenues for sharing computational

resources, laboratory protocols can be archived on websites

such as protocols.io, which brings new practitioners up to
speed with technical logistics involved in sample acquisition

and helps standardize sample processing.

Below we describe a typical metatranscriptomic bioinformatic

analysis and provide an example workflow using second

generation sequencing (Figure 1 and Supplementary Figure 1).

We encourage new users to consult existing code, tutorials, and
blog posts compiled by other data scientists to gain familiarity with

these computational steps. Ideally, these new users will share code

once their analysis is complete, and the oceanographic community

as a whole will benefit from the incorporation of these open data

science practices.

Compute Environment
Once raw sequences are generated, a series of bioinformatic steps
are performed to assemble reads into transcripts de novo,

quantify gene expression, and assign taxonomic and functional

annotations. These steps may be performed individually or as

part of an automated workflow in a Linux-based environment, or

within a GUI web-based platform (e.g., Galaxy). It is

recommended to store all raw files in read-only format in

more than one place. Many of the steps in metatranscriptomic
analyses are computationally intensive and cannot be performed

on the typical laptop or workstation. As such, access to a high

performance computing cluster through an institution or

national resource (e.g. XSEDE) or access to cloud based

compute resources (e.g. Azure, Amazon Web Services) is often

necessary. Broadly, the steps of assembly, quantification, and
annotation require access to resources, with typical smaller scale

projects benefiting from 25-40 cores and 250-400 Gb of RAM,

and needs scaling with the size of the dataset and choice of tools.

Quality Control
Raw reads are trimmed to remove poor quality base pairs

common on the ends of Illumina reads, and to clip off

sequence adapters. Numerous tools are available for trimming
sequences, including Trimmomatic (Bolger et al., 2014), FASTX-

Toolkit (hannonlab.cshl.edu/fastx_toolkit), or cutadapt (Martin,

2011), with these tools universally compatible with Illumina

sequences. The quality of sequences pre- and post-trimming

can be evaluated using tools such as FastQC (www.

bioinformatics.babraham.ac.uk/projects/fastqc), or evaluated in
batch with MultiQC (github.com/ewels/MultiQC), which

will additionally summarize total number of reads among

other useful metrics. While often an aggressive approach

to trimming has been taken, work in single species

transcriptomes suggests that a less stringent trimming of only

those reads whose Phred sequence quality score <2 or <5 is

sufficient and optimal across a variety of downstream metrics

(MacManes, 2014).

Removal of Contaminants and/or Spiked
Sequences
Non-poly-A RNA or organelle mRNA may have been sequenced

along with nuclear mRNA, especially if rRNA depletion was used

as the library preparation. Ribosomal RNA is not included in most

reference databases, and alignments of these sequences will be
patchy and inconsistent. These sequences can be removed prior to

the analysis by alignment against reference rRNA sequences using

tools such as riboPicker (ribopicker.sourceforge.net), SortMeRNA

(Kopylova et al., 2012), or BBDuk within the BBTools suite (jgi.

doe.gov/data-and-tools/bbtools). In addition, if used, mRNA spike

sequences will be useful for copies L-1 quantification, but do not
need to be included in the downstream analysis. Non-target

sequences can be removed by aligning against a spike reference

fasta file, for example with BBMap sourceforge.net/projects/

bbmap/.

Assemblies
Taxonomic and functional interpretations of RNA-Seq data

could theoretically be achieved by aligning reads to annotated

eukaryotic genomes and metagenomes, however, we lack
genomic representatives that cover the extreme diversity found

in the natural environment, and de novo assemblies are

commonly used instead (Lau et al., 2018). The de novo

assembly process relies on elongating individual short reads

into contiguous sequences (contigs) using overlapping

sequences of length k, or k-mers (Robertson et al., 2010).

Popular assemblers for eukaryotic transcriptomes include
Trinity (Grabherr et al., 2011), Trans-ABySS (Robertson et al.,

2010), rnaSPAdes (Bushmanova et al., 2019), IDBA-Tran (Peng

et al., 2013), andMEGAHIT (Li et al., 2015), among others (Ortiz

et al., 2021), which differ in their algorithmic basis, relative

performance, and the number and length of contigs generated.

Although these assemblers were designed for metagenomics
(MEGAHIT) or transcriptomics (Trans-ABySS, Trinity,

rnaSPAdes, IDBA-Tran), they are largely compatible with

environmental metatranscriptomes (Lau et al., 2018) and

eukaryotic sequences (Ortiz et al., 2021), with rnaSPAdes and

Trinity performing particularly well for marine microeukaryotic

communities in terms of the number of high quality and

annotatable contigs produced (Krinos et al., 2022).
Quality-trimmed reads should be used as input during the

assembly process, with some assemblers capable of handling

multiple pairs of reads (co-assembling), depending on

computational constraints. For large datasets, individual

assemblies can be generated from each set of reads, which

could then be merged together and de-replicated by clustering
at high sequence similarity (95-100%) using tools such as cd-hit

(Li and Godzik, 2006) orMMseqs2 (Steinegger and Söding, 2017;

Krinos et al., 2022). Broadly, assembly metrics (e.g. percent

mapped reads) improve with a multi-assembler approach in
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which assembly output from different tools are combined (Ortiz

et al., 2021; Krinos et al., 2022). In this case, the resulting

assembly will contain contigs generated from all communities

sampled and different assembler algorithms used. De novo

assembling with metatranscriptomic reads from closely related

taxa may inadvertently introduce spurious and/or chimeric
contigs, in which reads from different transcripts are combined

and would not reflect true protein pools. Certain transcriptomic

assemblers are better at controlling chimeric contigs than others,

with Trans-ABySS and IDBA-Tran stable across a range of k-

mers (Wang and Gribskov, 2016).

Third generation sequencing reads can be assembled to
produce high quality, long contigs using de novo assemblers

such as metaFlye, which take into consideration challenges

specific to long reads, such as uneven coverage among species

sequenced (Kolmogorov et al., 2020). The informatic

methodology will need to be reconsidered as third generation

sequencing becomes more commonly applied and directly
compared to older, short read-based studies. In particular,

hybrid assemblies combining short and long reads benefit from

the throughput/low error rates of short sequences and added

structural information provided by long sequences (Prjibelski

et al., 2020). This capability has been recently built into the

MUFFIN metagenomic workflow (van Damme et al., 2021) and

the rnaSPAdes assembler (Prjibelski et al., 2020), with the
rnaSPAdes hybrid approach successfully applied to marine

phytoplankton in culture (Sperfeld et al., 2021).

Read Mapping
Trimmed reads can be aligned to the de-replicated, final

assembly to estimate gene expression across samples.

Alternatively, reads may be aligned to assemblies generated

from individual samples, although relative comparisons across
samples could then only be made at the fold change or gene ratio

level. When aiming to draw direct comparisons in community

composition and gene expression across a dataset, it is simplest

to align to the same reference assembly, so that reads are allowed

to align to the closest possible contig match, rather than only

those contigs assembled from an individual sample.
Read mapping can be performed using traditional alignment

tools such as Bowtie2 (Langmead and Salzberg, 2012) or BWA

(Li and Durbin, 2009) which map short reads against a reference

transcriptome or genome. Newer alignment options include

Salmon (Patro et al., 2017) and Kallisto (Bray et al., 2016)

which use quasi-mapping and pseudo-alignment approaches,
respectively, rather than base-to-base alignments, performing

rapid alignments while preserving high sensitivity and accuracy.

In addition to mapping reads to the de novo assembly, another

option is to map metatranscriptomic reads to transcriptome and

genome references directly, for example the MMETSP database.

This method could identify community members present that

closely match cultured species or strains of interest without the
effort of de novo assembling, and can capture organisms that

failed to assemble into high quality contigs (Alexander et al.,

2015a; Metegnier et al., 2020; Harke et al., 2021; Muratore et al.,

2022). However, is it important to note that current reference

transcriptome databases are limited relative to the tremendous

taxonomic diversity of eukaryotes in seawater (de Vargas et al.,

2015), and this approach could therefore miss key taxa that

are present.

Quantification of Transcripts
Transcript abundance can be estimated using mRNA standards,

as developed for marine prokaryotes (Satinsky et al., 2013; Gifford
et al., 2014; Satinsky et al., 2017). In order to determine howmuch

standard to add prior to sample extraction, test filters can be

collected and sacrificed from representative stations/depths with

differing levels of biomass (chlorophyll a fluorescence).

Conversely, standards can be added after RNA is extracted,

although this “quasi-standard” would no longer take into
account RNA loss during the extraction procedure, and would

lead to an overestimate of mRNA abundance.

Transcript abundances can be normalized by the volume

filtered to approximate copies L-1:

Copiesi  L
−1 =   readsi �

  total   reads  � spike   copies
spike   reads

total   reads
 �

1

volume   filtered

where readsi are the raw read counts of transcript i, spike reads
are the raw read counts associated with the mRNA spike

standard, spike copies are the amount of mRNA copies

(molecules) added to samples prior to sequencing, total reads

are the number of mRNA reads in the sequence library (minus

spike reads), and volume filtered is the amount of seawater

filtered. Normalized counts may be used (e.g., TPM) in place
of raw read counts in these absolute transcript calculations,

which would account for transcript length bias (Mortazavi

et al., 2008; Bartholomäus et al., 2016).

Protein Predictions and Orthologous
Group Clustering
Proteins are predicted from assembled contigs (transcripts)

through open reading frame (ORF) prediction software, such

as TransDecoder (transdecoder.github.io) or GeneMark S-T

(Tang et al., 2015). If using the metatranscriptome as a

reference for a metaproteomic peptide-spectrum-matching

(PSM), the ORF predictions are the FASTA database used for
PSM scoring (Cohen et al., 2021).

Annotations
Taxonomic Assignments

Assigning taxonomic annotations to contigs allows for

examinations into community composition across spatial

and temporal gradients, or as a function of experimental

perturbations. Taxonomic assignments are performed by
aligning assembled contig sequences against a reference

database. For identifying marine microeukaryotes in the

field, it is key to use a database that includes transcriptomes or

genomes from laboratory isolates or environmentally derived

single-cell marine microeukaryotes. The MMETSP database

includes 678 marine microeukaryote transcriptomes, including
phylogenetically diverse and ecologically relevant taxa (Keeling

et al., 2014; Johnson et al., 2019). Databases including MMETSP

references such as EukProt (Richter et al., 2020), EukZoo
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(github.com/zxl124/EukZoo-database), and PhyloDB

(allenlab.ucsd.edu/data) are valuable resources with additional

transcriptomes and genomes present. Sequences may be aligned

to these databases using tools such as BLAST (Altschul et al.,

1990), DIAMOND (Buchfink et al., 2015), and MMseqs2

(Steinegger et al., 2017), with quality thresholds commonly
used to assess goodness of fit including E-value cutoffs (e.g.,

E < 10-5), high sequence similarity percentage, and/or high bit

score. EUKulele is a taxonomic annotation tool designed for

marine microeukaryotes, and can perform BLAST or DIAMOND

alignment searches against custom or default databases,

including MMETSP (Krinos et al., 2021). For contigs with
numerous hits exceeding a quality threshold, a Least Common

Ancestor (LCA) approach is used to assign annotations at the

lowest common taxonomic level. It is recommended to include

marine bacteria, metazoa, and common contaminants in the

databases for purposes of identifying these community members,

if present, and avoiding misannotation. For example, the default
EUKulele database includes the MarRef database of marine

prokaryotic genomes (Klemetsen et al., 2018; Krinos et al.,

2021). In addition, using databases containing reference

transcriptomes that have been screened for multi-species

presence and decontaminated are preferred (Van Vlierberghe

et al., 2021).

It is crucial to remember, however, that we are ultimately
limited in identifying taxonomy by what is available in our

databases. If eukaryotic organisms captured in field studies are

unrelated to cultured representatives included in taxonomic

databases, with sufficiently low sequence similarity, they will be

unannotated or misannotated. MMETSP has expanded sequence

coverage of diatoms, prasinophytes, and dinoflagellates (Keeling
et al., 2014), but a large number of ecologically relevant taxa

remain missing from reference databases, especially those from

the depths of the ocean where protistan diversity is quite high

(Schoenle et al., 2021). Testing multiple databases containing

different protistan reference organisms may be helpful during

initial explorations of datasets. Generally, ~40-60% of marine

metatranscriptomic contigs can be assigned a taxonomic
annotation (e.g., Cohen et al., 2017; Carradec et al., 2018; Hu

et al., 2018). The gene expression profiles captured with

metatranscriptomics will represent a mixed community cellular

state and the community’s dominant response to the

environment. Considering the vast taxonomic and metabolic

diversity across microeukaryotic species, limited reference
databases may not fully capture environmentally-relevant

features. Moving forward, focused efforts on sequencing

additional diverse organisms from rarer lineages and further

populating reference databases will improve field identifications.

Functional Assignments

Functional annotation of transcripts enables investigations into

ecophysiology, resource exchanges between organisms and the
environment, and contributions to elemental cycling. Similar to

taxonomic assignments, functions can be assigned via sequence

homology searches to protein databases including eukaryotic

references such as Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa et al., 2016a), Eukaryotic Ortholog Groups

(KOG) (Tatusov et al., 2003), and Gene Ontology (GO) (Gene

Ontology Consortium, 2004) using likelihood thresholds (e.g.,

E < 10-3). These databases have the advantage of grouping

proteins by higher order function, allowing for broad

classification into functional categories. In addition to these

approaches, hidden Markov model (HMM) profiles searches
executed via the HMMer software suite (Finn and Clements,

2011) in conjunction with protein databases [e.g., Pfam (Finn

et al., 2014)] enable the identification of conserved protein

domains, which can provide more remote information

compared to local alignments. However, these conserved

domains are not indicative of whole protein function and are
not as easily classified into broader functional categories.

Certain existing tools and workflows perform combinations

of the taxonomy and functional annotation steps listed above.

For example, eggNOG-mapper provides KEGG, GO, Pfam, and

other protein annotations as output using HMMer ,

DIAMOND, or MMSeqs2 searches against the eggNOG
database (Cantalapiedra et al., 2021). KOfamScan searches

query sequences against the KEGG database using HMM

profiles (github.com/takaram/kofam_scan). Trinotate is a

workflow for non-model organisms that carries out

assemblies with Trinity and annotates using eggNOG, GO,

and Pfam, among other databases (Bryant et al., 2017). Web-

based servers are also available (BlastKOALA, GhostKOALA,
KofamKOALA) which annotate assembly fasta files against the

KEGG database using sequence homology or HMM

profile searches, in a web user interface (Kanehisa et al.,

2016b). Users may choose an annotation procedure that

aligns with their needs, level of automation desired, and

preferred computational environment.

Normalizations
Sequence libraries are commonly normalized to account for non-

biological variability (e.g., large differences in total number of

reads among samples, or library sizes) thereby allowing for

relative comparisons across a dataset (Abrams et al., 2019).

Popular RNA-Seq normalization and differential expression

tools include EdgeR (Robinson and Oshlack, 2010; Robinson
et al., 2010) and DESeq2 (Anders & Huber, 2010; Love et al.,

2014), which correct for RNA composition bias during

normalization, and estimate differential expression by fitting

generalized linear models and assuming negative binomial

distributions. False discovery rate (FDR) controlled p-values

are used to account for multiple hypothesis testing within large
gene expression datasets (Reiner et al., 2003). EdgeR and DESeq2

are ideal for comparative analyses in which similar marine

communities are subjected to treatments or conditions in order

to address experimental hypotheses. These software tools offer

dispersion shrinkage estimation and outlier detection to decrease

the uncertainty of differential expression annotations (Love et al.,

2014). It is important to note that applying differential
expression tools for community-level metatranscriptomic data

requires the organization of these data into taxon-specific bins

for the purposes of scaling the count matrix, thereby isolating

taxon-specific gene expression changes (Klingenberg and

Meinicke, 2017).
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These approaches make key assumptions about most genes

not being differentially expressed, and care should be taken when

comparing disparate marine ecosystems (e.g., surface and deep

populations, or surface waters from eastern and western ocean

basins). Normalization approaches that merely account for

changes in sequence library and differences in contig length,
such as Transcripts Per Million (TPM) (Wagner et al., 2012),

may be better suited for large spatial or temporal field studies,

although these methods cannot provide statistical estimates of

differential expression and may retain transcript composition

biases (Cockrum et al., 2020; see below: Consolidating

assemblies). Flexible and adaptive statistical techniques that
take into consideration zero-inflation, such as Tweedie models,

may be useful for metatranscriptomic analyses and are worth

exploring in marine omic datasets (Mallick et al., 2021).

Workflow Managers
As evident from the above descriptions of typical

metatranscriptomic pipelines, many individual computational

steps are required. Workflow managers are valuable for the batch
execution of commands and processing steps across samples.

Individual executions may otherwise be tedious, lead to

inconsistencies and/or errors, and fail to be reproducible. Of

the open-source workflow managers, Snakemake is a popular

Python-based user-friendly option with rich documentation

available (Köster and Rahmann, 2012). Many established
Snakemake-based workflows are publicly available on code

sharing repositories such as GitHub, and may be a useful

starting point. For example, eukrhythmic is a scalable

metatranscriptomic assembly workflow designed for marine

microeukaryotes (Krinos et al., 2022), and many of the above

outlined bioinformatic steps have been incorporated into

eukrhythmic (github.com/AlexanderLabWHOI/eukrhythmic).
In addition, the SqueezeMeta analysis pipeline is suitable for

metatranscriptomic assembly and compatible with long read

sequences (Tamames and Puente-Sánchez, 2019).

CONSOLIDATING ASSEMBLIES

It can be difficult to interpret large assemblies in which tens of

millions of contigs are produced from mixed natural
communities and most contigs do not correspond to a known

protein function. There are several considerations for

consolidating assemblies and streamlining the analysis,

including orthologous group clustering and functional/

taxonomic aggregation.

A subset of assembled metatranscriptomic contigs do not
encode proteins due to being fragmented and/or chimeric, and

this can be a function of RNA pool composition, sequencing

depth, type of assemblers used, and protein prediction

algorithms and parameters applied. It can therefore be helpful

to remove non-coding sequences by predicting ORFs, and

strictly using ORFs for read mapping and the quantitative

analysis of taxonomic and functional groups. Orthologous
groups (OGs) are commonly used to further collapse proteins

into protein clusters derived from common ancestors, performed

using tools such as OrthoFinder (Emms and Kelly, 2019), which

uses a phylogenetic approach with multiple algorithms to

identify relationships between genes and species. In contrast,

OrthoMCL uses a reciprocal best hits approach with the Markov

Clustering Algorithm (MCL) (van Dongen 2000; Li et al., 2003).
These OGs can be used to track changes in function among

closely related protistan taxa. However, one consideration for

OG clustering is that it is highly dependent on clustering

thresholds (e.g., percent sequence similarity), with stringent

parameters limiting cross-species aggregation, and very lax

parameters enabling cross-species clustering (Krinos et al.,
2022). OG aggregation may be particularly valuable for

collapsing read counts into evolutionarily related taxonomic

groups and functional genes, effectively reducing the large

assembly into more biologically meaningful groupings.

Aside from OG clustering, another popular approach for

condensing assemblies has been to aggregate read counts to a
common taxonomic and functional classification. For example,

combining reads to the supergroup, class, or family level and

KEGG Orthology ID. Read counts can either be collapsed

(summed) into taxonomic and functional annotations before

normalization, or summed following normalization. Transcript-

estimating tools such as tximport can automate this step by

converting read counts associated with transcripts (contigs) to
gene level annotations and generating normalized reads as

community-wide TPM (Soneson et al., 2015). An important

consideration is the taxonomic level of interest in which to

aggregate counts, and will differ depending on research focus.

The primary disadvantage of working at a fine taxonomic

resolution (e.g., species) is that fewer sequences can be
confidently assigned to such a level, and users may be inundated

by the overwhelming number of species to analyze. On the other

hand, broad class level annotations (e.g., diatoms, dinoflagellates,

haptophytes) are a composite of vastly different organisms, some

of which may be responding to the environment in distinct ways

(Alexander et al., 2015a; Lampe et al., 2018). Testing various

taxonomic annotation levels can be helpful in determining the
resolution most biologically meaningful for a given dataset. This

approach relieves concern about mixing different species or genera

into one group, as may occur with OG clustering, and provides

taxon-specific counts. However, a key issue is that a significant

fraction of coding sequences do not have a known protein

function (low sequence similarity to references in databases),
similar to observations with assembled genomes and

metagenomes (Vanni et al., 2021). This approach therefore

limits biological interpretations to only a fraction of the

predicted proteins included in the downstream analysis.

INTERROGATION & VISUALIZATION

When working with experimental treatments or pairwise
comparative conditions, MA (log ratio-mean average) plots are a

straightforward approach for visualization, highlighting highly

abundant and variably expressed genes in specific taxa of interest
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(Supplementary Figure 2). These are created by plotting log fold

change by average normalized gene expression, and can be

generated directly through EdgeR and DESeq2 packages. In

addition, MANTA plots are a useful way to depict the MA

relationship with pie charts representing the relative breakdown

of taxonomic composition for each functional annotation (see
github.com/AlexanderLabWHOI/2022-metaT-m3-perspective for

code). Fold change comparisons are ideal for visualizing the

magnitude of change in expression across samples, which can be

difficult to discern from normalized transcript abundance alone.

Similarly, volcano plots highlight differentially expressed genes with

statistical support by graphing fold change by FDR
(Supplementary Figure 2). Datasets from spatial and temporal

studies may also be averaged across time or space zonations to

visualize in MA plots, for example by averaging gene expression

across all surface and deep communities. However, these broad

groupings may conceal biologically relevant patterns across

environmental features. In conjunction with these, exploratory
approaches may be used to find structure across latitudes and

depth, including ordinations, clustered heatmaps, and

network analyses.

Ordinations are used to distill multidimensional data into two

or three dimensions for visualization. Omic data is highly

dimensional, with the number of annotated genes commonly

reaching the thousands. Popular unconstrained ordination
approaches include Principal Component Analysis (PCA) based

on Euclidean distance, Principal Coordinate Analysis (PCoA)

compatible with other forms of dissimilarity measurements, and

Nonmetric Multidimensional Scaling (NMDS) which ranks

distances in nonlinear space iteratively (Ramette, 2007). With

these unconstrained ordinations, the relationship between
metadata and ordination space can be assessed, for example

using the envfit function of vegan (Dixon, 2003). Constrained

ordinations such as Canonical Correlation Analysis (CCA) and

Redundancy Analysis (RDA) can be used to evaluate how

transcriptional profiles change across sample groups according

to metadata, such as environmental measurements or categorical

variables (Ramette, 2007). (See github.com/AlexanderLabWHOI/
2022-metaT-m3-perspective for example CCA ordination

tutorial). Broadly, these approaches can be used to find

similarities in gene expression profiles across sample types and/

or relate transcript levels to environmental conditions.

Ordination plots have been utilized to show time-dependent

patterns in microeukaryote gene expression (Groussman et al.,
2021), taxon-specific microeukaryote functional profiles (Hu

et al., 2018), and differences in surface and deep dinoflagellate

metatranscriptome profiles (Cohen et al., 2021). The input data

for ordinations may be normalized read counts associated with

annotated or unannotated transcripts at the community level

(e.g., community-wide TPM), or normalized at a given taxonomic

level of interest (e.g., haptophytes).
Gene expression profiles can be effectively compared across

samples using heatmaps, clustered using a statistical similarity

metric and highlighting relationships among treatment groups,

ocean regions, or temporal dimensions. Typically, columns

represent individual samples, rows represent genes, and colors

represent normalized read counts. These heatmaps can include all

genes within the expression profile or subset to highlight specific

genes of interest. Care should be taken when subsetting expression

profiles to include differentially expressed genes, because in the

absence of biostatistical tests, differential expression cannot be

reliably determined. Transcripts with the highest variances can be
calculated, but this will be biased towards highly expressed genes

since variance increases with transcript abundance in a

heteroscedastic manner (Law et al., 2014). It is therefore

recommended to correct for the mean-variance relationship (as

performed by EdgeR and DESeq2) or perform a transformation

such as log normalization; however, log-normalizing prior to
calculating variance can have the opposite effect and result in

high variances of lowly expressed genes. Normalizations that

effectively control for heteroscedasticity, such as the variance

stabilizing transformation, are recommended to improve

differential expression assessments (Zwiener et al., 2014).

Marine metatranscriptomic datasets can be quite large,
consisting of billions of reads, millions of contigs, and

thousands of annotated genes. Network analyses can be used

to identify ecological connections between taxonomic groups,

associations among functional processes, and/or link

environmental metadata with expression patterns. This

approach has been used to characterize the nutrient status of

phytoplankton along an estuary gradient (Gong et al., 2018),
identify diel metabolic patterns across protists (Kolody et al.,

2019), and reveal co-occurrences between limiting resources and

protistan taxa (Caputi et al., 2019). Ecological network analyses

are frequently performed with Weighted Gene Correlation

Network Analysis (WGCNA) (Langfelder and Horvath, 2008),

igraph (Csardi and Nepusz, 2006), and sparCC (Friedman and
Alm, 2012), with Cytoscape software commonly used for

visualization of networks and interactions following creation

(Shannon et al., 2003). Input data may be annotated

transcripts with taxonomic and functional assignments and

normalized read counts at the community level, and output is

clusters or modules of closely related (co-occurring) associations

defined by user-specified thresholds. These modules can be
correlated with metadata to understand environmental

conditions influencing taxonomic and/or metabolic processes.

In particular, KEGG or GO-enrichments can be performed on

modules to expand on how functional profiles are biologically,

spatially or temporally organized.

Section plots, or 2D maps, are used to visualize changes in
relative (normalized) or quantitative (copies L-1) gene expression

across lateral and vertical expanses. This type of visualization is

especially useful if high resolution sampling along transects was

performed. Section plots can be generated using matplotlib

library in Python (Saito et al., 2020), oce package in R

(dankelley.github.io/oce), or software such as Ocean Data View

(Schlitzer, 2018). This visualization method can highlight shifts
in metabolic processes across depths, nutrient conditions,

temperature regimes, or biomes (e.g., Saito et al., 2014; Santoro

et al., 2017; Hogle et al., 2021). Highlighted genes may include

those with strongly varying expression between zonations, or

individual genes of interest hypothesized to be comparatively
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responsive to environmental conditions, such as biomarkers of

nutrient stress (Saito et al., 2014). It is recommended to be

cautious when interpreting weak and/or variable signals from

genes that are not highly expressed, especially when biological

replication is not available.

TIPS FOR GETTING STARTED

As discussed above, the learning curve associated with

bioinformatics can be steep, and many resources exist to aid in
the process. The Carpentries is an international organization that

teaches foundational coding principles to learners of any

background, with educational materials publicly available

online (Wilson, 2006). Their lessons can equip users with basic

knowledge of Unix, Python, and R, with more advanced concepts

also available, including genomics, ecology and graphical
visual izat ions (datacarpentry .org/ lessons, software-

carpentry.org/lessons). Additionally, universities with high

performance computing clusters commonly have coding

training sessions available to users. Specifically for

microbiologists, the community initiative Bioinformatics

Virtual Coordination Network (BVCN) aims to teach core

coding and bioinformatic skills needed for omic analyses
through publicly accessible lessons, tutorials, and video content

available online (Tully et al., 2021). Lastly, it is key to learn how

to effectively troubleshoot while coding, and user-based

discussion boards are excellent venues for discovering how

others have solved similar problems, asking questions, and

sharing solutions. Biostars.org, Stackoverflow.com, and Github
Issues have been invaluable community resources during our

own bioinformatic development.

FUTURE DIRECTIONS

The guidelines and considerations presented here reflect the

current methodology used to analyze microeukaryotic

metatranscriptomes, but approaches will evolve as new tools,

pipelines and databases come online. Users are encouraged to

keep up with new versions of released databases and tools, and

check documentation often to incorporate updates in

computational steps (i.e., improved efficiency or accuracy, bug-
fixes). In particular, focused community efforts on transcriptome

sequencing of phylogenetically diverse protists will improve

metatranscriptomic databases and strengthen our ability to track

natural populations in the field. Single-cell transcriptomics (sc-

RNA-Seq) performed on uncultured organisms isolated from the

field will be especially valuable in expanding taxonomic and
functional sequence coverage of microeukaryotes from complex

communities (Wilms, 2021; Kolody et al., 2022).

Importantly, third generation sequencing technologies are

promising avenues for microbial ecology that have rapidly

developed over the past few years. Nanopore sequencing via

the portable MinION and benchtop promethION platforms

(Oxford Nanopore Technologies) and PacBio Single-Molecule

Real-Time (SMRT) sequencing (Pacific Biosciences of

California) will enable full length transcripts to be sequenced

from mixed natural assemblages, without PCR amplification,

short-read assemblies, and associated biases. Existing

bioinformatic workflows will need to be updated to

accommodate this new sequencing technology, as many
publicly available workflows are currently designed for short

read sequencing products obtained through Illumina technology.

Increasingly, protocols are being developed for a combination of

short and long read transcriptome sequencing of marine

phytoplankton (Sperfeld et al., 2021).

The protocols outlined here have been compiled from
individual studies, which are the result of years of experience at

sea, in labs, and on the command line. As discussed above, there

are multiple options for carrying out each step of the process,

from seawater collection to bioinformatic handling. We currently

lack an understanding of how the different, yet congruent,

methods influence the downstream analyses and biological
interpretations. A community intercalibration exercise in which

multiple research groups analyze the same initial natural

community using their various preferred sampling, laboratory

and computational pipelines would advance our understanding of

how methodology influences results, and would increase

confidence in chosen practices. This is one of the goals recently

discussed at the “Ocean Nucleic Acids Omics Intercalibration and
Standardization” workshop funded by the National Science

Foundation’s Ocean Carbon & Biogeochemistry (OCB)

Program (Berube et al., 2022). The workshop report provides a

roadmap for such activities, including intercalibration efforts for a

variety of marine omics applications, with additional sampling

and processing considerations not covered here (Berube et al.,
2022). Such activities are critical for the development of future

coordinated large oceanographic international programs, such as

BioGeoSCAPES (www.biogeoscapes.org).

Valuable insights have been provided by microeukaryote

metatranscriptomic studies to date, and exciting discoveries

certainly await us in the coming years as the approach continues

to be applied to diverse ecosystems and integrated with
complementary methods. A eukaryotic gene catalog consisting of

over 116 million expressed genes has been recently generated from

the ocean, expanding our understanding of protistan biogeography

and physiology as a function of environmental conditions

(Carradec et al., 2018; Caputi et al., 2019). Intriguingly, half of

the gene functions are not annotated, and targeted efforts into
protein characterization will drastically improve our understanding

of protistan ecology and their biogeochemical roles (Carradec et al.,

2018). There is furthermore value in combining marine

metatranscriptomics with traditional physiological and chemical

approaches (Marchetti, 2019; Wilms, 2021; Kolody et al., 2022),

which can strengthen and guide biogeochemical interpretations,

for example in relating metatranscriptomic community
composition to microscope-derived cell counts or gene

expression to empirically measured enzymatic rates. Integration

of metatranscriptomic information with metaproteomics enables a

broader view of protistan cell metabolism (Cohen et al., 2022), with

recent modeling efforts offering a mechanistic understanding of the
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relationships between environmentally responsive transcripts and

proteins in marine microbes (Walworth et al., 2022). Similar

pairings with metabolomics and/or lipidomics hold promise for

relating taxonomic groups and metabolic processes to released

organics, revealing trophic interactions among community

members and nutrient utilization patterns (Durham et al., 2015;
Heal et al., 2021; Muratore et al., 2022). Continuing to integrate and

apply metatranscriptomics to biogeochemically complex and

understudied marine ecosystems will undoubtedly shed light on

the diverse roles marine protists play across our ocean biomes.
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Supplementary Figure 1 | Example research questions and analysis

recommendations. The standard bioinformatic workflow is used to produce the

intermediate products (assembly, annotations, read mappings, etc.), but

normalization and visualization strategies differ depending on research question.
*Note that either non-normalized raw reads or community-wide TPM may be used

for relative community composition visualization with stacked barplots, but

normalized counts (taking into account differences in library sizes) is recommended

for ordinations.

Supplementary Figure 2 | Example MA and volcano plots for visualizing

differential expression. MA plot (A): MA plot shows the mean fold change versus

mean expression with both measures on a log2 scale. Genes above the horizontal

dashed line represent genes with increased expression in one treatment (numerator

in the fold change calculation) and genes below represent increased expression in

the other treatment (denominator in the fold change calculation). Additional

modifications can aid in visualizing differentially expressed genes. For example, this

plot shows genes that are not significantly differentially expressed as gray points

while genes that are significantly differentially expressed are black points (P < 0.05).

Data points with extremely high fold change values are plotted as triangles rather

than circles. In this example, those are genes with log2 fold change values greater

than 5 or less than -5. The size of the points is scaled by -log10(p-value) such that

lower p-values are larger points. Although not shown here, genes of interest can be

color-coded and/or labeled directly if desired. One simple and popular coloration is

to show the significantly up- or down-regulated genes as two different colors, for

example, red and blue respectively. MANTA plot (B): This plot is a modification of

the MA plot and was introduced by Marchetti et al., 2012. The original plotting

function was released as part of the manta (Microbial Assemblage Normalized

Transcript Analysis) package in Bioconductor; however, use of this package to

generate plots restricts users to use MANTA objects and lacks features such as the

ability to handle replicates. As a result, new plotting functions inspired by the original

were re-written and are available on Github (github.com/AlexanderLabWHOI/2022-

metaT-m3-perspective). Here, genes that are significantly differentially expressed

are shown as pie charts rather than plain black circles to display that taxonomic

breakdown of the genes. This example uses the same data as the MA plot example,

but now, different diatom genera are shown. Depending on the user’s analysis,

different groups and/or taxonomic-levels can be used. The use of the triangles as

shown in the MA plot was omitted for this plot, but extremely high log2 fold change

values are 5 or -5. Volcano plot (C): Rather than highlighting the mean abundance of

a gene as in the MA plot, the volcano plot emphasizes the statistical significance (p-

value) of genes between two treatments. Here, genes to the right of the horizontal

dashed line represent genes with increased expression in one treatment (numerator

in the fold change calculation) and genes to the left represent increased expression

in the other treatment (denominator in the fold change calculation). Only genes

above the horizontal dashed line, -log10(0.05) representing a = 0.05, are shown in

black while genes below it are shown in gray to distinguish between points that are

significantly differentially expressed or not as in the MA plot. Data points with

extremely low p-values and thus are high on the y-axis are plotted as triangles rather

than circles. In this example, those are genes with P < 0.00001. As with the MA plot,

additional color coding may be performed and may be as simple as coloring all the

genes in the left treatment blue and genes in the right treatment red. Genes of

interest can also be color-coded and/or labeled directly if desired.
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