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ABSTRACT

The potentials of automotive radar for autonomous driving

have not been fully exploited due to the difficulty of

extracting targets’ information from the radar signals and the

lack of radar datasets. In this paper, a novel signal processing

pipeline is proposed to address the max ambiguous velocity

reduction issue introduced by staggered time division

multiplexing (TDM) scheme of high resolution imaging

radar system with a large number of transmit antennas.

A dataset of 1, 410 synchronized frames (stereo cameras,

LiDAR, radar) with three classes, i.e., bus, car, and people,

is constructed from field experiments. Next, we implement

a vanilla SpectraNet and show its promising performance

on moving object detection and classification with a mean

average precision (mAP) of 81.9% at an intersection over

union (IoU) of 0.5.
Index Terms—Automotive radar, machine learning, deep

neural network, autonomous vehicles

I. INTRODUCTION

Automotive radar operating at millimeter-wave frequency,

i.e., 76-81 GHz, plays an important role in autonomous

driving systems due to its robustness in environment

perception under all weather conditions [1], [2]. Existing

automotive radar transceivers, such as NXP Semiconductors

MR3003 and Texas Instruments AWR1243 [3], support up

to 3 transmit and 4 receive antennas, yielding an angular

resolution of around 10◦, which is not capable for Level

4 and Level 5 autonomous driving where a vehicle drives

itself in all conditions without any human interaction. High

resolution imaging radar systems are highly desired for Level

4 and Level 5 autonomous driving to provide point clouds

of the surrounding environment [1], [4]–[6]. Cascaded radar

chips rendering 12 transmit and 16 receive antennas are

being developed [7]–[9] to synthesize a large virtual array

using multi-input multi-output (MIMO) radar technology at

a low cost [1], [2], [10]. Several products are available with

different array configurations, such as forward-looking full-

range radar ARS540 by Continental [11]. With imaging

radar, it is of great interest to investigate environment

perception using deep neural networks.

The popular data sets in autonomous vehicle perception,

such as KITTI [12] and Waymo Open Dataset [13] only

contain camera and LiDAR recordings. Recently, datasets

containing automotive radar have been published, such as

nuScenes [14], Oxford Radar RobotCar [15], Astyx [16],

RADIATE [17], CRUW [18], Zendar [19], CARRADA [20]

and RadarScenes [21]. However, CARRADA and CRUW

datasets are small sizes and the angular resolution of

automotive radar is low, i.e., larger than 10◦. Some data sets,

such as RADIATE, Oxford Radar RobotCar, used a specific

radar, such as mechanical scanning radar, which provided

denser radar image. Yet, the Doppler information of targets is

missing. Synthetic aperture radar (SAR) technology which is

for static targets was adopted in Zendar dataset with multiple

measurements from different vehicle locations. The Astyx

dataset only contains 500 frames with sparse radar point

clouds.

Radar datasets with point clouds suffer from information

loss due to the thresholding operation in radar signal

processing. To our best knowledge, there is no open dataset

containing high resolution radar spectra obtained from a

large virtual antenna array, stereo cameras images and

LiDAR 3D point clouds. In this paper, we construct radar

data representation without losing information for moving

objects detection and classification. Our contributions are:

• We design a novel transmit and receive signal

processing pipeline of imaging radar systems to

generate high resolution radar spectra from raw data.

• With field experiments, we construct a high resolution

radar range-azimuth spectra dataset, which encodes the

critical details of object’s shape.

• Based on our dataset, we propose a vanilla SpectraNet

to detect moving targets of interests.

II. SYSTEM MODEL

In this section, we briefly present a novel radar signal

processing chain to generate high resolution radar spectra.

II-A. FMCW Radar Principles

A FMCW radar transmits a chirp, which is a complex

sinusoid signal whose frequency changes linearly with time.

The transmit frequency, fT (t), for on chirp with bandwidth

B and chirp duration T , can be expressed as

fT (t) = fc +
B

T
t, (1)
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Fig. 1: Imaging radar signal processing pipeline to generate high resolution radar spectra for object detection with machine

learning.

where fc is carry frequency. The phase φT (t) of the

transmitted signal could be obtained after integration as

φT (t) = 2π
´ t

−T/2
fT (t) dt. The noiseless received signal

is a delayed version of transmit signal. For a target at range

of R with radial velocity of v, the round-trip delay can be

expressed as τ = 2(R+ vt)/c. The received signal is mixed

with the transmit signal, and the output of the mixer is called

beat signal, whose phase could be approximated as

φB(t) = 2π

[

2fcR

c
+

(

2fcv

c
+

2BR

Tc

)

t

]

, (2)

where the beat frequency is fb = fR + fD with fR = 2BR
Tc

being the range frequency and fD = 2f
c
v

c being the Doppler

frequency. The beat signal typically goes through a band pass

filter (BPF) to compensate the gain for targets in distance to

improve the radar dynamic range, followed by an analog-to-

digital converter (ADC), whose sampling rate is greater than

twice of maximum beat frequency fmax

b . Range and Doppler

information of the target could be obtained by applying fast

Fourier transforms (FFTs) along fast time and slow time.

II-B. High Resolution Imaging Radar Signal Processing

MIMO radar can synthesize a large virtual array for

angle estimation using multiple transmit and multiple receive

antennas [1], [10]. In MIMO radar, at transmitting side,

multiple transmit antennas transmit orthogonal FMCW

sequences; at receiving side, due to the waveform

orthogonality, the contribution of each transmit antenna can

be extracted from the received signal at each receive antenna.

There are different ways to achieve waveform orthogonality

in MIMO radar, such as Doppler-division multiplexing

(DDM) and time division multiplexing (TDM) [1].

TDM was adopted in this paper to achieve waveform

orthogonality due to its simplicity. However, under TDM,

the maximum unambiguous detectable velocity is reduced to

vmax/NTX with NTX being the number of TX antennas [1].

As NTX increases, the maximum unambiguous detectable

velocity becomes small, and moving targets with relatively

high speed will be aliased. We propose a staggered TDM

scheme to resolve the Doppler ambiguity using the Chinese

remainder theorem (CRT) and overlapped array elements.

To improve the robustness of velocity unfolding, in this

paper, we utilize both CRT and overlapped array. The

narrow velocity candidate list obtained from CRT is used

for compensating the phase migration among the overlapped

array elements, and the candidate which gives the smallest

phase difference will be chosen as the actual target velocity.

Under TDM scheme, only one TX antenna is selected

to transmit at each time. The scheduling delay, ∆t, between

different transmit antennas would causes phase migration for

moving targets between different chirps, i.e.,

ϕ = (4π/λ)v∆t. (3)

That phase migration introduces a distortion in the virtual

array pattern, which results in inaccurate angle finding. In

order to remove phase migration, for every moving target, a

compensation value e−jφ
needs to be multiplied along with

the virtual array before angle finding. The imaging radar

signal processing pipeline is shown in Fig. 1. More details

can be found in [22].

III. RADAR MACHINE LEARNING FRAMEWORK

We implemented the proposed imaging radar signal

processing chain shown in Fig. 1 on TI imaging radar, which

is a chirp configurable MIMO radar with 12 TX and 16 RX

antennas, cascaded by 4 radar transceivers. The azimuth field

of view (FOV) is 70◦. A virtual uniform linear array with

86 elements and half wavelength spacing can be synthesized

with 9 TX and 16 RX antennas, of which 32 virtual array

elements are overlapped. The 3 dB beam width of the

imaging radar in azimuth is ∆θAZ = 2arcsin
(

1.4λ
πD

x

)

≈

1.2◦, where Dx = 42.5λ is the virtual array aperture in

horizontal direction. The parameters of consecutive frames

are shown in Table I. Antenna calibration is required to

reduce the frequency, phase, and amplitude mismatches

across those 4 radar transceivers. A one-time boresight

calibration method is used as our calibration method.

Our field experiments included three multi-modal sensors,

i.e., a TI imaging radar, stereo cameras of Teledyne FLIR

Blackfly S, and Velodyne Ultra Puck VLP-32C LiDAR, as

shown in Fig. 2 (a). The measurements of cameras and
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Fig. 2: Field experiments: (a) Multi-modal sensors; (b) Target classes distributions; (c) Target range distributions.

Parameters Frame n Frame n+ 1

Max Range 50 m 50 m

Max Velocity 7.2 m/s 5.5 m/s

Range Resolution 0.4 m 0.4 m

Angle Resolution 1.2
◦

1.2
◦

Table I: Radar Parameters

Fig. 3: Radar field experiments locations, where star ⋆
denotes the sensors’ location.

LiDAR are used as ground truth for labeling the radar data.

The sensor features are summarized in Table II.

Sensors Model

Radar TI Imaging Radar, Azimuth Resolution: 1.2
◦

, Azimuth FOV: 70
◦

LiDAR Velodyne Ultra Puck VLP-32C, Azimuth Resolution: 0.1
◦

- 0.4
◦

Vertical FOV: 40
◦

, Maximum Range: 200 m

Camera Teledyne FLIR Blackfly S, Stereo, Image Resolution: 2048× 1536

Table II: Multi-Modal Sensors

III-A. High Resolution Imaging Radar Dataset

Reliable detection of moving objects, such as buses,

cars, and people using high resolution imaging radar, is

of great interest to autonomous vehicles. The radar field

experiments were carried out at four locations at The

University of Alabama campus, shown in Fig. 3. To avoid

using consecutive radar frames for machine learning, frames

were selected sparsely at random. After removing corrupted

frames, the dataset contains a total of 1, 410 radar frames that

are labeled using LiDAR 3D point clouds and camera images

as ground truth. The target class distribution and range

distribution are shown in Fig. 2 (b) and (c), respectively.

III-B. Target Detection with SpectraNet

Incorporating structured information into a perception

algorithm using machine learning would avoid information

loss through the constant false alarm rate (CFAR) detector

and beamforming of angle finding. With the raw radar

data, two range-azimuth spectra are generated corresponding

to odd and even frames, using the signal processing

pipeline shown in Fig. 1. Those spectra are then translated

into Cartesian coordinates. The radar spectra generated by

FFTs in range, Doppler, and spatial domains contain all

the information about targets that is available in radar

time series. Representative examples of high resolution

bird’s-eye-view (BEV) radar range-azimuth spectra are

shown in Fig. 4, indicating that the high resolution range-

azimuth spectra could represent the target shape and radar’s

performance is comparable to the LiDAR system.

We present a vanilla SpectraNet for fast object detection

using high resolution radar spectra. The SpectraNet contains

four convolutional blocks (Conv-4) with each consisting of

a convolutional layer, a batch normalization (BN) layer, a

ReLU layer, and max pooling layer, as the feature extractor

backbone, followed by a YOLO detection head [23] due

to its advantage in detection speed and accuracy. To avoid

information loss, the radar range-azimuth spectra with the

size of 512×512, are used as the input of vanilla SpectraNet,

whose architecture is plotted in Fig. 5.

III-C. Performance Evaluation

Class-wise random sampling method was used to divide

the dataset into training and testing sets with a ratio of

8 : 2, ensuring that training and testing sets follow the

overall dataset distribution. Additionally, a 5-fold cross-

validation method was employed during the training process

to find the optimal model by reducing data bias due to

the lack of bus data in our dataset. The performance of

SpectraNet was evaluated with various backbones, such as

VGG16, VGG19 [24], and ResNet18 [25]. All networks

were trained on a Dell workstation with dual Intel Xeon Gold

6230 CPU and an Nvidia Quadro RTX 4000 GPU. Radar
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Fig. 4: Examples of high resolution radar spectra representing target’s shape. (a) Field experiments at different locations, with

the first row as the RGB images, and the second row as the corresponding range-azimuth heatmap in Cartesian coordinate.

Buses, cars, and people are labeled with bounding boxes in green, red, and white colors, respectively. (b) Radar’s performance

is comparable to LiDAR, with 3D LiDAR point clouds BEV at the first row, and range-azimuth spectra at the second row.

Block 1

Block 2 Block 3 Block 4

Feature

Map

YOLO Head
CONV BN relu

Max
Pool

Backbone

Fig. 5: Vanilla-SpectraNet has four convolutional blocks with each consisting of a convolutional layer, a batch normalization

layer, a ReLU layer, and max pooling layer, as the feature extractor backbone, followed by a YOLO detection head.

Backbone mAP
AP@0.5 AR@0.5

Bus Car People Bus Car People

Conv-4 66.3% 56.4% 77.6% 64.9% 70.0% 86.7% 80.8%

VGG16 54.5% 36.7% 77.3% 49.6% 42.5% 83.0% 61.0%

VGG19 67.7% 63.0% 82.0% 58.1% 67.5% 87.3% 73.1%

ResNet18 81.9% 87.4% 89.2% 69.0% 87.5% 90.3% 72.1%

ResNet50 59.7% 52.2% 78.8% 48.1% 55.0% 82.1% 54.9%

Table III: Evaluation metrics of the SpectraNet.

machine learning performance is summarized in Table III. It

is interesting to observe that deeper network (e.g., ResNet50)

does not guarantee a better performance. We contend this

may be because unlike RGB images which contain rich

object information, radar spectra hold the reflection intensity

of objects. It can be found that at 0.5 IoU, SpectraNet with

ResNet18 as backbone yields the best overall performance

in detecting bus, car, and people with average precision (AP)

of 87.4%, 89.2%, 69.0%, and average recall (AR) of 87.5%,

90.3%, 72.1%, respectively. The corresponding confusion

matrix is shown in Fig. 6.

IV. CONCLUSIONS

In this paper, we presented a novel imaging radar signal

processing chain to generate high resolution radar range-

Fig. 6: Confusion matrix.

azimuth spectra without information loss and a vanilla

SpectraNet for moving object detection. Through field

experiments, we demonstrated the promising performance of

moving object detection and classification using SpectraNet

on high resolution radar range-azimuth spectra, that unlocks

the radar potentials for Level 4/5 autonomous driving.
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