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Microeukaryotes (protists) serve fundamental roles in the marine environment as
contributors to biogeochemical nutrient cycling and ecosystem function. Their activities
can be inferred through metatranscriptomic investigations, which provide a detailed view
into cellular processes, chemical-biological interactions in the environment, and ecological
relationships among taxonomic groups. Established workflows have been individually put
forth describing biomass collection at sea, laboratory RNA extraction protocols, and
bioinformatic processing and computational approaches. Here, we present a compilation
of current practices and lessons learned in carrying out metatranscriptomics of marine
pelagic protistan communities, highlighting effective strategies and tools used by
practitioners over the past decade. We anticipate that these guidelines will serve as a
roadmap for new marine scientists beginning in the realms of molecular biology and/or
bicinformatics, and will equip readers with foundational principles needed to delve into
protistan metatranscriptomics.
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INTRODUCTION

Metatranscriptomics, or community gene expression profiling, offers a window into transcript pool
composition within mixed microbial assemblages. This information can be used to infer taxon-
specific physiology and elucidate links between cell metabolism and ecosystem function. When
applied to marine systems, it may offer information on the biogeochemical and ecological roles of
community members across ecosystems and environmental conditions. Marine metatranscriptomic
studies to date have been conducted across spatial and temporal scales (e.g., Sun et al., 2020; Becker
et al., 2021; Cohen et al., 2021; Coesel et al., 2021; Groussman et al., 2021; Harke et al., 2021;
Muratore et al., 2022), and in concert with experimental incubations/microcosms in which key
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biological, chemical and/or physical parameters are manipulated
(e.g., Alexander et al., 2015b; Bertrand et al., 2015; Lampe et al.,
2018). Such metatranscriptomic investigations into marine
protists have expanded our understanding of their nutrient
physiology (Alexander et al., 2015a; Pearson et al., 2015;
Lampe et al., 2018; Caputi et al., 2019; Kolody et al., 2019),
nutritional modes (Hu et al., 2018; Lambert et al., 2021), coastal
bloom dynamics (Gong et al., 2017; Ji et al., 2018; Metegnier
et al., 2020), and contributions to ocean biogeochemistry
(Carradec et al., 2018; Cohen et al., 2021).

Marine meta-omic studies, or community omic analyses
performed in the environment, emerged in the 2000s with the
first successful applications of shotgun DNA sequencing to
microbial communities of the open ocean (Venter et al., 2004;
Rusch et al., 2007). Early marine meta-omic studies relied upon
high-throughput Sanger and second generation sequencing (454
pyrosequencing and SOLiD) platforms (Venter et al., 2004;
Rusch et al.,, 2007; Gilbert et al., 2008; McCarren et al., 2010;
Stewart et al., 2010), with the first metatranscriptomic study
focusing on marine microeukaryotes released in 2012 (Marchetti
et al., 2012). Pyrosequencing and SOLiD platforms were later
replaced by Illumina bridge amplification-based sequencing as a
result of unparalleled throughput, low error rates, and mid-range
read lengths (~2 x 150 bp, paired-end) that were longer than
SOLIiD (~85 bp), but shorter than pyrosequencing and Sanger
sequencing (>400 bp) (Liu et al., 2012; Ambardar et al., 2016;
Wilms, 2021). The price of sequencing has continued to
decrease, while the degree of throughput has increased (Muir
et al., 2016).

Marine metatranscriptomic initiatives have greatly benefited
from the expansion of reference sequence libraries derived from
laboratory isolates, such as the Marine Microbial Eukaryote
Transcriptome Sequencing Project (MMETSP) (Keeling et al,
2014; Caron et al,, 2017). The MMETSP database is composed of
over 678 protistan transcriptomes from 405 unique strains (Krinos
et al,, 2021) and is widely used in current marine omic workflows
(e.g., Lampe et al., 2018; Kolody et al., 2019; Groussman et al., 2021;
Krinos et al., 2022). Oceanographic field expeditions such as Tara
Oceans (Carradec et al., 2018) and bioGEOTRACES (Biller et al.,
2018) are leveraging this database and other recently generated
eukaryotic transcriptomes and genomes to uncover the taxonomic
and functional roles of protists across ocean basins (Carradec et al.,
2018; Alexander et al,, 2021; Weissman et al., 2021; Blaxter et al,
2022; Delmont et al., 2022). These large field datasets describing the
biographical and functional distribution of protists consist of
sequence data, taxonomic and functional annotations, and
contextualizing environmental metadata, and serve as invaluable
community resources for researchers, students, and the public to use
(Biller et al., 2018; Carradec et al., 2018; Villar et al., 2018).

The computational biology landscape is rapidly evolving as
more efficient bioinformatic tools are developed and pipelines
become more easily accessible. There has been a concerted
community effort towards increasing reproducibility of data
analysis by documenting protocols, archiving code and raw
data, and making bioinformatic data products available to
scientific audiences (Sandve et al, 2013; Tully et al, 2021).

These resources are invaluable to new practitioners lacking
formal training in molecular biology, computational biology,
and/or statistics.

The interdisciplinary oceanographic community in particular
would benefit from a comprehensive overview that emphasizes
current approaches used to conduct microeukaryote
metatranscriptomics. Here we present a compiled resource
highlighting the latest practices and procedures, from sample
collection to computational analysis. This effort complements
other valuable environmental metatranscriptomic reviews that
have been recently published (e.g., Shakya et al., 2019; Mukherjee
and Reddy, 2020; Zhang et al., 2021; Wilms, 2021; Kolody et al.,
2022). We anticipate these recommendations will continue to
evolve in the coming years, and encourage researchers to explore
current sequencing platform options and bioinformatic
workflows, and to consult updated versions of tool
documentation before beginning new analyses. It may be
particularly valuable for those with a microbial ecology and/or
oceanography background to engage in discussions and apply
principles learned from computational biologists (and vice versa)
to effectively innovate across these subfields. Our descriptions of
protocols, pipelines and tools are not intended to be technical
accounts but rather a descriptive guide for beginning and
returning practitioners, and readers are referred to individual
publications for further details.

SAMPLE ACQUISITION

Collection and Filtration of Microbial
Communities From Pelagic Seawater

The seawater volumes required to obtain suitable biomass for
metatranscriptomic sequencing varies depending on the
ecosystem. In offshore waters, volumes ~10 L or greater are
generally recommended, while coastal systems supporting
higher biomass require much lower volume (Table 1). Sample
volumes that are too low have been shown to skew relative
abundances of 16S rRNA amplicon sequences, with volumes >1
L generally encouraged (Padilla et al., 2015); this is likely also true
for metatranscriptomic data, though has not yet been
systematically verified.

While larger seawater volumes are ideal for the collection of
sufficient biomass, the logistics of processing samples in the field
(e.g., shipboard) must also be considered. Nucleic acid sample
collection from seawater requires rapid filtration and
preservation (Frias-Lopez et al., 2008), otherwise RNA
degradation or unintended changes in the RNA pool may
occur (Gallego Romero et al.,, 2014; Kolody et al., 2022), and
cells may metabolically respond to changes in light and
temperature during long collection times. Peristaltic pumps in
conjunction with 47-142 mm in-line filter manifolds or Sterivex
(Millipore) filters enable large volumes to be filtered rapidly and
effectively (Table 1). Notably, filters may clog as biomass
accumulates, especially for small filter size fractions, impacting
filter effectiveness and sample quality. The filtration time may be
reduced by splitting volumes across multiple filters. It is
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TABLE 1 | Field processing procedures in recent marine microeukaryote metatranscriptomic studies.

Analysis Region Approx. Filtration Porosity Filter type RNA Library Sequence Reference
Seawater type (um) extraction prep platform
volume (L)
Experimental North Pacific 60 Shipboard 5-200 Polycarbonate Qiagen poly-A lllumina Alexander et al.,
Subtropical Gyre RNeasy Mini selection HiSeq 2015b
Kit
Experimental Ross Sea 0.45 Shipboard >0.2 Sterivex Life rRNA lllumina Bertrand et al.,
Technologies  depletion & HiSeq 2015
TRIzol poly-A
selection
Experimental Northeast Pacific & 8 Shipboard >0.8 Polyethersulfone Invitrogen poly-A llumina Lampe et al.,
California Current ToTALLY selection HiSeq 2018; Cohen
RNA Kit etal, 2017
Temporal North Pacific 7 Shipboard 0.2-100 Polycarbonate Invitrogen poly-A llumina Coesel et al.,
Subtropical Gyre TOTALLY selection NextSeq 2021;
RNA Kit Groussman
et al., 2021
Temporal California Current 1 Environmental >5 Polyvinylidene Invitrogen poly-A lllumina Kolody et al.,
Sample fluoride mirVana selection HiSeq 2019
Processor miRNA
(ESP) Isolation kit
Spatial & Temporal North Pacific 20 Shipboard 5-200 Polycarbonate Qiagen poly-A lllumina Harke et al.,
Subtropical Gyre RNeasy Mini selection HiSeq 2021; Becker
Kit et al., 2021
Spatial Global 100 - Shipboard &  0.8-5, 5- Polycarbonate NucleoSpin poly-A lllumina Carradec et al.,
150,000 plankton nets 20, 20— RNA Midi kits selection HiSeq 2018; Caputi
180, 180- et al., 2019
2000
Spatial central Pacific Ocean  100-1,000 Underwater 3-51 Acrylic Life rRNA lllumina Cohen et al.,
McLane Technologies  depletion & HiSeq 2021
pumps TRIzol poly-A
selection
Spatial San Pedro Ocean 15-35 Shipboard 0.7-80 GF/F Qiagen DNA/ poly-A lllumina Hu et al., 2018
Time-series (coastal RNA AllPrep selection HiSeq
Southern California) kit
Spatial & Temporal CalCOFI grid 4 Shipboard 0.22 Sterivex Machery- rRNA lllumina Rabines et al.,
(Southern California Nagel depletion & HiSeq &  2020a, Rabines
Current) NucleoMag poly-A NovaSeq et al., 2020b
RNA kit selection

The Analysis column indicates the type of metatranscriptional analysis performed, with “Experimental” representing incubations performed at sea, “Temporal” indicating surveys across
time, and “Spatial” referring to studies across horizontal (latitudes, longitudes) or vertical (depth) zonations. “Shipboard” filtration type refers to either vacuum or peristaltic pump devices

used in shipboard laboratories directly following seawater collection.

important to consider pump pressure levels during the filtration
process, as high pressure could rupture cells before preservation,
leading to RNA loss.

Increasingly, underwater battery-operated McLane filtration
pumps (Saito et al., 2014), Lagrangian-like Environmental
Sample Processors (Scholin et al.,, 2017; Kolody et al., 2019),
Autonomous Underwater Vehicles (Breier et al., 2020), and
other sensors (Ottesen, 2016) capable of in situ filtration at
ambient temperature and pressure are being utilized. High-
volume pumping mechanisms offered by McLane pumps and
AUVs in particular are ideal for concentrating large amounts of
biomass. These in situ approaches are useful for deep sea
sampling, where depressurization during traditional seawater
collection and processing may result in inaccurate assessments
of community dynamics (Edgcomb et al., 2016). Filtration time is
likely still important to consider in study designs using
underwater pumps, as long filtrations may result in an
integrated metatranscriptomic signal over time as biomass

aggregates. With any sampling system used, the time needed to
recover filters and preserve samples should be minimized (< 1
hour, if possible) to prevent RNA degradation.

Typical filter fraction size ranges for marine protists span 0.8 -
200 pm (Pesant et al, 2015) and generally align with the
plankton size fractions (Omori and Ikeda, 1992). In some
studies, no upper bound size threshold is used, and
multicellular eukaryotes are included in the analysis (Table 1).
It's important to note that the specific size fraction used to
capture protists will vary depending on the group of organisms
intended to collect, with characterized smaller protists such as
the green algae Ostreococcus approximately ~1 um in diameter
(Derelle et al., 2006), and members of the Foraminifera on the
larger end of the size spectrum at >150 um (Lo Giudice Cappelli
and Austin, 2019). Size-fractionated filtering can be an
advantageous strategy for capturing multiple distinct plankton
size classes (Villar et al., 2018), in which filter membranes are
either stacked and separated by backing filters, or arranged
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serially in separate filter manifolds. This approach may be
valuable in concentrating biomass from specific groups of
interest, but is imperfect as filters aggregate biomass especially
with large seawater volumes, and smaller than intended particles
may be captured on filters (Cohen et al., 2021). It is furthermore
difficult to directly compare gene expression across these distinct
size fractions, though may be approximated using biomass
normalizations (Dupont et al., 2015).

Filter membranes made of polyethersulfone or polycarbonate
are commonly used, and allow sufficient resuspension of material
during the RNA extraction procedure (Table 1). RNA rapidly
degrades, and instant RNA stabilization achieved via flash
freezing with liquid nitrogen is recommended prior to storage
at -80°C (Alvarez et al., 2015). If -80°C storage is not available on
ships, RNA can be stored up to 1 week at room temperature, 1
month at 4°C, or indefinitely at -20°C using the RNAlater
(Invitrogen) preservative reagent. However, RNAlater may
result in inadvertent physiological changes in the RNA pool
(Passow et al., 2019). Care should be taken in evaluating available
storage mechanisms in the field and the potential risks
of preservatives.

Biological replicates are generally required to determine
statistical differences in gene expression and physiology across
treatments or spatial zonation, but logistic constraints onboard
research vessels often prevent repeat collection of seawater. In
addition, microbial communities at a given location, depth, and
time of day can rapidly shift due to the heterogeneous and highly
dynamic nature of the ocean environment, complicating efforts
to obtain replicated snapshots of community composition and
function. This can however represent natural biological
variability in a system, and samples collected from the same
location may indeed serve as replicates, depending on the study
objectives and spatial scope. Researchers may instead prioritize
additional sampling depths, locations, or time points to capture
transcript pools with high resolution. Samples collected from
similar latitudes and depths may reflect similar biological
properties, thus demonstrating oceanographic consistency
across space and time (Cerdan-Garcia et al., 2021; Hogle et al.,
2021). High frequency sampling may identify metabolic trends
that either change on a diel cycle (e.g., energy partitioning), or
are unaffected by temporal dynamics (e.g., chronic nutrient
stress). In particular, there is significant diel periodicity in
metabolic processes carried out by protists in surface waters
(Kolody et al., 2019; Becker et al., 2021; Groussman et al., 2021),
and time of day should therefore be considered in
sampling designs.

RNA Extraction Procedure

RNA extractions from microeukaryotic cells collected onto filters
may be performed using popular commercially available kits
(Table 1). Common modifications include the addition of silica
or zirconia beads to lysis buffer and bead-beating to assist with
the physical disruption of cell walls during the RNA extraction,
which is useful for hard-shelled protists. Total RNA yields and
quality may be estimated using a Nanodrop spectrophotometer
(Thermo Scientific), though a Qubit fluorometer (Invitrogen),
Bioanalyzer (Agilent) or Tapestation (Agilent) will produce more

accurate estimates of RNA concentration, especially at lower
concentrations (Hussing et al., 2018). The RiboGreen (Promega)
fluorescent nucleic acid stain is another suitable option for RNA
quantification with high sensitivity (Jones et al, 1998). The
Bioanalyzer and Tapestation will additionally provide
information on RNA quality, including RNA integrity number
(RIN) scores, which reflect degree of RNA degradation. High RIN
scores represent high quality RNA (Schroeder et al., 2006). RIN
scores above 7 are encouraged for Illumina library preparation,
although low RNA yields and partial degradation that occurs
during the seawater filtration process may make it difficult to reach
high RIN scores (Alberti et al., 2017). However, certain protocols
allow modifications for low RIN RNA to be used in the library
preparation process.

In addition to relative transcript abundances obtained
through metatranscriptomic sequencing, approaches have been
developed to estimate transcript copies L' to more directly relate
metabolic information to biogeochemical measurements, and to
circumvent limitations inherent to relative analyses (Satinsky
et al,, 2013; Gifford et al, 2014). Custom-built plasmids or
commercially available mRNA internal standards (e.g., ERCC
Spike-In [Thermo Scientific], ArrayControl RNA Spikes
[Invitrogen], Sequins [Garvan Institute of Medical Research])
can be added to lysis buffer during the initial stages of the RNA
extraction, and will reflect losses during the laboratory
procedure. Assuming the exact volume filtered is known, the
number of added mRNA standard copies sequenced can be used
to estimate transcript concentration in the sample (Satinsky
et al, 2013; Gifford et al, 2014; see below). Increasing the
number of distinct mRNA standards spiked will strengthen the
copies-to-sequences estimation. An appropriate rule of thumb is
to add the mRNA spike concentration at a target ratio of ~1% the
total RNA pool (Gifford et al., 2014). Note that the number of
RNA copies per cell may differ by organism, with larger cells
generally containing higher RNA concentrations (Marguerat and
Biahler, 2012). Transcript pools furthermore fluctuate over the
course of a day, with phytoplankton groups under different diel
transcriptional regulation (Groussman et al., 2021). These factors
may contribute to the copies L™ estimate among taxa not fully
scaling with absolute cell densities. It is recommended to collect
direct information on biomass, including pigments and/or cell
counts (flow cytometry, fluid imaging, microscopy, etc), to
provide environmental context for transcript-derived copies L.

Sequencing Platforms & Library
Preparation
Popular and cost effective second generation sequencing
technology platforms for metatranscriptomics include Illumina
Miseq and Hiseq (Table 1), with these older platforms being
replaced by the newer and more efficient Nextseq and Novaseq.
Novaseq currently offers the greatest output (~20 billion reads
per run), with the Miseq platform still offering the longest read
lengths (2 x 300 base pairs) but Novaseq not far behind with 2 x
250 base pairs possible using the Novaseq SP flow cell.

For mRNA-Seq studies performed with the Illumina
platform, RNA is converted to cDNA and fragmented as part
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of the sequencing library preparation process. It is important to
ensure that the sequencing library preparation method chosen
enriches for protein-coding RNA, or messenger RNA (mRNA),
because the majority of the total RNA pool in eukaryotes consists
of ribosomal RNA (rRNA) (Bush et al., 2017). Two approaches
may be used: rRNA depletion, in which rRNA is removed and
non-coding RNA and mRNA remain, and polyadenylated RNA
(poly-A) selection, in which mRNA containing poly-A tails
(characteristic of eukaryotic mRNA) is selected along with
other poly-A-containing non-coding RNA (Cui et al,, 2010).
The methods differ in resulting RNA pools, coverage, and
quantitative accuracy (Zhao et al,, 2018), with poly-A selection
yielding more protein-coding sequences at a given sequencing
depth (Chen et al., 2020). A key difference is that rRNA depletion
will select for mRNA from both microbial prokaryotes and
eukaryotes, while poly-A selection will be biased towards
eukaryotes containing poly-adenylated mRNA. Additionally,
rRNA depletion better recovers important eukaryotic organelle
transcripts without selection bias. These non-target sequences
may provide valuable information especially regarding plastid
expression (Smith, 2013), such as Rubisco and cytochrome
oxidase, which are of biogeochemical interest (Dupont et al,
2015; Kolody et al., 2022). It is unclear whether these non-target
sequences are truly able to be used comparatively across samples
or whether the level of non-poly-A RNA contamination differs
depending on sample matrix or other factors. Both rRNA
depletion and poly-A selection are commonly used in marine
microeukaryote studies (Table 1), and should be selected based
on specific scientific goals and interests. Note that when
analyzing metatranscriptomes processed using rRNA depletion,
recovery of eukaryotes might be low, and prokaryotes may
constitute the majority of the sequence library. Popular
methods for rRNA depletion include Ribo-Zero (Illumina) and
riboPOOLs, which are available in custom mixtures to reduce
rRNA from phylogenetically diverse species (siTOOLS Biotech).

Approximately 0.1 - 1 ug of total RNA is suggested for
standard whole transcriptome library preparation prior to
second generation sequencing using the TruSeq Stranded
mRNA library prep kit (Illumina), and as low as 25 ng using
the newer Stranded mRNA Prep kit (Illumina). Both of these kits
capture poly-adenylated mRNA. In many oligotrophic regions,
especially deeper in the water column, obtaining high
concentrations of RNA is not feasible given sampling and
experimental design limitations. Specialized ¢cDNA library
preparation kits are compatible with input material as low as
250 pg total RNA in which additional linear amplification cycles
are performed, such as with the SMART-Seq v4 Ultra Low Input
RNA Kit (Clontech). Although more expensive, the SMART-Seq
v4 approach produces similar results to those obtained using
larger RNA input (Song et al., 2018) and is a suitable option for
low RNA yields from oligotrophic or otherwise low biomass
regions of the ocean. Intriguingly, the SMART-Seq protocol
appears to capture a non-negligible pool of prokaryotic
transcripts despite enrichment for poly-A RNA, although this
has not been explicitly tested across library preparation kit
methods; a systematic comparison using natural marine

communities will be important for determining whether library
preparation biases are occurring. Due to these overt differences
in resulting sequence libraries between library preparation
methods and mRNA enrichment strategies, it is not
recommended to mix and match methods in a single
experimental dataset.

An alternative aquatic metatranscriptomic approach is
sequencing the entire RNA pool. This method provides
valuable information on transcriptionally active taxonomic
community members through dominant rRNA reads, with
limited insights into the functional composition gained
through the abundant mRNA captured (McCarren et al., 2010;
Shi et al., 2012; Baker et al., 2013; Lanzen et al., 2013; Wu et al,,
2013). This method is therefore most appropriate when
functional characterization is of secondary importance to
taxonomic composition.

Third generation sequencing platforms are gaining in
popularity and hold great potential for long read
metatranscriptomic sequencing with high accuracy and
throughput, without PCR amplification bias or short read
assembly challenges (Kerkhof, 2021). In contrast to the
Mumina library preparation process in which RNA is required
to be converted to ¢cDNA, third generation sequencing
technology can sequence RNA molecules directly. These
applications to the marine environment are nascent and still
being developed, with current limitations including relatively
high read error rate and inter-run variability (Semmouri et al.,
2020). However, preliminary findings show successful
application to marine pelagic zooplankton communities, with
high predicted protein content (Semmouri et al., 2020).
Metatranscriptomes generated using third generation
sequencing platforms will have the added benefit of detecting
long 18S rRNA molecules in the sequenced RNA pool, providing
a direct assessment of community composition alongside
predicted proteins (Semmouri et al., 2020).

BIOINFORMATIC PIPELINE
RECOMMENDATIONS

After RNA is collected from field sites, extracted in the
laboratory, and sequenced, the bioinformatic process begins
(Figure 1). Oceanographic research publications are generally
required to include field and lab-based methods in enough detail
to enable reproducibility. Unfortunately, details regarding
bioinformatic tool usage are not always included in study
methods, and it can therefore be difficult for others to replicate
analyses and determine how each step of the bioinformatic
pipeline influences downstream biological interpretations. In
addition, many tools and pipelines are not created with
microeukaryotes in mind, and special parameters, settings, or
considerations may need to be applied. Typically tools are chosen
for a specific research question or purpose, meaning that one
researcher’s approach may not be suitable in other
circumstances. Therefore, disclosing details and reasoning for
performing these critical computational steps will help the
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FIGURE 1 | Flow chart of a metranscriptomic pipeline designed for marine microeukaryotes (right). Visual depiction of the main workflow steps, including cell
extraction, sequencing, assembly, read mapping, and annotations (left). Example annotations are shown for three phytoplankton taxa (Ellis et al., 2017, Cohen et al.,
2017, Wu et al., 2019, Rao, 2020). Note that many predicted proteins do not correspond to a known functional annotation. Example graphics and statistical
approaches used to investigate metatranscriptomic output (bottom): Ordinations may be created using orthologous groups or functional annotations aggregated to
the taxonomic level of interest. Heatmaps are constructed using normalized gene expression and can be subset to include biostatistically or biologically relevant
genes. Heatmaps and ordinations are useful in identifying similarities among sampling groups. 2D section plots show differences in the relative abundance of gene
expression across space (or time), highlighting shifts in ecological strategies. MA plots are created using normalized gene expression corresponding to taxonomic/
functional annotations or orthologous groups, and are useful in assessing differential expression between pairwise experimental treatments or groupings. Networks
are built using normalized gene expression corresponding to taxonomic/functional annotations or orthologous groups, and highlight co-occurring genes. They can be
paired with metadata to identify groups of genes correlated with environmental parameters. Stacked barplots represent the relative community composition across
samples, and can be produced using raw reads or normalized read counts (e.g., TPM) associated with contigs and/or predicted proteins.

broader community evaluate the method. It is especially helpful
to include a short justification for the method chosen in study
descriptions. This transparency will reduce the steep learning
curves in computational biology by encouraging such consistent
practices and open data sharing policies.

There has been a concerted effort in the biological data
science community to adhere to FAIR (findable, accessible,
interoperable, reusable) principles in order to improve
reproducibility (Garcia et al., 2020), and the oceanographic
community is beginning to benefit from the adoption of these
practices. In addition to fostering a culture of open data and
enabling broader usage of data products, there is tremendous
value in making computational code, pipelines, protocols and

intermediate products available to new data scientists that are
beginning their bioinformatic pursuits.

One avenue for this is sharing analysis and visualization code
accompanying published studies on public servers, such as
GitHub or personal websites, which is increasingly done by
marine microbial ecologists. Code is most useful when
annotated to facilitate readability, which is effectively done
using rendered reports (Markdown) with RStudio and Jupyter
Notebook. Tools such as Binder allow users to work in exact
coding environments used to produce data, including loaded
pre-requisites and input variables accessible through a website.
Documentation in the form of personal blogs that accompany
analyses are ideal tools for conveying underlying concepts
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anddetailed thought processes going into analytical decisions,
which are valuable educational resources for others in the
microbial ecology field (e.g., polarmicrobes.org/antarctica-blog,
merenlab.org/posts). Raw sequences are typically required to be
uploaded to public repositories before publication, such as the
National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA), and intermediate data files
including assemblies, annotations, and read counts can
similarly be shared on open-access repositories (e.g., Zenodo).
In addition to these avenues for sharing computational
resources, laboratory protocols can be archived on websites
such as protocols.io, which brings new practitioners up to
speed with technical logistics involved in sample acquisition
and helps standardize sample processing.

Below we describe a typical metatranscriptomic bioinformatic
analysis and provide an example workflow using second
generation sequencing (Figure 1 and Supplementary Figure 1).
We encourage new users to consult existing code, tutorials, and
blog posts compiled by other data scientists to gain familiarity with
these computational steps. Ideally, these new users will share code
once their analysis is complete, and the oceanographic community
as a whole will benefit from the incorporation of these open data
science practices.

Compute Environment

Once raw sequences are generated, a series of bioinformatic steps
are performed to assemble reads into transcripts de novo,
quantify gene expression, and assign taxonomic and functional
annotations. These steps may be performed individually or as
part of an automated workflow in a Linux-based environment, or
within a GUI web-based platform (e.g., Galaxy). It is
recommended to store all raw files in read-only format in
more than one place. Many of the steps in metatranscriptomic
analyses are computationally intensive and cannot be performed
on the typical laptop or workstation. As such, access to a high
performance computing cluster through an institution or
national resource (e.g. XSEDE) or access to cloud based
compute resources (e.g. Azure, Amazon Web Services) is often
necessary. Broadly, the steps of assembly, quantification, and
annotation require access to resources, with typical smaller scale
projects benefiting from 25-40 cores and 250-400 Gb of RAM,
and needs scaling with the size of the dataset and choice of tools.

Quality Control

Raw reads are trimmed to remove poor quality base pairs
common on the ends of Illumina reads, and to clip off
sequence adapters. Numerous tools are available for trimming
sequences, including Trimmomatic (Bolger et al., 2014), FASTX-
Toolkit (hannonlab.cshl.edu/fastx_toolkit), or cutadapt (Martin,
2011), with these tools universally compatible with Illumina
sequences. The quality of sequences pre- and post-trimming
can be evaluated using tools such as FastQC (www.
bioinformatics.babraham.ac.uk/projects/fastqc), or evaluated in
batch with MultiQC (github.com/ewels/MultiQC), which
will additionally summarize total number of reads among
other useful metrics. While often an aggressive approach
to trimming has been taken, work in single species

transcriptomes suggests that a less stringent trimming of only
those reads whose Phred sequence quality score <2 or <5 is
sufficient and optimal across a variety of downstream metrics
(MacManes, 2014).

Removal of Contaminants and/or Spiked
Sequences

Non-poly-A RNA or organelle mRNA may have been sequenced
along with nuclear mRNA, especially if rRNA depletion was used
as the library preparation. Ribosomal RNA is not included in most
reference databases, and alignments of these sequences will be
patchy and inconsistent. These sequences can be removed prior to
the analysis by alignment against reference rRNA sequences using
tools such as riboPicker (ribopicker.sourceforge.net), SortMeRNA
(Kopylova et al., 2012), or BBDuk within the BBTools suite (jgi.
doe.gov/data-and-tools/bbtools). In addition, if used, nRNA spike
sequences will be useful for copies L™ quantification, but do not
need to be included in the downstream analysis. Non-target
sequences can be removed by aligning against a spike reference
fasta file, for example with BBMap sourceforge.net/projects/
bbmap/.

Assemblies
Taxonomic and functional interpretations of RNA-Seq data
could theoretically be achieved by aligning reads to annotated
eukaryotic genomes and metagenomes, however, we lack
genomic representatives that cover the extreme diversity found
in the natural environment, and de novo assemblies are
commonly used instead (Lau et al., 2018). The de novo
assembly process relies on elongating individual short reads
into contiguous sequences (contigs) using overlapping
sequences of length k, or k-mers (Robertson et al., 2010).
Popular assemblers for eukaryotic transcriptomes include
Trinity (Grabherr et al.,, 2011), Trans-ABySS (Robertson et al.,
2010), rnaSPAdes (Bushmanova et al., 2019), IDBA-Tran (Peng
etal,, 2013),and MEGAHIT (Li et al,, 2015), among others (Ortiz
et al, 2021), which differ in their algorithmic basis, relative
performance, and the number and length of contigs generated.
Although these assemblers were designed for metagenomics
(MEGAHIT) or transcriptomics (Trans-ABySS, Trinity,
rnaSPAdes, IDBA-Tran), they are largely compatible with
environmental metatranscriptomes (Lau et al., 2018) and
eukaryotic sequences (Ortiz et al., 2021), with rnaSPAdes and
Trinity performing particularly well for marine microeukaryotic
communities in terms of the number of high quality and
annotatable contigs produced (Krinos et al., 2022).
Quality-trimmed reads should be used as input during the
assembly process, with some assemblers capable of handling
multiple pairs of reads (co-assembling), depending on
computational constraints. For large datasets, individual
assemblies can be generated from each set of reads, which
could then be merged together and de-replicated by clustering
at high sequence similarity (95-100%) using tools such as cd-hit
(Li and Godzik, 2006) or MMseqs2 (Steinegger and Soding, 2017;
Krinos et al., 2022). Broadly, assembly metrics (e.g. percent
mapped reads) improve with a multi-assembler approach in
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which assembly output from different tools are combined (Ortiz
et al,, 2021; Krinos et al, 2022). In this case, the resulting
assembly will contain contigs generated from all communities
sampled and different assembler algorithms used. De novo
assembling with metatranscriptomic reads from closely related
taxa may inadvertently introduce spurious and/or chimeric
contigs, in which reads from different transcripts are combined
and would not reflect true protein pools. Certain transcriptomic
assemblers are better at controlling chimeric contigs than others,
with Trans-ABySS and IDBA-Tran stable across a range of k-
mers (Wang and Gribskov, 2016).

Third generation sequencing reads can be assembled to
produce high quality, long contigs using de novo assemblers
such as metaFlye, which take into consideration challenges
specific to long reads, such as uneven coverage among species
sequenced (Kolmogorov et al.,, 2020). The informatic
methodology will need to be reconsidered as third generation
sequencing becomes more commonly applied and directly
compared to older, short read-based studies. In particular,
hybrid assemblies combining short and long reads benefit from
the throughput/low error rates of short sequences and added
structural information provided by long sequences (Prjibelski
et al., 2020). This capability has been recently built into the
MUFFIN metagenomic workflow (van Damme et al., 2021) and
the rnaSPAdes assembler (Prjibelski et al., 2020), with the
rnaSPAdes hybrid approach successfully applied to marine
phytoplankton in culture (Sperfeld et al., 2021).

Read Mapping

Trimmed reads can be aligned to the de-replicated, final
assembly to estimate gene expression across samples.
Alternatively, reads may be aligned to assemblies generated
from individual samples, although relative comparisons across
samples could then only be made at the fold change or gene ratio
level. When aiming to draw direct comparisons in community
composition and gene expression across a dataset, it is simplest
to align to the same reference assembly, so that reads are allowed
to align to the closest possible contig match, rather than only
those contigs assembled from an individual sample.

Read mapping can be performed using traditional alignment
tools such as Bowtie2 (Langmead and Salzberg, 2012) or BWA
(Li and Durbin, 2009) which map short reads against a reference
transcriptome or genome. Newer alignment options include
Salmon (Patro et al., 2017) and Kallisto (Bray et al., 2016)
which use quasi-mapping and pseudo-alignment approaches,
respectively, rather than base-to-base alignments, performing
rapid alignments while preserving high sensitivity and accuracy.

In addition to mapping reads to the de novo assembly, another
option is to map metatranscriptomic reads to transcriptome and
genome references directly, for example the MMETSP database.
This method could identify community members present that
closely match cultured species or strains of interest without the
effort of de novo assembling, and can capture organisms that
failed to assemble into high quality contigs (Alexander et al,
2015a; Metegnier et al., 2020; Harke et al., 2021; Muratore et al.,
2022). However, is it important to note that current reference
transcriptome databases are limited relative to the tremendous

taxonomic diversity of eukaryotes in seawater (de Vargas et al.,
2015), and this approach could therefore miss key taxa that
are present.

Quantification of Transcripts
Transcript abundance can be estimated using mRNA standards,
as developed for marine prokaryotes (Satinsky et al., 2013; Gifford
etal, 2014; Satinsky et al,, 2017). In order to determine how much
standard to add prior to sample extraction, test filters can be
collected and sacrificed from representative stations/depths with
differing levels of biomass (chlorophyll a fluorescence).
Conversely, standards can be added after RNA is extracted,
although this “quasi-standard” would no longer take into
account RNA loss during the extraction procedure, and would
lead to an overestimate of mRNA abundance.

Transcript abundances can be normalized by the volume
filtered to approximate copies L ":
P v 1
volume filtered

. total reads X
Copies; L™ = reads; x

total reads

where reads; are the raw read counts of transcript i, spike reads
are the raw read counts associated with the mRNA spike
standard, spike copies are the amount of mRNA copies
(molecules) added to samples prior to sequencing, fotal reads
are the number of mRNA reads in the sequence library (minus
spike reads), and volume filtered is the amount of seawater
filtered. Normalized counts may be used (e.g., TPM) in place
of raw read counts in these absolute transcript calculations,
which would account for transcript length bias (Mortazavi
et al., 2008; Bartholomaius et al., 2016).

Protein Predictions and Orthologous
Group Clustering

Proteins are predicted from assembled contigs (transcripts)
through open reading frame (ORF) prediction software, such
as TransDecoder (transdecoder.github.io) or GeneMark S-T
(Tang et al, 2015). If using the metatranscriptome as a
reference for a metaproteomic peptide-spectrum-matching
(PSM), the ORF predictions are the FASTA database used for
PSM scoring (Cohen et al., 2021).

Annotations

Taxonomic Assignments

Assigning taxonomic annotations to contigs allows for
examinations into community composition across spatial
and temporal gradients, or as a function of experimental
perturbations. Taxonomic assignments are performed by
aligning assembled contig sequences against a reference
database. For identifying marine microeukaryotes in the
field, it is key to use a database that includes transcriptomes or
genomes from laboratory isolates or environmentally derived
single-cell marine microeukaryotes. The MMETSP database
includes 678 marine microeukaryote transcriptomes, including
phylogenetically diverse and ecologically relevant taxa (Keeling
et al.,, 2014; Johnson et al., 2019). Databases including MMETSP
references such as EukProt (Richter et al., 2020), EukZoo
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(github.com/zx1124/EukZoo-database), and PhyloDB
(allenlab.ucsd.edu/data) are valuable resources with additional
transcriptomes and genomes present. Sequences may be aligned
to these databases using tools such as BLAST (Altschul et al,
1990), DIAMOND (Buchfink et al., 2015), and MMseqs2
(Steinegger et al., 2017), with quality thresholds commonly
used to assess goodness of fit including E-value cutoffs (e.g.,
E < 10°), high sequence similarity percentage, and/or high bit
score. EUKulele is a taxonomic annotation tool designed for
marine microeukaryotes, and can perform BLAST or DIAMOND
alignment searches against custom or default databases,
including MMETSP (Krinos et al,, 2021). For contigs with
numerous hits exceeding a quality threshold, a Least Common
Ancestor (LCA) approach is used to assign annotations at the
lowest common taxonomic level. It is recommended to include
marine bacteria, metazoa, and common contaminants in the
databases for purposes of identifying these community members,
if present, and avoiding misannotation. For example, the default
EUKulele database includes the MarRef database of marine
prokaryotic genomes (Klemetsen et al, 2018; Krinos et al,
2021). In addition, using databases containing reference
transcriptomes that have been screened for multi-species
presence and decontaminated are preferred (Van Vlierberghe
et al., 2021).

It is crucial to remember, however, that we are ultimately
limited in identifying taxonomy by what is available in our
databases. If eukaryotic organisms captured in field studies are
unrelated to cultured representatives included in taxonomic
databases, with sufficiently low sequence similarity, they will be
unannotated or misannotated. MMETSP has expanded sequence
coverage of diatoms, prasinophytes, and dinoflagellates (Keeling
et al., 2014), but a large number of ecologically relevant taxa
remain missing from reference databases, especially those from
the depths of the ocean where protistan diversity is quite high
(Schoenle et al., 2021). Testing multiple databases containing
different protistan reference organisms may be helpful during
initial explorations of datasets. Generally, ~40-60% of marine
metatranscriptomic contigs can be assigned a taxonomic
annotation (e.g., Cohen et al., 2017; Carradec et al,, 2018; Hu
et al,, 2018). The gene expression profiles captured with
metatranscriptomics will represent a mixed community cellular
state and the community’s dominant response to the
environment. Considering the vast taxonomic and metabolic
diversity across microeukaryotic species, limited reference
databases may not fully capture environmentally-relevant
features. Moving forward, focused efforts on sequencing
additional diverse organisms from rarer lineages and further
populating reference databases will improve field identifications.

Functional Assignments

Functional annotation of transcripts enables investigations into
ecophysiology, resource exchanges between organisms and the
environment, and contributions to elemental cycling. Similar to
taxonomic assignments, functions can be assigned via sequence
homology searches to protein databases including eukaryotic
references such as Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al., 2016a), Eukaryotic Ortholog Groups

(KOG) (Tatusov et al., 2003), and Gene Ontology (GO) (Gene
Ontology Consortium, 2004) using likelihood thresholds (e.g.,
E < 107). These databases have the advantage of grouping
proteins by higher order function, allowing for broad
classification into functional categories. In addition to these
approaches, hidden Markov model (HMM) profiles searches
executed via the HMMer software suite (Finn and Clements,
2011) in conjunction with protein databases [e.g., Pfam (Finn
et al, 2014)] enable the identification of conserved protein
domains, which can provide more remote information
compared to local alignments. However, these conserved
domains are not indicative of whole protein function and are
not as easily classified into broader functional categories.

Certain existing tools and workflows perform combinations
of the taxonomy and functional annotation steps listed above.
For example, eggNOG-mapper provides KEGG, GO, Pfam, and
other protein annotations as output using HMMer,
DIAMOND, or MMSeqs2 searches against the eggNOG
database (Cantalapiedra et al., 2021). KOfamScan searches
query sequences against the KEGG database using HMM
profiles (github.com/takaram/kofam_scan). Trinotate is a
workflow for non-model organisms that carries out
assemblies with Trinity and annotates using eggNOG, GO,
and Pfam, among other databases (Bryant et al., 2017). Web-
based servers are also available (BlastKOALA, GhostKOALA,
KofamKOALA) which annotate assembly fasta files against the
KEGG database using sequence homology or HMM
profile searches, in a web user interface (Kanehisa et al.,
2016b). Users may choose an annotation procedure that
aligns with their needs, level of automation desired, and
preferred computational environment.

Normalizations

Sequence libraries are commonly normalized to account for non-
biological variability (e.g., large differences in total number of
reads among samples, or library sizes) thereby allowing for
relative comparisons across a dataset (Abrams et al., 2019).
Popular RNA-Seq normalization and differential expression
tools include EdgeR (Robinson and Oshlack, 2010; Robinson
et al.,, 2010) and DESeq2 (Anders & Huber, 2010; Love et al.,
2014), which correct for RNA composition bias during
normalization, and estimate differential expression by fitting
generalized linear models and assuming negative binomial
distributions. False discovery rate (FDR) controlled p-values
are used to account for multiple hypothesis testing within large
gene expression datasets (Reiner et al., 2003). EdgeR and DESeq2
are ideal for comparative analyses in which similar marine
communities are subjected to treatments or conditions in order
to address experimental hypotheses. These software tools offer
dispersion shrinkage estimation and outlier detection to decrease
the uncertainty of differential expression annotations (Love et al.,
2014). It is important to note that applying differential
expression tools for community-level metatranscriptomic data
requires the organization of these data into taxon-specific bins
for the purposes of scaling the count matrix, thereby isolating
taxon-specific gene expression changes (Klingenberg and
Meinicke, 2017).
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These approaches make key assumptions about most genes
not being differentially expressed, and care should be taken when
comparing disparate marine ecosystems (e.g., surface and deep
populations, or surface waters from eastern and western ocean
basins). Normalization approaches that merely account for
changes in sequence library and differences in contig length,
such as Transcripts Per Million (TPM) (Wagner et al., 2012),
may be better suited for large spatial or temporal field studies,
although these methods cannot provide statistical estimates of
differential expression and may retain transcript composition
biases (Cockrum et al., 2020; see below: Consolidating
assemblies). Flexible and adaptive statistical techniques that
take into consideration zero-inflation, such as Tweedie models,
may be useful for metatranscriptomic analyses and are worth
exploring in marine omic datasets (Mallick et al., 2021).

Workflow Managers

As evident from the above descriptions of typical
metatranscriptomic pipelines, many individual computational
steps are required. Workflow managers are valuable for the batch
execution of commands and processing steps across samples.
Individual executions may otherwise be tedious, lead to
inconsistencies and/or errors, and fail to be reproducible. Of
the open-source workflow managers, Snakemake is a popular
Python-based user-friendly option with rich documentation
available (Koster and Rahmann, 2012). Many established
Snakemake-based workflows are publicly available on code
sharing repositories such as GitHub, and may be a useful
starting point. For example, eukrhythmic is a scalable
metatranscriptomic assembly workflow designed for marine
microeukaryotes (Krinos et al., 2022), and many of the above
outlined bioinformatic steps have been incorporated into
eukrhythmic (github.com/AlexanderLabWHOI/eukrhythmic).
In addition, the SqueezeMeta analysis pipeline is suitable for
metatranscriptomic assembly and compatible with long read
sequences (Tamames and Puente-Sanchez, 2019).

CONSOLIDATING ASSEMBLIES

It can be difficult to interpret large assemblies in which tens of
millions of contigs are produced from mixed natural
communities and most contigs do not correspond to a known
protein function. There are several considerations for
consolidating assemblies and streamlining the analysis,
including orthologous group clustering and functional/
taxonomic aggregation.

A subset of assembled metatranscriptomic contigs do not
encode proteins due to being fragmented and/or chimeric, and
this can be a function of RNA pool composition, sequencing
depth, type of assemblers used, and protein prediction
algorithms and parameters applied. It can therefore be helpful
to remove non-coding sequences by predicting ORFs, and
strictly using ORFs for read mapping and the quantitative
analysis of taxonomic and functional groups. Orthologous
groups (OGs) are commonly used to further collapse proteins

into protein clusters derived from common ancestors, performed
using tools such as OrthoFinder (Emms and Kelly, 2019), which
uses a phylogenetic approach with multiple algorithms to
identify relationships between genes and species. In contrast,
OrthoMCL uses a reciprocal best hits approach with the Markov
Clustering Algorithm (MCL) (van Dongen 20005 Li et al., 2003).
These OGs can be used to track changes in function among
closely related protistan taxa. However, one consideration for
OG clustering is that it is highly dependent on clustering
thresholds (e.g., percent sequence similarity), with stringent
parameters limiting cross-species aggregation, and very lax
parameters enabling cross-species clustering (Krinos et al.,
2022). OG aggregation may be particularly valuable for
collapsing read counts into evolutionarily related taxonomic
groups and functional genes, effectively reducing the large
assembly into more biologically meaningful groupings.

Aside from OG clustering, another popular approach for
condensing assemblies has been to aggregate read counts to a
common taxonomic and functional classification. For example,
combining reads to the supergroup, class, or family level and
KEGG Orthology ID. Read counts can either be collapsed
(summed) into taxonomic and functional annotations before
normalization, or summed following normalization. Transcript-
estimating tools such as tximport can automate this step by
converting read counts associated with transcripts (contigs) to
gene level annotations and generating normalized reads as
community-wide TPM (Soneson et al., 2015). An important
consideration is the taxonomic level of interest in which to
aggregate counts, and will differ depending on research focus.
The primary disadvantage of working at a fine taxonomic
resolution (e.g., species) is that fewer sequences can be
confidently assigned to such a level, and users may be inundated
by the overwhelming number of species to analyze. On the other
hand, broad class level annotations (e.g., diatoms, dinoflagellates,
haptophytes) are a composite of vastly different organisms, some
of which may be responding to the environment in distinct ways
(Alexander et al., 2015a; Lampe et al., 2018). Testing various
taxonomic annotation levels can be helpful in determining the
resolution most biologically meaningful for a given dataset. This
approach relieves concern about mixing different species or genera
into one group, as may occur with OG clustering, and provides
taxon-specific counts. However, a key issue is that a significant
fraction of coding sequences do not have a known protein
function (low sequence similarity to references in databases),
similar to observations with assembled genomes and
metagenomes (Vanni et al,, 2021). This approach therefore
limits biological interpretations to only a fraction of the
predicted proteins included in the downstream analysis.

INTERROGATION & VISUALIZATION

When working with experimental treatments or pairwise
comparative conditions, MA (log ratio-mean average) plots are a
straightforward approach for visualization, highlighting highly
abundant and variably expressed genes in specific taxa of interest
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(Supplementary Figure 2). These are created by plotting log fold
change by average normalized gene expression, and can be
generated directly through EdgeR and DESeq2 packages. In
addition, MANTA plots are a useful way to depict the MA
relationship with pie charts representing the relative breakdown
of taxonomic composition for each functional annotation (see
github.com/AlexanderLabWHOI/2022-metaT-m3-perspective for
code). Fold change comparisons are ideal for visualizing the
magnitude of change in expression across samples, which can be
difficult to discern from normalized transcript abundance alone.
Similarly, volcano plots highlight differentially expressed genes with
statistical support by graphing fold change by FDR
(Supplementary Figure 2). Datasets from spatial and temporal
studies may also be averaged across time or space zonations to
visualize in MA plots, for example by averaging gene expression
across all surface and deep communities. However, these broad
groupings may conceal biologically relevant patterns across
environmental features. In conjunction with these, exploratory
approaches may be used to find structure across latitudes and
depth, including ordinations, clustered heatmaps, and
network analyses.

Ordinations are used to distill multidimensional data into two
or three dimensions for visualization. Omic data is highly
dimensional, with the number of annotated genes commonly
reaching the thousands. Popular unconstrained ordination
approaches include Principal Component Analysis (PCA) based
on Euclidean distance, Principal Coordinate Analysis (PCoA)
compatible with other forms of dissimilarity measurements, and
Nonmetric Multidimensional Scaling (NMDS) which ranks
distances in nonlinear space iteratively (Ramette, 2007). With
these unconstrained ordinations, the relationship between
metadata and ordination space can be assessed, for example
using the envfit function of vegan (Dixon, 2003). Constrained
ordinations such as Canonical Correlation Analysis (CCA) and
Redundancy Analysis (RDA) can be used to evaluate how
transcriptional profiles change across sample groups according
to metadata, such as environmental measurements or categorical
variables (Ramette, 2007). (See github.com/AlexanderLabWHOI/
2022-metaT-m3-perspective for example CCA ordination
tutorial). Broadly, these approaches can be used to find
similarities in gene expression profiles across sample types and/
or relate transcript levels to environmental conditions.
Ordination plots have been utilized to show time-dependent
patterns in microeukaryote gene expression (Groussman et al,
2021), taxon-specific microeukaryote functional profiles (Hu
et al,, 2018), and differences in surface and deep dinoflagellate
metatranscriptome profiles (Cohen et al., 2021). The input data
for ordinations may be normalized read counts associated with
annotated or unannotated transcripts at the community level
(e.g., community-wide TPM), or normalized at a given taxonomic
level of interest (e.g., haptophytes).

Gene expression profiles can be effectively compared across
samples using heatmaps, clustered using a statistical similarity
metric and highlighting relationships among treatment groups,
ocean regions, or temporal dimensions. Typically, columns
represent individual samples, rows represent genes, and colors

represent normalized read counts. These heatmaps can include all
genes within the expression profile or subset to highlight specific
genes of interest. Care should be taken when subsetting expression
profiles to include differentially expressed genes, because in the
absence of biostatistical tests, differential expression cannot be
reliably determined. Transcripts with the highest variances can be
calculated, but this will be biased towards highly expressed genes
since variance increases with transcript abundance in a
heteroscedastic manner (Law et al., 2014). It is therefore
recommended to correct for the mean-variance relationship (as
performed by EdgeR and DESeq2) or perform a transformation
such as log normalization; however, log-normalizing prior to
calculating variance can have the opposite effect and result in
high variances of lowly expressed genes. Normalizations that
effectively control for heteroscedasticity, such as the variance
stabilizing transformation, are recommended to improve
differential expression assessments (Zwiener et al., 2014).

Marine metatranscriptomic datasets can be quite large,
consisting of billions of reads, millions of contigs, and
thousands of annotated genes. Network analyses can be used
to identify ecological connections between taxonomic groups,
associations among functional processes, and/or link
environmental metadata with expression patterns. This
approach has been used to characterize the nutrient status of
phytoplankton along an estuary gradient (Gong et al.,, 2018),
identify diel metabolic patterns across protists (Kolody et al.,
2019), and reveal co-occurrences between limiting resources and
protistan taxa (Caputi et al., 2019). Ecological network analyses
are frequently performed with Weighted Gene Correlation
Network Analysis (WGCNA) (Langfelder and Horvath, 2008),
igraph (Csardi and Nepusz, 2006), and sparCC (Friedman and
Alm, 2012), with Cytoscape software commonly used for
visualization of networks and interactions following creation
(Shannon et al.,, 2003). Input data may be annotated
transcripts with taxonomic and functional assignments and
normalized read counts at the community level, and output is
clusters or modules of closely related (co-occurring) associations
defined by user-specified thresholds. These modules can be
correlated with metadata to understand environmental
conditions influencing taxonomic and/or metabolic processes.
In particular, KEGG or GO-enrichments can be performed on
modules to expand on how functional profiles are biologically,
spatially or temporally organized.

Section plots, or 2D maps, are used to visualize changes in
relative (normalized) or quantitative (copies L') gene expression
across lateral and vertical expanses. This type of visualization is
especially useful if high resolution sampling along transects was
performed. Section plots can be generated using matplotlib
library in Python (Saito et al., 2020), oce package in R
(dankelley.github.io/oce), or software such as Ocean Data View
(Schlitzer, 2018). This visualization method can highlight shifts
in metabolic processes across depths, nutrient conditions,
temperature regimes, or biomes (e.g., Saito et al., 2014; Santoro
et al,, 2017; Hogle et al., 2021). Highlighted genes may include
those with strongly varying expression between zonations, or
individual genes of interest hypothesized to be comparatively
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responsive to environmental conditions, such as biomarkers of
nutrient stress (Saito et al., 2014). It is recommended to be
cautious when interpreting weak and/or variable signals from
genes that are not highly expressed, especially when biological
replication is not available.

TIPS FOR GETTING STARTED

As discussed above, the learning curve associated with
bioinformatics can be steep, and many resources exist to aid in
the process. The Carpentries is an international organization that
teaches foundational coding principles to learners of any
background, with educational materials publicly available
online (Wilson, 2006). Their lessons can equip users with basic
knowledge of Unix, Python, and R, with more advanced concepts
also available, including genomics, ecology and graphical
visualizations (datacarpentry.org/lessons, software-
carpentry.org/lessons). Additionally, universities with high
performance computing clusters commonly have coding
training sessions available to users. Specifically for
microbiologists, the community initiative Bioinformatics
Virtual Coordination Network (BVCN) aims to teach core
coding and bioinformatic skills needed for omic analyses
through publicly accessible lessons, tutorials, and video content
available online (Tully et al., 2021). Lastly, it is key to learn how
to effectively troubleshoot while coding, and user-based
discussion boards are excellent venues for discovering how
others have solved similar problems, asking questions, and
sharing solutions. Biostars.org, Stackoverflow.com, and Github
Issues have been invaluable community resources during our
own bioinformatic development.

FUTURE DIRECTIONS

The guidelines and considerations presented here reflect the
current methodology used to analyze microeukaryotic
metatranscriptomes, but approaches will evolve as new tools,
pipelines and databases come online. Users are encouraged to
keep up with new versions of released databases and tools, and
check documentation often to incorporate updates in
computational steps (i.e., improved efficiency or accuracy, bug-
fixes). In particular, focused community efforts on transcriptome
sequencing of phylogenetically diverse protists will improve
metatranscriptomic databases and strengthen our ability to track
natural populations in the field. Single-cell transcriptomics (sc-
RNA-Seq) performed on uncultured organisms isolated from the
field will be especially valuable in expanding taxonomic and
functional sequence coverage of microeukaryotes from complex
communities (Wilms, 2021; Kolody et al., 2022).

Importantly, third generation sequencing technologies are
promising avenues for microbial ecology that have rapidly
developed over the past few years. Nanopore sequencing via
the portable MinION and benchtop promethION platforms
(Oxford Nanopore Technologies) and PacBio Single-Molecule

Real-Time (SMRT) sequencing (Pacific Biosciences of
California) will enable full length transcripts to be sequenced
from mixed natural assemblages, without PCR amplification,
short-read assemblies, and associated biases. Existing
bioinformatic workflows will need to be updated to
accommodate this new sequencing technology, as many
publicly available workflows are currently designed for short
read sequencing products obtained through Illumina technology.
Increasingly, protocols are being developed for a combination of
short and long read transcriptome sequencing of marine
phytoplankton (Sperfeld et al., 2021).

The protocols outlined here have been compiled from
individual studies, which are the result of years of experience at
sea, in labs, and on the command line. As discussed above, there
are multiple options for carrying out each step of the process,
from seawater collection to bioinformatic handling. We currently
lack an understanding of how the different, yet congruent,
methods influence the downstream analyses and biological
interpretations. A community intercalibration exercise in which
multiple research groups analyze the same initial natural
community using their various preferred sampling, laboratory
and computational pipelines would advance our understanding of
how methodology influences results, and would increase
confidence in chosen practices. This is one of the goals recently
discussed at the “Ocean Nucleic Acids Omics Intercalibration and
Standardization” workshop funded by the National Science
Foundation’s Ocean Carbon & Biogeochemistry (OCB)
Program (Berube et al., 2022). The workshop report provides a
roadmap for such activities, including intercalibration efforts for a
variety of marine omics applications, with additional sampling
and processing considerations not covered here (Berube et al,
2022). Such activities are critical for the development of future
coordinated large oceanographic international programs, such as
BioGeoSCAPES (www.biogeoscapes.org).

Valuable insights have been provided by microeukaryote
metatranscriptomic studies to date, and exciting discoveries
certainly await us in the coming years as the approach continues
to be applied to diverse ecosystems and integrated with
complementary methods. A eukaryotic gene catalog consisting of
over 116 million expressed genes has been recently generated from
the ocean, expanding our understanding of protistan biogeography
and physiology as a function of environmental conditions
(Carradec et al, 2018; Caputi et al, 2019). Intriguingly, half of
the gene functions are not annotated, and targeted efforts into
protein characterization will drastically improve our understanding
of protistan ecology and their biogeochemical roles (Carradec et al.,
2018). There is furthermore value in combining marine
metatranscriptomics with traditional physiological and chemical
approaches (Marchetti, 2019; Wilms, 2021; Kolody et al.,, 2022),
which can strengthen and guide biogeochemical interpretations,
for example in relating metatranscriptomic community
composition to microscope-derived cell counts or gene
expression to empirically measured enzymatic rates. Integration
of metatranscriptomic information with metaproteomics enables a
broader view of protistan cell metabolism (Cohen et al., 2022), with
recent modeling efforts offering a mechanistic understanding of the
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relationships between environmentally responsive transcripts and
proteins in marine microbes (Walworth et al., 2022). Similar
pairings with metabolomics and/or lipidomics hold promise for
relating taxonomic groups and metabolic processes to released
organics, revealing trophic interactions among community
members and nutrient utilization patterns (Durham et al., 2015;
Heal et al., 2021; Muratore et al., 2022). Continuing to integrate and
apply metatranscriptomics to biogeochemically complex and
understudied marine ecosystems will undoubtedly shed light on
the diverse roles marine protists play across our ocean biomes.
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