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Abstract— We present a novel method to enhance the
SNR for multi-TE MR spectroscopic imaging (MRSI) data by
integrating learned nonlinear low-dimensional model and
spatial constraints. A deep complex convolutional autoen-
coder (DCCAE) was developed to learn a nonlinear low-
dimensional representation of the high-dimensional multi-
TE 1H spectroscopy signals. The learned model signif-
icantly reduces the data dimension thus serving as an
effective constraint for noise reduction. A reconstruction
formulation was proposed to integrate the spatiospectral
encoding model, the learned model, and a spatial constraint
for an SNR-enhancing reconstruction from multi-TE data.
The proposed method has been evaluated using both nu-
merical simulations and in vivo brain MRSI experiments.
The superior denoising performance of the proposed over
alternative methods was demonstrated, both qualitatively
and quantitatively. In vivo multi-TE data was used to assess
the improved metabolite quantification reproducibility and
accuracy achieved by the proposed method. We expect the
proposed SNR-enhancing reconstruction to enable faster
and/or higher-resolution multi-TE 1H-MRSI of the brain,
potentially useful for various clinical applications.

Index Terms— multi-TE 1H-MRSI, denoising, regularized
reconstruction, deep learning, complex convolutional neu-
ral network, low-dimensional modeling

I. INTRODUCTION

MULTI-TE MRSI (acquiring spatially resolved MR spec-
troscopy data at multiple echo-times) offers stronger

molecular imaging capabilities than standard single-TE MRSI,
such as the ability to better resolve molecules with strong
spectral overlaps and map metabolite relaxation parameters
[1]–[5]. However, the need to acquire spectroscopy data at
different TEs inevitably increases the encoding dimensions,
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thus leading to more limited trade-offs between speed, resolu-
tion, and SNR. The SNR challenge is even more serious for
data acquired at longer TEs (to encode J-coupling evolution or
T2 decay), which can negatively affect subsequent quantitative
analysis. As an example, a typical multi-TE MRSI experiment
usually takes around 20 minutes to achieve a good SNR
for a centimeter-level resolution [6]. Therefore, the ability
to enhance the SNR for multi-TE MRSI will be particularly
useful for enabling faster and/or higher-resolution acquisitions
and making this technology more clinically relevant.

Denoising is becoming a common practice to address SNR
issues for MRSI experiments. The simple and efficient spatial
and/or spectral invariant filters, e.g., spatial hamming, temporal
exponential, or Gaussian filters, can enhance SNR but at the
expense of spatiospectral resolution. More advanced signal
processing methods that exploit the unique spectroscopic sig-
nal characteristics such as wavelet domain sparsity [7] and
linear predictability have been proposed [8]–[10]. These meth-
ods can reduce noise levels while better preserving molecular
features of interest, but offer limited performance when the
SNR is low. Recognizing the readily available anatomical
information in any MRSI experiments, a number of methods
that incorporate spatial constraints derived from anatomical
images [11]–[13] or combine spatial and spectral constraints
[14], [15] for improved reconstruction of noisy MRSI data
have also been described. While these methods utilized the
spatial and spectral domain constraints in an independent
fashion, more recent approaches motivated by the fact that
high-dimensional MRSI data can be well approximated by
low-dimensional partial separability (PS) models due to the
inherent strong spatiospectral correlation have produced im-
pressive SNR and/or resolution improvements [9], [16], [17].
The subspace or low-rank models derived from PS have
also been integrated with spatial constraints to offer further
enhanced performance [18]–[22]. All the methods mentioned
above have been extensively investigated for single-TE MRSI.

One straightforward way to adapt the methods mentioned
above to multi-TE MRSI is applying them to individual TEs
separately. However, such an approach does not effectively
utilize spatio-spectral-TE correlations embedded in the high-
dimensional multi-TE MRSI data for optimized SNR enhance-
ment. To this end, several methods were developed to exploit
the correlations among multiple dimensions for accelerating
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multi-TE/J-resolved MRSI without a strong SNR penalty,
making use of either sparsity in the two-dimensional spectra
[23], [24] or low-rank tensor constraints derived from a higher-
order PS model [25], [26]. As these constraints typically
require many encodings along the TE/J-resolved dimension
to be effective, limiting the flexibility in experimental design
[27], augmented subspace models that can work with a smaller
number of TEs have also been proposed recently [28], [29].

While the subspace model is a powerful tool to achieve
better SNRs for MRSI, they still rely on linear dimensionality
reduction of high-dimensional data, which can be less efficient
(requiring higher model orders) when there are more compli-
cated spectral variations due to either physiological or practical
experimental conditions [30], [31]. Nonlinear low-dimensional
models have been shown to offer better dimensionality re-
duction thus SNR improvement [30], [32]–[34]. With the
recent advancements in deep representation learning, it is
also possible to pre-learn such a nonlinear low-dimensional
model from training data and use it for constrained MRSI
reconstruction [35]–[37].

We present here a novel method to improve the SNR
of multi-TE MRSI by learning a nonlinear low-dimensional
model for multi-TE 1H spectroscopy data and using this
learned model for spatiospectral reconstruction. Specifically,
we proposed to use a deep complex convolutional autoencoder
(DCCAE) [38], [39] to learn a nonlinear representation of
multi-TE spectra with a stronger dimensionality reduction ca-
pability than existing linear subspace models, offering higher
potential for noise reduction. The model learning process can
be readily adapted to any type of signal excitation strategy.
A regularized reconstruction formulation was constructed to
integrate the acquisition model, learned model, and a spatial
constraint for SNR-enhancing reconstruction from noisy multi-
TE 1H-MRSI data. The effectiveness of the proposed method
has been evaluated using simulated and experimental data,
demonstrating superior denoising performance over existing
methods and better metabolite quantification. The reconstruc-
tion formulation, modeling learning process, numerical algo-
rithm, and experimental studies are described below in detail.

II. THEORY

The data acquisition process for a multi-TE MRSI experi-
ment can be described as

d(k, t, TE) =

∫
ρ(r, t, TE)e−i2πδf(r)te−i2πkrdr

+ n(k, t, TE),

(1)

where ρ(r, t, TE) denotes the TE-dependent spatiotemporal
function of interest that contains various molecular signal com-
ponents of interest, t denotes the free induction decay (FID)
time, TE the echo time (TE) at which the data is acquired,
d(k, t, TE) represents the measured (k, t)-space data, δf(r)
corresponds to the B0 field inhomogeneity distribution, and
n(k, t, TE) is the measurement noise (commonly assumed to
be complex white Gaussian thermal noise [1]). The goal of
an SNR-enhancing or denoising reconstruction is to recover
the object function of interest ρ from the noisy measurement

d with as high an SNR as possible while protecting the
biologically or clinically relevant features.

After a proper discretization, the image function ρ can be
represented by a tensor structure ρ ∈ CN×D×M , with N being
the number of spatial voxels, D the number of FID sample
points, and M the number of TEs. A denoising reconstruction
can then be generally formulated as the following optimization
problem

ρ̂ = argmin
ρ

∥d−FΩ{B⊙ ρ}∥22 + λR(ρ), (2)

where the first term imposes data consistency and R(·) im-
poses various types of model constraints based on prior infor-
mation about ρ (e.g., sparsity, low-rankness, and smoothness,
etc). B captures the effects of B0 field inhomogeneity (voxel
dependent linear phases along t), ⊙ denotes a point-wise
multiplication, and F is a multi-TE spatiotemporal encoding
operator with a (k, t, TE)-space sampling pattern Ω. λ is
the regularization parameter. A key difference for various
denoising methods lies in the specific choice of R(ρ) and
algorithm to solve Eq. (2).

We propose here a new R(·). Specifically, we set out
to learn a nonlinear low-dimensional model that can accu-
rately represent multi-TE 1H spectroscopic signals and enable
their effective separation from noise (high-dimensional). To
this end, we designed a deep complex convolution autoen-
coder (DCCAE) and trained the network to discover low-
dimensional features that can faithfully reconstruct the high-
dimensional multi-TE FIDs. With this learned model, denoted
as Nθ(X) where X denotes a tensor representation of the
multi-TE spatiotemporal function of interest and θ contains
the network parameters, we propose to formulate the recon-
struction problem as follows:

X̂ = argmin
X

∥d−FΩ{B⊙X}∥22

+ λ1

N∑
n=1

∥Nθ(Xn)−Xn∥2F + λ2∥DwX∥2F .
(3)

The dimension for X is N × D × M , with N denoting the
number of voxels, D the number of FID points for each voxel,
and M the number of TEs acquired. Xn is the multi-TE FIDs
for the nth voxel. The first regularization term, with parameter
λ1, imposes the constraint that multi-TE FIDs reside on or
close to a low-dimensional manifold by penalizing the differ-
ence between the signal and its ”projection” onto the manifold
through Nθ(·). The second regularization term, with parameter
λ2, is an edge-preserving spatial constraint term with Dw a
weighted finite-difference operator [12]. ∥ · ∥F represents the
Frobenius norm. The methods for training Nθ(·), numerically
solving Eq. (3) and experimentally evaluating the proposed
method are described in the sections below.

III. METHODS

A. Low-Dimensional Representation Learning for
Multi-TE MRSI Data

While efforts have been made on learning efficient low-
dimensional representation for high-dimensional FIDs or spec-
tra, e.g., [30], [31], the main challenges for multi-TE MRSI
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Fig. 1. Illustration of the training strategy of the proposed DCCAE. Here X represents a collection of multi-TE FID training data, with D denotes the
data length and M is the number of TEs. Complex convolutional layers were adapted, where the complex multi-TE MRSI training data was directly
used as input with different TEs treated as different channels, followed by complex fully-connected layers, to encode data X into L-dimensional
features. The data dimensions were reduced by half in each complex convolutional block, while the channel dimension K increased by a small
amount (details in texts). The mathematical formulation of the training strategy is provided in Eq. (4).

include the higher dimensions and the need to effectively
exploit the relationships across TEs. Methods that treat the
TE dimension as separate input channels [40] have been used
for image reconstruction recently. Following a similar spirit,
we propose here a multi-convolution-channel DCCAE design.
Figure 1 illustrates the network structure and training strategy.
Specifically, this network has several new features compared to
prior works: (1) Automatic feature extraction and correlation
exploitation across TEs achieved by treating data acquired
at different TEs as separate input channels to the network
and using (t, TE) convolutional layers; (2) Combination of
convolutional layers and fully connected layers for further
low-dimensional feature extraction; and (3) Use of complex-
valued units and activation functions to handle the multi-TE
FIDs directly (complex operations defined in Fig. 1) [38], [39],
instead of either using only the real parts or treating real and
imaginary parts separately as in most existing spectroscopy
deep learning methods. The training was done by solving:

{θ̂} = argmin
θ

1

J

J∑
j=1

ϵ(xj ,N (xj ;θ))

+ λ
1

K

K∑
k=1

ϵ(xk,N (xk + nk;θ)),

(4)

where xj and xk are training samples, with each xj , xk ∈
CD×M being a multi-TE FID. N (·;θ) represents the network
parameterized by θ, nk denotes white Gaussian noise vectors
with varying SNRs (defined w.r.t. the highest spectra peak
from a representative testing spectra) and ϵ is the loss function.
Specifically, the first term enforces the NN to learn a low-
dimensional representation that can accurately recover the
high-dimensional data (xj), while the second term is a denois-
ing regularization with regularization parameter λ to increase
the generalization of the learned model [36]. We found that
this specific design with convolutional layers followed by

fully-connected layers with ”bottle-neck” structures and the
denoising regularization can successfully encode the high-
dimensional multi-TE data into a set of L-dimensional fea-
tures, from which the original data can be recovered accurately.
We will refer to L as the model order below.

B. Network Training

All the training and testing data for the representation
network in Fig. 1 were synthesized using the following multi-
TE 1H spectroscopic signal model [31], [41], [42]:

x(t, TE) =
PMet∑
p=1

cpe
i(α0,TE+αp)ϕp(t, TE)e−TE/T2,pe−t/T∗

2,p+i2πδfpth(t)

+

QMM∑
q=1

bqe
i(α0,TE+βq)e−TE/T2,qe−t2

π2W2
q

4 ln(2)
+i2πδfqt,

(5)
where the first summation captures the metabolite components
and the second summation captures the MMs. The variables
cp, T2,p, T ∗

2,p, and δfp are concentrations, relaxation parame-
ters, and additional frequency shifts for individual molecules,
respectively, ϕp(t, TE) denotes the TE-dependent metabolites
basis (simulated for the sequences used in NMRScopeB [43]),
αp and α0,TE accounts for molecule-dependent and TE-
dependent phases to make the mathematical representation
more general, and h(t) an additional Gaussian lineshape
function. For the MM component, bq , T2,q , Wq , and δfq
represents the coefficients, relaxation parameters, Gaussian
linewidths, and frequency shifts for individual MM groups.
This parametric MM model has been demonstrated to be math-
ematically accurate (based on the residuals of fitting in vivo
MM data) and very commonly used [31], [41], [44]. Although
not offering strong physical interpretation, its mathematical
sufficiency ensures that we can generate realistic spectra for
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learning an accurate low-dimensional model for dimensional-
ity reduction/denoising. Note that this model means that high-
dimensional multi-TE FIDs are characterized by a small set of
parameters, thus should reside in a low-dimensional manifold.

When generating the training data, Gaussian distributions
were assumed for the spectral parameters (i.e., cp, bq , T2,p/q ,
T ∗
2,p, δfp/q and Wq) with means and standard deviations

obtained from literature values and fitting results of our
own high-SNR MRSI data previously acquired from healthy
volunteers [22], [41], [45]–[47]. Randomly sampled values
were drawn from these distributions to synthesize multi-TE
FIDs using Eq. (5). The concentration values cp were bounded
between 0 to 2, with the mean NAA concentration set to 1.
T2,p and T ∗

2,p were bounded between 5 and 400 ms, T2,q

between 5 and 60 ms, the linewidth Wq values between 5 to
70 Hz, and concentration coefficient bq were lower bounded
by 0. Parameters generated with values outside these ranges
were excluded. For α0,TE , we first generated the global
zero-th order phase from the first TE α0,TE1

with Gaussian
distribution of zero mean and standard deviation of 20 degrees.
Additional phase differences for the subsequent TEs were
included with a mean of 3 and a standard deviation of 1
degree (based on the observation from in vivo data). The
metabolite/MM-dependent phases αp and βq were generated
from Gaussian distributions with zero mean and standard
deviation of 5 degrees. The metabolites considered here are
N-acetylaspartate (NAA), creatine (Cr), choline (Cho), glu-
tamate (Glu), glutamine (Gln), Myo-inositol (mI), gamma-
Aminobutyric acid (GABA), taurine (Tau), and lactate (Lac).
For MMs, the commonly reported MM resonances with mean
δfq’s at 0.9, 1.21, 1.38, 1.63, 2.01, 2.09, 2.25, 2.61, 2.96, 3.11,
3.67, 3.8, and 3.96 ppm were included. Note that here for the
in vivo data, the first three MM resonances (0.9, 1.21, and
1.38 ppm) were omitted to accommodate the nuisance removal
scheme, where a voxel-by-voxel HSVD-based removal step
was used to remove any residual lipids after a union-of-
subspace nuisance removal [48].

A total of 100,000 metabolite and 100,000 MM multi-TE
FIDs were generated. MM data were scaled with a global
scaling factor to mimic experimentally observed metabolite-to-
MM ratios, and combined with metabolite spectra to generate
100,000 training samples. 80,000 were used for training and
20,000 for testing. Among those 80,000, 60,000 (J) were used
as noiseless data, and noise was added to the remaining 20,000
(K) with SNR (defined w.r.t. the NAA peak in the mean
spectra of all training data) uniformly distributed from 5 to 50
(chosen based typical SNRs observed for in vivo MRS/MRSI)
for the denoising regularization term in Eq. (4).

C. Optimization Algorithm for Reconstruction Using the
Learned Model

Directly solving Eq. (3) with the learned neural network
based model constraint is challenging. Here, we adapted the
algorithm design from [30], [31] to decouple the linear and
nonlinear problems. Specifically, we introduced an auxiliary

variable S = B⊙X and reformulated the problem as:

X̂ = argmin
X

∥d−FΩ{S}∥22

+ λ1

N∑
n=1

∥N (Xn)−Xn∥2F + λ2∥DwB̄⊙ S∥2F

s.t. B⊙X = S,

(6)

where B̄ represents the element-wise conjugate of B. The
alternating direction method of multipliers (ADMM) was
used to solve this equivalent problem [49]. More specifically,
Eq. (6) can be solved by iteratively solving the following
three subproblems (where i is the iteration index):

Subproblem (I): Update X with fixed S(i) and Z(i), where Z
is the Lagrangian multiplier

X(i+1) = argmin
X

λ1

N∑
n=1

∥N (Xn)−Xn∥2F

+
µ

2

∥∥∥∥B⊙X− S(i) +
Z(i)

µ

∥∥∥∥2
F

;

(7)

Subproblem (II): Update S with fixed X(i+1) and Z(i)

S(i+1) = argmin
S

∥d−FΩ{S}∥22 + λ2∥DwB̄⊙ S∥2F

+
µ

2

∥∥∥∥B⊙X(i+1) − S+
Z(i)

µ

∥∥∥∥2
F

;
(8)

Subproblem (III): Update Z

Z(i+1) = Z(i) + µ
(
B⊙X(i+1) − S(i+1)

)
. (9)

Subproblem (I) captures the nonlinear network N (·), and
can be solved with general nonlinear optimizers (details for
deriving the gradient for the complex-valued network can be
found in the Appendix). Note that although Subproblem (I) is
very high-dimensional, it can be decoupled into much smaller
problems for individual voxels (Xn) due to the separability of
the Frobenius norm. We solved these individual-voxel prob-
lems in parallel using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm in this work (while more advanced solvers
could be used), Subproblem (II) is equivalent to solving a
set of linear equations with a quadratic regularization, which
we solved using linear conjugate gradient [50]. The overall
algorithm is terminated when either a specific iteration number
is reached (e.g. 10) or the relative changes between X(i+1) and
X(i) fall below a given threshold (e.g. 10−3).

D. Other Implementation Details

A fixed spectra bandwidth (BW) of 1250 Hz was used.
The convolution layers in Fig. 1 were set up with kernel
size 24 × 24 and increased channel dimension (M -6-12-14)
for consecutive layers with stride = 2. The ”bottle-neck”
structure contains layers with dimension O-200-L-200-O, with
O being the flattened output data dimension from the previous
complex convolutional block (O = D\8 × K3 as described
in Fig. 1). Complex ReLu activation function (CReLU) was
used in the nonlinear hidden layers, except for the middle
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Fig. 2. Representation capability of the proposed method: a) approximation errors (relative ℓ2) of the trained model (red curve) compared with
two linear subspace models: TE-combined subspace (blue curve) and TE-dependent subspace (yellow curve), for a 3-TE case with different model
orders (L); b) A representative 3-TE testing spectrum (black) and its approximation by the learned model (red), TE-combined subspace (blue), and
TE-dependent subspace (yellow) with L = 42. Improved representation accuracy offered by the proposed model can be seen.

layer [38], [39]. The network training was performed on a
Windows 10 machine with Intel(R) Core(TM) i9-9820X CPU
and NVIDIA(R) TITAN RTX(TM) graphics processing unit
and implemented in PyTorch using the Adam optimizer [51].
The batch size was 500, the initial learning rate was 0.001
with 300 epochs while other parameters remained as default.
Same machine was used for the constrained reconstruction.

E. Simulation and Experimental Settings

1) Simulations: We first performed numerical simulations
to evaluate the representation and generalization capability of
the learned model with comparison to two alternative lin-
ear subspace-based representations, one using TE-dependent
subspaces and another one with a TE-combined augmented
subspace (3 TEs as an example here), all obtained from the
same training data. For the TE-combined subspace, the Caso-
rati matrix was constructed with the additional TE dimension
stacked alone the temporal dimension for the training samples.
The relative ℓ2 approximation errors for a set of test data
from the proposed learned model and the subspace projection
errors were evaluated at different L’s (For the subspaces, L
denotes the dimensionality, i.e., the number of basis used for
projection).

To evaluate the denoising performance of the proposed
method, a 3-TE numerical phantom, with TE = 30, 80,
and 130 ms, was constructed with similar procedures well-
described in [30], [31]. Specifically, we first acquired the
brain tissue segmentation maps from a T1-weighted structural
image to generate tissue fraction maps with different tissue
types including gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF). Next, spectral parameter maps were
created by combining the tissue fraction maps with regional
metabolite and MM parameters from the literature [41], [42],
[45], [47], and then used to synthesize spatially localized FIDs
with the multi-TE signal model in Eq. (5). A lesion-like feature
was included, where the concentrations of all the metabolites
were decreased by a factor of 3 except for Cho (increased by a
factor of 3) w.r.t their mean values in GM. Complex Gaussian
noise was added to the synthesized (x, t, TE)-space data to
simulate noisy acquisitions.

2) In Vivo Experiments: Data were acquired from healthy
volunteers to evaluate the performance of the proposed
method, with approval from the local Institutional Review

Board (Institution: University of Illinois Urbana Champaign;
Protocol number: 20132; Date: 2019/09/10). Experimental
multi-TE 1H-MRSI data were acquired on a 3T Siemens
Prisma scanner using a 20-channel head coil and a multi-
TE EPSI sequence [52] that acquires multiple TEs during a
single scan. Both 2D and 3D scans with multiple averages
were acquired. The parameters for the 2D scans were: TR/TE
= 1200/(65, 120, 200) ms, field-of-view (FOV) = 210 mm ×
210 mm, slice thickness = 15 mm (our sequence is a spin-echo
sequence with only slice selective excitation thus excitation
volume is the same as the FOV), matrix size = 32 × 32,
spectral bandwidth (BW) = 1250 Hz and 256 gradient echo
pairs in each EPSI readout. Total acquisition time was about
22 minutes with 11 acquisitions/averages. Such a 2D scan
with many averages allowed for some quantitative evaluations
of the denoised data (see Results for more details). The
parameters for the 3D scans were: TR/TE = 1200/(65, 120,
200) ms, volume-of-interest (VOI) = 220 mm × 220 mm ×
50 mm, FOV = 220 mm × 220 mm × 64 mm, matrix size
= 32 × 32 × 8, same spectral BW and 320 gradient echoes.
Total acquisition time was about 12 minutes. A 60 Hz weak
water suppression and outer volume suppression (OVS) bands
were used for all scans. Before the denoising reconstruction,
an SVD-based coil combination was performed and nuisance
water/lipid signals were removed using the method in [48].
Both noisy and denoised multi-TE data were quantified TE-
by-TE using LCModel [53] as well as jointly using a ProFit
based method [54].

IV. RESULTS

A. Simulation Results

The proposed learned model consistently outperformed the
two linear subspace models in terms of dimensionality reduc-
tion error (relative ℓ2) at different model orders, as shown
in Fig. 2a. The TE-combined subspace model had a higher
representation efficiency than the single-TE subspaces, as
expected since it exploited correlation across TEs. To further
demonstrate the representation accuracy of the learned model,
approximations of representative testing 3-TE spectra from
these three models with the same L = 42 are compared
in Fig. 2b. As can be seen, the proposed learned nonlinear
model produced visually apparent better approximations than
the linear subspaces with less spectral distortion.
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Fig. 3. Simulation results evaluating the denoising performance from the ground truth (Gold Standard), noisy data (Noisy), anatomically constrained
denoising (Spatial), TE-dependent subspace denoising (TE-dependent subspace), and TE-combined subspace (TE-combined subspace) with their
normalized mean-squared-errors (MSEs), respectively. Metabolite maps of NAA, Cho, and mI for all 3 TEs were shown. As can be seen, the
proposed method achieved significant SNR improvement and the lowest MSE while better preserving spatiospectral features.

Fig. 4. Additional simulation results of a set of voxel spectra selected
from GM. The true spectra, reconstructed spectra from different denois-
ing schemes, and reconstruction errors were shown in red, blue, and
black lines, respectively. Here SNR improvements with superior spectral
feature preservation achieved by the proposed over alternative methods
can be clearly observed.

Figure 3 shows a set of denoising results from the simulation
phantom (at SNR = 20 defined w.r.t. the maximum NAA
peak), produced by four alternative methods, i.e., the proposed,
spatially constrained reconstruction (Eq. (3) with λ1 = 0),
subspace constrained denoising using TE-dependent subspaces
and TE-combined subspace (a mild spatial constraint was used
for both subspace methods). The learned model and linear
subspace model were learned/estimated from the same training
data with a model order L = 52 such that approximation error
for the testing data was around 7% for the learned model.
Note that the network did not see any data from the simulated
phantom. The regularization parameter λ1 for the proposed
method was selected based on a single voxel denoising per-
formance, while λ2 was chosen based on discrepancy principle
and then fine-tuned by minimizing the relative ℓ2 error of
the final spatiospectral reconstructions. As can be seen, the
spatially constrained reconstruction (third row) improved the
SNR but oversmoothed the images. The two subspace methods
(fourth and fifth row) further improved the reconstruction (with
TE-combined subspace slightly better than TE-dependent sub-
spaces). The proposed method produced the best results (last
row), as demonstrated qualitatively by the metabolite maps and
quantitatively by normalized MSEs calculated for the entire
spatiospectral image.

Figure 4 shows an additional comparison of the different
denoising methods using selected voxel spectra from GM.
Both the reconstructed (blue) and the error spectra (black) are
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Fig. 5. Noisy (black) and denoised multi-TE spectra (red) for two
different voxels from a 2D brain data set (voxels marked by the blue
and red marks in the anatomical image on top). Results for different
numbers of averages are shown in different columns. A significant SNR
enhancement can be seen for the denoised data, and the proposed
method produced more consistent reconstruction across different cases.
A more quantitative comparison can be found in Fig. S1, which con-
firmed improved consistency due to denoising.

shown. As can be seen, the spatially constrained reconstruction
produced noticeable spectra distortion (third row), while both
subspace methods (fourth and fifth row) offered improved
performance, with the TE-combined subspace exhibiting lower
errors for longer TEs compared to TE-dependent subspaces.
The proposed method achieved significant SNR improvement
and best preserved spatiospectral features with the lowest
reconstruction errors. The spectral components concealed by
noise, e.g., the weak J-coupled metabolite and MM peaks,
were better recovered by the proposed method.

B. In Vivo Results

We performed denoising to the in vivo 2D data with
different numbers of averages (using the same regularization
parameters from simulation), and compared the results. Con-
vincing SNR enhancement and improved consistency across
different numbers of averages offered by the proposed method
are demonstrated by the localized multi-TE spectra shown
in Fig. 5. The denoised spectra (red curves) better revealed
spectral features and exhibit more realistic T2 decays com-
pared to their noisy counterparts. Quantification results (from
LCModel) are shown in Fig. 6, where the metabolite maps
(first three rows) along with estimated standard deviation (SD)
maps (last three rows) from noisy measurement, subspace
denoising method, and the proposed method are compared,
for 2 averages, 6 averages, and 11 averages, respectively. For

the noisy data, the SNR increment and estimation variance
reduction as the number of averages increases can be clearly
observed, as excepted. The proposed method led to the most
improved quantification (especially for less averaged data), as
shown by the decreased SD maps across different averages and
TEs (Fig. 6, bottom panel). Particularly, the denoised data by
the proposed method from 2 averages achieved significantly
more consistent results to the data with 11 averages than the
noisy data (i.e., more averages are needed for the noisy data to
achieve similar estimation performance to the denoised data),
and the results from 6 averages achieved almost the same
quantification as 11 averages. This indicates that the proposed
denoising should effectively reduce the data acquisition time.
Representative spectra are shown in Fig. S2 to illustrate the
LCModel fitting quality.

LCModel only fits spectra TE-by-TE, thus not taking full
advantage of the multi-TE data for quantifying the J-coupled
molecules. To this end, we adopted the ProFit strategy to
jointly fit the data from all TEs [54]. Figure 7 shows the
quantification results including molecules mI and Glx, for the
noisy and denoised data. As can be seen, the SNR improve-
ment offered by the proposed method does lead to improved
quantification, revealing better tissue contrast. A comparison
of the regression of Glx levels w.r.t. GM fraction for the noisy
and denoised data can be found in Fig. S3. To further illustrate
the general applicability of the proposed method, a denoising
reconstruction for a 12-TE data set was performed and results
are shown in Fig. S4. Improved metabolite spectra and maps
from the proposed method can also be observed.

The performance of the proposed method was also evaluated
quantitatively using a test-retest study leveraging the multiple
averages. Specifically, the reconstruction from the first and last
5 averages are compared. The reproducibility of metabolite
quantification was evaluated using a linear regression analysis
of the metabolite estimates (from multi-TE fitting) of these two
reconstructions in Fig. 8. As can be seen, the consistency of
metabolite estimates between the two repeats is substantially
improved by the proposed denoising, confirmed by the higher
correlation coefficients for NAA, Cr, Cho, and Glx (the same
analysis for other metabolites are shown in Fig. S5).

Spatially localized spectra from noisy and denoised in
vivo 3D multi-TE data are shown in Fig. 9. As can be seen,
the proposed method produced significantly improved SNR
and well-preserved spectral features, especially for the data
acquired at longer TEs. To demonstrate that those metabolite
peaks revealed by denoising are not due to overfitting from
the learned network, we also show a set of spectra from a
background voxel (noise-only region, green mark). Minimum
signals were recovered for this voxel by the proposed method
with clearly observed noise variance reduction. Quantified
metabolite maps (joint multi-TE fitting) are shown in Fig. 10.
Higher quality metabolite maps with significantly less spatial
uncertainty were produced from the denoised data with
visually better spatial distributions, e.g., better-preserved
ventricle features and clearer tissue contrasts. T2 maps (for
NAA, Cr, and Cho) were also estimated and compared in
Fig. S6, where the denoised data yielded better estimations
which are more consistent with the literature [55]. The
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Fig. 6. Metabolite quantification by LCModel for the 2D in vivo data with different numbers of averages, from the Fourier reconstruction (Noisy),
subspace denoising (Subspace), and the proposed method (Proposed). The top three rows are TE-dependent NAA maps, while the bottom three
rows are the estimated standard deviation maps expressed in percentage of the estimated concentrations (%SD). Results for different TEs are in
different panels. Each panel shows results for noisy data, subspace denoising, and the proposed method in different rows, and different columns
display the results for different numbers of averages, respectively. It can be observed that for the noisy data, the estimation variance is reduced with
more averages. Both denoising methods offer reduced SD. The proposed method yielded more improvement (especially for less averaged data)
and consistent estimation across different cases. The values are shown in an institutional unit (I.U.).

Fig. 7. Joint multi-TE metabolite fitting results (coefficients cp in Eq. (5)
in institutional units) for NAA, Cr, Cho, mI, and Glx from 2D in vivo
data with 3 TEs and 6 averages. Results from the noisy data (Noisy),
and denoised data produced by the subspace method (Subspace),
and the proposed method (Proposed) are shown in the first, second,
and third rows, respectively. As can be seen, the proposed method
offers significantly improved metabolite maps with higher image quality,
including for the J-coupled molecules.

processing time for this entire 3D data set was about one
week (see more detailed discussion regarding computation
time considerations in the next section).

Fig. 8. Regression analysis of metabolite estimates from the noisy (blue
dots) and denoised data (red dots). Results for four metabolites from
the first and last 5 averages of the 2D multi-average scan are compared
(each dot representing a voxel). A noticeably better consistency with
higher correlation coefficients between the two measurements can
be observed for the proposed denoising reconstruction, indicating a
stronger reproducibility and less uncertainty.
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Fig. 9. Spatially resolved spectra from a 3D data set, before (black)
and after denoising (orange). One voxel from posterior gray matter
(yellow diamond), one from white matter region (blue square), one from
anterior gray matter (red circle), and the fourth from the background
region (green pentagon) are shown. Apparent SNR enhancement can
be seen for the denoised data. Minimum signal is reconstructed from
the background, indicating a small bias with a large variance reduction.

Fig. 10. Metabolite maps from the in vivo 3D data. The first column
shows different slices of the anatomical images (T1w). The subsequent
columns display maps of NAA, Cr, Cho, and Glx for the corresponding
slice. Maps from the noisy data and the proposed method (Denoised)
are shown in different rows. Significantly better metabolite distributions
can be visualized for the denoised data.

V. DISCUSSION

Our proposed method effectively integrated a learned non-
linear low-dimensional model of high-dimensional multi-TE
spectroscopic signals and a spatial constraint for optimized
SNR-enhancing MRSI reconstruction. Our complex-valued
convolutional and fully-connected neural network blocks effi-
ciently exploited the correlations among TEs and allowed for
the extraction of accurate low-dimensional embedding from
the high-dimensional multi-TE data. There are several unique
advantages to our approach. First, unlike other methods with

end-to-end mapping networks [56], [57], it provides strong
flexibility for different acquisitions. Specifically, the learned
model captures the inherent variations of the true signals
and can be readily applicable to data acquired at different
SNRs, resolutions, and sampling patterns. Our formulation can
work with an arbitrary (k, t)-space sampling design (through
the forward spatiospectral encoding operator) with the same
learned model, e.g., the 3-TE in vivo 2D and 3D data were
acquired with different acquisition parameters but processed
using the same representation model. While retraining the
network with a denoising regularizer at an SNR better matched
with individual data set may further improve the result, it is
not required for the proposed method, thus making it more
flexible/generalizable. The model needs to be retrained for
different excitation schemes (with the same network structure)
as in this case the QM basis for various metabolites are
different.

Another advantage of the proposed method is the model
scalability, which is important when processing such high-
dimensional data. Instead of concatenating real, imaginary
parts, and signals from different TEs as in previous repre-
sentation model learning approaches [30], [31], which will
result in a huge fully-connected network, a more scalable
combination of convolutional and fully-connected blocks with
complex-valued units were used to better accommodate the
complex nature of the multi-TE signals. This allows us to learn
models for many more TEs while maintaining a manageable
network size. Here we choose a 3-TE acquisition in this work
as an example to demonstrate the SNR enhancement utility of
the proposed method. But as mentioned before, the proposed
network and algorithm designs can handle an arbitrary number
of TEs (by changing the number of input channels to the
network), including many-TE (e.g., the 12-TE case shown
in Fig. S4) as well as single-TE MRSI data. Also, note that
the choices of TE values here can be optimized to minimize
the estimation variances for specific sets of molecules, e.g.,
through a Cramer-Rao bound analysis, which is beyond the
scope of this work.

The regularization parameter selection (for λ1 and λ2 here)
is one important issue. While results obtained with different
combinations of λ1 and λ2 indicate that the denoising per-
formance remains robust to a large range of parameter values
(with smaller values for λ2 achieving better balance between
additional SNR enhancement and resolution loss; figure not
shown due to space consideration), better parameter selection
strategies, including those optimized for metrics beyond MSE
and machine learning based approaches may be considered
[58].

In addition, although the learned representation currently
serves as a voxel-wise constraint, it can introduce time-
dependent bias into the final reconstruction thus frequency-
dependent spatial resolution. While the traditional metrics
(like FWHM of point spread functions) are not sufficient to
analyze such resolution effects with the nonlinearity of neural
networks, a more careful spatial resolution analysis of the
denoised reconstruction should be conducted in future research
(e.g., using new analysis tools such as [59]).

Processing speed remains a challenge for the current im-
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plementation. While the proposed algorithm is efficient (addi-
tional convergence analysis can be found in [31]) and allows
for parallel processing of individual voxel data in one of the
subproblems, the overall computation time is still demanding,
especially for 3D data with high spatial resolutions and a
large number of TEs (approximately one week to process the
entire 3D data set). The most computationally expensive step is
Subproblem (I) in Eq. (7) where a backpropagation is needed
for the gradient update. More efficient sparse matrix treatments
for the convolution and faster algorithms are highly desirable.
The current Matlab implementation of the denoising algorithm
uses both CPU and GPU, creating communication overheads.
Implementing the entire algorithm on GPU should provide
further acceleration. Increased computational efficiency will
allow more flexible incorporation of advanced regularization
terms, e.g., ℓ1 or other non-quadratic penalties. These are cur-
rently being pursued. For the parametric model used in the data
generation process, a Lorentzian/Gaussian lineshape function
was adopted for metabolites/MMs. But more sophisticated
lineshape distortion functions can be considered to improve
model generalization. All the training data for the representa-
tion network were synthetic. Combining synthetic and high-
quality experimental training data may further improve the
model accuracy for practical data.

We used LCModel for the metabolite quantification, which
is a well-established tool in the MR spectroscopy community
but only fits data TE by TE, thus not taking full advantage
of the TE-dependent signal evolution in the multi-TE data.
While there are limitations associated with LCModel analysis
for our multi-TE data (e.g., some poorly fitted voxels), it serves
to provide a consistent comparison between the noisy and
denoised data as well as demonstrate the denoising effects
for individual TEs. More sophisticated quantification methods
for J-resolved spectroscopy data may be considered to improve
the estimate of the challenging molecules. These are directions
worth investigating in future research.

VI. CONCLUSION

The proposed method effectively integrated a learned non-
linear low-dimensional model and spatial constraint to en-
hance the SNR for multi-TE MRSI. The deep complex-
valued convolutional autoencoder learned an efficient nonlin-
ear low-dimensional representation of high-dimensional multi-
TE spectra and offered stronger dimensionality reduction capa-
bility for noise reduction than existing subspace models. Sim-
ulated and experimental data demonstrated improved multi-
TE 1H-MRSI spatiospectral reconstruction and subsequent
quantitative metabolite analysis.

VII. APPENDIX

A. Gradient Calculation for Subproblem (I)
The gradients for individual voxels can be efficiently calcu-

lated through backpropagation based on the DCCAE design.
More specifically, denote:

fn(Xn) = λ1∥N (Xn)−Xn∥2F

+
µ

2

∥∥∥∥∥
[
B⊙X− S(i) +

Z(i)

µ

]
n

∥∥∥∥∥
2

F

(10)

as the loss function for the n-th voxel, then the gradient can
be written as:

∇fn[vec(Xn)]

= 2λ1 (JN − I)
T vec [(N (Xn))−Xn]

+ µvec

[
BH

n ⊙

(
Bn ⊙Xn − S(i)

n +
Z

(i)
n

µ

)]
.

(11)

where JN ∈ C(D×M)×(D×M) is the Jacobian of the NN
mapping. I is an identity matrix with the same dimension
as JN . Bn denotes the B0 field inhomogeneity matrix in n-
th voxel. For a neural network with S layers and a linear
final layer, the Jacobian matrix JN can be derived through
backpropagation [30]:

JN = WT
S ×

S−1∏
s=1

UsW
T
s , (12)

where Ws represents the complex weights for the s-th layer
(note that here the weights for convolutional and fully-
connected layer can both be denoted as Ws). Us represents
the diagonal matrices with the s-th layer’s nonlinear activation
function derivatives. This matrix multiplications can be done
with similar complex multiplication rules described in Fig 1.
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