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ABSTRACT

We present a deep reinforcement learning approach to

design an automotive radar system with integrated sensing

and communication. In the proposed system, sparse transmit

arrays with quantized phase shifter are used to carry out

transmit beamforming to enhance the performance of both

radar sensing and communication. Through interaction with

environment, the automotive radar learns a reward that

reflects the difference between mainlobe peak and the peak

sidelobe level in radar sensing mode or communication user

feedback in communication mode, and intelligently adjust its

beamforming vector. The Wolpertinger policy based action-

critic network is introduced for beamforming vector learning,

which solves the dimension curse due to huge beamforming

action space.

Index Terms— Deep reinforcement learning, integrated

sensing and communication (ISAC), automotive radar, sparse

array, beamforming

I. INTRODUCTION

Millimeter Wave (mmWave) vehicle radar, which operates

at 76-81 GHz, is one of the key technologies of

autonomous driving system and can sense the environment

under various weather conditions [1]. Multi-input multi-

output (MIMO) radar is a widely used cost-effective

and scalable solution for increasing antenna aperture size

by exploiting the idea of virtual sum coarray [1]. The

use of sparse arrays combined with MIMO radars can

further reduce costs without losing angular resolution [2].

Autonomous vehicles need to exchange information with

road infrastructure and other neighbor vehicles to achieve

operation coordination, especially in vehicle platooning [3].

Traditionally, the automotive radar sensing and vehicle

communication functions are implemented via separated

hardware. A dual-function radar communication (DFRC),

or integrated sensing and communication (ISAC) system

utilizes the same hardware platform to send electromagnetic

waves for both environment sensing and communication with

neighboring devices [4]–[10], which has found applications

in autonomous vehicles [11], [12].

Different strategies have been considered to design the

ISAC system. For example, array beampattern, such as the
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null region of the transmit pattern [13] or the unique steering

vector through transmit antenna selection [14] has been used

to encode the communication message. On the other hand,

optimization techniques have been proposed to optimize

the transmit matrix to realize sensing and communication

functions simultaneously by forming multiple beams [5],

[15]. A data-driven deep learning method has been proposed

to realize the ISAC system by forming the transmit matrix

in a quantized manner [16]. However, the generalization of

the data-driven deep learning approach to the scenarios that

are not considered during the training process is limited.

In practical systems, the values of antenna phase shifter

are quantized instead of continuous. For example, the

Texas Instruments (TI) imaging radar cascaded by four

AWR2243 radar chipsets supports 6-bit phase shifter

[17]. When the number of bits of phase shifter and

antenna elements increase, it becomes challenging to use

optimization or data-driven machine learning approaches to

design transmit beamforming. Deep reinforcement learning

has been introduced in beamforming design for mobile

communications [18], [19] using quantized phase shifters.

Value-based reinforcement learning, such as deep Q-

networks (DQNs) [20], [21], has great generalization

performance and has high training efficiency. However,

its computation complexity is extremely high due to the

dimensional curse.

In this paper, we present a Wolpertinger policy-assisted

[22] reinforcement learning framework to intelligently learn

a quantized transmit beamforming vector for a sparse tranmit

array in the automotive radar ISAC system. The action-

critic network is used to deal with the dimension curse of

deep reinforcement learning techniques due to huge action

space. The proposed ISAC automotive radar system not only

improves signal-to-noise ratio (SNR) for both radar sensing

and communication, but also is able to reduce mutual radar

interference [23], multipath propagation, especially in urban

streets and tunnel scenarios.

II. SYSTEM MODEL

We consider an automotive radar ISAC system exploiting

frequency-modulated continuous-wave (FMCW) consisting

of Nt transmit and Nr receiver antennas.

Assume there are Ns data streams to transmit, and there

are NRF t radio frequency (RF) beamforemers connected to

Nt transmit antennas. We assume Ns ≤ NRF t ≤ Nt. The
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system contains a baseband precoder FBB ∈ C
NRF t×Ns and

a RF precoder FRF ∈ C
Nt×NRF t , constructed using phase

shifters. The FMCW radar emits N consecutive chirps with

carrier frequency fc, bandwidth B, and pulse duration time

T . The emitted waveform at the m-th transmitter during the

n-th chirp is

xm(n, t) = ej2π(fct+
1B
2T

t
2)ej2πΩn , (1)

where ej2πΩn is the symbol along slow time that can be

used to encode the communication message. Automotive

radar ISAC system switches between radar sensing and

communication functions. The system block diagram of

integrated automotive radar sensing and communication is

shown in Fig. 1.

To simply our formulation, we consider single RF

chain, i.e., NRFt = 1. All transmitters carry the same

communication symbol, i.e., Ns = 1. Therefore FBB is

not applied, and only analog beamforming FRF ∈ C
Nt×1

will be employed through q-bit quantized phase shifters

design. The phase is selected from a quantized set D with

2q possible phase values that are uniformly distributed in

(−π, π]. During the n-th chirp, transmit signal from Nt

transmit antennas forms a vector as

x(n, t) = ej2π(fct+
1B
2T

t
2)ej2πΩnFRF . (2)

II-A. Radar Transmit Beamforming

The radar transmit beampattern can be expressed as

G(θ) = b
H
t (θ)Wbt(θ), (3)

where the array response bt(θ) is

bt(θ) =

[
e

j2πd
1
sinθ

λ , e
j2πd

2
sinθ

λ , · · · , e
j2πdNt

sinθ

λ

]T
,

with dm,m = 1, · · · , Nt denoting the transmit antennas

location. The precoded waveform W ∈ C
Nt×Nt is given as

W = E

[
x(n, t)xH(n, t)

]
= βFRFF

H
RF , (4)

where β denotes the expectation of the FMCW chirp signal.

The automotive radar sensing function aims to design the

analog beamforming matrix FRF so that its main beam

is steered to the target of interest through adjusting its

quantized phase shifter. The analog beamformer FRF is

replaced with a beamformer wr, defined below

wr = 1/
√
Nt

[
ejφ1 , ejφ2 , · · · , ejφNt

]T
, (5)

where phase φm,m = 1, · · · , Nt is chosen from a quantized

set D with 2q possible phase values.

Assuming there are K targets located in the radar main

beam θ, the radar received signals during the n-th chirp is

yr(n, t) =

K∑

k=1

αke
j2π[fc(t−τk )+

B
2T

(t−τk )
2
+Ωn]1T

Nt×1wrbr + n(n, t),

where αk and τk are the reflection coefficient and delay of

the k-th target, respectively. Here, br ∈ C
Nr×1

denotes the

receive steering vector.

II-B. Communication System

Assume there are Nc antennas at a communication

receiver. The mmWave channels are expected to have limited

scattering [24]. We consider a geometric channel model with

L independent propagation paths, where the value of L
is small compared to Nt for limited scattering. Then the

downlink channel matrix H ∈ C
Nc×Nt can be expressed as

H =

√
NtNc

L

L∑

l=1

αlbc(θcl)b
H
t (θtl), (6)

where αl is the l-th complex path gain. Here, bc(θcl) and

bt(θtl) are communication system receive and radar transmit

array steering vectors, respectively, with θcl and θtl as the

angles of arrival and departure of the l-th path. The received

signal at communication receiver is

yc(n, t) =
√
ρej2π[fc(t−τc)+

1B
2T

(t−τc)
2]ej2πΩnHFRF

+ n(n, t), (7)

where ρ denotes the average received power, and τc is the

delay between radar transmitter and communication receiver.

In the communication mode, the analog beamformer FRF

is replaced with a beamformer wc, defined below

wc = 1/
√
Nt

[
ejΦ1 , ejΦ2 , ..., ejΦNt

]T
, (8)

where phase Φm,m = 1, · · · , Nt is chosen from a quantized

set D with 2q possible phase values.

In the following, we aim to develop a deep reinforcement

learning approach to intelligently adjust the beamforming

vectors wr and wc such that the target of interest and

communication receiver are illuminated under the main beam

alternatively by the automotive radar.

III. TRANSMIT BEAMFORMING DESIGN

To achieve a high angular resolution at low hardware

cost, a sparse transmit antenna array is considered. The

sparse antenna array geometry is selected such that the peak

sidelobe level (PSL) is minimized. For Nt antennas with q-

bit quantized phase shifter, the total number of phase states

is 2q×Nt . This dimension becomes exploded as the number

of array elements increases and a higher resolution quantized

phase shifter is adopted. Traditional optimization techniques

are not suitable for optimal beamforming vector design

due to the high computational complexity. We propose an

action-critic architecture based deep reinforcement learning

framework to adjust the quantized phase of transmit antennas

to form the desired transmit beamforming.
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Fig. 1: The proposed automotive radar ISAC system diagram with action-critic network.

III-A. Deep Reinforcement Learning

Leveraging the trial and reward mechanism, reinforcement

learning intelligently searches for strategy π [25] by mapping

state st, action at and reward rt to the action-value function

Q∗ (st, at) as Q∗ (st, at) = maxπ E [rt|st = s, at = a, π] .
Yet, the problem under reinforcement learning exploiting

DQN becomes intractable due to the extremely large action

dimension. To mitigate this dimension explosion problem,

we adapt the Wolpertinger policy-based reinforcement

learning framework to adjust the phase shifters. The

Wolpertinger policy includes an action network, k-nearest

neighbor (KNN) mapping, and a critic network [22] (see

Fig. 1).

1) Action Network: This network is an approximator

parameterized by θπ to map the input state to an output

proto-action. The KNN technique is used to map the proto-

action to the feasible space.

2) Critic Network: This network parameterized by θQ

evaluates the Q-value of all action-state pairs from the

KNN mapping by at = arg max
at∈gt(ât)

Q
θ
Q(st, at). The loss

function is given as Loss = (y − Q
θ
Q(s, a))2, where

y is the output of the target network that is used to

generate independent and identically distributed (i.i.d.) data

to stabilize the training process. The deep deterministic

policy gradient (DDPG) is used to train networks [26].

Different from the DQN, the Wolpertinger policy

introduces the KNN block to do time-wise tractable training

and it has a logarithmic-time lookup complexity.

III-B. Beamforming Design with DRL

The beamforming design is implemented using the action-

critic network.

1) Action Space: Consider a transmit antennas array with

Nt elements, and each element is equipped with a q-bit

quantized phase shifter. The dimension of action is R
2
q×Nt

and each action is mapped to a beamforming vector wr. One

element phase change is equal to taking an action from the

action space.

2) State: After taking an action from the action space, the

state is changed. The state vector s is consisted of the

transmit array phase shifter status. At the i-th iteration, the

Algorithm 1 DRL based automotive radar ISAC system

1: Initialize networks with corresponding parameters.

2: Mode selection.

3: if mode = radar then

4: Initialize ξ0 = 0 and gr0 = 0.

5: else

6: Initialize gc0 = 0.

7: end if

8: Initial sample a random beamforing vector w1 as initial

state s1 and record action a1.

9: for i = 1 to T do

10: Receive proto-action âi from actor network.

11: Action embedding g(âi) through KNN mapping.

12: Execute action ai passed from critic network,

calculate reward and update state si+1 = ai.
13: Update ξi and gri or gci according selected mode.

14: Update all networks.

15: end for

state si = [θ1, θ2, ..., θNt
], where θnt

is selected from the

quantized set D.

3) Reward: In the radar tracking mode, the region of

interest (ROI) is known in the radar search mode when

targets’ range, Doppler and angle are estimated. Suppose

the interest main beam region is θROI, and the 3-dB
beam width is given by ∆θ = 2arcsin

(
1.4λ
πD

)
. Thus,

the ROI is spanned from [−1/2∆θROI, 1/2∆θROI]. The

areas out of the 3-dB mainlobe is defined as sidelobe

regions. The difference between mainlobe peak and PSL

is ξi = max(PROIi) − max(PSLi) at i-th iteration. Here,

max(PROIi) and max(PSLi) are maximum main beam level

and PSL at i-th iteration, respectively. The received power

is gr =
∣∣∣yH

r (n, t)yr(n, t)
∣∣∣. The term ξ and gr are used to

guarantee the main beam is steered to ROI, while the PSL

is minimized. The reward is given by

ri =





1, if ξi > ξi−1

0, if ξi ≤ ξi−1 and gri ≤ gri−1

−1, if ξi ≤ ξi−1 and gri > gri−1.
(9)

For communication mode, the received gain is expressed as

gc = |Hwc|2. Assume the channel parameters have been
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Fig. 2: (a) Beampattern of sparse transmit array; (b) The transmit beamforming under radar mode; (c) The transmit

beamforming under communication mode; Ground truth directions are indicated in blue lines.

Table I: Hyper-parameters for training

Parameter Value

Models Actor-Net Critic-Net

Relay Buffer 4096 4096

Mini-batch 64 64

Learning rate 0.01 0.01

Decay 0.01 0.001

estimated. The reward in communication mode is given by

ri =





1, if gci > gci−1

0, if gci = gci−1

−1, if gci < gci−1.
(10)

This dynamic gain will be reported to automotive radar by

communication user through an uplink channel.

The pseudo code of the DRL based automotive ISAC

using Wolpertinger policy is given by Algorithm 1.

IV. NUMERICAL RESULTS

We consider a FMCW radar system with 10 transmit

antennas, and field of view of 60◦. The transmit sparse array

has a physical aperture size of 10λ, with corresponding 3-

dB beamwidth as ∆f = 0.09. The transmit array geometry

is shown in Fig. 3 (a), and its beampattern is shown in Fig.

2 (a). Each antenna has a 2-bit quantized phase shifter, and

therefore the total quantized action space has dimension over

1 million, i.e., 22×10 = 1, 048, 576. The hyper-parameters

for model training is described in Table I. All networks

are trained on a Lambda machine with an Intel Core
TM

i9-

10920X CPU and 4 Nvidia Quadro RTX 6000 GPU.

We first switch our system to radar sensing mode, and the

normalized ROI frequency is set as f = −0.1 corresponding

to θ = −6◦. In the initial state, the transmit array was

assigned a random phase. As shown in Fig. 2 (b), after

sufficient iterations, an optimized beam vector is learned,

and under which, the transmit beamforming is steered to the

desired direction, while the sidelobe level is suppressed as

well. In the communication mode, a communication user

21 3 4 65 7 8 109 11 12 13 14 15 16 17 18 19 20

Anteanna Position (0.5ll)

(a)

0 50 100
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-2
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R
ew
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Fig. 3: (a) The transmit sparse array geometry; (b) The

reward during the training.

is located at the f = 0.3 corresponding to θ = 17◦.

The performance comparison between an initial randomly

generated beamforming vector and the learned optimal

beamvector is shown in Fig. 2 (c). Note the main beam is

slightly off the ground truth, which may be due to the limited

quantized resolution of phase shifters. As Fig. 3 (b) shown,

after 20 epochs of training, the network can intelligently

adjust the phases so that the main beam is steered to the

ROI based on the current observation state.

V. CONCLUSIONS

We proposed Wolpertinger policy based reinforcement

learning framework to design an automotive radar ISAC

system, which can intelligently adjust its quantized phase

shifters to steer its main beam to track target of interest

or enhance communication capacity. The proposed approach

works well for an extremely large dimension of action space

while avoiding exhausted action search. The feasibility of

proposed method has been validated via simulations.
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