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AbstractÐ Real-world control applications often involve com-
plex dynamics subject to abrupt changes or variations. Markov
jump linear systems (MJS) provide a rich framework for mod-
eling such dynamics. Despite an extensive history, theoretical
understanding of parameter sensitivities of MJS control is
somewhat lacking. Motivated by this, we investigate robustness
aspects of certainty equivalent model-based optimal control for
MJS with a quadratic cost function. Given the uncertainty
in the system matrices and in the Markov transition matrix
is bounded by ϵ and η respectively, robustness results are
established for (i) the solution to coupled Riccati equations and
(ii) the optimal cost, by providing explicit perturbation bounds
that decay as O(ϵ+ η) and O((ϵ+ η)2) respectively.

I. INTRODUCTION

The Linear Quadratic Regulator (LQR) is both theoreti-

cally well understood and commonly used in practice when

the system dynamics are known. Its nice properties, e.g.,

admitting an elegant linear state feedback solution, make it

a popular benchmark problem in reinforcement learning and

adaptive control [1], [2], [3], [4], [5], [6], [7].

A natural generalization of linear time-invariant systems

is Markov jump linear systems (MJS), which allow the dy-

namics of the underlying system to switch between multiple

linear systems according to an underlying finite Markov

chain. Similarly, a natural generalization of the LQR problem

to MJS is to use mode-dependent cost matrices, which

enables different control goals under different modes. While

the optimal control for MJS-LQR is well understood when

one has perfect knowledge of the system dynamics [8],

[9], in practice we do not always know the exact system

dynamics and the transition matrix. For instance, one might

use system identification techniques to learn an approximate

model for the system. Designing optimal controllers for MJS-

LQR with this approximate system dynamics and transition

matrix in place of the true ones leads to so-called certainty

equivalent (CE) control which is used extensively in practice.

However, a theoretical understanding of the suboptimality

of the CE control for MJS-LQR is somewhat lacking. The

main challenge here is the hybrid nature of the problem

that requires consideration of both the system dynamics

uncertainty ϵ, and the underlying Markov transition matrix

uncertainty η.

The solution of infinite horizon MJS-LQR involves cou-

pled algebraic Riccati equations. Our goal is to understand
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the sensitivity of the solution of these equations and the

corresponding optimal cost to perturbations in the system

model. Toward this aim, we first establish an explicit O(ϵ+η)
perturbation bound for the solution to coupled algebraic

Riccati equations that arise in the context of MJS-LQR. This

in turn is used to establish an explicit O((ϵ + η)2) subop-

timality bound on the cost. Finally, numerical experiments

are provided to support our theoretical claims. Our proof

strategy requires nontrivial advances over those of [4], [10].

Specifically, the coupled nature of these Riccati equations

requires novel perturbation arguments, as they lack some of

the nice properties of the standard Riccati equations, like

uniqueness of solution under certain conditions or being

amenable to matrix factorization based approaches.

Related Work: The performance analysis of CE control

for the classical LQR problem for linear time invariant

(LTI) systems relies on the perturbation/sensitivity analysis

of the underlying algebraic Riccati equations (ARE), i.e.

how much the ARE solution changes when the parameters

in the equation are perturbed. This problem is studied in

many works [11]. Early results on ARE solution pertur-

bation bound are presented in [12] (continuous-time) and

[10] (discrete-time). Most literature, however, only discusses

perturbed solutions within the vicinity of the ground-truth

solution. The uniqueness of such a perturbed solution is

not discussed until [13], which is further refined in [14] to

provide explicit perturbation bounds and generalization to

complex equations. Tighter bounds are obtained [15] when

the parameters have a special structure like sparsity.

Channelled by ARE perturbation results, the end-to-end

CE LQR control suboptimality bound in terms of the

dynamics perturbation is established in [4]. The field of

CE MJS-LQR control and the corresponding coupled ARE

(cARE) perturbation analysis, however, is not well studied.

Two perturbation results [16], [17] for cARE only consider

continuous-time cARE that arises in robust control appli-

cations and they are not directly applicable in MJS-LQR

setting. Our work is also related to robust control for MJS

(see, e.g., [18], [9]), where the focus is to numerically com-

pute a controller to achieve a guaranteed cost under a given

uncertainty bound. Whereas, we aim to characterize how

the degradation in performance depends on perturbations in

different parameters when CE control is used. Therefore, our

work contributes to the body of work in robust control and

CE control of MJS from a different perspective, and also

paves the way to use these ideas in the context of learning-

based adaptive control with performance guarantees as in our

companion paper [19].
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II. PRELIMINARIES AND PROBLEM SETUP

Notations: We use boldface uppercase (lowercase) letters

to denote matrices (vectors). For a matrix V, ρ(V), σ(V),
and ∥V∥ denote its spectral radius, smallest singular value,

and spectral norm, respectively. We let ∥V∥+ := ∥V∥ + 1.

vec(V) denotes the vectorization, and V1 ⊗ V2 denotes

the Kronecker product. V1:s denotes a set of s matrices

{Vi}si=1 of same dimensions. We use diag(V1:s) to de-

note a block diagonal matrix whose i-th diagonal block is

given by Vi. We define [s] := {1, 2, . . . , s}, σ(V1:s) :=
mini∈[s] σ(Vi), ∥V1:s∥ := maxi∈[s] ∥Vi∥, and ∥V1:s∥+ :=
maxi∈[s] ∥Vi∥+. We use αU1:s + βV1:s to denote {αUi +
βVi}si=1. Notation ◦ between two operators denotes the

operator composition.

A. Markov Jump Systems

We consider the problem of optimally controlling MJS,

which are governed by the state equation,

xt+1 = Aω(t)xt +Bω(t)ut +wt s.t.

ω(t) ∼ Markov Chain(T),
(1)

where xt ∈ R
n, ut ∈ R

p and wt ∈ R
n denote the state,

input (or action) and noise at time t respectively. Through-

out, we assume E[x0x
⊺

0 ] is bounded, and {wt}∞t=0
i.i.d.∼

N (0, σ2
wIn). There are s modes in total, and the dynamics

of the i-th mode is given by (Ai,Bi). The active mode

at time t is indexed by ω(t) ∈ [s]. In MJS the mode

sequence {ω(t)}∞t=0 follows an ergodic Markov chain with

transition matrix T ∈ R
s×s
+ such that for all t ≥ 0, the ij-th

element of T denotes the conditional probability [T]ij :=
P
(

ω(t + 1) = j | ω(t) = i
)

, ∀i, j ∈ [s]. Due to ergodicity,

there exists a unique stationary distribution π∞ ∈ R
s such

that (T⊺)tπ∞ → π∞ as t → ∞. Throughout, we assume the

initial state x0, Markov chain {ω(t)}∞t=0, and noise {wt}∞t=0

are mutually independent. We use MJS(A1:s,B1:s,T) to

refer to an MJS parameterized by (A1:s,B1:s,T).
For the mode-dependent controller K1:s that yields inputs

ut=Kω(t)xt, we use Li:=Ai +BiKi to denote the closed-

loop state matrix for mode i. We use xt+1=Lω(t)xt to denote

the noise-free closed-loop MJS . Due to the randomness in

{ω(t)}∞t=0, it is common to consider the stability of MJS in

the mean-square sense which is defined as follows.

Definition 1. [9, Definitions 3.8, 3.40] (a) We say MJS

in (1) with ut=0 is mean square stable (MSS) if

there exists x∞,Σ∞ such that for any initial state/mode

x0, ω(0), as t→∞, we have ∥E[xt]− x∞∥→0 and

∥E[xtx
⊺

t ]−Σ∞∥→0. In the noise-free case (wt=0), we

have x∞=0, Σ∞=0. (b) We say MJS in (1) with

wt=0 is (mean square) stabilizable if there exists mode-

dependent controller K1:s such that the closed-loop MJS

xt+1=(Aω(t)+Bω(t)Kω(t))xt is MSS. We call such K1:s a

stabilizing controller.

One can check the stabilizability of an MJS via linear

matrix inequalities [9, Proposition 3.42]. It is well-known

that the stability of non-switching systems is related to the

spectral radius of the state matrix. Similarly, the mean-square

stability of an autonomous MJS xt+1 = Lω(t)xt is related

to the spectral radius of the augmented state matrix: L̃ ∈
R

sn2
xsn2

with ij-th n2×n2 block given by

[L̃]ij := [T]ijL
⊺

i ⊗ L
⊺

i , ∀ i, j ∈ [s]. (2)

Define the operator, φi(V1:s) :=
∑s

j=1[T]ijVj for all i ∈
[s], then we have the following results regarding the MSS.

Lemma 2. [9, Theorem 3.9] The following are equivalent:

(a) MJS xt+1=Lω(t)xt is MSS; (b) ρ(L̃)<1; (c) there exists

V1:s with Vi≻0, such that Vi−L
⊺

i φi(V1:s)Li≻0, ∀i ∈ [s].

These assertions reduce to the classical stability results

regarding spectral radius and Lyapunov equation when s = 1.

Moreover, it can be shown that the augmented matrix L̃
⊺

maps {E[xtx
⊺

t 1ω(t)=i]}si=1 to {E[xt+1x
⊺

t+11ω(t+1)=i]}si=1

[9, p.35], hence its spectral radius determines MSS.

B. Linear Quadratic Regulator

The optimal control problem we consider in

this paper is the following Markov jump system

infinite-horizon linear quadratic regulator (MJS-

LQR) problem where we seek to minimize the

long-term average quadratic cost J(u0,u1, . . . ) :=
lim supT→∞ E

[

1
T

∑T

t=0 x
⊺

tQω(t)xt+u
⊺

tRω(t)ut

]

, i.e.

inf J(u0,u1, . . . )

s.t. xt, ω(t) ∼ MJS(A1:s,B1:s,T).
(3)

Matrices Qω(t) and Rω(t) are mode-dependent cost matrices

chosen by users, and the expectation is over the randomness

of initial state x0, noise {wt}∞t=0 and Markovian modes

{ω(t)}∞t=0. Unlike classical LQR for LTI systems, where

cost matrices are usually fixed throughout the time horizon,

the mode-dependent cost matrices in MJS-LQR allows us to

have different control goals under different modes. In this

work, we are interested in the state feedback solution under

the mode-dependent controller, which is guaranteed to exist

under the following assumption.

Assumption 3. (a) For all i ∈ [s], Qi ≻ 0 and Ri ≻ 0; (b)

the MJS in (1) with wt = 0 is stabilizable.

Similar to the algebraic Riccati equation for LTI-LQR, the

optimal solution to (3) is closely related to the following s
coupled Riccati equations: for i = 1, 2, · · · , s,

Pi = A
⊺

i φi(P1:s)Ai +Qi −A
⊺

i φi(P1:s)Bi

·
(

Ri +B
⊺

i φi(P1:s)Bi

)-1
B

⊺

i φi(P1:s)Ai (4)

with P1:s as unknowns. We refer (4) as coupled discrete-

time algebraic Riccati equations (cDARE), and use notation

cDARE(A1:s,B1:s,T) to denote the parametrized form,

where the Markov transition matrix T determines the op-

erator φ in (4). In practice, cDARE can be solved efficiently

either with LMIs or via value iteration [9]. We know the

following about the solution to (3) and (4).

Lemma 4. [9, Theorem 4.6 and Corollary A.21] Under

Assumption 3, cDARE(A1:s,B1:s,T) has a unique solution

P⋆
1:s among {P1:s : Pi ⪰ 0, ∀ i}, and P⋆

i ≻ 0 for all

i ∈ [s]. Moreover, the controller K⋆
1:s with

K⋆
i = −

(

Ri +B
⊺

i φi(P
⋆
1:s)Bi

)-1
B

⊺

i φi(P
⋆
1:s)Ai (5)
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stabilizes MJS in (1) and minimizes the cost (3) with input

ut=K⋆
ω(t)xt and optimal cost J⋆=σ2

wtr(
∑

i∈[s] π∞(i)P⋆
i ).

C. Certainty Equivalent Controller

In this work we seek to control MJS(A1:s,B1:s,T) with

unknown dynamics (A1:s,B1:s,T) based on approximate

parameters (Â1:s, B̂1:s, T̂) that satisfy

∥Ai − Âi∥ ≤ ϵ, ∥Bi − B̂i∥ ≤ ϵ, ∥T− T̂∥∞ ≤ η. (6)

The cost matrices (Q1:s,R1:s) are assumed known and

the modes {ω(t)}∞t=0 are observed at run-time. We an-

alyze the CE approach, that is, using the approxi-

mate parameters (Â1:s, B̂1:s, T̂), we solve the perturbed

cDARE(Â1:s, B̂1:s, T̂),

Pi = Â
⊺

i φ̂i(P1:s)Âi +Qi − Â
⊺

i φ̂i(P1:s)B̂i

·
(

Ri + B̂
⊺

i φ̂i(P1:s)B̂i

)-1
B̂

⊺

i φ̂i(P1:s)Âi, (7)

for all i ∈ [s] and Pi ⪰ 0, where the operator φ̂ is defined as

φ̂i(V1:s) :=
∑s

j=1[T̂]ijVj . Let P̂1:s be the positive definite

solution of (7), then the CE controller is given by K̂1:s with

K̂i = −
(

Ri + B̂
⊺

i φ̂i(P̂1:s)B̂i

)-1
B̂

⊺

i φ̂i(P̂1:s)Âi. (8)

Lastly, we apply the input ût = K̂ω(t)xt to control the true

MJS(A1:s,B1:s,T).

Let Ĵ denote the cost incurred by playing the CE controller

K̂1:s. In the next section, we address the following questions:

(a) When can the perturbed cDARE in (7) be guaranteed

to have a unique positive semi-definite solution P̂1:s? (b)

What is a tight upper bound on ∥P̂1:s −P⋆
1:s∥? (c) When

does K̂1:s stabilize the true MJS? (d) How large is the

suboptimality gap Ĵ − J⋆?

III. PERTURBATION ANALYSIS FOR MJS-LQR

We first introduce a few more concepts and notations. We

use L⋆
i := Ai+BiK

⋆
i to denote the closed-loop state matrix

under the optimal MJS-LQR controller (5), and define the

augmented state matrix L̃⋆ similar to (2) such that its ij-th

block is given by [L̃⋆]ij := [T]ijL
⋆
i

⊺ ⊗ L⋆
i

⊺

. From Lemma

4, we know the closed-loop MJS xt+1 = L⋆
ω(t)xt is MSS,

thus ρ(L̃⋆) < 1 by Lemma 2. We let ρ⋆ := ρ(L̃⋆) and define

the following to quantify the decay of L̃⋆.

τ⋆ := sup
k∈N

∥(L̃⋆)k∥/ρ⋆k. (9)

Note that τ⋆ is finite by Gelfand’s formula, and by definition

we have τ⋆ ≥ 1. τ⋆ measures the transient response of a

non-switching system with state matrix L̃⋆ and can be upper

bounded by its H∞ norm [20].

To the ease of exposition, we define a few constants:

ξ := min{∥B1:s∥-2+ ∥R-1
1:s∥-1+ ∥L⋆

1:s∥-2+ , σ(P⋆
1:s)},

Cϵ := 6∥A1:s∥2+∥B1:s∥+∥P⋆
1:s∥2+∥R-1

1:s∥+,
Cu

ϵ := 6C-1
ϵ ∥B1:s∥-2+ ∥P⋆

1:s∥-1+ ∥R-1
1:s∥-1+ , (10)

Cη := 2∥A1:s∥2+∥B1:s∥4+∥P⋆
1:s∥3+∥R-1

1:s∥2+,
Cu

η := 6C-1
η ,

Γ⋆ := max{∥A1:s∥+, ∥B1:s∥+, ∥P⋆
1:s∥+, ∥K⋆

1:s∥+}.

ϵ̄K :=
1− ρ⋆

2
√
sτ⋆(1+2∥L⋆

1:s∥)∥B1:s∥

In the following, we will show that despite being coupled,

cDARE for MJS-LQR satisfies nice local Lipschitz proper-

ties. To be more precise, we show that if the approximate

MJS is accurate enough, i.e., ϵ and η are sufficiently small,

we can guarantee that, not only the positive definite solution

P̂1:s to the perturbed cDARE uniquely exists, but also P̂1:s

is guaranteed to be close to P⋆
1:s.

Theorem 5. Under Assumption 3, and as long as ϵ ≤
min

{

Cu
ϵ ξ(1−ρ⋆)2

204nsτ⋆2 , ∥B1:s∥
}

, η ≤ Cu
η ξ(1−ρ⋆)2

48nsτ⋆2 , the perturbed

cDARE in (7) is guaranteed to have a unique solution P̂1:s

in {X1:s : Xi ⪰ 0, ∀i} such that P̂i ≻ 0 for all i and

∥P̂1:s −P⋆
1:s∥ ≤

√
nsτ⋆

1− ρ⋆
(Cϵϵ+ Cηη). (11)

From the constants, we see we would have milder require-

ments on ϵ and η and a tighter bound on ∥P̂1:s −P⋆
1:s∥

when (i) ∥A1:s∥, ∥B1:s∥, (ii) ∥L⋆
1:s∥, τ⋆, and (iii) ∥R-1

1:s∥ are

smaller. These translate to the cases when (i) the true MJS is

easier to stabilize; (ii) the closed-loop MJS under the optimal

controller is more stable; and (iii) the input dominates more

in the cost function. The role of τ⋆ in this theorem is closely

related to the damping property in ARE perturbation analysis

[12]. The coefficients for ϵ and η on the RHS of (11) are also

known as condition numbers in algebraic Riccati equation

sensitivity literature [14].

Note that the perturbation upper bound in Theorem 5,

when setting s = 1 and η = 0, is consistent with [4,

Proposition 1] developed for the LTI case except that we

suffer an additional
√
n term. This is because, due to the

coupled nature of P̂1:s through cDARE, we proceed by first

vectorizing and stacking cDARE into a single equation to

evaluate [vec(P̂1)
⊺, · · · , vec(P̂s)

⊺]⊺, then convert it back to

P̂1:s through reshaping. Certain norm equivalency arguments

(Fact 2) are needed to carry perturbation results through

this back-and-forth reshaping steps, which produces this

additional
√
n. On the other hand, these steps and thus the√

n term are not needed for the LTI case, since only a single

Riccati equation is involved.

It is easy to extend this result to the cases when an

approximate Q̂1:s with ∥Q̂1:s−Q1:s∥≤ϵ is used in place of

Q1:s in the computations, which can be useful when the

cost includes a term of the form ∥yt∥2 where yt=Cω(t)xt

represents the output, and we only have an approximate

parameter Ĉ1:s. In this case, Qi=C
⊺

i Ci and Q̂i=Ĉ
⊺

i Ĉi.

In the next result, we leverage Theorem 5 to show how

the controller K̂1:s computed from a perturbed cDARE so-

lution deviates from the optimal one, i.e., how ∥K̂1:s−K⋆
1:s∥

depends on ϵ and η, and when K̂1:s stabilizes the true

MJS (such that Ĵ will be bounded). Moreover, with the

help of [21, Lemma 3], which provides a relation between

suboptimality gap Ĵ−J⋆ and ∥K̂1:s−K⋆
1:s∥, we establish an

upper bound for Ĵ−J⋆ in terms of ϵ and η.

Theorem 6. Under Assumptions 3, suppose ϵ and η
satisfy the bounds in Theorem 5 and Cϵϵ + Cηη ≤
(1−ρ⋆)min{Γ⋆,σ(R1:s)

2 ϵ̄K}
28

√
nsτ⋆Γ3

⋆(σ(R1:s)+Γ3
⋆)

. Then CE controller K̂1:s stabilizes

2873

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on February 02,2023 at 04:23:03 UTC from IEEE Xplore.  Restrictions apply. 



the true MJS and

∥K⋆
1:s−K̂1:s∥ ≤ 28

√
nsτ⋆Γ3

⋆

(σ(R1:s)+Γ3
⋆)

(1− ρ⋆)σ(R1:s)2
(Cϵϵ+Cηη) (12)

Ĵ − J⋆ ≤ 1600σ2
w

s2.5n1.5 min{n, p}τ⋆3Γ6
⋆

(1− ρ⋆)3

· (∥R1:s∥+ Γ3
⋆)

3

σ(R1:s)4
(Cϵϵ+Cηη)

2. (13)

This result states that the suboptimality has quadratic

dependency on the uncertainties ϵ and η, and degrades when

the MJS has larger number of modes s, system order n, or

noise variance σ2
w. Similar to the earlier discussion, Theorem

6 is also consistent with its LTI counterpart [4, Theorem 1]

except the n term.

Our sub-optimality result has important implications in

data-driven control for MJS. Suppose the uncertainties ϵ and

η in the system dynamics and the transition matrix are due to

estimation errors induced by a system identification proce-

dure that uses T samples. Then, if the estimation error decays

as O(1/
√
T ) (which is typical for ϵ as in learning LTI [22],

[23] and for η in learning Markov chains [24]), Theorem 6

implies that the suboptimality decays as O(1/T ). Thus, given

a desired sub-optimality level for the CE controller, one can

use this relation to infer the required number of samples,

which has been employed in our companion paper [19] to

establish regret analysis for adaptive control.

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical results to

support our proposed theory. We fix n=10 and p=5. The true

system matrices (A1:s,B1:s) were generated randomly from

the standard normal distribution. We scaled each Ai to have

spectral radius equal to 0.3 to obtain a mean square stable

MJS. We set Qi=Q
i
Q⊤

i
,Ri=RiR

⊤
i , Âi=Ai+ϵAAi, and

B̂i=Bi+ϵBBi, where Q
i
, Ri, Ai, and Bi were generated

randomly from the standard normal distribution; and ϵA and

ϵB are some fixed scalars. Here we experimentally study

the influences of perturbation on A1:s and B1:s separately

with ϵA and ϵB. Note that ϵ defined in (6) is equal to

max{ϵA, ϵB}. The true Markov transition matrix T was

sampled from a Dirichlet distribution Dir((s−1)·Is+1), and

we let the approximate T̂ = T+E, where the perturbation

E = ηT(Dir((s− 1) · Is + 1))− T̂) for ηT ∈ [0, 1].
We study how the Riccati solution perturbation

and sub-optimality gap vary with ϵA, ϵB, ηT ∈
{0.01, 0.02, 0.05, 0.1, 0.2, 0.3} and the number of modes

s ∈ {10, 20, 30, 40}. For each choice of ϵA, ϵB, and ηT, we

run 100 experiments and record the respective maximums of

∆P := maxi ∥P̂i−P⋆
i ∥/∥P⋆

i ∥ and ∆J := (Ĵ−J⋆)/J⋆ over

all 100 runs. In Figures 1 and 2, we have four plots showing

∆P and ∆J versus uncertainties (i) ϵA (ϵB = ηT = 0),
(ii) ϵB (ϵA = ηT = 0), (iii) ηT (ϵA = ϵB = 0), and (iv)

ϵ = ϵA = ϵB = ηT.

Figure 1 presents four plots that demonstrate how ∆P

changes as ϵA, ϵB, ηT, and ϵ increase, respectively. Each

curve on the plot represents a fixed number of modes

s. These empirical results are all consistent with (11). In

particular, Figure 1 (right) shows that given the uncertainty

in the system matrices and in the Markov transition matrix

is bounded by ϵ, the perturbation bound to coupled Riccati

equations has the rate O(ϵ) which degrades linearly as

ϵ increase. Further, it can be easily seen that the gaps

indeed increase with the number of modes in the system.

Figure 2 demonstrates the relationship between the relative

suboptimality ∆J and the five parameters ϵA, ϵB, ηT, ϵ and

s. As can be seen in Figure 2 (right), given the uncertainty

in the system matrices and in the Markov transition matrix

is bounded by ϵ, the perturbation bounds to the optimal cost

decay quadratically which is consistent with our theory.

V. CONCLUSIONS

In this work, we provide a perturbation analysis for

cDARE, which arise in the solution of MJS-LQR, and an

end-to-end suboptimality guarantee for certainty equivalence

control for MJS-LQR. Our results show the robustness of

the optimal policy to perturbations in system dynamics and

establish the validity of the certainty equivalent control in

a neighborhood of the original system. This work opens

up multiple future directions. First, with proper system

identification algorithms, we can analyze model-based on-

line/adaptive algorithms where control policy is updated con-

tinuously over a single trajectory. Second, a natural extension

would be to study MJS with output measurements where

states are only partially observed, i.e., the LQG setting. This

will require considering the dual coupled Riccati equations

for filtering.
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APPENDIX

A. Useful Facts

Fact 1 (Matrix Facts). For arbitrary matrices M,N,X with

appropriate dimensions, we have the following facts.

1) If M,N ⪰ 0, then

∥N(I+MN)-1∥ ≤ ∥N∥, (14)

∥(I+MN)-1∥ ≤ 1 + ∥N∥∥M∥. (15)

2) If M and M+N are invertible, then

(M+N)-1 = M-1 −M-1N(M+N)-1

= M-1 − (M+N)-1NM-1.
(16)

3) If I+M and I+N are invertible, then

(I+M)-1−(I+N)-1=(I+M)-1(N−M)(I+N)-1. (17)

4) vec(MXN) = (N
⊺ ⊗M)vec(X). (18)

5) For a collection of matrices M1:s, and for all i ∈ [s],

∥φi(M1:s)∥ = ∥
∑s

j=1
[T]ijMj∥ ≤ ∥M1:s∥. (19)

In Fact 1, (14) is due to [4, Lemma 7] (in their supple-

ment); to see (15), first note that (I+MN)-1 = I−MN(I+
MN)-1 by matrix inversion lemma, and then apply (14). (16)

and (17) also follow from matrix inversion lemma.

Fact 2. For nxn matrices X1:s, let X=diag(X1:s). Let

˜vec(·) be the operator that vectorizes all diagonal blocks

of X into a vector, i.e. ˜vec(X):=(vec(X1), . . . , vec(Xs)).
Let ˜vec

-1
denote the inverse, i.e. ˜vec

-1( ˜vec(X)) = X. Then,

∥ ˜vec∥ := sup
X=diag(X1:s),∥X∥=1

∥ ˜vec(X)∥ (i)
=

√
ns (20)

∥ ˜vec
-1∥ := sup

∥x∥=1

∥ ˜vec
-1(x)∥ (ii)

= 1. (21)

Fact 2 follows by noting that (i) achieves the supremum

when Xi = In for all i and (ii) achieves the supremum when

x = (1, 0, . . . , 0). For a matrix M and perturbation ∆, we

have the following result adapted from [4, Lemma 5].
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Fact 3. Let ρ := ρ(M) and τ := supk∈N ∥Mk∥/ρk. Then,

(a) ρ(M+∆)≤τ∥∆∥+ρ; (b) ∥(M+∆)k∥ ≤ τ
(

τ∥∆∥+ρ
)k

.

Fact 4. Consider cDARE(A1:s,B1:s,T) for a generic

MJS(A1:s,B1:s,T) and LQR cost matrices Q1:s,R1:s. As-

sume Qi,Ri ≻ 0 for all i ∈ [s]. Then, if there exists a

positive definite solution P1:s to cDARE(A1:s,B1:s,T), then

it is the unique solution among {P1:s : Pi ⪰ 0, ∀ i ∈ [s]}.

To see this, first note that cDARE(A1:s,B1:s,T) can be

written as the Joseph stabilized form [25, (2.2-62)], i.e.

Pi −L
⊺

i φi(P1:s)Li = K
⊺

i RiKi +Qi where Ki = −
(

Ri +

B
⊺

i φi(P1:s)Bi

)-1
B

⊺

i φi(P
⋆
1:s)Ai and Li := Ai + BiKi.

Since Qi ≻ 0, we know by Lemma 2 the closed-loop

MJS xt+1=Lω(t)xt is MSS. Then one can obtain Fact 4 by

invoking [9, Lemma A.14] which says cDARE has at most

one solution with resulting controller stabilizes the MJS.

B. Proof of Theorem 5

We first provide the road map of the proof.

(a) We construct an operator K(X1:s) using the difference

between the true cDARE(A1:s,B1:s,T) and perturbed

cDARE(Â1:s, B̂1:s, T̂), whose fixed point X⋆
1:s (if ex-

ists) guarantees P̂1:s := P⋆
1:s+X⋆

1:s to be a solution to

the perturbed cDARE(Â1:s, B̂1:s, T̂).
(b) We show when ϵ, η are small, K(X1:s) is a contraction

mapping on a closed set Sν whose radius ν is a function

of ϵ and η. Thus, there exists a unique fixed point

X⋆
1:s ∈ Sν and ∥P̂1:s −P⋆

1:s∥ = ∥X⋆
1:s∥ ≤ ν(ϵ, η).

(c) Finally, we show P̂1:s is unique by showing P̂i ≻ 0
and then invoking Fact 4.

1) Construct operator K: First we define a few notations

for the ease of exposition. For all i ∈ [s], let Si := BiR
-1
i B

⊺

i

and Ŝi := B̂iR
-1
i B̂

⊺

i . Define block diagonal matrices A, Â,

B, B̂, Q, R, P⋆, P̂, K⋆, L⋆, S, Ŝ, P, X, Φ(X), Φ̂(X)
such that their ith diagonal blocks are given by Ai, Âi, Bi,

B̂i, Qi, Ri, P⋆
i , P̂i, K⋆

i , L⋆
i , Si, Ŝi, Pi, Xi, φi(X1:s),

φ̂i(X1:s) respectively. Note that Pi,Xi ⪰ 0 are just generic

variables to be used in function arguments. We will see many

equations that hold for each single block also hold for the

diagonally concatenated notations.

We have K⋆ = −(R +B
⊺
Φ(P⋆)B)-1B⊺

Φ(P⋆)A from

(5), then using the matrix inversion lemma, we can get

L⋆ = A+BK⋆ = (I+ SΦ(P⋆))-1A. (22)

Furthermore, by diagonally concatenating cDARE (4) and

then applying the matrix inversion lemma again, we have

X = A
⊺
Φ(X)(I+ SΦ(X))-1A+Q. (23)

Then, we define the following Riccati difference function

using the difference between LHS and RHS of (23), with P

as argument and A,B,T as parameters:

F(P;A,B,T):=P−A
⊺
Φ(P)(I+SΦ(P))-1A−Q. (24)

Though not explicitly listed, Φ and S on the RHS of (24)

depend on T and B respectively. Since P⋆
1:s is the solution to

cDARE(A1:s,B1:s,T), we have F(P⋆;A,B,T)=0. Simi-

larly, if there exists solution P̂1:s to cDARE(Â1:s, B̂1:s, T̂),
then we also have F(P̂; Â, B̂, T̂)=0.

For X such that P⋆ +X ⪰ 0, we know I + S(P⋆ +X)
is invertible. Then, for F(P⋆ +X;A,B,T), we have

F(P⋆ +X;A,B,T)
(16)
=P

⋆+X−A
⊺

Φ(P⋆+X) ·
[
(I+SΦ(P⋆))-1−

(I+SΦ(P⋆+X))-1
︸ ︷︷ ︸

=:Γ

SΦ(X)(I+SΦ(P⋆))-1
]
A−Q

=P
⋆+X−A

⊺

Φ(P⋆+X)(I−ΓSΦ(X))(I+SΦ(P⋆))-1A−Q

(22)
=P

⋆+X−A
⊺

Φ(P⋆+X)(I−ΓSΦ(X))L⋆−Q

(i)
=X−A

⊺

Φ(P⋆+X)(I−ΓSΦ(X))L⋆+A
⊺

Φ(P⋆)L⋆

=X−A
⊺

[Φ(P⋆+X)(I−ΓSΦ(X))−Φ(P⋆)]L⋆

(22)
=X−L

⋆⊺(I+Φ(P⋆)S) [Φ(P⋆+X)(I−ΓSΦ(X))−Φ(P⋆)]L⋆

=X−L
⋆⊺ (I+Φ(P⋆)S) [−Φ(P⋆)ΓS+I−Φ(X)ΓS]

︸ ︷︷ ︸

=:Λ

Φ(X)L⋆

where (i) follows from P⋆−Q = A
⊺
Φ(X)L⋆ which can be

seen from the fact F(P⋆;A,B,T) = 0. By expanding Λ,

one can check Λ = I − Φ(X)ΓS. Plugging this back and

using the definition of Γ, we have

F(P⋆ +X;A,B,T) = X− L⋆⊺Φ(X)L⋆+

L⋆⊺Φ(X)(I+ SΦ(P⋆) + SΦ(X))-1SΦ(X)L⋆. (25)

If we define

T (X)=X−L⋆⊺Φ(X)L⋆,

H(X)=L⋆⊺Φ(X)(I+SΦ(P⋆)+SΦ(X))-1SΦ(X)L⋆,
(26)

we can write F(P⋆ +X;A,B,T) as

F(P⋆ +X;A,B,T) = T (X) +H(X). (27)

We now study the invertibility of operator T . Let Yi :=
Xi − L⋆

i

⊺

φi(X1:s)L
⋆
i , and Y := diag(Y1:s), then we see

Y = T (X) = X−L⋆⊺Φ(X)L⋆. Apply (18) to Yi, we have

vec(Yi) = (I−[T]ii ·L⋆
i

⊺⊗L⋆
i

⊺

)vec(Xi)−
∑

j ̸=i[T]ijL
⋆
i

⊺⊗
L⋆
i

⊺

vec(Xj). Stacking this equation for all i, we have (I−
L̃⋆) ˜vec(X) = ˜vec(Y), where ˜vec(·) is defined in Fact 2.

From Sec III, we know ρ(L̃⋆) < 1, thus (I−L̃⋆) is invertible,

and inverse operator T -1 exists and is given by

X = T -1(Y) = ˜vec
-1 ◦ (I− L̃⋆)-1 ◦ ˜vec(Y), (28)

where ◦ denotes operator composition, and ˜vec(·)-1 is de-

fined in Fact 2. With T -1, we define the following operator:

K(X) := T -1
(

F(P⋆ +X;A,B,T)−
F(P⋆ +X; Â, B̂, T̂)−H(X)

)

. (29)

Suppose there exists a fixed point X⋆ for K, then we see

F(P⋆ +X⋆; Â, B̂, T̂) = F(P⋆ +X⋆;A,B,T)−T (X⋆)−
H(X⋆) = 0, i.e. P̂1:s = P⋆

1:s + X⋆
1:s is a solution to the

perturbed cDARE(Â1:s, B̂1:s, T̂).

2) K is a Contraction: We will show K(X) is a contrac-

tion mapping on the closed set

Sν := {X : ∥X∥ ≤ ν,X = diag(X1:s),P
⋆ +X ⪰ 0} (30)

so that K(X) is guaranteed to have a fixed point in Sν . To do

this, we first present the following lemma (proof in Appendix

D) regarding properties of K(X).

Lemma 7. Assume ϵ ≤ min{∥B∥, 1}. Suppose X,X1,X2 ∈
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Sν with ν ≤ min{1, ∥S∥-1}, then

∥K(X)∥ ≤
√
nsτ⋆

1− ρ⋆
(
∥L⋆∥2∥S∥ν2+

Cϵϵ+Cηη

2

)
, (31)

∥K(X1)−K(X2)∥ ≤
√
nsτ⋆

1− ρ⋆
∥X1 −X2∥

·
(
3∥L⋆∥2∥S∥ν + ∥B∥2+∥R-1∥+(51ϵ/Cu

ϵ + 2η/Cu
η )

)
. (32)

To use this lemma, we pick ν =
√
nsτ⋆

1−ρ⋆ (Cϵϵ+ Cηη) .
We first show K maps Sν into itself and then show it is a

contraction mapping. Plugging in the upper bounds for ϵ and

η in the premises of Theorem 5, we have

ν ≤ min

{

1,
1

∥S∥ ,
1− ρ⋆

12
√
nsτ⋆∥L⋆∥2∥S∥ ,

σ(P⋆)

12

}

, (33)

Following the premise upper bound of ϵ in Theorem 5

we have ϵ≤min{∥B∥, 1}. This together with (33) makes

Lemma 7 applicable, and we get ∥K(X)∥≤ 1
12ν + 1

2ν=
7
12ν

by cancelling off ϵ and η in (31) with the definition of ν,

and applying the third upper bound for ν in (33). We know

ν≤σ(P⋆)/12 from (33), we have ∥K(X)∥≤ 7
144σ(P

⋆), thus

P⋆ + K(X)≻0. This shows K(X) ∈ Sν , i.e. K maps Sν

into itself. Plugging the premise upper bounds for ϵ, η in

Theorem 5 and the third upper bound for ν in (33) into

(32) gives ∥K(X1)−K(X2)∥≤ 13
24∥X1 −X2∥, i.e. K(X) is

a contraction mapping on Sν , which means K(X) has a

unique fixed point X⋆∈Sν . From the discussion below (29),

we know P̂1:s is a solution to cDARE(Â1:s, B̂1:s, T̂) and

∥P̂1:s −P⋆
1:s∥=∥X⋆

1:s∥=∥X⋆∥≤ν, which shows (11).

3) Uniqueness of P̂1:s: Note that X⋆∈Sν gives ∥X⋆∥<ν,

and using (33), we have ∥X⋆∥<σ(P⋆), thus P⋆ + X⋆≻0.

This implies P̂i=P⋆
i +X⋆

i≻0 for all i. By Fact 4, we know

P̂1:s is the only possible solution to cDARE(Â1:s, B̂1:s, T̂)
among {X1:s : Xi ⪰ 0, ∀i}.

C. Proof of Theorem 6

We first provide the road map of the proof.

(a) We bound the controller difference ∥K⋆
1:s − K̂1:s∥ in

terms of ∥P̂1:s −P⋆
1:s∥ and provide conditions under

which K̂1:s stabilizes the true MJS(A1:s,B1:s,T).

(b) For Ĵ incurred by the stabilizing K̂1:s, we bound the

suboptimality gap Ĵ − J⋆ in terms of ∥K⋆
1:s − K̂1:s∥.

(c) We Combine steps (a), (b) and Theorem 5 to obtain the

final result.

1) Properties of K̂1:s: We show that when P̂1:s is close

to P1:s, then K̂1:s is also close to K1:s.

Lemma 8 (Controller mismatch). Suppose ∥P̂1:s −P⋆
1:s∥ ≤

f(ϵ, η) for some function f(ϵ, η) such that max{ϵ, η} ≤
f(ϵ, η) ≤ Γ⋆. Then, under Assumption 3, we have

∥K⋆
1:s − K̂1:s∥ ≤ 28Γ3

⋆

(σ(R1:s) + Γ3
⋆)

σ(R1:s)2
f(ϵ, η) (34)

Proof. Recall K⋆
i=−

(

Ri+B
⊺

i φi(P
⋆
1:s)Bi

)-1
B

⊺

i φi(P
⋆
1:s)Ai

and K̂i=−
(

Ri+B̂
⊺

i φ̂i(P̂1:s)B̂i

)-1
B̂

⊺

i φ̂i(P̂1:s)Âi. As an

auxiliary step, we define K̃i:=−
(

Ri+B̂
⊺

i φi(P̂1:s)B̂i

)-1 ·
B̂

⊺

i φi(P̂1:s)Âi. Then, we have

∥K⋆
i − K̂i∥ ≤ ∥K⋆

i − K̃i∥+ ∥K̃i − K̂i∥. (35)

Note that ∥K⋆
1:s − K̂1:s∥ = maxi ∥K⋆

i − K̂i∥, thus it suf-

fices to bound ∥K⋆
i − K̃i∥ and ∥K̃i − K̂i∥ respectively. For

∥K⋆
i − K̃i∥, we can see ∥K⋆

i − K̃i∥ ≤ MδN + δMN where

M=∥
(
Ri+B

⊺

iφi(P
⋆
1:s)Bi

)-1∥, N=∥B̂⊺

iφi(P̂1:s)Âi∥
δM=∥

(
Ri+B

⊺

iφi(P
⋆
1:s)Bi

)-1−
(
Ri+B̂

⊺

iφi(P̂1:s)B̂i

)-1∥
δN=∥B⊺

iφi(P
⋆
1:s)Ai−B̂

⊺

iφi(P̂1:s)Âi∥
We next upper bound M, δN , δM , and N . Since we assume

Ri ≻ 0, it is easy to see M = ∥
(

Ri+B
⊺

i φi(P
⋆
1:s)Bi

)-1∥ ≤
1

σ(Ri)
. For δN , let ∆Ai

= Âi−Ai, ∆Bi
= B̂i−Bi, ∆Pi

=

P̂i −P⋆
i , then we have

δN = ∥B⊺

iφi(P
⋆
1:s)Ai−B̂

⊺

iφi(P̂1:s)Âi∥
= ∥B⊺

iφi(P
⋆
1:s)Ai−(Bi+∆Bi

)
⊺

·
[
φi(P

⋆
1:s)Ai+φi(∆P⋆

1:s
)Ai+φi(P

⋆
1:s)∆Ai

+φi(∆P⋆
1:s

)∆Ai

]
∥

= ∥B⊺

iφi(P
⋆
1:s)Ai−

[
B

⊺

iφi(P
⋆
1:s)Ai+B

⊺

iφi(∆P⋆
1:s

)Ai

+B
⊺

iφi(P
⋆
1:s)∆Ai

+B
⊺

iφi(∆P⋆
1:s

)∆Ai
+∆

⊺

Bi
φi(P

⋆
1:s)Ai

+∆
⊺

Bi
φi(∆P⋆

1:s
)Ai+∆

⊺

Bi
φi(P

⋆
1:s)∆Ai

+∆
⊺

Bi
φi(∆P⋆

1:s
)∆Ai

]
∥

(19)

≤ ∥Ai∥∥Bi∥f(ϵ, η)+∥Bi∥∥P⋆
1:s∥ϵ+∥Bi∥f(ϵ, η)ϵ

+∥Ai∥∥P⋆
1:s∥ϵ+∥Ai∥f(ϵ, η)ϵ+∥P⋆

1:s∥ϵ2+f(ϵ, η)ϵ2,

≤ 3Γ2
⋆f(ϵ, η),

where the last line follows from the assumption that ϵ <
f(ϵ, η). For δM , we have

δM = ∥
(
Ri+B

⊺

iφi(P
⋆
1:s)Bi

)-1−
(
Ri+B̂

⊺

iφi(P̂1:s)B̂i

)-1∥
(16)

≤ ∥
(
Ri+B

⊺

iφi(P
⋆
1:s)Bi

)-1∥ · ∥
(
Ri+B̂

⊺

iφi(P̂1:s)B̂i

)-1∥
· ∥B̂⊺

iφi(P̂1:s)B̂i−B
⊺

iφi(P
⋆
1:s)Bi∥

≤ 3Γ2
⋆f(ϵ, η)

σ(Ri)2
.

Similarly, we have the following for N .

N = ∥B̂⊺

iφi(P̂1:s)Âi∥
= ∥B⊺

iφi(P
⋆
1:s)Ai+B

⊺

iφi(∆P⋆
1:s

)Ai+B
⊺

iφi(P
⋆
1:s)∆Ai

+B
⊺

iφi(∆P⋆
1:s

)∆Ai
+∆

⊺

Bi
φi(P

⋆
1:s)Ai+∆

⊺

Bi
φi(∆P⋆

1:s
)Ai

+∆
⊺

Bi
φi(P

⋆
1:s)∆Ai

+∆
⊺

Bi
φi(∆P⋆

1:s
)∆Ai

∥
≤

(
∥Ai∥∥Bi∥+∥Ai∥∥P⋆

1:s∥+∥Bi∥∥P⋆
1:s∥+∥Ai∥ϵ+∥Bi∥ϵ

+∥P⋆
1:s∥ϵ+ϵ2) · f(ϵ, η

)
+∥Ai∥∥Bi∥∥P⋆

1:s∥
≤ 3Γ2

⋆f(ϵ, η)+Γ3
⋆.

Combining the bounds for M, δN , δM , and N we obtained

thus far, we have ∥K⋆
i − K̃i∥ ≤ 12Γ2

⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

f(ϵ, η).
Using similar techniques, for the other term on the RHS of

(35), we can show ∥K̃i − K̂i∥ ≤ 16Γ3
⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

η. Recall

we assume η ≤ f(ϵ, η), then by triangle inequality, we have

∥K⋆
i − K̂i∥ ≤ 28Γ3

⋆
(σ(Ri)+Γ3

⋆)
σ(Ri)2

f(ϵ, η).

For K̂1:s, let L̂i:=Ai +BiK̂i and define the augmented

closed-loop state matrix L̃◦ ∈ R
sn2

xsn2

with ij-th n2×n2

block given by [L̃◦]ij :=[T]ijL̂
⊺

i ⊗ L̂
⊺

i .

Lemma 9 (Stabilizability of K̂). Suppose ∥K̂1:s −K⋆
1:s∥ ≤

1−ρ⋆

2
√
sτ⋆(1+2∥L⋆

1:s∥)∥B1:s∥=:ϵ̄K, then (a) ρ(L̃◦) < 1+ρ⋆

2 , i.e.

K̂1:s is a stabilizing controller; (b) ∥(L̃◦)k∥ ≤ τ⋆( 1+ρ⋆

2 )k;

Proof. What remains to show is that K̂1:s stabilizes the true

MJS. We let ∆Ki
:=K̂i−K⋆

i and L̂i:=Ai+BiK̂i, then we

see L̂i = L⋆
i + Bi∆Ki

. Under controller K̂1:s, we define

the augmented closed-loop state matrix L̃◦ ∈ R
sn2

xsn2

with

ij-th n2×n2 block given by [L̃◦]ij :=[T]ijL̂
⊺

i ⊗L̂
⊺

i . Note that
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[L̃◦]ij−[L̃⋆]ij=[T]ij((Bi∆Ki
)⊺⊗(Bi∆Ki

)⊺+(Bi∆Ki
)⊺⊗L⋆

i

⊺

+L⋆
i

⊺⊗(Bi∆Ki
)⊺), then ∥[L̃◦]ij−[L̃⋆]ij∥≤[T]ij(∥Bi∥2

·∥∆Ki
∥2+2∥Bi∥∥L⋆

i ∥∥∆Ki
∥)≤[T]ij(1+2∥Li∥)∥Bi∥∥∆Ki

∥
≤[T]ij

1−ρ⋆

2
√
sτ⋆ . Using Cauchy-Schwartz inequality, we have

∥L̃◦−L̃⋆∥≤
(
∑

i,j ∥[L̃◦]ij−[L̃⋆]ij∥2
)0.5≤ 1−ρ⋆

2τ⋆ . Finally, we

can conclude the proof by invoking Fact 3.

2) Ĵ − J⋆ vs. ∥K⋆
1:s − K̂1:s∥: Adapting [21, Lemma 3-

(2)] to noisy MJS and infinite-horizon average cost case, we

have the following result.

Lemma 10. Suppose K1:s is a stabilizing controller. Let

Πi := π∞(i)In and Π := diag(Π1:s). Let Σ1:s be the

solution to ˜vec(Σ) = L̃◦⊺ ˜vec(Σ) + σ2
w

˜vec(Π), where Σ :=
diag(Σ1:s). Then, Ĵ − J⋆ =

∑

i tr
(

Σi(K̂i − K⋆
i )

⊺(Ri +

B
⊺

i φi(P
⋆
1:s)Bi(K̂i −K⋆

i ))
)

In Lemma 10, the equation described by Σ is essentially

the coupled Lyapunov equation for MJS, and it can be shown

Σi = limt→∞ E[xtx
⊺

t 1ω(t)=i] where xt is the state under

controller K̂1:s. Combining Lemma 9 and 10, we have

Corollary 11. Suppose ∥K̂1:s −K⋆
1:s∥ ≤ ϵ̄K, then

Ĵ−J⋆≤2σ2
ws1.5

√
nmin{n, p}τ⋆
1− ρ⋆

(∥R1:s∥+Γ3
⋆)∥K̂1:s−K⋆

1:s∥2.

Proof. We first bound ∥Σi∥ in Lemma 10. Similar to

(28), we have Σ = σ2
w · ˜vec

-1 ◦ (I − L̃◦⊺)-1 ◦
˜vec(Π). Using Fact (2) and the sub-multiplicative prop-

erty of operator norms, we have ∥Σi∥ ≤ ∥Σ∥ ≤√
ns∥(I− L̃◦⊺)-1∥∥Π∥. Note that ∥Π∥ ≤ 1 and

∥(I− L̃◦⊺)-1∥ = ∥∑∞
k=0(L̃

◦)k∥ ≤ ∑∞
k=0 ∥(L̃◦)k∥ ≤

2τ⋆

1−ρ⋆ , where the last inequality follows from Lemma 9

(b). Thus, ∥Σi∥ ≤ 2σ2

w

√
snτ⋆

1−ρ⋆ . Then, Lemma 10 gives

Ĵ−J⋆ ≤ s∥Σi∥(∥R1:s∥+∥B1:s∥2∥P⋆∥)∥K̂1:s −K⋆
1:s∥2F ≤

2σ2

w
s1.5

√
nmin{n,p}τ⋆

1−ρ⋆ (∥R1:s∥+ Γ3
⋆)∥K̂1:s −K⋆

1:s∥2.
3) Proof of Theorem 6: To prove Theorem 6, we only

need to combine Theorem 5, Lemma 8, and Corollary 11. By

Theorem 5, we can choose f(ϵ, η) :=
√
nsτ⋆

1−ρ⋆ (Cϵϵ+Cηη) in

Lemma 8. The, when Cϵϵ+Cηη ≤ (1−ρ⋆)min{Γ⋆,σ(R1:s)
2 ϵ̄K}

28
√
nsτ⋆Γ3

⋆(σ(R1:s)+Γ3
⋆)

,

the premise conditions max{ϵ, η} ≤ f(ϵ, η) ≤ Γ⋆ in

Lemma 8 and ∥K̂1:s −K⋆
1:s∥ ≤ ϵ̄K in Corollary 11

hold. Theorem 5 and Lemma 8 give ∥K⋆
1:s − K̂1:s∥ ≤

28
√
nsτ⋆Γ3

⋆
(σ(R1:s)+Γ3

⋆)
(1−ρ⋆)σ(R1:s)2

(Cϵϵ + Cηη) which shows (12).

Combining this with Corollary 11 shows (13).

D. Proof of Lemma 7

To ease the exposition, let P⋆
X
:=P⋆+X and define

P⋆
X1

,P⋆
X1

similarly. Let ∆A:=Â−A, ∆B:=B̂−B, and

∆S:=Ŝ−S. We list a few preliminary results (when X∈Sν)

to be used later.

• ∥Φ(X)∥ ≤ ∥X∥, ∥Φ̂(X)∥ ≤ ∥X∥. (36)

• ∥Φ(X)− Φ̂(X)∥ ≤ η∥X∥. (37)

• max{∥P⋆
X∥, ∥Φ(P⋆

X)∥, ∥Φ̂(P⋆
X)∥} ≤ ∥P⋆∥+. (38)

• ∥S∥≤∥B∥2∥R-1∥, ∥∆S∥≤3∥B∥∥R-1∥ϵ,
∥Ŝ∥≤4∥B∥2∥R-1∥ (39)

• max
{

∥(I+ SΦ(P⋆
X))-1∥, ∥(I+ SΦ̂(P⋆

X))-1∥
}

≤ ∥B∥2+∥R-1∥+∥P⋆∥+ (40)

• max
{

∥(I+ ŜΦ(P⋆
X))-1∥, ∥(I+ ŜΦ̂(P⋆

X))-1∥
}

≤ 4∥B∥2+∥R-1∥+∥P⋆∥+.(41)

(38) is due to ν ≤ 1, and (39) uses ∥∆B∥≤ϵ≤∥B∥. (40)

and (41) follows from (15), (38), (39).

Now, we are ready to begin the main proof. We first define

G1(X):=F(P⋆
X;A,B, T̂)−F(P⋆

X; Â, B̂, T̂)

G2(X):=F(P⋆
X;A,B,T)−F(P⋆

X;A,B, T̂).

Then, we have the following decomposition.

K(X) = T -1(G1(X) + G2(X)−H(X)), (42)

K(X1)−K(X2) = T -1(G1(X1)− G1(X2)

+ G2(X1)− G2(X2)−H(X1) +H(X2)) (43)

To bound the ∥K(X)∥ and ∥K(X1)−K(X2)∥, we will bound

∥T -1∥, ∥H(X)∥, ∥G1(X)∥, ∥G2(X)∥, ∥H(X1) − H(X2)∥,

∥G1(X1) −G1(X2)∥, ∥G2(X1)−G2(X2)∥ individually, for

any X,X1,X2∈Sν and then combine them using triangle

inequality and operator composition sub-multiplicativity, i.e.

∥K(X)∥ ≤ ∥T -1∥(∥G1(X)∥+ ∥G2(X)∥+ ∥H(X)∥) (44)

∥K(X1)−K(X2)∥ ≤ ∥T -1∥(∥G1(X1)−G1(X2)∥
+ ∥G2(X1)−G2(X2)∥+∥H(X1)−H(X2)∥) (45)

1) Bound ∥K(X)∥: By the definition of T -1 in (28),

we know T -1(Y) = ˜vec
-1 ◦ (I − L̃⋆)-1 ◦ ˜vec(Y). Then,

for ∥T -1∥, similar to the proof for Corollary 11, we have

∥T -1∥ ≤
√
snτ⋆

1−ρ⋆ . By definition of H(X) in (27), we have

∥H(X)∥ ≤ ∥L⋆∥2∥S∥∥X∥2 ≤ ∥L⋆∥2∥S∥ν2, where (14) and

(36) are used. For term G1(X), using (17), we can decompose

it as
G1(X) =

−A
⊺

Φ̂(P⋆
X)(I+SΦ̂(P⋆

X))-1∆SΦ̂(P⋆
X)(I+ŜΦ̂(P⋆

X))-1A

+∆
⊺

AΦ̂(P⋆
X)(I+ŜΦ̂(P⋆

X))-1A+A
⊺

Φ̂(P⋆
X)(I+ŜΦ̂(P⋆

X))-1∆A

+∆
⊺

AΦ̂(P⋆
X)(I+ŜΦ̂(P⋆

X))-1∆A.

With properties (14), (38), (39), and the premise as-

sumption ϵ≤∥B∥, we can show ∥G1(X)∥≤3∥A∥2+∥B∥+
·∥P⋆∥2+∥R-1∥+ϵ. Similarly, we can show ∥G2(X)∥≤∥A∥2+
·∥B∥4+∥P⋆∥3+∥R-1∥2+η by invoking (14), (17), (37), (38),

(39), and (40). Finally, using the relation in (44), we can

show the upper bound for ∥K(X)∥ in (31).

2) Bound ∥K(X1)−K(X2)∥: We first derive

bounds for ∥H(X1)−H(X2)∥, ∥G1(X1)−G1(X2)∥, and

∥G2(X1)−G2(X2)∥. With the help of (17), the following

can be obtained.

H(X1)−H(X2) = L
⋆⊺
Φ(X1)(I+SΦ(P⋆

X1
))-1

· SΦ(X2−X1)(I+SΦ(P⋆
X2

))-1SΦ(X1)L
⋆

−L
⋆⊺
Φ(X2−X1)(I+SΦ(P⋆

X2
))-1SΦ(X2)L

⋆

−L
⋆⊺
Φ(X1)(I+SΦ(P⋆

X2
))-1SΦ(X2−X1)L

⋆.

(46)

Using (14), (36), and ν≤∥S∥-1, we have ∥H(X1)−H(X2)∥
≤3∥L⋆∥2∥S∥ν∥X2−X1∥. Similarly, ∥G1(X1)−G1(X2)∥≤
51∥A∥2+∥B∥5+∥P⋆∥3+∥R-1∥3+∥X2−X1∥ϵ and ∥G2(X1)−
G2(X2)∥≤2∥A∥2+∥B∥6+∥P⋆∥3+∥R-1∥3+∥X2−X1∥η can be

established. Plugging these results into the relation in (45)

shows the bound for ∥K(X1)−K(X2)∥ in (32)
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