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ABSTRACT
The potentials of automotive radar for autonomous driving
have not been fully exploited due to the difficulty of
extracting targets’ information from the radar signals and the
lack of radar datasets. In this paper, a novel signal processing
pipeline is proposed to address the max ambiguous velocity
reduction issue introduced by staggered time division
multiplexing (TDM) scheme of high resolution imaging
radar system with a large number of transmit antennas.
A dataset of 1,410 synchronized frames (stereo cameras,
LiDAR, radar) with three classes, i.e., bus, car, and people,
is constructed from field experiments. Next, we implement
a vanilla SpectraNet and show its promising performance
on moving object detection and classification with a mean
average precision (mAP) of 81.9% at an intersection over

union (IoU) of 0.5.
Index Terms—Automotive radar, machine learning, deep
neural network, autonomous vehicles

I. INTRODUCTION

Automotive radar operating at millimeter-wave frequency,
i.e., 76-81 GHz, plays an important role in autonomous
driving systems due to its robustness in environment
perception under all weather conditions [1], [2]. Existing
automotive radar transceivers, such as NXP Semiconductors
MR3003 and Texas Instruments AWR1243 [3], support up
to 3 transmit and 4 receive antennas, yielding an angular
resolution of around 10°, which is not capable for Level
4 and Level 5 autonomous driving where a vehicle drives
itself in all conditions without any human interaction. High
resolution imaging radar systems are highly desired for Level
4 and Level 5 autonomous driving to provide point clouds
of the surrounding environment [1], [4]-[6]. Cascaded radar
chips rendering 12 transmit and 16 receive antennas are
being developed [7]-[9] to synthesize a large virtual array
using multi-input multi-output (MIMO) radar technology at
a low cost [1], [2], [10]. Several products are available with
different array configurations, such as forward-looking full-
range radar ARS540 by Continental [11]. With imaging
radar, it is of great interest to investigate environment
perception using deep neural networks.

The popular data sets in autonomous vehicle perception,
such as KITTI [12] and Waymo Open Dataset [13] only

contain camera and LiDAR recordings. Recently, datasets
containing automotive radar have been published, such as
nuScenes [14], Oxford Radar RobotCar [15], Astyx [16],
RADIATE [17], CRUW [18], Zendar [19], CARRADA [20]
and RadarScenes [21]. However, CARRADA and CRUW
datasets are small sizes and the angular resolution of
automotive radar is low, i.e., larger than 10°. Some data sets,
such as RADIATE, Oxford Radar RobotCar, used a specific
radar, such as mechanical scanning radar, which provided
denser radar image. Yet, the Doppler information of targets is
missing. Synthetic aperture radar (SAR) technology which is
for static targets was adopted in Zendar dataset with multiple
measurements from different vehicle locations. The Astyx
dataset only contains 500 frames with sparse radar point
clouds.

Radar datasets with point clouds suffer from information
loss due to the thresholding operation in radar signal
processing. To our best knowledge, there is no open dataset
containing high resolution radar spectra obtained from a
large virtual antenna array, stereo cameras images and
LiDAR 3D point clouds. In this paper, we construct radar
data representation without losing information for moving
objects detection and classification. Our contributions are:

e We design a novel transmit and receive signal
processing pipeline of imaging radar systems to
generate high resolution radar spectra from raw data.

o With field experiments, we construct a high resolution
radar range-azimuth spectra dataset, which encodes the
critical details of object’s shape.

« Based on our dataset, we propose a vanilla SpectraNet
to detect moving targets of interests.

II. SYSTEM MODEL

In this section, we briefly present a novel radar signal
processing chain to generate high resolution radar spectra.

II-A. FMCW Radar Principles

A FMCW radar transmits a chirp, which is a complex
sinusoid signal whose frequency changes linearly with time.
The transmit frequency, fr(¢), for on chirp with bandwidth
B and chirp duration 7', can be expressed as

B
Jr(t) = fo+ Tt 1)
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Fig. 1: Imaging radar signal processing pipeline to generate high resolution radar spectra for object detection with machine

learning.

where f. is carry frequency. The phase @p(t) of the
transmitted signal could be obtained after integration as
or (t) = 27 fiT/Q fr (t) dt. The noiseless received signal
is a delayed version of transmit signal. For a target at range
of R with radial velocity of v, the round-trip delay can be
expressed as 7 = 2(R +vt)/c. The received signal is mixed
with the transmit signal, and the output of the mixer is called
beat signal, whose phase could be approximated as

¢p(t) =2m [chR + (chv + QBR) t] )
c c Tec

where the beat frequency is f, = fr + fp with fp = 27]?) f
being the range frequency and fp = 2707”” being the Doppler
frequency. The beat signal typically goes through a band pass
filter (BPF) to compensate the gain for targets in distance to
improve the radar dynamic range, followed by an analog-to-
digital converter (ADC), whose sampling rate is greater than
twice of maximum beat frequency f;"**. Range and Doppler
information of the target could be obtained by applying fast

Fourier transforms (FFTs) along fast time and slow time.

II-B. High Resolution Imaging Radar Signal Processing

MIMO radar can synthesize a large virtual array for
angle estimation using multiple transmit and multiple receive
antennas [1], [10]. In MIMO radar, at transmitting side,
multiple transmit antennas transmit orthogonal FMCW
sequences; at receiving side, due to the waveform
orthogonality, the contribution of each transmit antenna can
be extracted from the received signal at each receive antenna.
There are different ways to achieve waveform orthogonality
in MIMO radar, such as Doppler-division multiplexing
(DDM) and time division multiplexing (TDM) [1].

TDM was adopted in this paper to achieve waveform
orthogonality due to its simplicity. However, under TDM,
the maximum unambiguous detectable velocity is reduced to
VUmax/N1x With Npx being the number of TX antennas [1].
As Nrx increases, the maximum unambiguous detectable
velocity becomes small, and moving targets with relatively
high speed will be aliased. We propose a staggered TDM
scheme to resolve the Doppler ambiguity using the Chinese
remainder theorem (CRT) and overlapped array elements.

To improve the robustness of velocity unfolding, in this
paper, we utilize both CRT and overlapped array. The
narrow velocity candidate list obtained from CRT is used
for compensating the phase migration among the overlapped
array elements, and the candidate which gives the smallest
phase difference will be chosen as the actual target velocity.

Under TDM scheme, only one TX antenna is selected
to transmit at each time. The scheduling delay, At, between
different transmit antennas would causes phase migration for
moving targets between different chirps, i.e.,

¢ = (4 /N vAt. 3)

That phase migration introduces a distortion in the virtual
array pattern, which results in inaccurate angle finding. In
order to remove phase migration, for every moving target, a
compensation value ¢’ % needs to be multiplied along with
the virtual array before angle finding. The imaging radar
signal processing pipeline is shown in Fig. 1. More details
can be found in [22].

III. RADAR MACHINE LEARNING FRAMEWORK

We implemented the proposed imaging radar signal
processing chain shown in Fig. 1 on TI imaging radar, which
is a chirp configurable MIMO radar with 12 TX and 16 RX
antennas, cascaded by 4 radar transceivers. The azimuth field
of view (FOV) is 70°. A virtual uniform linear array with
86 elements and half wavelength spacing can be synthesized
with 9 TX and 16 RX antennas, of which 32 virtual array
elements are overlapped. The 3 dB beam width of the
imaging radar in azimuth is Af,; = 2arcsin <%) ~
1.2°, where D, = 42.5)\ is the virtual array aperture in
horizontal direction. The parameters of consecutive frames
are shown in Table I. Antenna calibration is required to
reduce the frequency, phase, and amplitude mismatches
across those 4 radar transceivers. A one-time boresight
calibration method is used as our calibration method.

Our field experiments included three multi-modal sensors,
i.e., a TT imaging radar, stereo cameras of Teledyne FLIR
Blackfly S, and Velodyne Ultra Puck VLP-32C LiDAR, as

shown in Fig. 2 (a). The measurements of cameras and
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Fig. 2: Field experiments: (a) Multi-modal sensors; (b) Target classes distributions; (c) Target range distributions.

Parameters Frame n | Frame n + 1
Max Range 50 m 50 m
Max Velocity 7.2 m/s 5.5 m/s
Range Resolution | 0.4 m 0.4 m
Angle Resolution | 1.2° 1.2°

Fig. 3: Radar field experiments locations, where star
denotes the sensors’ location.

LiDAR are used as ground truth for labeling the radar data.
The sensor features are summarized in Table II.

Model
TI Imaging Radar, Azimuth Resolution: 1.2, Azimuth FOV: 70°

Sensors
Radar

LiDAR Velodyne Ultra Puck VLP-32C, Azimuth Resolution: 0.1°-0.4°
Vertical FOV: 400, Maximum Range: 200 m
Camera | Teledyne FLIR Blackfly S, Stereo, Image Resolution: 2048 x 1536

Table II: Multi-Modal Sensors

III-A. High Resolution Imaging Radar Dataset

Reliable detection of moving objects, such as buses,
cars, and people using high resolution imaging radar, is
of great interest to autonomous vehicles. The radar field
experiments were carried out at four locations at The
University of Alabama campus, shown in Fig. 3. To avoid
using consecutive radar frames for machine learning, frames
were selected sparsely at random. After removing corrupted
frames, the dataset contains a total of 1,410 radar frames that
are labeled using LiDAR 3D point clouds and camera images
as ground truth. The target class distribution and range
distribution are shown in Fig. 2 (b) and (c), respectively.

III-B. Target Detection with SpectraNet

Incorporating structured information into a perception
algorithm using machine learning would avoid information
loss through the constant false alarm rate (CFAR) detector
and beamforming of angle finding. With the raw radar
data, two range-azimuth spectra are generated corresponding
to odd and even frames, using the signal processing
pipeline shown in Fig. 1. Those spectra are then translated
into Cartesian coordinates. The radar spectra generated by
FFTs in range, Doppler, and spatial domains contain all
the information about targets that is available in radar
time series. Representative examples of high resolution
bird’s-eye-view (BEV) radar range-azimuth spectra are
shown in Fig. 4, indicating that the high resolution range-
azimuth spectra could represent the target shape and radar’s
performance is comparable to the LiDAR system.

We present a vanilla SpectraNet for fast object detection
using high resolution radar spectra. The SpectraNet contains
four convolutional blocks (Conv-4) with each consisting of
a convolutional layer, a batch normalization (BN) layer, a
ReLU layer, and max pooling layer, as the feature extractor
backbone, followed by a YOLO detection head [23] due
to its advantage in detection speed and accuracy. To avoid
information loss, the radar range-azimuth spectra with the
size of 512 x 512, are used as the input of vanilla SpectraNet,
whose architecture is plotted in Fig. 5.

III-C. Performance Evaluation

Class-wise random sampling method was used to divide
the dataset into training and testing sets with a ratio of
8 : 2, ensuring that training and testing sets follow the
overall dataset distribution. Additionally, a 5-fold cross-
validation method was employed during the training process
to find the optimal model by reducing data bias due to
the lack of bus data in our dataset. The performance of
SpectraNet was evaluated with various backbones, such as
VGG16, VGG19 [24], and ResNetl8 [25]. All networks
were trained on a Dell workstation with dual Intel Xeon Gold
6230 CPU and an Nvidia Quadro RTX 4000 GPU. Radar
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Fig. 4: Examples of high resolution radar spectra representing target’s shape. (a) Field experiments at different locations, with
the first row as the RGB images, and the second row as the corresponding range-azimuth heatmap in Cartesian coordinate.
Buses, cars, and people are labeled with bounding boxes in green, red, and white colors, respectively. (b) Radar’s performance
is comparable to LiDAR, with 3D LiDAR point clouds BEV at the first row, and range-azimuth spectra at the second row.

Backbone

Block 1

Feature
Map

Fig. 5: Vanilla-SpectraNet has four convolutional blocks with each consisting of a convolutional layer, a batch normalization
layer, a ReLU layer, and max pooling layer, as the feature extractor backbone, followed by a YOLO detection head.

AP@0.5 AR@0.5
Backbone | - mAP Bus Car People Bus Car People
Conv-4 66.3% | 564% | 77.6% | 64.9% | 70.0% | 86.7% | 80.8%
VGG16 545% | 36.1% | 77.3% | 49.6% | 42.5% | 83.0% | 61.0%
VGG19 67.7% | 63.0% | 82.0% | 58.1% | 67.5% | 87.3% | 73.1%
ResNet18 | 81.9% | 87.4% | 89.2% | 69.0% | 87.5% | 90.3% | 72.1%
ResNet50 | 59.7% | 522% | 78.8% | 48.1% | 55.0% | 82.1% | 54.9%

Table III: Evaluation metrics of the SpectraNet.

machine learning performance is summarized in Table III. It
is interesting to observe that deeper network (e.g., ResNet50)
does not guarantee a better performance. We contend this
may be because unlike RGB images which contain rich
object information, radar spectra hold the reflection intensity
of objects. It can be found that at 0.5 IoU, SpectraNet with
ResNet18 as backbone yields the best overall performance
in detecting bus, car, and people with average precision (AP)
of 87.4%, 89.2%, 69.0%, and average recall (AR) of 87.5%,
90.3%, 72.1%, respectively. The corresponding confusion
matrix is shown in Fig. 6.

IV. CONCLUSIONS

In this paper, we presented a novel imaging radar signal
processing chain to generate high resolution radar range-
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Fig. 6: Confusion matrix.

azimuth spectra without information loss and a vanilla
SpectraNet for moving object detection. Through field
experiments, we demonstrated the promising performance of
moving object detection and classification using SpectraNet
on high resolution radar range-azimuth spectra, that unlocks
the radar potentials for Level 4/5 autonomous driving.
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