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ABSTRACT

We present a deep reinforcement learning approach to
design an automotive radar system with integrated sensing
and communication. In the proposed system, sparse transmit
arrays with quantized phase shifter are used to carry out
transmit beamforming to enhance the performance of both
radar sensing and communication. Through interaction with
environment, the automotive radar learns a reward that
reflects the difference between mainlobe peak and the peak
sidelobe level in radar sensing mode or communication user
feedback in communication mode, and intelligently adjust its
beamforming vector. The Wolpertinger policy based action-
critic network is introduced for beamforming vector learning,
which solves the dimension curse due to huge beamforming
action space.

Index Terms— Deep reinforcement learning, integrated
sensing and communication (ISAC), automotive radar, sparse
array, beamforming

I. INTRODUCTION

Millimeter Wave (mmWave) vehicle radar, which operates
at 76-81 GHz, is one of the key technologies of
autonomous driving system and can sense the environment
under various weather conditions [1]. Multi-input multi-
output (MIMO) radar is a widely used cost-effective
and scalable solution for increasing antenna aperture size
by exploiting the idea of virtual sum coarray [1]. The
use of sparse arrays combined with MIMO radars can
further reduce costs without losing angular resolution [2].
Autonomous vehicles need to exchange information with
road infrastructure and other neighbor vehicles to achieve
operation coordination, especially in vehicle platooning [3].
Traditionally, the automotive radar sensing and vehicle
communication functions are implemented via separated
hardware. A dual-function radar communication (DFRC),
or integrated sensing and communication (ISAC) system
utilizes the same hardware platform to send electromagnetic
waves for both environment sensing and communication with
neighboring devices [4]-[10], which has found applications
in autonomous vehicles [11], [12].

Different strategies have been considered to design the
ISAC system. For example, array beampattern, such as the
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null region of the transmit pattern [13] or the unique steering
vector through transmit antenna selection [14] has been used
to encode the communication message. On the other hand,
optimization techniques have been proposed to optimize
the transmit matrix to realize sensing and communication
functions simultaneously by forming multiple beams [5],
[15]. A data-driven deep learning method has been proposed
to realize the ISAC system by forming the transmit matrix
in a quantized manner [16]. However, the generalization of
the data-driven deep learning approach to the scenarios that
are not considered during the training process is limited.

In practical systems, the values of antenna phase shifter
are quantized instead of continuous. For example, the
Texas Instruments (TI) imaging radar cascaded by four
AWR?2243 radar chipsets supports 6-bit phase shifter
[17]. When the number of bits of phase shifter and
antenna elements increase, it becomes challenging to use
optimization or data-driven machine learning approaches to
design transmit beamforming. Deep reinforcement learning
has been introduced in beamforming design for mobile
communications [18], [19] using quantized phase shifters.
Value-based reinforcement learning, such as deep Q-
networks (DQNs) [20], [21], has great generalization
performance and has high training efficiency. However,
its computation complexity is extremely high due to the
dimensional curse.

In this paper, we present a Wolpertinger policy-assisted
[22] reinforcement learning framework to intelligently learn
a quantized transmit beamforming vector for a sparse tranmit
array in the automotive radar ISAC system. The action-
critic network is used to deal with the dimension curse of
deep reinforcement learning techniques due to huge action
space. The proposed ISAC automotive radar system not only
improves signal-to-noise ratio (SNR) for both radar sensing
and communication, but also is able to reduce mutual radar
interference [23], multipath propagation, especially in urban
streets and tunnel scenarios.

II. SYSTEM MODEL

We consider an automotive radar ISAC system exploiting
frequency-modulated continuous-wave (FMCW) consisting
of N, transmit and N, receiver antennas.

Assume there are N, data streams to transmit, and there
are Npp, radio frequency (RF) beamforemers connected to
N, transmit antennas. We assume N, < Nppy < N,. The
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system contains a baseband precoder Fgp € CNrreXNs and
a RF precoder Fyp € CNe*Nrre constructed using phase
shifters. The FMCW radar emits N consecutive chirps with
carrier frequency f,., bandwidth B, and pulse duration time
T. The emitted waveform at the m-th transmitter during the
n-th chirp is

jzw(fct+%t2)ej2wnn 1)

)

Ty(n,t) =€

where /™ is the symbol along slow time that can be

used to encode the communication message. Automotive
radar ISAC system switches between radar sensing and
communication functions. The system block diagram of
integrated automotive radar sensing and communication is
shown in Fig. 1.

To simply our formulation, we consider single RF
chain, i.e., Ngp; = 1. All transmitters carry the same
communication symbol, i.e., N, = 1. Therefore Fgp is
not applied, and only analog beamforming Frp € cNexd
will be employed through g-bit quantized phase shifters
design. The phase is selected from a quantized set D with
27 possible phase values that are uniformly distributed in
(—m, 7). During the n-th chirp, transmit signal from N,
transmit antennas forms a vector as

x(n,t) = ej27r(f@t+%t2)6j27rﬂnFRF. )

II-A. Radar Transmit Beamforming

The radar transmit beampattern can be expressed as

G(8) = by (9)Wh, (6), 3)
where the array response b, () is
j2mdysing  j2mdysing J2mdy, sin0 T
bt(0>|:e > € >\ ytrr € > :| )
with d,,,m = 1,---, N, denoting the transmit antennas

location. The precoded waveform W & CNexNe g given as
W=E [x(n, t)XH(”a ) = 5FRFF21F> )

where 3 denotes the expectation of the FMCW chirp signal.
The automotive radar sensing function aims to design the
analog beamforming matrix Frp so that its main beam
is steered to the target of interest through adjusting its
quantized phase shifter. The analog beamformer Fgp is
replaced with a beamformer w,., defined below

. . ) T
W, = 1/\/ Nt |:ej¢lae]¢27"' 7€J¢Nt:| ) (5)
where phase ¢,,,,m = 1,--- , N, is chosen from a quantized

set D with 27 possible phase values.
Assuming there are K targets located in the radar main
beam 6, the radar received signals during the n-th chirp is

yr(n,t) =

K
. 2
Z akGJQﬂ[fC(tiTk)+%(tiTk) +Qn} ]'%t Xlwrb'r + n(n; t)?
k=1

where «, and 7, are the reflection coefficient and delay of
the k-th target, respectively. Here, b, € CNr*! denotes the
receive steering vector.

II-B. Communication System

Assume there are N, antennas at a communication
receiver. The mmWave channels are expected to have limited
scattering [24]. We consider a geometric channel model with
L independent propagation paths, where the value of L
is small compared to N, for limited scattering. Then the
downlink channel matrix H € C™<"*™* can be expressed as

L
NN,
H= \/TZ O‘lbc(ecl)bfl(etl), ©)
=1

where « is the [-th complex path gain. Here, b.(6,;) and
b, (0,;) are communication system receive and radar transmit
array steering vectors, respectively, with 6., and 6,; as the
angles of arrival and departure of the [-th path. The received
signal at communication receiver is

n _ 1B (4_ 2 .
ve(n,t) :\/ﬁeﬂﬂ[ﬁ(t o)tz (t-Te) ]eJQWQ"HFRF
+n(n,t), @)
where p denotes the average received power, and 7, is the
delay between radar transmitter and communication receiver.

In the communication mode, the analog beamformer Fp
is replaced with a beamformer w,, defined below

. . ) T
w,=1/y/N; {ej%,ej%,...,eﬂ)]"t] , (8)
where phase ®,,,m = 1,---, N, is chosen from a quantized

set D with 27 possible phase values.

In the following, we aim to develop a deep reinforcement
learning approach to intelligently adjust the beamforming
vectors w, and w, such that the target of interest and
communication receiver are illuminated under the main beam
alternatively by the automotive radar.

III. TRANSMIT BEAMFORMING DESIGN

To achieve a high angular resolution at low hardware
cost, a sparse transmit antenna array is considered. The
sparse antenna array geometry is selected such that the peak
sidelobe level (PSL) is minimized. For N, antennas with ¢-
bit quantized phase shifter, the total number of phase states
is 22N This dimension becomes exploded as the number
of array elements increases and a higher resolution quantized
phase shifter is adopted. Traditional optimization techniques
are not suitable for optimal beamforming vector design
due to the high computational complexity. We propose an
action-critic architecture based deep reinforcement learning
framework to adjust the quantized phase of transmit antennas
to form the desired transmit beamforming.
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Fig. 1: The proposed automotive radar ISAC system diagram with action-critic network.

III-A. Deep Reinforcement Learning

Leveraging the trial and reward mechanism, reinforcement
learning intelligently searches for strategy 7 [25] by mapping
state s,, action a, and reward r, to the action-value function
Q" (s,a;) as Q" (s, a,) = max, Elrs, = s,a, = a,7].
Yet, the problem under reinforcement learning exploiting
DQN becomes intractable due to the extremely large action
dimension. To mitigate this dimension explosion problem,
we adapt the Wolpertinger policy-based reinforcement
learning framework to adjust the phase shifters. The
Wolpertinger policy includes an action network, k-nearest
neighbor (KNN) mapping, and a critic network [22] (see
Fig. 1).

1) Action Network: This network is an approximator
parameterized by 6" to map the input state to an output
proto-action. The KNN technique is used to map the proto-
action to the feasible space.
2) Critic Network: This network parameterized by 0%
evaluates the Q-value of all action-state pairs from the
KNN mapping by a, = arg max Q.o (s, a;). The loss
a;€g:(ar)
function is given as Loss = (y — Qe (3,@))2, where
y is the output of the target network that is used to
generate independent and identically distributed (i.i.d.) data
to stabilize the training process. The deep deterministic
policy gradient (DDPG) is used to train networks [26].

Different from the DQN, the Wolpertinger policy
introduces the KNN block to do time-wise tractable training
and it has a logarithmic-time lookup complexity.

III-B. Beamforming Design with DRL

The beamforming design is implemented using the action-
critic network.
1) Action Space: Consider a transmit antennas array with

N, elements, and each element is equipped with a g¢-bit
axX Ny
quantized phase shifter. The dimension of action is R

and each action is mapped to a beamforming vector w,.. One
element phase change is equal to taking an action from the
action space.

2) State: After taking an action from the action space, the
state is changed. The state vector s is consisted of the
transmit array phase shifter status. At the i-th iteration, the

Algorithm 1 DRL based automotive radar ISAC system

1: Initialize networks with corresponding parameters.
2: Mode selection.

3: if mode = radar then

4:  Initialize £, = 0 and g,.q = 0.

5: else

6:  Initialize g.o = 0.

7: end if

8:

Initial sample a random beamforing vector w; as initial

state s; and record action a;.

9: fort:=1to T do

10:  Receive proto-action a,; from actor network.

11:  Action embedding g(a;) through KNN mapping.

12:  Execute action a; passed from critic network,
calculate reward and update state s; 1 = a;.

13:  Update &; and g,.; or g.; according selected mode.

14:  Update all networks.

15: end for

state s; = [0, 0,,...,0y,], where 0, is selected from the
quantized set D. ’

3) Reward: In the radar tracking mode, the region of
interest (ROI) is known in the radar search mode when
targets’ range, Doppler and angle are estimated. Suppose
the interest main beam region is frgo;, and the 3-dB
beam width is given by A, = 2arcsin (%). Thus,
the ROI is spanned from [—1/2Ayro1,1/2A¢ro1)- The
areas out of the 3-dB mainlobe is defined as sidelobe
regions. The difference between mainlobe peak and PSL
is ¢, = max(Pgror;) — max(Pg;) at i-th iteration. Here,
max(Pgror;) and max(Pgy,;) are maximum main beam level
and PSL at ¢-th iteration, respectively. The received power
is g, = ’yf(n, t)yr(n,t)‘. The term £ and g, are used to
guarantee the main beam is steered to ROI, while the PSL
is minimized. The reward is given by

L, it & >80

ri=4 0, if §<&G
-1, if § <&

For communication mode, the received gain is expressed as
ge = |ch|2. Assume the channel parameters have been

and 9ri S Gri—1 (9)
and Gri > Gri—1-
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Fig. 2: (a) Beampattern of sparse transmit array; (b) The transmit beamforming under radar mode; (c) The transmit
beamforming under communication mode; Ground truth directions are indicated in blue lines.

Table I: Hyper-parameters for training

Parameter Value
Models Actor-Net | Critic-Net
Relay Buffer 4096 4096
Mini-batch 64 64
Learning rate 0.01 0.01
Decay 0.01 0.001

estimated. The reward in communication mode is given by

L, I Gei > geia
0, I gei = gei1
-1, i g <geia-
This dynamic gain will be reported to automotive radar by
communication user through an uplink channel.

The pseudo code of the DRL based automotive ISAC
using Wolpertinger policy is given by Algorithm 1.

r; =

(10)

IV. NUMERICAL RESULTS

We consider a FMCW radar system with 10 transmit
antennas, and field of view of 60°. The transmit sparse array
has a physical aperture size of 10\, with corresponding 3-
dB beamwidth as Ay = 0.09. The transmit array geometry
is shown in Fig. 3 (a), and its beampattern is shown in Fig.
2 (a). Each antenna has a 2-bit quantized phase shifter, and
therefore the total quantized action space has dimension over
1 million, ie., 22°' = 1,048,576. The hyper-parameters
for model training is described in Table I. All networks
are trained on a Lambda machine with an Intel Core™ i9-
10920X CPU and 4 Nvidia Quadro RTX 6000 GPU.

We first switch our system to radar sensing mode, and the
normalized ROI frequency is set as f = —0.1 corresponding
to 8§ = —6°. In the initial state, the transmit array was
assigned a random phase. As shown in Fig. 2 (b), after
sufficient iterations, an optimized beam vector is learned,
and under which, the transmit beamforming is steered to the
desired direction, while the sidelobe level is suppressed as
well. In the communication mode, a communication user

LT rTrurn,
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Fig. 3: (a) The transmit sparse array geometry; (b) The
reward during the training.

is located at the f = 0.3 corresponding to 6 = 17°.
The performance comparison between an initial randomly
generated beamforming vector and the learned optimal
beamvector is shown in Fig. 2 (c). Note the main beam is
slightly off the ground truth, which may be due to the limited
quantized resolution of phase shifters. As Fig. 3 (b) shown,
after 20 epochs of training, the network can intelligently
adjust the phases so that the main beam is steered to the
ROI based on the current observation state.

V. CONCLUSIONS

We proposed Wolpertinger policy based reinforcement
learning framework to design an automotive radar ISAC
system, which can intelligently adjust its quantized phase
shifters to steer its main beam to track target of interest
or enhance communication capacity. The proposed approach
works well for an extremely large dimension of action space
while avoiding exhausted action search. The feasibility of
proposed method has been validated via simulations.
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