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Abstract

We study the problem of approximating edit distance in sublinear time. This is formalized
as the (k, kc)-Gap Edit Distance problem, where the input is a pair of strings X,Y and
parameters k, c > 1, and the goal is to return YES if ED(X,Y ) ≤ k, NO if ED(X,Y ) > kc, and
an arbitrary answer when k < ED(X,Y ) ≤ kc. Recent years have witnessed significant interest
in designing sublinear-time algorithms for Gap Edit Distance.

In this work, we resolve the non-adaptive query complexity of Gap Edit Distance for the
entire range of parameters, improving over a sequence of previous results. Specifically, we design
a non-adaptive algorithm with query complexity Õ(n/kc−0.5), and we further prove that this
bound is optimal up to polylogarithmic factors.

Our algorithm also achieves optimal time complexity Õ(n/kc−0.5) whenever c ≥ 1.5. For
1 < c < 1.5, the running time of our algorithm is Õ(n/k2c−2). In the restricted case of kc = Ω(n),
this matches a known result [Batu, Ergün, Kilian, Magen, Raskhodnikova, Rubinfeld, and Sami;
STOC 2003], and in all other (nontrivial) cases, our running time is strictly better than all
previous algorithms, including the adaptive ones. However, independent work of Bringmann,
Cassis, Fischer, and Nakos [STOC 2022] provides an adaptive algorithm that bypasses the non-
adaptive lower bound, but only for small enough k and c.

1 Introduction

The edit distance is a ubiquitous distance measure on strings. It finds applications in various fields
including computational biology, pattern recognition, text processing, information retrieval, and
many more. The edit distance between strings X and Y , denoted by ED(X,Y ), is defined as the
minimum number of character insertions, deletions, and substitutions needed to convert X into Y .
A simple textbook dynamic programming computes edit distance in quadratic time. Moreover,
under reasonable hardness assumptions, such as the Strong Exponential-Time Hypothesis, no truly
subquadratic-time algorithm for this problem exists [ABW15, BK15, AHWW16, BI18].

∗Partly supported by NSF CCF grants 1652303 and 1909046, and a HDR TRIPODS Phase II grant 2217058.
†Partly supported by ONR Award N00014-18-1-2364, the Israel Science Foundation grant #1086/18, the Weiz-

mann Data Science Research Center, and a Minerva Foundation grant.
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When dealing with enormous amounts of data, such as DNA strings, big data storage, etc.,
quadratic running time might be prohibitive, leading a quest for faster algorithms that find an ap-
proximate solution. A long line of research towards that goal [BEK+03, BJKK04, BES06, AKO10,
AO12, CDG+20, BEG+21] recently culminated with an almost-linear-time approximation algo-
rithm by Andoni and Nosatzki [AN20] that, for any desired ε > 0, runs in O(n1+ε) time and
achieves an approximation factor that depends only on ε, that is, a constant-factor approximation
for any fixed ε > 0.

The growing interest in modern computational paradigms, like streaming and sketching (sub-
linear space), sampling and property testing (sublinear time), and massively parallel computation,
sparked interest in sublinear-time algorithms. It started with a seminal work of Batu, Ergün,
Kilian, Magen, Raskhodnikova, Rubinfeld, and Sami [BEK+03], and developed into an exciting se-
quence of results on approximating ED in sublinear time [AO12, GKS19, BCR20, KS20, BCFN22a].
(These are sometimes called estimation algorithms to emphasize that they approximate ED without
necessarily constructing a witness alignment.)

A sublinear-time algorithm for ED cannot be expected to attain constant-factor approximation,
since even in the case where the edit distance is O(1), a linear fraction of the input strings must be
queried. Hence, the aim here is to solve the promise problem (k, kc)-Gap Edit Distance, which
asks to return YES if ED(X,Y ) ≤ k, NO if ED(X,Y ) > kc, and an arbitrary answer otherwise.
The accuracy of the aforementioned results depends on gap “size” c and the gap “location” k;
their performance is measured in terms of their query and time complexity, and also qualitatively
whether they query the input strings adaptively (i.e., each query may depend on the results of
earlier queries).

The first contribution [BEK+03] addressed the case kc = Ω(n). Under this restriction, they
obtained a sublinear-time algorithm that runs in Õ(k2/n +

√
k) time.1 Moreover, they showed a

query-complexity lower bound of Ω(
√
k), rendering their result optimal for c ≥ 1.5. Andoni and

Onak [AO12] were the first to overcome the limitation that kc = Ω(n). However, their query com-
plexity Ô(n2/k2c−1) reduces to Ô(k) when kc = Ω(n), far above that of [BEK+03].2 Interestingly,
both these algorithms are non-adaptive.

In recent years, further progress has been achieved, mostly by exploiting adaptive queries,
particularly by Goldenberg, Krauthgamer, and Saha [GKS19], and subsequently by Kociumaka
and Saha [KS20], who improved over [AO12] when k is small. The running time Õ(n/kc−1 + k3)
of [GKS19] had an undesirable cubic dependency on k, which was improved to quadratic in [KS20]
at the price of an extra Õ(k2.5−cn0.5) term appearing for c < 2. Non-adaptive algorithms often
tend to be simple, but they are generally less powerful. So far, the best results in the regime of
small k came through carefully using adaptive queries [GKS19, KS20]. Hence, it seemed plausible
that adaptivity would be crucial to improving beyond [AO12] for large k as well.

Technical Contributions In light of prior work, the following main questions remained open.

• Can we remove/reduce the polynomial dependency on k from [GKS19, KS20] without de-
grading the dependency on n?

• Is adaptivity needed to achieve complexity Õ(n/kc−1) for small k?
• Can we obtain tight query-complexity lower bounds?

In Section 3, we present a simple non-adaptive algorithm that removes the polynomial depen-
dency on k entirely, thus answering the first two questions. The algorithm solves the (k, kc)-Gap

Edit Distance problem with time complexity Ô(n/kc−1), as follows.

1The Õ(·) notation hides factors polylogarithmic in n.
2The Ô(·) notation hides factors subpolynomial in n.
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Time Complexity Non-Adaptive Restrictions Reference

Õ
(

k0.5
)

= Õ
(

n/kc−0.5
)

Yes kc = Ω(n), c ≥ 1.5 [BEK+03]

Õ
(

k2/n
)

= Õ
(

n/k2c−2
)

Yes kc = Ω(n), c < 1.5 [BEK+03]

Ô(n2/k2c−1) Yes [AO12]

Õ(n/kc−1 + k3) No [GKS19]

Õ(n/kc−1.5 + k2.5−c) Yes c ≥ 1.5 [BCR20]

Õ(n/kc−1 + k2 +
√
n · k2.5−c) No [KS20]

Ô(n/kc + n0.8 + k4) No [BCFN22a]

Ô(n/kc−1) Yes Corollary 3.5

Õ(n/kc−0.5) Yes c ≥ 1.5 Theorem 5.6

Õ(n/k2c−2)∗ Yes c < 1.5 Theorem 5.6
∗Query complexity is Õ(n/kc−0.5), lower than the time complexity.

Table 1: Sublinear-time algorithms for (k, kc)-Gap Edit Distance.

Theorem 1.1 (Simplified version of Corollary 3.5). For every constant c > 1, there is a non-
adaptive randomized algorithm that solves (k, kc)-Gap Edit Distance in time Ô(n/kc−1).

This result already improves upon all prior results [AO12, GKS19, KS20, BCR20], except for
the earliest algorithm of [BEK+03] that applies only for kc = Ω(n) (see below for a comparison with
independent work [BCFN22a]). The algorithm abandons the recent approach of [GKS19, KS20]
of scanning the two input strings and tracking their periodicity structure using adaptive queries.
Instead, our baseline is Andoni and Onak’s algorithm [AO12], which samples a few blocks of
predetermined length from each string, and computes only a “local” alignment (between the ith
block of X and the ith block of Y ). In [AO12], the block length is optimized according to the gap
parameters k and c. Somewhat surprisingly, just by sampling blocks of different lengths and using
all of them simultaneously (instead of choosing a single block length), we achieve a significantly
better result. The details, including a technical overview, appear in Section 3.

Our main result still uses non-adaptive sampling and achieves a significant improvement for the
entire range of c, and in particular generalizes or improves upon all previous bounds. By building
on the above simple algorithm, we first improve the query complexity (in Section 4) and then also
the time complexity (in Section 5), both in the polynomial dependency on k and in the no(1)-factor.

Theorem 1.2 (Simplified version3 of Theorem 5.6). For every constant c > 1, there is a non-
adaptive randomized algorithm that solves (k, kc)-Gap Edit Distance using Õ(n/kc−0.5) queries
and Õ(n/kmin(c−0.5,2c−2)) time.

Our final contribution is a new lower bound for non-adaptive algorithms that applies for all
values of k and c (see Section 6). It extends a previous lower bound of [BEK+03], which handles
only the very special case kc = Ω(n).

Theorem 1.3 (Simplified version of Theorem 6.2). For every constant c > 1 and parameters
n ≥ k ≥ 1, every non-adaptive algorithm solving the (k, kc)-Gap Edit Distance problem has
expected query complexity Ω(n/kc−0.5).

3It suffices to use Theorem 5.6 with any constant h > 1
1−c

, and resort to an exact algorithm if k = Õ(1). We remark

that Theorem 5.6 additionally has some limited applicability to c = 1 + o(1) and can solve (k, k · 2O(
√

log n))-Gap

Edit Distance using Ô(n/
√
k) queries.
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Corollary 3.5: Ô(n/k)

Theorem 5.6: Õ(n/k1.5)

[BCFN22a]: Ô(n/k2 + n0.8 + k4)

[BEK+03]: Õ(
√
k) for k = Θ(

√
n)

[AO12]: Ô(n2/k3)

[BCR20]: O(n/
√
k)

[GKS19]: Õ(n/k + k3)

[KS20]: Õ(n/k + k2)

Figure 1: The running times of algorithms for (k, k2)-Gap Edit Distance.

Altogether, we obtain optimal non-adaptive query complexity for all c > 1, and furthermore
optimal time complexity for a large regime (all c ≥ 1.5). In particular, we achieve optimal query
and time complexity for the quadratic gap edit distance problem (c = 2), which was the focus of
all recent work [GKS19, KS20, BCR20]. When c < 1.5, we match the time bound of [BEK+03]
and further remove their restriction that kc = Ω(n).

Table 1 lists all the known algorithmic bounds, including our, previous, and independent results.
It is instructive to compare them against Ω(n/kc−0.5), our (tight) lower bound for non-adaptive
algorithms (Theorem 6.2). Figure 1 plots these bounds for a quadratic gap (c = 2). One can
see that our main result, Theorem 5.6, improves over all previous results for the entire range of
k, although independent work [BCFN22a] provides a further improvement for small k by using
adaptive sampling and thus bypassing our lower bound.

Open Questions Our results completely resolve the non-adaptive query complexity of Gap Edit

Distance. The lower bound of [BEK+03] applies to adaptive queries as well, and we match this
lower bound using a non-adaptive algorithm. Hence, adaptivity cannot help at the extreme regime
of kc = Ω(n). The question remains though whether adaptivity is useful to improve the complexity
further in the intermediate regime, where the Ô(k4) term in the running time of [BCFN22a] makes
that solution slower than ours.

Another open problem is to improve the time complexity (ideally to match the query-complexity
lower bound) for 1 < c < 1.5 or to strengthen the lower bound for time complexity, showing a
separation between time and query complexity (as in [AdlVKK03] for the max-cut problem, for
example).

Related Work Sublinear-time algorithms were studied for several related string problems, in-
cluding the Ulam metric [AN10, NSS17], longest increasing subsequence (LIS) [SS17, MS21],
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and shift finding [AHIK13]. There are also sublinear-space streaming algorithms for edit dis-
tance [GJKK07, GG10, SS13, EJ15, CGK16, BZ16, CFH+21]. Several algorithms for edit distance
leverage preprocessing (of one or both strings independently) to perform further computations in
sublinear-time [AKO10, GRS20, BCR20, BCFN22b].

Non-Adaptive Sampling Our algorithms only require a non-adaptive sampling. While these
might bring inferior performance (running time or query complexity) compared to algorithms using
adaptive sampling, as indeed obtained independently of our work in [BCFN22a] for small values
of k, numerous applications can gain from — or even require — non-adaptive sampling. Consider
for example a distributed setting where the input XY is partitioned into p ≥ 2 substrings, held
by distinct players that communicate in the blackboard model (equivalent to a broadcast channel).
One particular case of interest is two players, one holding X and the other holding Y . Every
sampling algorithm A has an obvious distributed implementation whose communication complexity
is precisely the query complexity of A, but clearly a non-adaptive A requires only one round of
communication (assuming shared randomness). For another example, consider t ≥ 3 input strings
X(1), . . . ,X(t) and a goal of estimating the edit distance between every pair of strings. When
implementing a non-adaptive sampling algorithm A, it suffices to sample each string X(i) only
once, and use the sample across all the t− 1 executions involving the string X(i), thereby running
O(t2) executions of A using only O(t) sets of samples, reducing communication by factor t compared
to using adaptive sampling.

2 Preliminaries

Fact 2.1. Let X,Y ∈ Σn. For every i, j ∈ [0 . . n] with i ≤ j, we have ED(X[i . . j), Y [i . . j)) ≤
ED(X,Y ).

Fact 2.2. For all strings X1,X2, Y1, Y2 ∈ Σ∗, we have ED(X1X2, Y1Y2) ≤ ED(X1, Y1)+ED(X2, Y2).

Problem 2.3 ((β, α)-Gap Edit Distance). Given strings X,Y ∈ Σn and integers α ≥ β ≥ 0,
return YES if ED(X,Y ) ≤ β, NO if ED(X,Y ) > α, and an arbitrary answer otherwise.

Theorem 2.4 (Landau and Vishkin [LV88]). There exists a deterministic algorithm that solves
any instance of the (β, α)-Gap Edit Distance problem (with arbitrary α ≥ β ≥ 0) in O(n + β2)
time.

Fact 2.5 (see e.g. [HIM12, KOR00]). There exists a randomized algorithm that solves any instance
of the (0, α)-Gap Edit Distance problem in O( n

1+α ) time with success probability at least 2
3 .

Theorem 2.6 (Andoni and Nosatzki [AN20]). There exist decreasing functions fAN, gAN : R+ →
R≥1 and a randomized algorithm A that, given X,Y ∈ Σn and ε ∈ R+, runs in O(gAN(ε)n

1+ε) time
and returns a value A(X,Y, ε) satisfying

P[ED(X,Y ) ≤ A(X,Y, ε) ≤ fAN(ε)ED(X,Y )] ≥ 2
3 .

Below, fAN and gAN denote the functions of Theorem 2.6.

Corollary 2.7. There exists a randomized algorithm that, given ε, δ ∈ R+ and an instance of (β, α)-
Gap Edit Distance satisfying α ≥ ⌊fAN(ε)β⌋, solves the instance in time O(gAN(ε)n

1+ε log 1
δ
) with

error probability at most δ.
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Proof. Consider running the algorithm of Theorem 2.6. If ED(X,Y ) ≤ β, then the answer is at
most fAN(ε)β < α+1 with probability at least 2

3 . If ED(X,Y ) > α, then the answer is at least α+1
with probability at least 2

3 . Hence, comparing the answer against α+ 1 solves the gap problem in
time O(gAN(ε)n

1+ε) with success probability at least 2
3 . The success probability can be amplified to

at least 1− δ by running the algorithm Θ(log 1
δ
) times with independent randomness and returning

the dominant answer.

3 Simple Algorithm

The main result of this section is a randomized algorithm for the (β, α)-Gap Edit Distance

problem that, under mild technical conditions, makes Ô(β
α
· n) non-adaptive queries to the two

input strings. The precise time bound depends on the functions fAN and gAN from Theorem 2.6
(see Corollary 3.4 for the formal statement; here, we assumed fixed ε, δ > 0). Our algorithm is
essentially a reduction (presented in Section 3.3) to the same gap problem but with smaller gap
parameters, building upon an earlier reduction of Andoni and Onak [AO12].4 In a nutshell, these
reductions partition the two input strings into blocks and call an oracle that solves gap problems
on a few randomly chosen block pairs. The key difference from [AO12] is that their reduction uses
one block length, while ours essentially uses all feasible block lengths.

We start below with an overview of both reductions (Section 3.1), followed by a quick proof of
their reduction (Section 3.2), which makes it easier to read our reduction (Section 3.3) and also to
compare the two. To obtain our final result, we only need to implement the oracle, and we simply
plug in the state-of-the-art almost-linear-time algorithm of [AN20] into our reduction (Section 3.4).

3.1 Overview

To simplify this overview, we shall assume an algorithm that approximates the edit distance within
factor f = Ô(1) in time Ô(n), and we shall refer to it as an oracle that solves (β, α)-Gap Edit

Distance in almost-linear time whenever α ≥ fβ. Such algorithms were devised in [AO12, AN20],
and their precise bounds are not important for this overview.

We first sketch the algorithm (reduction) of Andoni and Onak [AO12]. It partitions the two
input strings X,Y into m := n

b
blocks of length b that will be determined later, denoting their

respective ith blocks by Xi and Yi for i ∈ [0 . . m). If the algorithm determines that ED(Xi, Yi) > β
for some i ∈ [0 . . m), then, by Fact 2.1, also ED(X,Y ) > β, and the algorithm is safe to return
NO. The algorithm’s strategy is just to search for such a “NO witness”; for this, it samples several
indices i, calls the oracle to solve (β, fβ)-Gap Edit Distance on the corresponding pairs (Xi, Yi),
and returns NO if and only if at least one of the oracle calls returned NO. This algorithm is
clearly correct whenever ED(X,Y ) ≤ β, so we only need to consider ED(X,Y ) > α. In that case,
by Fact 2.2, ED(Xi, Yi) >

α
m

holds for an average i (a crude intuition is that an average block
“contains” many edit operations). For this sketch, let us consider only the two extreme scenarios.
In one scenario, ED(Xi, Yi) has the same value for all i; if α

m
≥ fβ, then, no matter which block

our algorithm samples, the oracle will return NO on it, and our algorithm will also return NO. We
will thus constrain our choice of m to satisfy α

m
≥ fβ. In the other extreme scenario, ED(Xi, Yi)

has a large value for a few indices i and a small value, say zero for simplicity, for all other indices.
These large values are bounded by ED(Xi, Yi) ≤ b; hence, the first group must contain at least α

b

indices i (again by Fact 2.2). To have a good chance of sampling at least one of these indices, our
algorithm should sample each i with probability (at least) ρ = Ω( b

α
). To optimize algorithm’s query

4The reduction in [AO12] is presented as an application of their almost-linear-time approximation algorithm.
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complexity, we set the parameters to minimize the sampling rate ρ, i.e., minimize b or, equivalently,
maximize m. Due to the constraint from above, the optimal choice is thus b = n

m
= n·fβ

α
. The query

complexity of this algorithm is O(ρn) = O( b
α
· n) = Ô(n

2·β
α2 ), and the running time is almost-linear

in the query complexity, and thus bounded similarly.
The true limitation of this approach is that it uses a single block length b. It is somewhat hidden

because we compare ED(Xi, Yi) only against the natural threshold β (and fβ, but the factor f is
almost negligible here), which leads to an optimal choice of b. One idea is to use a different block
length b, or even multiple lengths. But should it be larger or smaller? And what advantage can we
gain from it?

What turns out to work well is a multi-level approach, which partitions the input strings into
blocks of different lengths (all powers of 2) and samples blocks from all the levels at the same rate ρ.
The query complexity is O(ρn) for each level, and there are only O(log n) levels, but we can now use
sampling rate ρ = Θ(fβ

α
), which is significantly lower than Θ(nfβ

α2 ) needed in [AO12]. To understand
this improvement in the sampling rate, recall the two extreme scenarios mentioned above. In the
first scenario, where edits are spread evenly among the length-b blocks for b = Ω(n·fβ

α
), we already

argued that querying any length-b block suffices to detect a “NO witness”. In the second scenario,
consider shorter blocks of length O(fβ), and suppose that each ED(Xi, Yi) is either zero or exceeds
fβ. The number of indices i in the latter group must be at least α

O(fβ) (again by Fact 2.2), and
they are all “NO witnesses”. To have a good chance of sampling at least one of them, it suffices to
use rate ρ = Θ(fβ

α
).

Our proof considers all levels and, for each position j ∈ [1 . . n], identifies a “suitable” level
based on the distribution of errors in the proximity of j. This is achieved by decomposing [1 . . n]
into blocks of varying sizes, so that the block covering position j reveals the level responsible
for j. Perhaps surprisingly, the analysis is thus adaptive even though the algorithm only makes
non-adaptive queries!

3.2 The Reduction of Andoni and Onak

We recall a sublinear-time algorithm of Andoni and Onak [AO12, Section 4] that makes calls to
an oracle solving the same gap problem but with a smaller gap. They implement this oracle using
their main result, which is an almost-linear-time approximation algorithm. We review their proof
to illustrate how our algorithm and analysis are different.

Theorem 3.1. There exists a randomized reduction that, given a parameter φ ∈ Z+ and an instance
of (β, α)-Gap Edit Distance satisfying 1

3α ≥ φ ≥ β ≥ 1, solves the instance using O(n
α
) non-

adaptive calls to an oracle for (β, φ)-Gap Edit Distance involving substrings of total length

O(φn
2

α2 ). The reduction takes O(n
α
) time, does not access the input strings, and errs with probability

at most 1
e
.

Proof. Let us partition the input strings X,Y into m := ⌈n
b
⌉ blocks of length b := ⌈3φn

α
⌉ (the last

blocks might be shorter), denoting the ith blocks by Xi and Yi for i ∈ [0 . . m). For a sampling

rate ρ := b2

φn
, the algorithm performs ⌈mρ⌉ iterations. In each iteration, the algorithm chooses

i ∈ [0 . . m) uniformly at random and makes an oracle call to solve an instance (Xi, Yi) of (β, φ)-
Gap Edit Distance. The algorithm returns YES if and only if all oracle calls return YES.

The total length of substrings involved in the oracle calls is O(ρm · b) = O(ρn) = O( b
2

φ
) =

O(φn
2

α2 ), whereas the running time and number of oracle calls are O(ρm) = O( b
φ
) = O(n

α
).

To prove the correctness of this reduction (assuming the oracle makes no errors), let B := {i ∈

7



[0 . . m) : ED(Xi, Yi) > φ} and observe that ED(X,Y ) ≤ |B|b+mφ. Hence, if ED(X,Y ) > α, then

|B| > α−mφ
b

≥ αb−2nφ
b2

≥ 3φn−2φn
b2

= 1
ρ
.

The probability that the algorithm returns YES is then at most

(

1− |B|
m

)⌈ρm⌉
≤ exp

(

− |B|
m

· ⌈ρm⌉
)

≤ exp (−ρ|B|) ≤ exp(−1).

On the other hand, if ED(X,Y ) ≤ β, then Fact 2.1 implies that ED(Xi, Yi) ≤ β for all i ∈ [0 . . m).
Consequently, all oracle calls return YES, and so does the entire algorithm.

3.3 Our Reduction

Theorem 3.2. There exists a randomized reduction that, given a parameter φ ∈ Z+ and an in-
stance of (β, α)-Gap Edit Distance satisfying 1

10α ≥ φ ≥ β ≥ 1, solves the instance using
O(n

α
) non-adaptive calls to an oracle for (β, φ)-Gap Edit Distance involving substrings of total

length O(φn logn
α

). The reduction takes O(n
α
) time, does not access the input strings, and errs with

probability at most 1
e
.

The algorithm For every level p ∈ [0 . . ⌈log n⌉], partition X,Y into mp := ⌈ n2p ⌉ blocks of length
2p (the last blocks might be shorter), given by Xp,i = X[i · 2p . .min(n, (i + 1)2p)) and Yp,i =
Y [i · 2p . .min(n, (i+ 1)2p)) for i ∈ [0 . . mp).

Let ρ := 10φ
α
. For each level p ∈ [⌈log φ⌉ . . ⌊log(ρn)⌋], our algorithm performs ⌈ρmp⌉ iterations.

In each iteration, the algorithm chooses i ∈ [0 . . mp) uniformly at random and calls an oracle to
solve an instance (Xp,i, Yp,i) of the (β, φ)-Gap Edit Distance problem. The algorithm returns
YES if and only if all oracle calls (across all levels) return YES.

Complexity Analysis The total length of substrings involved in the oracle calls is

O





⌊log(ρn)⌋
∑

p=⌈log φ⌉
2p · ⌈ρmp⌉



 = O(ρn log n) = O(φn logn
α

).

The running time and the number of oracle calls are

O





⌊log(ρn)⌋
∑

p=⌈log φ⌉
⌈ρmp⌉



 = O





⌊log(ρn)⌋
∑

p=⌈log φ⌉

ρn
2p



 = O(ρn
φ
) = O

(

n
α

)

.

Correctness The core of the analysis is the following lemma, which proves that an instance with
large edit distance must contain, across all the levels, many blocks of “high cost”. In the lemma,
these blocks are denoted by Bp for level p, as illustrated in Figure 2.

Lemma 3.3. Consider a threshold τ ∈ Z+. For each level p ∈ [0 . . ⌈log n⌉], let

Bp := {i ∈ [0 . . mp) : ED(Xp,i, Yp,i) > τ}.

If ED(X,Y ) > τ , then
∑⌈logn⌉

p=⌈log τ⌉ |Bp| > 1
2τ ED(X,Y ).
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Figure 2: The multi-level partitioning of [0 . . n) into blocks of length 2p at each level p. Inside
each rectangle we write the edit distance between the corresponding pair of blocks in X and in Y .
A red color represents that the block is in Bp (high cost), and the two shades of green represent
the remaining blocks. The dark green blocks color represents blocks in B̂p \Bp (green blocks with
a red ‘parent’); the crux of Lemma 3.3 is that the entire range can be decomposed into few such
blocks.

Proof. We prove by induction on p that

∑

i∈Bp

ED(Xp,i, Yp,i) ≤ 2τ ·
p
∑

q=⌈log τ⌉
|Bq|.

The base case of p < ⌈log τ⌉ holds trivially because then ED(Xp,i, Yp,i) ≤ τ for all i ∈ [1 . . mp), and
thus Bp = ∅.

For the inductive step, consider p ≥ ⌈log τ⌉. Observe that each i ∈ [0 . . mp) satisfies Xp,i =
Xp−1,2i ·Xp−1,2i+1 (if Xp−1,2np+1 is undefined, we set it to be empty) and, similarly, Yp,i = Yp−1,2i ·
Yp−1,2i+1. Consequently, we define B̂p−1 =

⋃

i∈Bp
{2i, 2i + 1}, with |B̂p−1| = 2|Bp|, and derive

∑

i∈Bp

ED(Xp,i, Yp,i)
Fact 2.2

≤
∑

j∈B̂p−1

ED(Xp−1,j, Yp−1,j)

≤
∑

j∈B̂p−1\Bp−1

ED(Xp−1,j, Yp−1,j) +
∑

j∈Bp−1

ED(Xp−1,j , Yp−1,j)

induction
≤ τ · |B̂p−1 \Bp−1|+ 2τ ·

p−1
∑

q=⌈log τ⌉
|Bq|

≤ τ · |B̂p−1|+ 2τ ·
p−1
∑

q=⌈log τ⌉
|Bq|

= 2τ ·
p
∑

q=⌈log τ⌉
|Bq|.

This completes the inductive proof.
The lemma follows by applying the inequality proved above and observing that ED(X,Y ) > τ

implies B⌈logn⌉ = {0}:

ED(X,Y ) = ED(X⌈log n⌉,0, Y⌈log n⌉,0) ≤ 2τ

⌈log n⌉
∑

p=⌈log τ⌉
|Bp|.

9



Let us proceed with the correctness analysis of our algorithm. First, suppose that ED(X,Y ) > α.
Using Lemma 3.3 with τ := φ and the fact α ≥ 10φ > τ , we then obtain

⌈logn⌉
∑

p=⌈log φ⌉
|Bp| ≥ ED(X,Y )

2τ > α
2φ = 5

ρ
.

Using a naive bound

⌈logn⌉
∑

p=⌈log(ρn)⌉
|Bp| ≤

⌈logn⌉
∑

p=⌈log(ρn)⌉
mp ≤

⌈logn⌉
∑

p=⌈log(ρn)⌉

2n
2p ≤ 4

ρ
,

we conclude that
∑⌊log(ρn)⌋

p=⌈logφ⌉ |Bp| ≥ 1
ρ
. For each level p ∈ [⌈log φ⌉ . . ⌊log(ρn)⌋], the probability that

a single oracle (at a fixed iteration) call returns YES is at most 1− |Bp|
mp

≤ exp
(

− |Bp|
mp

)

. Across all

levels p ∈ [⌈log φ⌉ . . ⌊log(ρn)⌋], the probability that all calls return YES is at most

exp



−
⌊log(ρn)⌋
∑

p=⌈logφ⌉

|Bp|
mp

· ⌈ρmp⌉



 ≤ exp



−
⌊log(ρn)⌋
∑

p=⌈logφ⌉
ρ|Bp|



 ≤ exp(−1).

Thus, the algorithm returns YES with probability at most 1
e
.

Now, suppose that ED(X,Y ) ≤ β. Then, Fact 2.1 implies ED(Xp,i, Yp,i) ≤ β for all p ∈
[0 . . ⌈log n⌉] and i ∈ [0 . . mp). Consequently, each oracle call returns YES, so our algorithm also
returns YES. This completes the proof of Theorem 3.2.

3.4 Corollaries (by Plugging Known Algorithms)

Corollary 3.4. There exists a non-adaptive randomized algorithm that, given parameters ε, δ ∈ R+

and an instance of (β, α)-Gap Edit Distance satisfying α ≥ ⌊fAN(ε)β⌋, solves the instance in
time O( 1+β1+αfAN(ε)gAN(ε) ·n1+ε log2 n · log 1

δ
), using O( 1+β1+αfAN(ε) ·n log n · log 1

δ
) queries to the input

strings, and with error probability at most δ, where fAN and gAN are the functions of Theorem 2.6.

Proof. If β = 0, then we use the algorithm of Fact 2.5, which takes time O( n
1+α ). If ⌊fAN(ε)β⌋ ≤

α < 10fAN(ε)β, we use the algorithm of Corollary 2.7, which takes O(gAN(ε)n
1+ε) time and O(n)

queries. In the remaining case of 0 < 10fAN(ε)β ≤ α, we use the reduction of Theorem 3.2 with φ =
⌊fAN(ε)β⌋ and the oracle implemented using Corollary 2.7. The oracle is randomized, so we need to
set its error probability to Θ(α

n
) so that all oracle calls are correct with large constant probability.

An oracle call involving a pair of strings of length m takes time O(gAN(ε)m
1+ε log n) = O(gAN(ε)m ·

nε log n), and the total length of all strings involved in the oracle calls is O(β
α
· fAN(ε)n log n);

therefore, the total running time is O(β
α
·fAN(ε)gAN(ε) ·n1+ε log2 n). This completes the algorithm’s

description for δ > 1
e
. For general δ > 0, we amplify the success probability by taking the majority

answer among O(log 1
δ
) independent repetitions of the entire algorithm.

Next, we observe that the running time can be expressed as Ô( 1+β1+α · n) as long as α
β
= ω(1).

Corollary 3.5. Let s : Z≥0 → Z≥0 be a function such that limx→∞
s(x)
x

= ∞. There exists a
randomized algorithm that solves any instance of (β, α)-Gap Edit Distance with α ≥ s(β) in
time Ô( 1+β1+α · n) correctly with high probability.
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Proof. Observe that there exists a function ε : Z≥0 → R+ such that ε(n) = o(1), fAN(ε(n)) ≤ log n,

gAN(ε(n)) ≤ log n, and fAN(ε(n)) ≤ s(x)
x

for all n ∈ Z≥0 and x > log n. If α ≥ fAN(ε(n))β,

we use Corollary 3.4 with ε = ε(n), which takes Õ( 1+β1+αfAN(ε(n))gAN(ε(n))n
1+ε(n)) = Ô( 1+β1+αn)

time. If α < fAN(ε(n))β and β ≤ log n, we use Theorem 2.4, which takes O(n + β2) = O(n) =
O(1+α1+β ·

1+β
1+α ·n) = O(fAN(ε(n)) · 1+β1+α ·n) = Ô( 1+β1+α ·n) time. In the remaining case of α < fAN(ε(n))β

and β > log n, we have α < fAN(ε(n))β ≤ s(β), which contradicts our assumption α ≥ s(β).

4 Improved Query Complexity

In this section, we improve the query complexity of the algorithm described in Section 3, solving

the (β, α)-Gap Edit Distance with query complexity Õ
(

n
√
β

α

)

provided that α≫ β.

4.1 Overview

Recall that Theorem 3.2 provides a randomized reduction from the (β, α)-Gap Edit Distance

problem to the (β, φ)-Gap Edit Distance problem. We used ED(Xi,p, Yi,p) ≤ ED(X,Y ) to justify
the correctness for YES instances: The input can be safely rejected as soon as we discover that
ED(Xi,p, Yi,p) > β holds for some level p and index i ∈ [0 . . mp). If we were guaranteed that
ED(Xi,p, Yi,p) ≤ ψ holds with good probability (over random i ∈ [0 . . mp)) for some ψ < β, then
we could use an oracle for the (ψ, φ)-Gap Edit Distance problem instead of the (β, φ)-Gap

Edit Distance problem, i.e., our reduction would produce instances of the Gap Edit Distance

problem with a larger gap. Unfortunately, this is not the case in general. In particular, if X
consists of distinct characters and Y is obtained by moving the last s ≤ 1

2n characters of X to the
front, then ED(Xi,p, Yi,p) = ED(X,Y ) = 2s holds for all levels p ≥ log(2s) and indices i ∈ [0 . . mp).
Nevertheless, in this example, the optimal alignment between Xi,p and Yi,p is very simple: up to
the shift by s characters (which effectively removes the last s characters of Xi,p and the first s
characters of Yi,p), the two blocks are perfectly aligned. In general, for a fixed alignment A of X
and Y , the induced alignment of Xi,p and Yi,p performs the edits that A would make on Xi,p and
Yi,p, and the only effect of edits that A makes outside these blocks is that some leading and trailing
characters of Xi,p and Yi,p need to be deleted (because A aligns them with characters outside the
considered blocks). Thus, in a YES-instance, for a random i ∈ [0 . . mp), we always see up to β

edits between Xi,p and Yi,p, but in expectation only β
mp

of these edits cannot be attributed to a
shift between Xi,p and Yi,p. This motivates the following notion.

Definition 4.1. For two strings X,Y ∈ Σ∗ and a threshold β ∈ Z≥0, define the β-shifted edit
distance EDβ(X,Y ) as

min





min(|X|,|Y |,β)
⋃

∆=0

{

ED(X[∆ . . |X|), Y [0 . . |Y | −∆)),ED(X[0 . . |X| −∆), Y [∆ . . |Y |))
}



 .

Note that EDβ(X,Y ) ≤ ED(X,Y ) ≤ EDβ(X,Y ) + 2β holds for every β ∈ Z≥0.

As argued above, the YES-instances of (β, α)-Gap Edit Distance satisfy Ei[EDβ(Xp,i, Yp,i)] ≤
β
mp

. Given that we sample blocks with rate ρ, we expect to see O(1) blocks with EDβ(Xp,i, Yp,i) > ψ

if we appropriately set ψ = Θ̃(ρβ). Moreover, this statement is also true with high probability.
Furthermore, the argument in the proof of Theorem 3.2 can be strengthened to prove that, in a
NO-instance, with high probability, we see Ω(1) blocks with ED(Xp,i, Yp,i) > 3φ. Thus, instead of
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using an oracle for the (β, φ)-Gap Edit Distance problem, we can use an oracle for the β-Shifted
(ψ, 3φ)-Gap Edit Distance problem defined as follows.

Problem 4.2 (β-Shifted (γ, 3α)-Gap Edit Distance). Given strings X,Y ∈ Σn and integer
thresholds α ≥ β ≥ γ ≥ 0, return YES if EDβ(X,Y ) ≤ γ, NO if ED(X,Y ) > 3α, and an arbitrary
answer otherwise.

The idea to separate the shift from the “local” edits originates from [BEK+03], but they were
only able to solve the (β, α)-Gap Edit Distance problem for α = Ω(n). Combining their insight
into our reduction of Theorem 3.2, we can handle a much wider range of parameters.

Similarly to [BEK+03], our algorithm is recursive in nature, with β decreased in each level (until
it reaches 0). There is a key difference, though: They reduce the Shifted Gap Edit Distance

problem to a more general problem, which becomes even more complicated in subsequent recursion
levels. Our new insight is that, surprisingly, the Shifted Gap Edit Distance problem can be
reduced back to (multiple instances of) Gap Edit Distance. This yields an algorithm with a
much cleaner structure, and furthermore improves the query complexity because all these instances
operate on relatively few different input strings, which can be easily exploited due to the non-
adaptive nature of our approach. In fact, this query complexity is optimal (up to logO(1)(n)
terms) for non-adaptive algorithms, as indicated by our lower bound, which generalizes the one
in [BEK+03].

In this section, we present a solution that achieves this optimal query complexity but does not
significantly improve the running time compared to Section 3. The latter issue is addressed in
Section 5, where we exploit dependencies between the Shifted Gap Edit Distance instances
produced throughout the recursive calls. Specifically, we provide a more efficient implementation
for the batched version of the β-Shifted (0, 3α)-Gap Edit Distance problem arising at the lowest
level of our recursion. Moreover, we carefully adjust the parameters at the three lowest levels of
recursion so that they produce batches with desirable properties. Up to logarithmic factors, our
time bound matches that of [BEK+03], but the latter is valid only for α = Ω(n).

4.2 From Gap Edit Distance to Shifted Gap Edit Distance

Below, we reduce the (β, α)-Gap Edit Distance problem to the β-Shifted (ψ, 3φ)-Gap Edit

Distance problem, where φ ≥ β can be adjusted and ψ is set to Õ(βφ
α
). Our immediate application

in Section 4.4 uses φ = β, but subsequent speedups in Section 5 sometimes require φ≫ β.

Lemma 4.3. There exists a randomized reduction that, given a parameter φ ∈ Z+ and an instance

of (β, α)-Gap Edit Distance satisfying φ ≥ β ≥ ψ := ⌊112βφ⌈log n⌉
α

⌋, solves the instance using
O(n

α
) non-adaptive calls to an oracle for β-Shifted (ψ, 3φ)-Gap Edit Distance involving sub-

strings of total length O(φn logn
α

). The reduction costs O(n
α
) time, does not access the input strings,

and errs with probability at most 1
e
.

Proof. Let ρ = 84φ
α

and τ = 3φ. For each level p ∈ [⌈log τ⌉ . . ⌊log(ρn)⌋], our algorithm performs
⌈ρmp⌉ iterations. In each iteration, the algorithm chooses i ∈ [0 . . mp) uniformly at random and
solves an instance (Xp,i, Yp,i) of the β-Shifted (ψ, 3φ)-Gap Edit Distance problem. Finally, the

algorithm returns YES if the number b̂ of oracle calls with NO answers satisfies b̂ ≤ 5; if b̂ ≥ 6, the
algorithm returns NO.

Let us first analyze the complexity of the algorithm. The total length of all strings involved in
the oracle calls is

O





⌊log(ρn)⌋
∑

p=⌈log τ⌉
2p · ⌈ρmp⌉



 = O(ρn log n) = O(φn logn
α

).
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The running time and the number of oracle calls are

O





⌊log(ρn)⌋
∑

p=⌈log τ⌉
⌈ρmp⌉



 = O





⌊log(ρn)⌋
∑

p=⌈log τ⌉

ρn
2p



 = O
(

ρn
τ

)

= O
(

n
α

)

.

Let us now proceed with the algorithm correctness. If ED(X,Y ) > α, then we use Lemma 3.3.

Due to α ≥ 112φ⌈log n⌉ > 3φ = τ , we have
∑⌈logn⌉

p=⌈log τ⌉ |Bp| > α
2τ = 14

ρ
. At the same time,

∑⌈logn⌉
p=⌈log(ρn)⌉ |Bp| ≤ ∑∞

p=⌈logn⌉
2n
2p ≤ 4

ρ
, so

∑⌊log(ρn)⌋
p=⌈log τ⌉ |Bp| ≥ 10

ρ
. For a fixed iteration at level

p ∈ [⌈log τ⌉ . . ⌈log n⌉], the probability that the oracle call returns NO is at least
|Bp|
mp

. Across all

iterations and all levels p ∈ [⌈log τ⌉ . . ⌊log(ρn)⌋], the expected number of NO answers is therefore

E

[

b̂
]

≥
⌊log(ρn)⌋
∑

p=⌈log τ⌉

|Bp|⌈ρmp⌉
mp

≥ ρ ·
⌊log(ρn)⌋
∑

p=⌈log τ⌉
|Bp| ≥ 10.

By the Chernoff bound, we thus have

P

[

b̂ ≤ 5
]

= P

[

b̂ ≤ (1− 1
2) · 10

]

≤ exp
(

− ( 1
2
)2·10
2

)

= exp(−5
4) < exp(−1).

Finally, consider the case of ED(X,Y ) ≤ β. For every level p ∈ [0 . . ⌈log n⌉], we define a set
Gp = {i ∈ [1 . . mp) : EDβ(Xp,i, Yp,i) > ψ} corresponding to oracle calls that may return NO.

Claim 4.4. We have
∑⌈logn⌉

p=1 |Gp| ≤ 2β⌈log n⌉
ψ+1 ≤ 3

2ρ .

Proof. For each level p ∈ [1 . . ⌈log n⌉], let us consider a partition Y =
⊙

i∈[0. .mp)
Y ′
p,i such that

ED(X,Y ) =
∑

i∈[0. .mp)
ED(Xp,i, Y

′
p,i). We claim that EDβ(Xp,i, Yp,i) ≤ 2ED(Xp,i, Y

′
p,i). If |Y ′

p,i| ≤ β,

then EDβ(Xp,i, Yp,i) ≤ max(0, |Xp,i| − β) ≤ ED(Xp,i, Y
′
p,i) and the claim holds trivially. Thus, we

assume |Y ′
p,i| > β and consider two cases.

First, suppose that Y ′
p,i starts at position i · 2p +∆ for ∆ ≥ 0. We then have ∆ ≤ ED(X[0 . . i ·

2p), Y [0 . . i · 2p +∆)) =
∑i−1

j=0 ED(Xp,j, Y
′
p,j) ≤ ED(X,Y ) ≤ β and thus:

EDβ(Xp,i, Yp,i) ≤ ED(Xp,i[0 . . |Xp,i| −∆), Yp,i[∆ . . |Yp,i|))
≤ ED(Xp,i[0 . . |Xp,i| −∆), Y ′

p,i[0 . . |Y ′
p,i| −∆)) +

∣

∣|Yp,i| − |Y ′
p,i|
∣

∣

≤ ED(Xp,i, Y
′
p,i) +

∣

∣|Xp,i| − |Y ′
p,i|
∣

∣

≤ 2ED(Xp,i, Yp,i).

∆

Y

X Xp,1 Xp,2 Xp,3 Xp,4

Y ′
p,1 Y ′

p,2 Y ′
p,3 Y ′

p,4

Figure 3: The partitions X =
⊙

i∈[0. .mp)
Xp,i and Y =

⊙

i∈[0. .mp)
Y ′
p,i.
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Similarly, if Y ′
p,i starts at position i · 2p − ∆ for some ∆ ≥ 0, then ∆ ≤ ∑i−1

j=0 ED(Xp,j , Y
′
p,j) ≤

ED(X,Y ) ≤ β and

EDβ(Xp,i, Yp,i) ≤ ED(Xp,i[∆ . . |Xp,i|), Yp,i[0 . . |Yp,i| −∆))

≤ ED(Xp,i[∆ . . |Xp,i|), Y ′
p,i[∆ . . |Y ′

p,i|)) +
∣

∣|Yp,i| − |Y ′
p,i|
∣

∣

≤ ED(Xp,i, Y
′
p,i) +

∣

∣|Xp,i| − |Y ′
p,i|
∣

∣

≤ 2ED(Xp,i, Y
′
p,i)

Thus,
∑⌈logn⌉

p=1

∑mp−1
i=0 EDβ(Xp,i, Yp,i) ≤ 2β⌈log n⌉ and at most 2β⌈logn⌉

ψ+1 terms exceed ψ.

For a fixed iteration at level p ∈ [⌈log τ⌉ . . ⌊log(ρn)⌋], the probability that the oracle call returns

NO is at most
|Gp|
mp

. Across all iterations and levels p ∈ [⌈log τ⌉ . . ⌊log(ρn)⌋], the expected number
of NO answers is therefore

E

[

b̂
]

≤
⌊log(ρn)⌋
∑

p=⌈log τ⌉

|Gp|⌈ρmp⌉
mp

≤ 2ρ

⌊log(ρn)⌋
∑

p=⌈log τ⌉
|Gp| ≤ 3.

By the Chernoff bound, we thus have

P

[

b̂ ≥ 6
]

= P

[

b̂ ≥ (1 + 1) · 3
]

≤ exp(−12·3
2+1) =

1
e
.

4.3 From Shifted Gap Edit Distance to Gap Edit Distance

Lemma 4.5. There exists a deterministic reduction that, given instance of β-Shifted (γ, 3α)-
Gap Edit Distance satisfying α ≥ 3γ, solves the instance using O

(1+β
1+γ

)

non-adaptive calls to an

oracle for (3γ, α)-Gap Edit Distance involving O
(

√
1+β√
1+γ

)

distinct substrings. each of length at

most n. The reduction takes O(1+β1+γ ) time and does not access the input strings.

Proof. Let ξ ∈ [γ . . β] be a parameter set later and n′ = n− β. We use the oracle to solve several
instances of the (3γ, α)-Gap Edit Distance problem and return YES if and only if at least one
oracle call returned YES. These instances are (X[x . . x+ n′), Y [y . . y + n′)) for all x ∈ [0 . . β] such
that x ≡ 0 (mod 1 + ξ) or x ≡ β (mod 1 + ξ), all y ∈ [0 . . ξ] such that y ≡ 0 (mod 1 + γ),
and all y ∈ [β − ξ . . β] such that y ≡ β (mod 1 + γ). The number of oracle calls is at most
4
⌈1+β
1+ξ

⌉⌈ 1+ξ
1+γ

⌉

≤ 16 · 1+β
1+γ , but the number of distinct strings involved in these calls is at most

2
⌈1+β
1+ξ

⌉

+ 2
⌈ 1+ξ
1+γ

⌉

, which is O
(

√
1+β√
1+γ

)

if we set 1 + ξ = ⌊
√

(1 + β)(1 + γ)⌋.
Suppose that EDβ(X,Y ) ≤ γ. First, consider the case when EDβ(X,Y ) = ED(X[∆ . . n),

Y [0 . . n−∆)) for some ∆ ∈ [0 . . β). Let us choose the smallest x ∈ [∆ . . β] with x ≡ β (mod 1+ ξ)
and the largest y ∈ [0 . . x−∆] with y ≡ 0 (mod 1 + γ). Observe that

ED(X[x . . x+ n′), Y [y . . y + n′)) ≤ 2γ + ED(X[x . . x+ n′), Y [x−∆ . . x−∆+ n′))

≤ 2γ + ED(X[∆ . . n), Y [0 . . n−∆)) ≤ 3γ.

Hence, the oracle call for (x, y) must return YES.
Similarly, let us consider the case when EDβ(X,Y ) = ED(X[0 . . n − ∆), Y [∆ . . n)) for some

∆ ∈ [0 . . β). Let us choose the largest x ∈ [0 . . β − ∆] with x ≡ 0 (mod 1 + ξ) and the smallest
y ∈ [x+∆ . . β] with y ≡ β (mod 1 + γ). Observe that

ED(X[x . . x+ n′), Y [y . . y + n′)) ≤ 2γ + ED(X[x . . x+ n′), Y [x+∆ . . x+∆+ n′))

≤ 2γ + ED(X[0 . . n−∆), Y [∆ . . n)) ≤ 3γ
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Hence, the oracle call for (x, y) must return YES.
Next, suppose that some oracle call for (x, y) returned YES. This implies ED(X[x . . x + n′),

Y [y . . y + n′)) ≤ α for some x, y ∈ [0 . . β]. At the same time, we have

ED(X[0 . . x), Y [0 . . y)) ≤ max(x, y) ≤ β, and

ED(X[x+ n′ . . n), Y [y + n′ . . n)) ≤ max(β − x, β − y) ≤ β.

Hence, ED(X,Y ) ≤ α+ 2β ≤ 3α holds as claimed.

4.4 Baseline Implementation

Proposition 4.6. There exists a non-adaptive algorithm that, given h ∈ Z≥0, δ ∈ R+, and an

instance of the (β, α)-Gap Edit Distance problem, satisfying β < (336⌈log n⌉)−h
2 α

h
h+1 , solves the

instance in O
( 1+β
1+α · n log2h n · log 1

δ
· 2O(h)

)

time, using O
(

√
1+β
1+α · n log2h n · log 1

δ
· 2O(h)

)

queries,
and with error probability at most δ.

Proposition 4.7. There exists a non-adaptive algorithm that, given h ∈ Z≥0, δ ∈ R+, and an in-

stance of the β-Shifted (γ, 3α)-Gap Edit Distance problem satisfying γ < 1
3(336⌈log n⌉)

−h
2 α

h
h+1 ,

solves the instance in O
( 1+β
1+α · n log2h n · log n

δ
· 2O(h)

)

time, using O
(

√
1+β
1+α · n log2h n · log n

δ
· 2O(h)

)

queries, and with error probability at most δ.

Proof of Propositions 4.6 and 4.7. As for (β, α)-Gap Edit Distance, let us assume that δ > 1
e
;

in general, we amplify the success probability by repeating the algorithm O(log 1
δ
) times. If β = 0

(and, in particular, h = 0), we simply use Fact 2.5. Otherwise, we apply Lemma 4.3 with φ = β
using our β-Shifted (ψ, 3φ)-Gap Edit Distance algorithm (with parameters h − 1 and Θ( 1

n
))

as the oracle. This is valid because

ψ ≤ 112β2⌈logn⌉
α

< 112β2⌈log n⌉
β

h+1
h ·(336⌈log n⌉)

h+1
2

= 1
3 · (336⌈log n⌉) 1−h

2 · φh−1
h ≤ 1

3 · φ < β.

The running time is

O
(

φ logn
α

· β
φ
· n log2h−2 n · log n · 2O(h−1)

)

= O
(

β
α
· n log2h n · 2O(h)

)

,

whereas the query complexity is

O
(

φ logn
α

·
√
β
φ

· n log2h−2 n · log n · 2O(h−1)
)

= O
(√

β
α

· n log2h n · 2O(h)
)

.

As for the β-Shifted (γ, 3α)-Gap Edit Distance problem, we apply Lemma 4.5 using our
(3γ, α)-Gap Edit Distance algorithm (with parameters h and Θ( δ

n
)) as the oracle. This is valid

since 3γ < (336⌈log n⌉)−h
2 α

h
h+1 ≤ α. The running time is

O
(

1+β
1+γ · 1+3γ

1+α · n log2h n · log n
δ
· 2O(h)

)

= O
(

1+β
1+α · n log2h n · log n

δ
· 2O(h)

)

,

whereas the query complexity is

O
(√

1+β√
1+γ

·
√
1+3γ
1+α · n log2h n · log n

δ
· 2O(h)

)

= O
(√

1+β
1+α · n log2h n · log n

δ
· 2O(h)

)

.
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5 Faster Implementation

In this section, we improve the running time while preserving the query complexity behind Propo-
sition 4.6. The main trick is to consider a batched version on the (β, α)-Gap Edit Distance and
β-Shifted (γ, 3α)-Gap Edit Distance problems: Instances (X1, Y1), . . . , (Xq, Yq) form a batch if
X1 = · · · = Xq.

5.1 Shifted Gap Edit Distance for h = 0

Lemma 5.1. There exists a non-adaptive algorithm that, given a parameter δ ∈ R+, and a batch of

q instances of β-Shifted (0, 3α)-Gap Edit Distance, solves the instances in O
(

√
q(q+β)

1+α ·n log n
δ

)

time with each answer correct with probability at least 1 − δ. Moreover, at most O
( 1+β
1+α · n log n

δ
)

characters of the common string X are accessed.

Proof. We simulate the algorithm in the proof of Lemma 4.5, setting 1 + ξ =
⌈

√
q+β√
q

⌉

. For each

instance, this yields O(1+β) oracle calls asking to solve the (0, α)-Gap Edit Distance problem for
(X ′, Y ′) with |X ′| = |Y ′| = n′ ≤ n. The set of pairs (X ′, Y ′) involved in these calls can be expressed

as X × Y, where |X | = O
(1+β
1+ξ

)

= O
(

min
(

1 + β,
√

q(q + β)
))

and |Y| = O(1 + ξ) = O
(

√
q+β√
q

)

.

Moreover, since our algorithm is non-adaptive, the set X is the same for all q instances.
Recall that the reduction of Lemma 4.5 returns YES if and only if at least one of the oracle

calls returns YES. To simulate implementing the calls using the algorithm of Fact 2.5, we construct

a random sample S ⊆ [0 . . n′) of size Θ
(n′ log n

δ
1+α

)

. We build a set XS := {X ′[S] : X ′ ∈ X} and, for
each Y ′ ∈ Y, we check whether Y ′[S] ∈ XS . If so, then we return YES. If processing all Y ′ ∈ Y is
completed without a YES answer, then we return NO (for the given instance).

If ED(X ′, Y ′) > α holds for all (X ′, Y ′) ∈ X ×Y, then, by the union bound, the probability that
Y ′[S] ∈ XS holds for some Y ′ ∈ Y is at most δ. Thus, the algorithm returns YES with probability
at most δ. On the other hand, if X ′ = Y ′ holds for some (X ′, Y ′) ∈ X × Y, then X ′[S] = Y ′[S],
and we do return YES due to Y ′[S] ∈ XS.

If XS is implemented as a ternary trie [BS79], then its construction cost is

O
(

|X |
(

log |X |+ n log n
δ

1+α

))

= O
(

|X | · n log n
δ

1+α

)

= O
(

min
(

1+β,
√
q(q+β)

)

1+α · n log n
δ

)

.

The time complexity of the second step is

O
(

|Y|
(

log |X |+ n log n
δ

1+α

))

= O
( √

q+β
(1+α)

√
q
· n log n

δ

)

per instance and O
(

√
q(q+β)

1+α · n log n
δ

)

in total.

5.2 Gap Edit Distance for h = 1

Lemma 5.2. There exists a non-adaptive algorithm that, given a parameter δ ∈ R+ and a batch
of q instances of (β, α)-Gap Edit Distance satisfying β2 ≤ α

336⌈log n⌉ , solves the instances in

O
(

√
q(q+β)

1+α ·n log2 n · log 1
δ

)

time with each answer correct with probability at least 1− δ. Moreover,

at most O
( 1+β
1+α · n log2 n · log 1

δ
) characters of the common string X are accessed.
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Proof. Let us assume that δ > 1
e
; in general, we amplify the success probability by repeating the

algorithm O(log 1
δ
) times. If β = 0, then we simply use Fact 2.5. Otherwise, we apply Lemma 4.3

with φ = β and the algorithm of Lemma 5.1 (with parameter Θ( 1
n
)) as the oracle. This is valid

because
ψ =

⌊

112β2⌈logn⌉
α

⌋

≤
⌊

112α⌈log n⌉
336α⌈log n⌉

⌋

=
⌊

1
3

⌋

= 0.

Since the algorithm of Lemma 4.3 is non-adaptive, the queries remain batched. The total running
time is

O
(

φ logn
α

·
√
q(q+β)

1+φ · n log n
)

= O
(√

q(q+β)

1+α · n log2 n
)

,

whereas the number of accessed characters of the common string X does not exceed

O
(

φ logn
α

· 1+β
1+φ · n log n

)

= O
(

1+β
1+α · n log2 n

)

.

5.3 Shifted Gap Edit Distance for h = 1

Lemma 5.3. There exists a non-adaptive algorithm that, given a parameter δ ∈ R+ and a batch
of q instances of β-Shifted (γ, 3α)-Gap Edit Distance satisfying γ2 ≤ α

3024⌈log n⌉ , solves the
instances in

O
((√

q(q+β)

1+α + q(1+β)
1+α ·

√

logn
1+α

)

n log2 n · log n
δ

)

time, using O
(

√
q(q+β)

1+α · n log2 n · log n
δ

)

queries, and with each answer correct with probability at

least 1 − δ. Moreover, at most O
(1+β
1+α · n log2 n · log n

δ

)

characters of the common string X are
accessed.

Proof. If γ = 0, then we simply use Lemma 5.1. Consequently, we henceforth assume α ≥ β ≥ γ >
0.

In the remaining case, we proceed as in the proof of Lemma 4.5 except that we artificially
increase γ to

γ̄ := min
(

β,
⌊
√

α
3024⌈log n⌉

⌋)

,

set ξ = max
(

γ̄,min
(

β,
⌊

γ̄
√
β√
q

⌋))

, and use the algorithm of Lemma 5.2 (with parameter Θ( δ
n
)) as

the oracle; this is valid due to (3γ̄)2 ≤ α
336⌈log n⌉ . The input instances are solved using O

(

β
ξ

)

batches

of O( qξ
γ̄
) oracle calls, and these batches only differ in the strings X ′ (common to each batch).

If q ≤ γ̄2

β
, then ξ = β, so the input instances are solved using O(1) batches of O( qβ

γ̄
) = O(γ̄)

oracle calls, and hence the total running time and the query complexity are

O
(

√

qβ
γ̄
·γ̄

α
· n log2 n · log n

δ

)

= O
(√

qβ
α

· n log2 n · log n
δ

)

.

If q > γ̄2

β
, then the input instances are solved using O

(

β
ξ

)

batches of Θ( qξ
γ̄
) = Ω( ξγ̄

β
) = Ω(γ̄) oracle

calls. Hence, the total running time is

O
(

β
ξ
· qξ
γ̄
· 1
α
· n log2 n · log n

δ

)

= O
(

qβ
αγ̄

· n log2 n · log n
δ

)

= O
((

q
α
+ qβ

α
·
√

logn
α

)

· n log2 n · log n
δ

)

.
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Moreover, the batches of oracle calls differ only by the strings X ′ (common to each batch). Hence,
the query complexity can be bounded as follows:

O
((

β
ξ
· γ̄
α
+ qξ

γ̄
· 1
α

)

· n log2 n · log n
δ

)

= O
((

βγ
αβ

+
βγ̄

√
q

αγ̄
√
β
+ qγ̄

√
β

αγ̄
√
q
+ qγ̄

αγ̄

)

· n log2 n · log n
δ

)

= O
((

γ̄
α
+

√
qβ
α

+ q
α

)

· n log2 n · log n
δ

)

= O
(√

q(q+β)

α
· n log2 n · log n

δ

)

.

In any case, the number of accessed characters of the common string X does not exceed

O
(

β
ξ
· γ̄
α
· n log2 n · log n

δ

)

= O
(

β
α
· n log2 n · log n

δ

)

.

5.4 Gap Edit Distance for h = 2

Lemma 5.4. There exists a non-adaptive algorithm that, given a parameter δ ∈ R+ and a batch of q

instances of β-Shifted (γ, 3α)-Gap Edit Distance satisfying β ≤ α2/3

336⌈log n⌉ , solves the instances
in

O
((√

q(q+β)

1+α + q(1+β)2

(1+α)2 · log2 n
)

· n log4 n · log 1
δ

)

time, using O
(

√
q(q+β)

1+α · n log4 n · log 1
δ

)

queries, and with each answer correct with probability at

least 1 − δ. Moreover, at most O
( 1+β
1+α · n log4 n · log 1

δ

)

characters of the common string X are
accessed.

Proof. Let us assume that δ > 1
e
; in general, we amplify the success probability by repeating the

algorithm O(log 1
δ
) times. If β2 ≤ α

336⌈log n⌉ , then we simply use Lemma 5.2. Otherwise, we apply

Lemma 4.3 with φ =
⌊

α2

β2(336⌈log n⌉)3
⌋

and the algorithm of Lemma 5.3 (with parameter Θ( 1
n
)) as

the oracle. This is valid due to the following inequalities:

ψ ≤ 112βφ⌈log n⌉
α

≤ 112βα2⌈logn⌉
αβ2(336⌈log n⌉)3 = α

3β(336⌈log n⌉)2 <
336β2⌈logn⌉

3β(336⌈log n⌉)2 = β
1008⌈log n⌉ < β,

ψ2 ≤ (112βφ⌈log n⌉)2
α2 ≤ φ·(112β⌈log n⌉)2·α2

α2·β2(336⌈log n⌉)3 = φ
3024⌈log n⌉ ,

φ =
⌊

α2

β2(336⌈log n⌉)3
⌋

≥
⌊

(336β⌈log n⌉)3
(336β⌈log n⌉)3

⌋

= β.

Since the algorithm of Lemma 4.3 is non-adaptive, the queries remain batched.
The total running time is

O
(

φ logn
α

·
(√

q(q+β)

φ
+ qβ

φ
·
√

logn
φ

)

· n log3 n
)

= O
((√

q(q+β)

α
+ qβ

√
logn

α
√
φ

)

· n log4 n
)

= O
((√

q(q+β)

α
+ qβ2

α2 · log2 n
)

· n log4 n
)

,

whereas the query complexity is

O
(

φ logn
α

·
√
q(q+β)

φ
· n log3 n

)

= O
(√

q(q+β)

α
· n log4 n

)

.

Moreover, the number of accessed characters of the common string X does not exceed

O
(

φ logn
α

· β
φ
· n log3 n

)

= O
(

β
α
· n log4 n

)

.
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5.5 Shifted Gap Edit Distance for h = 2

Lemma 5.5. There exists a non-adaptive algorithm that, given a parameter δ ∈ R+ and an instance

of β-Shifted (γ, 3α)-Gap Edit Distance satisfying γ ≤ α2/3

1008⌈log n⌉ , solves the instance in

O
((√

1+β
1+α + (1+β)(1+γ)

(1+α)2
· log2 n

)

· n log4 n · log n
δ

)

time, using O
(

√
1+β
1+α · n log4 n · log n

δ

)

queries, and with error probability at most δ.

Proof. If γ2 ≤ α
3024⌈log n⌉ , then we simply use Lemma 5.3. In this case, due to α ≥ β, the running

time is

O
((√

1+β
1+α + 1+β

1+α ·
√

logn
1+α

)

· n log2 n · log n
δ

)

= O
(√

1+β
1+α · n log2.5 n · log n

δ

)

.

Otherwise, we proceed as in the proof of Lemma 4.5 except that we set ξ = min(β, ⌊γ√β⌋) and use

Lemma 5.4 (with parameter Θ( δ
n
)) as the oracle (this is valid due to 3γ ≤ α2/3

336⌈log n⌉). The input

instances are solved using O
(

β
ξ

)

batches of O( ξ
γ̄
) oracle calls, and these batches only differ in the

strings X ′ (common to each batch).
If β ≤ γ2, then ξ = β, so the input instances are solved using O(1) batches of O(β

γ
) = O(γ)

queries, and the hence the running time is

O
((

√

β
γ
·γ

α
+

β
γ
·γ2
α2 · log2 n

)

· n log4 n · log n
δ

)

= O
((√

β
α

+ βγ
α2 · log2 n

)

· n log2 n · log n
δ

)

,

whereas the query complexity is

O
(

√

β
γ
·γ

α
· n log4 n · log n

δ

)

= O
(√

β
α

· n log4 n · log n
δ

)

.

Otherwise, ξ = γ
√
β, so the input instances are solved using O(

√
β
γ
) batches of Θ(

√
β) = Ω(γ)

queries, and hence the running time is

O
(√

β
γ

·
(√

β
α

+
√
β·γ2
α2 · log2 n

)

· n log4 n · log n
δ

)

= O
((

βγ
αγ2

+ βγ
α2 · log2 n

)

· n log4 n · log n
δ

)

= O
((

βγ
α α

log n
+ βγ

α2 · log2 n
)

· n log4 n · log n
δ

)

= O
(

βγ
α2 · n log6 n · log n

δ

)

,

where the lower bound on γ is due to γ2 > α
3024⌈log n⌉ . Moreover, the batches of oracle calls differ

only by the strings X ′ (common to each batch). Hence, the query complexity can be bounded as
follows:

O
((√

β
γ

· γ
α
+

√
β
α

)

· n log4 n · log n
δ

)

= O
(√

β
α

· n log4 n · log n
δ

)

.

5.6 Gap Edit Distance and Shifted Gap Edit Distance for h ≥ 3

Theorem 5.6. There exists a non-adaptive algorithm that, given h ∈ Z≥0, δ ∈ R+, and an instance

of (β, α)-Gap Edit Distance satisfying β < (336⌈log n⌉)−h
2 α

h
h+1 , solves the instance in

O
((√

1+β
1+α + (1+β)2

(1+α)2 · logh n
)

· n log2h n · log 1
δ
· 2O(h)

)

time, using O
(

√
1+β
1+α · n log2h n · log 1

δ
· 2O(h)

)

queries, and with error probability at most δ.
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Theorem 5.7. There exists a non-adaptive algorithm that, given h ∈ Z≥2, δ ∈ R+, and an

instance of β-Shifted (γ, 3α)-Gap Edit Distance satisfying γ < 1
3(336⌈log n⌉)

−h
2 α

h
h+1 , solves

the instance in
O
((√

1+β
1+α + (1+β)(1+γ)

(1+α)2
· logh n

)

· n log2h n · log n
δ
· 2O(h)

)

time, using O
(

√
1+β
1+α · n log2h n · log n

δ
· 2O(h)

)

queries, and with error probability at most δ.

Proof of Theorems 5.6 and 5.7. As for (β, α)-Gap Edit Distance, let us assume that δ > 1
e
; in

general, we amplify the success probability by repeating the algorithm O(log 1
δ
) times. We use

Fact 2.5 and Lemmas 5.2 and 5.4 when applicable. In particular, this covers β ≤ α2/3

336⌈log n⌉ and

h ≤ 2. Otherwise, we apply Lemma 4.3 with φ = β using our algorithm for β-Shifted (ψ, 3φ)-Gap

Edit Distance (with parameters h− 1 and Θ( 1
n
)) as the oracle. This is valid because

ψ ≤ 112β2⌈logn⌉
α

< 112β2⌈logn⌉
β

h+1
h ·(336⌈log n⌉)

h+1
2

= 1
3 · (336⌈log n⌉)

1−h
2 · φh−1

h .

The running time is

O
(

φ logn
α

·
(√

β
φ

+ ψβ
φ2

· logh−1 n
)

· n log2h−1 n · 2O(h−1)
)

= O
((√

β
α

+ β2

α2 · logh n
)

· n log2h n · 2O(h)
)

,

whereas the query complexity is

O
(

φ logn
α

·
√
β
φ

· n log2h−1 n · 2O(h−1)
)

= O
(√

β
α

· n log2h n · 2O(h−1)
)

.

As for β-Shifted (γ, 3α)-Gap Edit Distance, we use Lemmas 5.1, 5.3, and 5.5 when appli-

cable. In particular, this covers γ ≤ α2/3

1008⌈log n⌉ and h ≤ 2. Otherwise, we apply Lemma 4.5 using

our algorithm for (3γ, α)-Gap Edit Distance (with parameters h and Θ( δ
n
)) as the oracle. This

is valid because 3γ ≤ (336⌈log n⌉)−h
2 α

h
h+1 ≤ α.

The running time is

O
(

β
γ
·
(√

γ

α
+ γ2

α2 · logh n
)

· n log2h n · log n
δ
· 2O(h)

)

= O
(

β
γ
· γ2
α2 · n log3h n · log n

δ
· 2O(h)

)

,

whereas the query complexity is

O
(√

β√
γ
·
√
γ

α
· n log2h n · log n

δ
· 2O(h)

)

= O
(√

β
α

· n log2h n · log n
δ
· 2O(h)

)

.

6 Matching Lower Bound for Non-Adaptive Query Complexity

In this section we strengthen the following lower bound of [BEK+03] for the (β, n6 )-Gap Edit

Distance problem.

Proposition 6.1 ([BEK+03]). For all integers n, α, β ∈ Z+ such that n
6 = α ≥ β, every algorithm

solving all instances of the (β, α)-Gap Edit Distance problem has worst-case query complexity
Ω(

√
β) or error probability exceeding 1

3 .

Theorem 6.2. For all integers n, α, β ∈ Z+ such that n
6 ≥ α ≥ β, every non-adaptive algorithm

solving all instances the (β, α)-Gap Edit Distance problem has expected query complexity Ω(n
√
β

α
)

or error probability exceeding 1
3 .
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Proof. Suppose that, for some fixed n, α, β ∈ Z+ with n
6 ≥ α ≥ β, there exists a non-adaptive

algorithm A that uses q queries in expectation and errs with probability at most 1
3 . We shall derive

an algorithm A′ for n = 6α that uses 486qα
n

queries in the worst case; if q = o(n
√
β

α
), this would

contradict Proposition 6.1.
Let us first define an algorithm A3 that runs A three times and returns the dominant answer;

it has error probability to 1+3·2
27 = 7

27 and expected query complexity to 3q. For each i ∈ [0 . . ⌊ n
6α⌋),

let qi be the expected number of queries that A3 makes to X[6αi . . 6α(i+1)) and Y [6αi . . 6α(i+1));
since A3 is non-adaptive, these values do not depend on X or Y . By linearity of expectation, we
have

∑

i qi ≤ 3q, so there exists i ∈ [0 . . ⌊ n
6α⌋) such that qi ≤ 3q

⌊ n
6α

⌋ ≤ 36qα
n

.

The algorithm A′, given strings X ′, Y ′ ∈ Σ6α, constructs strings X = a6αi ·X ′ · an−6α(i+1) and
Y = a6αi · Y ′ · an−6α(i+1), where a ∈ Σ is an arbitrary character. Formally, this means that an
oracle providing random access to (X ′, Y ′) is transformed into an oracle providing random access
to (X,Y ). Then, A′ runs A3(X,Y ), but it terminates the execution (returning an arbitrary answer)
on an attempt to make more than 27

2 qi ≤
486qα
n

queries to (X ′, Y ′).
This cap of the number of queries trivially bounds the query complexity of A′. As for the

correctness, observe that Fact 2.1 implies ED(X,Y ) = ED(X ′, Y ′). Moreover, there is a one-to-
one correspondence between the queries of A′(X ′, Y ′) and the queries that A3(X,Y ) makes to
X[6αi . . 6α(i+1)) and Y [6αi . . 6α(i+1)). Hence, it suffices to analyze the error probability of the
capped version of A3. Without the query limit, A3(X,Y ) would in expectation make qi queries to
(X ′, Y ′) and err with probability at most 7

27 . By Markov’s inequality, the probability of making
more than 27

2 qi queries to (X ′, Y ′) does not exceed 2
27 . Thus, the execution of A3 is terminated

with probability at most 2
27 . Overall, this increases the error probability from 7

27 to 7+2
27 = 1

3 .
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