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Abstract. This article studies a problem of strategic network inspection, in which a defend-
er (agency) is tasked with detecting the presence of multiple attacks in the network. An in-
spection strategy entails monitoring the network components, possibly in a randomized
manner, using a given number of detectors. We formulate the network inspection problem
(P) as a large-scale bilevel optimization problem, in which the defender seeks to determine
an inspection strategy with minimum number of detectors that ensures a target expected
detection rate under worst-case attacks. We show that optimal solutions of (P) can be ob-
tained from the equilibria of a large-scale zero-sum game. Our equilibrium analysis in-
volves both game-theoretic and combinatorial arguments and leads to a computationally
tractable approach to solve (P). First, we construct an approximate solution by using solu-
tions of minimum set cover (MSC) and maximum set packing (MSP) problems and evalu-
ate its detection performance. In fact, this construction generalizes some of the known re-
sults in network security games. Second, we leverage properties of the optimal detection
rate to iteratively refine ourMSC/MSP-based solution through a column generation proce-
dure. Computational results on benchmark water networks demonstrate the scalability,
performance, and operational feasibility of our approach. The results indicate that utilities
can achieve a high level of protection in large-scale networks by strategically positioning a
small number of detectors.
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1. Introduction
Ensuring the security of critical infrastructures such as
water, oil and gas, and power distribution systems is
crucial for the welfare and prosperity of our society.
These infrastructure networks span huge geographi-
cal areas and are inherently vulnerable to both inten-
tional and unintentional threats. In most jurisdictions,
public utilities and municipalities are the primary
entities responsible for ensuring the infrastructure
reliability and service quality and use various degrees
of oversight to manage and respond to emergency sit-
uations. In recent years, numerous incidents have been
reported that highlight the inherent vulnerability of in-
frastructure networks to adversarial events (Owolabi
2016, Dancy and Dancy 2017, Naureen et al. 2018). Such
events often result in recurrent service interruptions
and in some cases even pose significant danger to hu-
man lives (Yuhas 2016). In response, governments and
public utility commissions are developing new policies

and regulations that charge the utilities to proactively
recognize the security risks to their infrastructure and
develop specific capabilities to reduce them (Barrett
2018). Public sector operations research can provide
new solutions to guide and support the utilities in such
risk assessment and mitigation activities.

In this article, we study a network inspection problem
that exploits the capabilities ofmodern sensing and event
detection technology to monitor an infrastructure net-
work against strategic attacks. Our objective is to design
inspection strategies that can effectively detect adversari-
al failure events in a large-scale network and hence limit
and reduce the operational losses faced by utilities be-
cause of undetected events. The underlying technologi-
cal motivation is the commercial availability of smart
detectors that can be easily operated by the utility per-
sonnel and flexibly positioned at different locations in
the network (PG&E 2010). These detectors are integrated
systems with advanced capabilities (Phillips et al. 2013,
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Xing and Sela 2019) such as (i) on-board sensing to collect
state measurements at fine temporal resolution; (ii) accu-
rate and timely detection of faulty events using data ana-
lytics; and (iii) real-time communication to transmit data
and event alerts to remote utility personnel. Our ap-
proach can help utilities leverage these capabilities in de-
tecting targeted and/or random disruptions by provid-
ing useful guidelines for selecting the number of
detectors, monitoring locations, and schedule of inspec-
tion operations in order to satisfy a target detection
performance.

Specifically, we consider a bilevel optimization for-
mulation of the strategic network inspection problem
and focus on the question: How many detectors are re-
quired and how to position them in the network to detect
multiple adversarial attacks? In our formulation, we as-
sume that the set of locations that can be used for
monitoring the network and the set of network com-
ponents that can be accessed and targeted by the at-
tacker (malicious entity) are predefined. The utility
(defender) aims to minimize the number of detectors
to achieve a desirable attack-detection performance,
whereas the attacker seeks to avoid detection (i.e.,
maximize the number of undetected attacks). Impor-
tantly, we allow the choice of randomized inspection
strategies by the defender, which is a departure from
the traditional fixed sensing paradigm. Practically,
randomized inspection entails shifting and/or mobi-
lizing the available detectors over a subset of locations
in the network. In fact, randomized strategies are
known to be an effective defense mechanism in vari-
ous applications, as listed in Table 1. However, such
strategies cannot be adopted in practice unless they
are simple and cost-effective to execute, and provide
strong performance guarantees. In this article, we fo-
cus on inspection strategies that have these desirable
features.

1.1. Main Contributions
In Section 2, we introduce a generic detection model
that captures the key features of modern inspection
systems with respect to sensing technology for event
detection and flexibility of positioning. We use this
detection model to formulate the bilevel optimization
problem, denoted (P), in which the defender first se-
lects a randomized positioning of detectors, and the
attacker responds by targeting one or more network

components. The attacker seeks to maximize the
expected number of undetected attacks, whereas the
defender aims to minimize the number of detectors
required to ensure that the expected detection rate
under worst-case attacks is above a prespecified
threshold.

Our approach to solve the problem (P) involves an-
alyzing the equilibrium properties of a zero-sum
game, denoted Γ, where the defender (respectively, at-
tacker) seeks to minimize (respectively, maximize) the
expected number of undetected attacks (Proposition
2). However, the sets of players’ actions in Γ grow
combinatorially with the size of the network, thus
making the equilibrium computation challenging in it-
self. In Section 3, we derive structural properties that
are satisfied by all Nash equilibria of Γ. We present
these properties for the most conservative case when
the attacker has the ability to spread her attacks across
the network. In particular, we show that in any equi-
librium of Γ, both players must randomize their
actions and use all available resources, and every net-
work component must be monitored with positive
probability (Theorem 1 and Proposition 3). Addition-
ally, we prove the important, and rather surprising
property, that the expected detection rate and the in-
spection strategies in equilibrium do not depend on
the attacker’s number of resources (Theorem 2). This
implies that the defender does not need to know pre-
cisely the amount of attack resources in order to moni-
tor the network. The proofs of these game-theoretic
results rely on linear programming duality in zero-
sum games, submodularity of the detection function,
as well as the minimum set cover (MSC) and maxi-
mum set packing (MSP) problems, which, respectively,
capture the “coverage” and “spread” of the network.

Our equilibrium analysis leads to a novel approach
to solve the inspection problem (P). First, we obtain
lower and upper bounds on the optimal expected de-
tection rate in terms of the number of available detec-
tors, and the optimal values of the MSC and MSP
problems. A preliminary and specialized version of
this result was presented in Dahan et al. (2016). Fur-
thermore, we construct an inspection strategy that
randomizes the positioning of detectors over an MSC,
and derive guarantees on the resulting expected de-
tection performance. This provides us with an approx-
imate solution to (P) and optimality gap that can be

Table 1. Applications of the Network Inspection Problem

Inspection setting Network Type of detector Type of attacks

Urban patrolling City streets Police unit Robbery
Network security Information network Firewall Cyberattack on server
Sensing of gas/water networks Gas/water pipelines Leak/pressure sensor Pipe disruption
Interdiction of illegal goods Transportation network Police officer Drug trafficking
Infiltration game Water channel Electric cable Malicious infiltration
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computed by solving the MSC and MSP problems. It
turns out this solution is optimal for the special case
when the MSCs and MSPs are of same size. Second, a
consequence of the equilibrium properties is that a
column generation–based procedure (Algorithm 1)
can be used to iteratively improve our MSC/MSP-
based solution to optimality.

Although our approach to solve problem (P) relies
on the MSC and MSP problems that are known to be
NP-hard, we find that modern integer programming
solvers can solve large instances of these problems. In
Section 5, we demonstrate the benefits of our solution
approach in monitoring large-scale urban water net-
works facing adversarial disruptions. Our computa-
tional study shows that the MSC/MSP-based solution
is scalable, provides good performance guarantees,
and is easily implementable by the defender. On the
other hand, we find that implementing the optimal in-
spection strategy requires a much higher number of
monitored locations and a more complex scheduling
of operations. Furthermore, it only provides a margin-
al improvement in comparison with the simpler MSC-
based inspection strategy. Thus, our approach can be
used for designing inspection strategies that achieve a
desired tradeoff between detection performance and
operational feasibility.

The complete proofs of our results, as well as addi-
tional examples, are provided in the online appendix.

1.2. Related Work
Our detection model is inspired by modern sensing
technology used in detecting leaks and other failure
events in pipeline networks for distribution of natural
gas (Phillips et al. 2013) and water (Ostfeld and Salo-
mons 2004, Sela Perelman et al. 2016). The dominant
paradigm in sensing of these infrastructure networks
is to optimally place a limited number of sensors for
maximizing a metric of detection performance (Berry
et al. 2006, Krause et al. 2008a, Chakrabarti et al. 2009).
A myriad of models for the sensor placement problem
have been proposed in the literature, including robust
formulations (Sela and Amin 2018); for example,
Krause et al. (2008b) proposed an efficient approxima-
tion algorithm to maximize the worst-case detection
performance against a set of possible failure scenarios.
More recently, Tzoumas et al. (2017) and Orlin et al.
(2018) designed approximation algorithms to find a
sensor placement that is robust against a subset of
sensors’ failures. The main feature of this line of work
is fixed sensing, that is, continuous operation of sensors
placed at fixed locations in the network.

However, in large-scale networks, a fixed strategy
implemented by a resource-constrained utility inevita-
bly leaves some parts of the network unmonitored.
In an adversarial situation, a strategic attacker will tar-
get these unmonitored parts to avoid or make their

detection more difficult. It follows that a fixed inspec-
tion strategy can lead to a significant loss of detection
performance and, in turn, compromise the overall secu-
rity of the infrastructure system. In contrast, it has been
shown that randomized strategies can significantly im-
prove the defender’s performance against worst-case
disruptions or adversarial failure events (Washburn
and Wood 1995, Bertsimas et al. 2016). Practically, ran-
domized inspection strategies can be translated into
random scheduling of inspections that can be per-
formed on a day-to-day basis by utility personnel. For
example, Pita et al. (2008) use randomized strategies for
the scheduling of checkpoints and for generating pa-
trolling schedules for canine units to assist the police at
the Los Angeles International Airport. Hochbaum and
Fishbain (2011) investigate the allocation of mobile
sensors to detect transported nuclear weapons based
on related radiological dispersion devices. Finally,
water utilities routinely sample water quality at ran-
dom locations in the distribution system to comply
with safety standards such as the Safe Drinking Water
Act (SDWA) rules (Tiemann 2017).

In the context of network security, several models
have been proposed for the strategic allocation of
defense resources (Zhuang and Bier 2007, Baykal-
Gürsoy et al. 2014, Goyal and Vigier 2014). For in-
stance, Brown et al. (2006), Bier and Haphuriwat
(2011), and Alderson et al. (2015, 2018) consider bile-
vel and trilevel optimization problems to model
defender-attacker interactions where each player se-
lects a pure strategy. In contrast, our setting involves
randomized strategies, and the combinatorial size of
the sets of players’ actions does not enable us to solve
problem (P) using mixed-integer linear programming
techniques. Other models that have been studied in-
clude search games (Gal and Casas 2014) and inspec-
tion problems (Washburn and Wood 1995, Cormican
et al. 1998, Smith and Lim 2008). In addition, Powell
(2007), Bier et al. (2008), and Zhuang et al. (2010) in-
vestigate equilibria in security games with an asym-
metric information structure. Conversely, our model
considers detection capabilities of the defender and
multiple attacks spread over a general network under
a complete (and symmetric) information structure.

The zero-sum game Γ we analyze for solving prob-
lem (P) is more general than the classical hide-and-seek
game first introduced by Von Neumann (1953) and fur-
ther discussed in chapter 3.2 of Karlin and Peres (2016).
In this game, a robber hides in one of a set of “safe
houses” located at intersections of vertical and horizon-
tal roads, and a police unit simultaneously chooses to
travel along one road to find the robber. Our equilibri-
um analysis can be applied to solve the generalized
hide-and-seek game, which involves multiple police
units patrolling in a complex street network to findmul-
tiple robbers. Related to our setting is also the work by
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Mavronicolas et al. (2008), who consider a security
game on a bipartite information network in which serv-
ers are vulnerable to multiple attacks and the defender
can install a firewall to protect a subnetwork. In fact,
our analysis approach can be used to derive a more so-
phisticated defense strategy that installs multiple fire-
walls to secure more complex information networks
against multiple simultaneous attacks. Our game simi-
larly generalizes the patrolling game studied in Alpern
et al. (2011), and the infiltration games defined in Gar-
naev et al. (1997) and in chapter 2.1 of Garnaev (2000)
by considering multiple player resources and more
complex network systems.

2. Problem Description
In this section, we introduce a generic formulation for
the strategic network inspection problem. Our formu-
lation is a bilevel optimization model of sequential
defender-attacker interaction on an infrastructure net-
work, with each player having access to multiple
resources.

2.1. Defender and Attacker Models
We consider the setting where a defender (utility) is
tasked with inspecting an infrastructure network that
transports a commodity (e.g., water, oil, natural gas).
The network faces a risk of disruptions by an attacker
(malicious entity) who can compromise the operation-
al functionality of the set of network components, de-
noted E. To inspect the network and monitor its com-
ponents, the defender positions a set of detectors on a
set of locations (or nodes), denoted V. Each detector is
an integrated system comprising an on-board sensing
unit, detection software, and communication unit
(Chong and Kumar 2003). The defender (or the utili-
ty’s employees) can flexibly mobilize the detectors
from one node to another. For our purposes, the sets E
and V are predefined.

For example, in the context of a municipal water
network, the set E represents the system’s components
that can be accessed and targeted by an attacker, and
the set V represents the access points where detectors
can be deployed (e.g., manholes, valves, or fire hy-
drants). Targeted physical or remote attacks to the
network can induce damage to pipelines and valves
or backflow at fire hydrants (Monroe et al. 2018, Has-
sanzadeh et al. 2020). Such disruption events typically
result in local perturbations in the state variables (wa-
ter flow rate and pressure) that progressively propa-
gate to other parts of the network. If the water utility
has positioned a detector at a node that experiences
perturbations from a disruption event, the on-board
sensing unit can measure the change in state variables
(Allen et al. 2011, Srirangarajan et al. 2013). These

measurements can then be processed to detect the
occurrence of the event. Clearly, the ability of the defender
to detect such disruption events depends on how the
available detectors are positioned in the network.

Formally, when a detector is positioned at node i ∈
V by the defender, the following steps govern its
attack detection capability: First, the sensing unit
collects relevant state measurements from node i.
These measurements capture the state of a subset of
components Ci ∈ 2E , that is, the detector at node i
monitors the components in Ci. Second, the detection
software processes these measurements and gener-
ates a diagnostic signal indicating the number of
disruption events (or attacks) present within the
component set Ci. Third, the communication unit
transmits the diagnostic signal to the defender. We
assume that the cost of data collection, processing,
and transmission is negligible in comparison with
the cost of procuring the detector. For a detector
positioned at node i ∈ V, we refer to the set Ci as a
monitoring set, because under the aforementioned
setting, an attack to any component e ∈ E can be de-
tected if and only if e ∈ Ci. The tuple G :� (V,E, {Ci, i ∈
V}) represents the detection model of the network.
Without loss of generality, we assume that each
component in E can be monitored from at least one
node in V.

Importantly, we consider that the defender has ac-
cess to only a limited number of detectors for network
inspection. This limitation results from the economic
and operational constraints of the defender. For
simplicity, we also suppose that all detectors are ho-
mogeneous in terms of their monitoring and detection
capabilities, and cost. Let b1 ∈ N be the number of
available detectors that can be simultaneously posi-
tioned on distinct nodes in V. We denote a detector posi-
tioning by a set S ∈ 2V of nodes that receive detectors.
The set of feasible detector positionings is then defined
by A1 :� {S ∈ 2V | |S| ≤ b1}. For a given detector posi-
tioning S ∈A1, let CS :� ∪i∈S Ci denote the set of compo-
nents that are monitored by at least one detector in S.

To count the number of components in any given
subset of components of E that can be monitored
using an arbitrary detector positioning, we define a
detection function F : 2V × 2E → N. For a detector posi-
tioning S ∈ 2V and a subset of components T ∈ 2E , the
value of F(S,T) is the number of components of T that
are monitored by at least one detector positioned in S,
that is,

∀(S,T) ∈ 2V × 2E , F(S,T) :� |CS ∩ T | : (1)

Under our detection model, if the components of
T face attack-induced disruptions, the number of at-
tacks detected by the detector positioning S is
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F(S,T). The detection function satisfies two natural
properties:

i. For any subset of components T ∈ 2E , F(·,T) is sub-
modular and monotone:

∀T ∈ 2E , ∀(S,S′) ∈ (2V)2,{
F(S ∪ S′,T) + F(S ∩ S′,T) ≤ F(S,T) + F(S′,T),
S ⊆ S′ ⇒ F(S,T) ≤ F(S′,T):

That is, adding a detector to a smaller detector posi-
tioning increases the number of monitored compo-
nents in T by at least as many as when adding that
detector to a larger detector positioning.

ii. For any detector positioning S ∈ 2V , F(S, ·) is finite-
ly additive (a direct consequence of (1)):

∀S ∈ 2V , ∀(T,T′) ∈ (2E)2 | T ∩ T′ � ∅,
F(S,T ∪ T′) � F(S,T) + F(S,T′):

Similar to the defender, the attacker is also resource
constrained, in that she can attack a subset of network
components T ∈ 2E of size no larger than b2 ∈ N; we re-
fer to such a subset as an attack plan. This constraint
models the attacker’s limited ability to gain access to
network components and disrupt them. The set of all
attack plans is given byA2 :� {T ∈ 2E | |T | ≤ b2}.

In fact, our solution approach and results can be ex-
tended to the model of imperfect detection, where
each detector only detects a disruption in its monitor-
ing set with independent probability λ ∈ [0, 1]. Given
a detector positioning S ∈ 2V , and an attack plan
T ∈ 2E , the average number of detected attacks would
be given by

∑
e∈T(1− (1−λ)|{i∈S | e∈Ci}|), which is also

submodular and monotone with respect to S (see
chapter 2 of Fujishige 2005) and finitely additive with
respect to T. For ease of exposition, we henceforth as-
sume the model of perfect detection, given by (1).

2.2. Network Inspection Problem
We are now in the position to introduce our network in-
spection problem, which we define as a bilevel optimi-
zation model. In this problem, the defender (referred to
as player 1 or P1) first chooses an inspection strategy to
monitor network components using a minimum num-
ber of detectors. After observing the defender’s action,
the attacker (referred to as player 2 or P2) targets one or
more components to induce disruption events. A typi-
cal assumption in infrastructure defense is that of an in-
formed attacker who knows the defender’s capabilities.
Thus, we assume that both players know the detection
model G. At this stage, we also assume that the defend-
er knows the number of attack resources b2, although
we will later show that our solution to the network
inspection problem does not depend on it.

The detector positionings (respectively, attack
plans) are realized from a chosen probability distribu-
tion on the set A1 (respectively, A2). Specifically, the
defender and attacker respectively choose an inspec-
tion strategy σ1 ∈ Δ(A1) and an attack strategy
σ2 ∈ Δ(A2), where Δ(A1) :� {σ1 ∈ [0, 1]|A1 | | ∑S∈A1

σ1S � 1}
and Δ(A2) :� {σ2 ∈ [0, 1]|A2 | | ∑

T∈A2
σ2T � 1} denote the

mixed strategy sets. Here, σ1S (respectively, σ2T) repre-
sents the probability assigned to the detector position-
ing S (respectively, attack plan T) by the defender’s
strategy σ1 (respectively, the attacker’s strategy σ2).

For ease of exposition, we denote F(i, e) :� F({i}, {e})
for all (i, e) ∈ V × E. We will also refer to the degener-
ate mixed-strategies 1{S} ∈ Δ(A1) and 1{T} ∈ Δ(A2) as S
and T, respectively. The support of σ1 ∈ Δ(A1) (respec-
tively, σ2 ∈ Δ(A2)) is defined as supp(σ1) � {S ∈A1 |
σ1S > 0} (respectively, supp(σ2) � {T ∈A2 | σ2T > 0}).
The node basis of a strategy σ1 ∈ Δ(A1), denoted
Vσ1 :� {i ∈ V | Pσ1(i ∈ S) > 0}, is the set of nodes that are
inspected with nonzero probability by the defender.
Analogously, the component basis of a strategy
σ2 ∈ Δ(A2), denoted Eσ2 :� {e ∈ E | Pσ2(e ∈ T) > 0}, is the
set of components that are targeted with positive
probability by the attacker.

We now present the inner and outer problem of our
bilevel optimization model.

2.2.1. Inner Problem. In our model, the attacker re-
sponds to the defender’s inspection strategy σ1 ∈ Δ(A1)
by choosing an attack strategy σ2 ∈ Δ(A2), with the ob-
jective of maximizing the expected number of attacks
that remain undetected by the defender, given by

U(σ1,σ2) :� E(σ1,σ2)[|T | −F(S,T)]: (2)

We denote B2(σ1,b2) :� arg maxσ2∈Δ(A2)U(σ1,σ2) the
set of attack strategies that are best responses to σ1. We
note that for every inspection strategy σ1 ∈ Δ(A1), at
least one attack plan T ∈A2 is a best response to σ1.

2.2.2. Outer Problem. The defender seeks to minimize
the number of detectors and also ensure that her cho-
sen inspection strategy provides a certain level of
detection performance against the attacker’s best
response strategy. We use the following metric of de-
tection performance: For a given strategy profile
σ ∈ Δ(A1) × Δ(A2), the expected detection rate, denoted
r(σ), is the expectation (under σ) of the ratio between
the number of attacks that are detected and the total
number of attacks:

r(σ) :� Eσ
F(S,T)
|T |

[ ]
: (3)

Thus, the defender aims to find a minimum-resource
inspection strategy while ensuring that the expected
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detection rate is no less than a prespecified threshold
level α ∈ [0, 1] against worst-case attack strategies. This
can be written as the following network inspection
problem:

(P) : minimize
b1, σ1

b1

subject to r(σ1,σ2) ≥ α, ∀σ2 ∈ B2(σ1,b2) (4)
σ1 ∈ Δ(A1)
b1 ∈ N:

Specifically, Constraints (4) ensure that for a given
number of attack resources b2, the expected detection
rate induced by the chosen number of detectors b1
and their randomized positioning σ1 is at least α un-
der the attacker’s best response to σ1. The target detec-
tion rate α reflects the performance requirement that
the defender’s inspection strategy must satisfy (e.g.,
because of a regulatory imposition). We denote b∗1 the
optimal value of (P).

More generally, the problem (P) captures some of
the key features of network inspection in strategic set-
tings; see Table 1 for a comparison of various applica-
tions. First, the detection model G is generic in that it
represents the detection capability of the defender,
without making further modeling assumptions on the
dependence of the monitoring sets Ci (i ∈ V) on specific
aspects such as the sensing technology used by detec-
tors, the different means that the attacker may use in
targeting a component, and the network’s topological
structure. Second, it considers multiple resources on
the part of both players. This is a particularly desir-
able feature when the attacker can simultaneously at-
tack multiple components across the network, and the
defender’s inspection involves positioning multiple
detectors in order to monitor a large number of critical
components. However, (P) is a challenging problem to
solve. Indeed, bilevel optimization problems are known
to be NP-hard (Hansen et al. 1992), and in our case the
number of possible detector positionings grows combi-
natorially with the number of available detectors and
the size of V. Thus, we must leverage structural proper-
ties of the problem to solve it in a scalable manner.

3. Game-Theoretic Analysis
In this section, we derive the key properties satisfied
by optimal solutions of our network inspection prob-
lem (P). We start by studying P2’s best response func-
tion B2 and analyze the corresponding zero-sum
game. This will in turn help derive a scalable solution
approach to (P).

3.1. Zero-Sum Game
Given the detection model G � (V,E, {Ci, i ∈ V}), and the
players’ resources b1 and b2, we consider the zero-sum
game in normal form Γ(b1,b2) :� 〈{1, 2}, (Δ(A1),Δ(A2)),

(−U,U)〉. In this game, P1 (respectively, P2) selects
an inspection strategy σ1 ∈ Δ(A1) (respectively, an at-
tack strategy σ2 ∈ Δ(A2)) and seeks to minimize (respec-
tively, maximize) the expected number of undetected
attacks (2).

A strategy profile (σ1∗ ,σ2∗ ) ∈ Δ(A1) × Δ(A2) is a
mixed strategy Nash equilibrium (NE) of the game
Γ(b1,b2) if for every (σ1,σ2) ∈ Δ(A1) × Δ(A2),

U(σ1∗ ,σ2) ≤U(σ1∗ ,σ2∗ ) ≤U(σ1,σ2∗ ): (5)

We denote the set of NE of the game Γ(b1,b2) as
Σ(b1,b2). Also, when there is no confusion, we simply
refer to Γ(b1,b2), Σ(b1,b2), and B2(σ1,b2) as Γ, Σ, and
B2(σ1), respectively.

Because Γ is a zero-sum game, the set of NE Σ can
be obtained by solving the following pair of dual line-
ar programming problems:

(LP1) min
σ1∈Δ(A1)

max
T∈A2

U(σ1,T)
(LP2) max

σ2∈Δ(A2)
min
S∈A1

U(S,σ2):

We refer to the optimal value of (LP1) and (LP2) as
the value of the game Γ(b1,b2), denoted by U∗(b1,b2).
In principle, linear programming techniques can be
used to compute NE of Γ. However, the computation
of (LP1) and (LP2) quickly becomes intractable as the
size of the network increases. In particular, because of

the size of the players’ sets of actions (|A1 | � ∑b1
k�0

|V |
k

( )

and |A2 | � ∑b2
l�0

|E |
l

( )
), the number of variables and con-

straints in both linear programs can be huge. For ex-
ample, for a network consisting of 200 nodes and com-
ponents, and b1 � b2 � 10, computing the equilibria
of game Γ(b1,b2) entails solving linear programs con-
taining 2:37 · 1016 variables and constraints. For large
bimatrix games, Lipton et al. (2003) provide an algo-
rithm to compute an ε−NE in nO(lnn=ε2) time, where n
is the number of pure strategies available to each play-
er. However, for realistic instances of the game Γ, this
number can easily reach values for which their algo-
rithm is practically inapplicable. Similarly, multiplica-
tive weights update algorithms (Freund and Schapire
1999, Hellerstein et al. 2019) cannot be used to solve
the large-scale game Γ.

Next, we develop new results to study the equilibri-
um characteristics of the game Γ(b1,b2), given any pa-
rameters b1 and b2. Our equilibrium characterization
uses two combinatorial optimization problems, for-
mulated as minimum set cover and maximum set
packing problems. This characterization enables us to
analyze the detection performance in equilibrium,
which in turn reveals properties satisfied by optimal
solutions of our problem (P).
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3.2. Set Cover and Set Packing Problems
We say that a set of nodes S ∈ 2V is a set cover if and
only if every component in E can be monitored by at
least one detector positioned in S, that is, F(S, e) � 1,
for all e ∈ E. A set of nodes S ∈ 2V is a minimal set cover
if S is a set cover that is minimum with respect to in-
clusion; that is, if any node of S is removed, the result-
ing set is not a set cover anymore. A set of nodes S ∈
2V is a minimum set cover (MSC) if and only if it is an
optimal solution of the following problem:

(IMSC) : minimize
S∈2V

|S |
subject to F(S, e) � 1, ∀ e ∈ E: (6)

Solving (IMSC) amounts to determining the mini-
mum number of detectors and their positioning to
monitor all network components. We denote the set
(respectively, the size) of MSCs by S (respectively, n∗).
Because we assumed that each component can be
monitored from at least one node in the network (Sec-
tion 2.1), (IMSC) is feasible and n∗ exists.

We say that a set of components T ∈ 2E is a set pack-
ing if and only if a detector positioned at any node i
can monitor at most one component in T, that is,
F(i,T) ≤ 1, for all i ∈ V. A set of components T ∈ 2E is a
maximum set packing (MSP) if and only if it optimally
solves the following problem:

(IMSP) : maximize
T∈2E

|T |
subject to F(i,T) ≤ 1, ∀ i ∈ V: (7)

Solving (IMSP) amounts to finding the maximum
number of independent components, that is, a set of com-
ponents of maximum size such that monitoring each
component requires a unique detector.We denote the set
(respectively, the size) ofMSPs byM (respectively,m∗).

Although (IMSC) and (IMSP) are known to be
NP-hard problems, modern mixed-integer optimization
solvers can be used to optimally solve them for realistic
problem instances; see Section 5. Furthermore, their in-
teger programming formulations have linear program-
ming relaxations that are dual of each other (see chapter
13.1 of Vazirani 2001). This implies thatm∗ ≤ n∗.

MSCs and MSPs represent the network’s coverage
and spread, respectively: n∗ represents the minimum
number of detectors required by P1 to completely
monitor the network, and m∗ represents the maximum
number of attack resources for which P2 can spread
her attacks across the network. In fact, solving Γ(b1,b2)
is trivial when b1 ≥ n∗, because P1 can monitor all net-
work components by deterministically positioning the
detectors on an MSC. Such a detector positioning
satisfies Constraints (4) for any target detection rate α.
A direct consequence is that the optimal number of
detectors in (P), b∗1, is at most n∗.

On the other hand, a practically relevant (and interest-
ing) case is when P2’s number of attack resources is less
than the size of MSPs, that is, b2 <m∗. This case captures
the situations in which the network is large enough in
that P2 can exhaust her ability to spread attacks, thereby
making it most challenging for P1 to detect the attacks
using her inspection strategy. Furthermore, when
b2 ≥m∗, a larger number of attack resources improves
P1’s ability to detect some of the attacks. Thus, an inspec-
tion strategy that ensures the target detection perfor-
mance for the case b2 <m∗ can also be applied when
b2 ≥m∗. Henceforth, our analysis primarily focuses on
the case when b1 < n∗ and b2 <m∗ (Figure 1). We discuss
the other caseswhenever relevant.

3.3. Equilibrium Analysis of Game G(b1,b2)
We proceed in three steps. First, we derive bounds on
the value of the game Γ based on exact or approximate
solutions to the MSC and MSP problems (Proposition
1). Second, we show that every NE satisfies certain
structural properties (Theorem 1 and Proposition 3);
these properties establish a connection between the
zero-sum game Γ and problem (P) (Proposition 2). Fi-
nally, we derive properties satisfied by the expected
detection rate in equilibrium of Γ (Theorem 2).

3.3.1. Step 1: MSC/MSP-Based Bounds on the Value
of the Game G. Recall that NE and the value of the
game Γ are respectively given by the optimal solu-
tions and optimal value of the linear programs
(LP1) and (LP2). To derive bounds on the optimal
value of (LP1) and (LP2), along with mixed strate-
gies that achieve these bounds, we use the follow-
ing construction.

Lemma 1. Consider a set of nodes S ∈ 2V of size n ≥ b1,
and a set of components T ∈ 2E of size m ≥ b2. Then, there
exists a strategy profile, denoted (σ1(S,b1),σ2(T,b2)) ∈
Δ(A1) × Δ(A2), whose node basis and component basis are
S and T, respectively, and such that

∀i ∈ S, Pσ1(S,b1)(i is inspected by P1) � b1
n
, (8)

∀e ∈ T, Pσ2(T,b2)(e is targeted by P2) � b2
m
: (9)

Figure 1. Three Cases Based on theMagnitude of b1 and b2
Relative to n∗ andm∗

b10 n*

b2

m* Complete monitoring
(trivial game)

Redundant attacks
(easy detections)

Case of interest
(large network)
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For details on the construction of (σ1(S,b1), σ2(T,b2)),
we refer to Lemma EC.3 in the online appendix. The
main idea behind the construction of the inspection
strategy σ1(S,b1) is to cycle over size-b1 subsets of S,
such that every node of S is inspected with an identical
probability given by (8). A similar idea is used for the
construction of the attack strategy σ2(T,b2). We can use
Lemma 1 to derive bounds on the value of the game
Γ(b1,b2) using set covers and set packings:

Proposition 1. The value of the game Γ(b1,b2) is upper-
bounded by b2(1− b1=|S′ |) for every minimal set cover
S′ ∈ 2V , and is lower-bounded by max {0,b2(1− b1=|T′ | )}
for every set packing T′ ∈ 2E of size at least b2. Further-
more, these bounds are achieved by σ1(S′,b1) and σ2(T′,b2),
respectively:

max 0,b2 1− b1
|T′ |

( ){ }
�min

S∈A1

U(S,σ2(T′,b2)) ≤U∗(b1,b2)

≤max
T∈A2

U(σ1(S′,b1),T) � b2 1− b1
|S′ |

( )
:

Recall from Section 3.2 that if P1 had at least n∗
detectors (i.e., b1 ≥ n∗), an equilibrium inspection strat-
egy would be to position n∗ detectors on an MSC.
Proposition 1 shows that, even for the case when P1
has strictly less than n∗ detectors, a set cover is a good
candidate for node basis. Analogously, a good candidate
for component basis is a set packing. Indeed, if P2 targets
components that are spread apart, then it will be difficult
for P1 to detect many of these attacks using the available
detectors. Thus, by targeting a set packing, P2 can ensure
that a single detector can detect at most one attack.
We observe that decreasing the size of the minimal set
cover and increasing the size of the set packing tighten
the bounds on the value of the game Γ. Thus, the best
lower (respectively, upper) bound on U∗(b1,b2) is
max {0,b2(1− b1=m∗)} (respectively, b2(1 −b1=n∗)).
3.3.2. Step 2: Equilibrium Properties. The second step
consists of deriving structural properties satisfied by
every NE of Γ. An important property is that when
b1 < n∗ and b2 <m∗, any equilibrium strategy for each
player necessarily randomizes over actions that use all
available resources.

Theorem 1. In any equilibrium of Γ(b1,b2), where b1 < n∗
and b2 <m∗, P1 must choose an inspection strategy that
randomizes over detector positionings of size exactly b1,
and P2 must randomize her attacks over sets of b2 compo-
nents.

∀(σ1∗ ,σ2∗ ) ∈ Σ, ∀S ∈ supp(σ1∗ ), |S| � b1, (10)

∀(σ1∗ ,σ2∗ ) ∈ Σ, ∀T ∈ supp(σ2∗ ), |T | � b2: (11)

Then, the NE of Γ can be obtained by solving the follow-
ing two linear programs:

(LP1) min
σ1∈Δ(A1 )

max
T∈A2

U(σ1,T)

(LP2) max
σ2∈Δ(A2 )

min
S∈A1

U(S,σ2),

where A1 :� {S ∈ 2V | |S|� b1} andA2 :� {T ∈ 2E | |T |� b2}.
Although it is intuitive that both players should use

all available resources, this result shows that both
players must necessarily do so. Property (10) is proven
by showing that any additional detector can be used
by P1 to strictly improve her payoff, which holds be-
cause the network is large (captured by the inequality
b1 < n∗). Similarly, Property (11) is proven by showing
that any additional attack resource can be used by P2
to strictly improve her payoff. This argument com-
bines the fact that P1 cannot monitor all network com-
ponents with a single detector positioning, and that
P2 can spread her attacks across the network (because
b2 <m∗). In addition, showing (11) involves using the
features of the detection function F, Proposition 1, and
the properties of (IMSC) and (IMSP). Theorem 1 also
holds when b1 < n∗ and b2 �m∗. However, counterex-
amples can be found when b1 ≥ n∗ or b2 >m∗ (see Sec-
tion EC.4 in the online appendix).

From (10) and (11), we conclude that the NE of the
game Γ can be obtained by solving smaller linear pro-
grams. Particularly, the number of variables and con-
straints can be reduced from 1 + ∑b1

k�0
( |V |
k

)
and 1+∑b2

l�0
( |E|
l

)
for (LP1), to 1+ ( |V |

b1

)
and 1+ ( |E|

b2

)
for (LP1);

similar reduction applies between (LP2) and (LP2). Al-
though (LP1) and (LP2) can be used to compute NE
for small-sized networks, this approach is still not
scalable to large-sized networks.

Importantly, when the network is large enough,
that is, when b1 < n∗ and b2 <m∗, we can build on
Proposition 1 and Theorem 1 to establish the follow-
ing result, which connects (P) and Γ.

Proposition 2. For an inspection strategy σ1
∗ ∈ Δ(A1)

that maximizes minσ2∈B2(σ1,b2)r(σ1,σ2), any best response to
σ1

∗
randomizes over attack plans of size b2:

∀σ1
∗ ∈ arg max

σ1∈Δ(A1)
min

σ2∈B2(σ1,b2)
r(σ1,σ2), ∀ σ2 ∈ B2(σ1∗ ,b2),

∀T ∈ supp(σ2), |T | � b2: (12)
Then, the optimal value of (P) is the smallest number of

detectors for which the expected detection rate in equilibri-
um of Γ is at least α:

b∗1 � arg min{b1 ∈ N | r(σ∗) ≥ α, ∀σ∗ ∈ Σ(b1,b2)}:
Furthermore, an equilibrium inspection strategy of

Γ(b∗1,b2) is an optimal inspection strategy of (P).
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Thus, an optimal solution of (P) can be obtained by
solving the game Γ and determining the expected de-
tection rate in equilibrium. Next, we focus on the
node bases of inspection strategies in equilibrium,
which represent the sets of nodes that are inspected
with positive probability by P1.

Proposition 3. In any NE (σ1∗ ,σ2∗ ) ∈ Σ, the node basis
Vσ1

∗ is a set cover. Furthermore, both players must neces-
sarily randomize their actions in equilibrium.

The proof of this result is based on a best-response
argument and uses the fact that from any inspection
strategy that leaves one or more components
completely unmonitored, we can construct another
strategy that strictly improves P1’s payoff. This argu-
ment is completed by repositioning some detectors
and evaluating the resulting change in P1’s payoff,
which involves exploiting the submodularity of the
detection function F, the lower bound on the value of
the game Γ (Proposition 1), and the fact that the play-
ers must use all resources in equilibrium (Theorem 1).
Interestingly, this result may not hold when b2 ≥m∗:
In that case, P2 may target components that are close
to each other, which can result in P1 leaving some
components completely unmonitored to focus on the
ones for which targeted attacks are easier to detect (see
Section EC.4 in the online appendix for an example).

Proposition 3 provides an important insight for plan-
ning network inspection operations. To position and
operate detectors on the network, the defender typical-
ly needs to prepare a subset of locations (nodes). For
example, such locations need a secure connection be-
tween the detectors’ sensing unit and the infrastructure
network, as well as reliable power supply for sensing
and transmitting the measurements. The number of
distinct locations that need to be prepared can be mini-
mized by finding an equilibrium inspection strategy
that has a node basis of minimum size. From Proposi-
tion 3, we deduce that this number is at least n∗.

3.3.3. Step 3: Properties of the Expected Detection
Rate in Equilibrium. We now conclude our game-
theoretic analysis of Γ by focusing on the equilibrium
expected detection rate. In particular, we combine
Proposition 1 and Theorem 1 to obtain the following
parametric bounds:

∀σ∗ ∈ Σ(b1, b2), b1
n∗

≤ r(σ∗) ≤ min
b1
m∗ , 1
{ }

: (13)

These bounds are nonincreasing with respect to n∗
and m∗. Indeed, as the network size becomes larger,
both n∗ and m∗ increase because each monitoring set
covers a smaller fraction of the network. Thus, it is
more difficult for P1 to detect attacks (with the same
number of detectors) in larger-sized networks, reduc-
ing her detection performance.

Next, (13) and Proposition 1 imply that given an
MSC Smin ∈ S, the expected detection rate by position-
ing b1 detectors according to σ1(Smin,b1) provides the
following detection guarantee:

min
σ2∈Δ(A2)

r(σ1(Smin,b1),σ2) � b1
n∗

≥ max{b1,m∗}
n∗

r(σ∗),
∀σ∗ ∈ Σ(b1,b2): (14)

Property (14) shows that by using σ1(Smin,b1) as
inspection strategy, P1 is guaranteed an expected de-
tection rate of at least b1=n∗, regardless of the attack
strategy chosen by P2. Thus, this guarantee applies
even if the disruptions are caused by random failures
or by an attacker who does not always select a best
response strategy. In fact, the relative difference be-
tween the expected detection rate in equilibrium and
when P1 chooses σ1(Smin,b1) is upper bounded by
1−max {b1,m∗}=n∗; we refer to this bound as the rela-
tive loss of performance.

We note that when n∗ and m∗ become closer to each
other (or equivalently, as the duality gap between
(IMSC) and (IMSP) decreases), the gaps between the
upper and lower bounds in Proposition 1 and (13)
also become narrower. When n∗ �m∗, the results in
Proposition 1 and (13) can be tightened as follows: If
n∗ �m∗ (in addition to b1 < n∗ and b2 <m∗), then
(σ1(Smin,b1),σ2(Tmax,b2)) is a NE of Γ(b1,b2), and the
value of the game Γ and the equilibrium expected de-
tection rate are given by:

∀(σ1∗ ,σ2∗ ) ∈ Σ(b1,b2), U(σ1∗ ,σ2∗ ) � b2 1− b1
n∗

( )
, (15)

∀σ∗ ∈ Σ(b1,b2), r(σ∗) � b1
n∗

: (16)

In fact, this result generalizes the equilibrium charac-
terization of prior results on a class of security games.
Indeed, our MSC/MSP-based characterization of NE
applies to any detection model for which n∗ �m∗ holds.
In Table 2, we list some of the classical models reported
in the literature that fall in this category, and compare
their features with those of the game Γ. The table also
compares the combinatorial objects underlying our
equilibrium characterization with their settings. Thus,
our analysis generalizes the equilibrium analysis of
these security games for more complex networks and
when both players have multiple resources.

Finally, we observe in (16) that when n∗ �m∗, the
expected detection rate in equilibrium does not depend
on the attack resources b2. We are able to generalize
this result and show that the expected detection rate
in equilibrium satisfies an important and rather sur-
prising property:

Theorem 2. Given P1’s resources b1 ∈ N, the expected de-
tection rate in equilibrium is identical in any game
Γ(b1,b2), with b2 <m∗; we denote it as r∗b1 :
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∀b1 ∈ N, ∃ r∗b1 ∈ [0, 1] | ∀b2 <m∗, ∀σ∗ ∈ Σ(b1,b2),
r(σ∗) � r∗b1 : (17)

Furthermore, inspection strategies in equilibrium of the
game Γ(b1, 1) are also inspection strategies in equilibrium
of any game Γ(b1,b2) with b2 <m∗.

Property (17) is the result of both game-theoretic
and combinatorial aspects of our problem. The proof
starts by upper bounding the attack probabilities of
each component in equilibrium. This is done by ac-
counting for P2’s ability to spread her attacks in the
network, which is evaluated by Proposition 1 and
MSPs, and by exploiting the submodularity of the de-
tection function F with respect to the first variable.
These bounds enable us to further characterize P2’s
equilibrium strategies for any game Γ(b1,b2), with
b2 <m∗. Specifically, consider an attack strategy σ2

∗
in

equilibrium of Γ(b1, 1), and let ρσ2
∗ (e) denote the result-

ing probability with which each component e ∈ E is
targeted. Then, for any b2 <m∗, by applying Farkas’
lemma, we show the existence of an attack strategy in
equilibrium of Γ(b1,b2) such that the probability that
e ∈ E is targeted is given by b2ρσ2

∗ (e). From the additiv-
ity of the detection function F with respect to the sec-
ond variable, we deduce that the value of the game Γ
is linear with respect to b2, and can be expressed as
follows:

∀b1 < n∗, ∀b2 <m∗, U∗(b1,b2) � (1− r∗b1)b2: (18)

Finally, Theorem 1 implies that the equilibrium
expected detection rate is independent of b2. This
whole argument holds because the network is large in
comparison with P2’s resources, that is, b2 <m∗. Al-
though Theorem 2 also holds when b2 �m∗, Section
EC.4 in the online appendix illustrates a counterexam-
ple when b2 >m∗.

For the special case when n∗ �m∗, r∗b1 � b1=n∗ (from
(16)) andwefind again (15) from (18). Other implications
of Theorem 2 and Proposition 2 are that the optimal val-
ue of (P) does not depend on b2, and that equilibrium in-
spection strategies in the game Γ(b∗1, 1) are optimal in-
spection strategies of (P). Therefore, we can solve the
problem (P) by considering that b2 � 1. Thus, the de-
fender does not need to know the actual number of attack
resources, so long as b2 <m∗.

This conclusion provides a significant advantage
from a computational viewpoint. Recall from Theo-
rem 1 that equilibrium inspection strategies of Γ(b1,b2)
are the optimal solutions of (LP1). Now, given b1 < n∗,
and by considering that b2 � 1, the optimal value of
(LP1) is the expected undetection rate in equilibrium
1− r∗b1 (see (18)), and its optimal solutions are inspec-
tion strategies in equilibrium of any game Γ(b1,b2)
with b2 <m∗. Thus, (LP1) can now be reformulated

with |V |
b1

( )
+ 1 variables and only |E| +1 constraints andT

ab
le

2.
C
om

pa
ri
so
n
of

Se
cu

ri
ty

G
am

es

D
et
ec
ti
on

m
od

el
(m

on
it
or
in
g
lo
ca
ti
on

s,
co
m
po

ne
nt
s,

m
on

it
or
in
g
se
ts
)

R
es
ou

rc
es

(d
ef
en

de
r,
at
ta
ck

er
)

C
om

bi
na

to
ri
al

ob
je
ct
s
us

ed
fo
r
eq

ui
lib

ri
um

ch
ar
ac
te
ri
za

ti
on

Γ
(b 1

,b
2)

V
E

C
i,
i∈

V
b 1

≥1
,b

2
≥1

M
SC

M
SP

K
ar
lin

an
d
Pe

re
s

(2
01

6)
St
re
et

ro
ad

s
Sa

fe
-h
ou

se
s

Sa
fe
-h
ou

se
s
lo
ca
te
d

on
ro
ad

i
b 1

�1
,b

2
�1

M
in
im

um
lin

e
co
ve

r
M
ax

im
um

m
at
ch

in
g

A
lp
er
n
et

al
.(
20

11
)

W
al
ks

(N
od

e,
ti
m
e)

tu
pl
es

(N
od

e,
ti
m
e)

tu
pl
es

be
lo
ng

in
g
to

w
al
k
i

b 1
�1

,b
2
�1

M
in
im

um
co
ve

ri
ng

se
t

M
ax

im
um

in
d
ep

en
d
en

t
se
t

G
ar
na

ev
(2
00

0)
C
ab

le
lo
ca
ti
on

s
C
ha

nn
el

se
ct
io
ns

Se
ct
io
ns

co
ve

re
d
fr
om

th
e
ca
bl
e’
s
lo
ca
ti
on

i
b 1

�1
,b

2
�1

M
in
im

um
in
te
rv
al

co
ve

r
M
ax

im
um

in
d
ep

en
d
en

t
in
fi
lt
ra
ti
on

se
t

M
av

ro
ni
co
la
s
et

al
.

(2
00

8)
N
et
w
or
k
ed

ge
s

N
et
w
or
k
no

de
s

En
d
no

de
s
of

ed
ge

i
b 1

�1
,b

2
≥1

M
in
im

um
ed

ge
co
ve

r
M
ax

im
um

in
d
ep

en
d
en

t
se
t

G
ar
na

ev
et

al
.

(1
99

7)
(N

od
e,

ti
m
e)

tu
pl
es

W
al
ks

W
al
ks

co
nt
ai
ni
ng

th
e

(n
od

e,
ti
m
e)

tu
pl
e
i

b 1
≥1

,b
2
�1

Se
t
of

co
ve

ri
ng

ca
le
nd

ar
s

Se
t
of

w
ai
t-
an

d
-r
un

w
al
ks

Dahan, Sela, and Amin: Network Inspection for Detecting Strategic Attacks
Operations Research, 2022, vol. 70, no. 2, pp. 1008–1024, © 2022 INFORMS 1017

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

8.
9.

61
.1

11
] o

n 
02

 F
eb

ru
ar

y 
20

23
, a

t 0
1:

01
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



can be solved using column generation (Dantzig and
Wolfe 1960). In fact, the additivity of the detection
function F implies that equilibrium attack strategies
can also be computed with a second column genera-
tion algorithm. In the Appendix, we present a proce-
dure for computing NE of the game Γ(b1,b2) with
b1 < n∗ and b2 <m∗ in the general case m∗ ≤ n∗. Next,
we leverage Theorem 2 and the MSC/MSP-based
bounds on the expected detection rate in equilibrium
(Property (13)) to derive a scalable solution approach
to (P).

4. Solution of the Network
Inspection Problem

In this section, we use the equilibrium properties of
the game Γ to solve the problem (P). Our approach
provides an approximate solution to (P) based on
MSCs and MSPs that can be further improved with a
refinement procedure.

4.1. MSC/MSP-Based Solution
To motivate our approach, let us again consider the
special case of n∗ �m∗. From (16), we conclude that
the minimum number of detectors that are needed for
the expected detection rate to be at least α in equilibri-
um is b∗1 � �αn∗�. Besides, for an MSC Smin, Proposition
1 implies that σ1(Smin,b∗1) is an equilibrium inspection
strategy of Γ(b∗1,b2). Thus, when n∗ �m∗, we know
from Proposition 2 that an optimal solution of the
network inspection problem (P) is given by (�αn∗�,
σ1(Smin, �αn∗�)).

For the general case m∗ ≤ n∗, we make the follow-
ing observations. First, the lower bound on the equi-
librium expected detection rate, given in (13), ensures
the target detection rate α is satisfied with �αn∗� de-
tectors. Second, the upper bound in (13) implies that
P1 needs at least �αm∗� detectors to meet the target de-
tection performance. Consequently, the optimal value
of (P) satisfies �αm∗� ≤ b∗1 ≤ �αn∗�. Finally, (14) ensures
that our inspection strategy constructed over an MSC
(according to Lemma 1) satisfies Constraints (4). These
observations lead to the following MSC/MSP-based
solution:

For any MSC Smin ∈ S and any number of attack resour-
ces b2 <m∗, (�αn∗�,σ1(Smin, �αn∗�)) is an approximate solu-
tion of (P), with optimality gap given by �αn∗� − �αm∗�.

We now summarize the main advantages of this
MSC/MSP-based solution. First, it reduces to a signifi-
cant extent the size of the optimization problems that
are involved in computing a solution. Indeed, al-
though (LP1) can be used to solve (P) with b2 � 1, the
number of variables and constraints required is equal

to |V |
b1

( )
+ 1 and |E| +1, respectively. On the other hand,

the number of variables and constraints of (IMSC) is
only |V | and |E |, respectively. Similarly, the number of
variables and constraints of (IMSP) is only |E| and
|V |, respectively.

Second, solving a single instance of (IMSC) and
(IMSP) enables us to derive a solution to problem (P)
for any target detection rate α. Furthermore, for any
b2 <m∗, the loss in detection performance and the
optimality gap associated with our solution can di-
rectly be computed from n∗ and m∗. In contrast, for a
given target detection rate α, computing an optimal
solution of (P) using (LP1) requires solving it for
each value of b1.

Third, the MSC-based inspection strategy derived
from our approach is desirable from a practical view-
point. Because σ1(Smin,b1) is a uniform distribution, it
can easily be translated into a schedule that deter-
mines how the detectors are positioned in the network
and mobilized between the locations (nodes) that
have been prepared for the purpose of monitoring.
Furthermore, the number of distinct locations being
monitored by σ1(Smin,b1), which is represented in our
model by the node basis size, is only n∗. From Proposi-
tion 3, we recall that the node basis size in equilibrium
is at least n∗, and this number is optimal when n∗ �m∗.
This suggests that our MSC-based inspection strategy
is simple to implement.

Finally, we note that, although the previously men-
tioned results require computing an MSC and an MSP
(both NP-hard problems), modern mixed-integer opti-
mization solvers can be used to optimally solve them
(see Section 5). For extremely large-sized problems,
these solvers may not be able to solve (IMSC) and
(IMSP) to optimality. Still, we can extend our results
based only on the computation of a set cover and a
set packing. Given a set cover S′ and a set packing T′
obtained from a heuristic or greedy algorithm (Chvatal
1979, Hifi 1997), we can conclude that (�α |S′ |�,σ1(S′,
�α |S′ |�)) is an approximate solution of (P). The associ-
ated optimality gap is given by �α |S′ |�− �α |T′ |�, which
decreases as the size of the set cover decreases and the
size of the set packing increases.

4.2. Refinement Procedure
Despite the above-listed advantages of our MSC/
MSP-based solution, finding an optimal solution to
(P) (i.e., an inspection strategy using less number of
detectors than �αn∗�) might be desirable. Next, we
develop a procedure that iteratively refines the
MSC/MSP-based solution proposed in Section 4.1
to provide a stronger performance guarantee, until
it reaches optimality of (P). This procedure relies
on a column generation algorithm to optimally solve
(LP1) for b2 � 1, and obtains an inspection strategy
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in equilibrium of any game Γ(b1,b2) with b2 <m∗
(Theorem 2).

Each iteration of the column generation algorithm
involves solving a master problem and a subproblem.
Essentially, the master problem is a restricted version
of (LP1), where only a subset of variables are consid-
ered. Once the master problem is solved, the optimal
dual variables are used to construct the subproblem,
which involves finding the variable in the unrestricted
(LP1) with lowest reduced cost. Specifically, given a
subset I ⊆A1 of indices, the master problem is given
by

(MCG(I )) : minimize z

subject to z+∑
S∈I

F(S, e)σ1S ≥ 1, ∀e ∈ E

∑
S∈I

σ1S � 1

σ1S ≥ 0, ∀S ∈ I :

For notational simplicity, for any feasible solu-

tion (σ1,z) ∈ R
|I |
+ × R of (MCG(I )), we also use (σ1,z) ∈

R
|A1 |+ × R to represent the corresponding feasible

solution of (LP1). Let (σ1∗ ,z∗) ∈ R
|I |
+ × R (respectively,

(ρ∗,z′∗ ) ∈ R
|E|
+ × R) denote the optimal primal (respec-

tively, dual) solution of (MCG(I)). The reduced cost
associated with each S ∈A1 is given by −∑

e∈EF(S, e)
ρ∗
e − z′∗ . Therefore, the detector positioning with the

lowest reduced cost can be obtained by solving a
maximum weighted covering set problem, where
the component weights are the optimal dual varia-
bles obtained from the master problem. The sub-
problem can be formulated as the following integer
program:

(SCG(ρ∗)) : maximize
∑
e∈E

ρ∗
eye

subject to ye≤
∑

{i∈V |e∈Ci}
xi, ∀e∈E∑

i∈V
xi� b1

xi,ye ∈{0,1}, ∀i∈V, ∀e∈E:

If the optimal value of (SCG(ρ∗)) is no more than
−z′∗ , then this proves that (σ1∗ ,z∗) ∈ R

|A1 |+ × R is an opti-
mal solution of (LP1). However, if the optimal value
of (SCG(ρ∗)) is more than −z′∗ , then we add the detec-
tor positioning corresponding to the optimal solution
of (SCG(ρ∗)) to the set of indices I . The master problem
(MCG(I )) is then solved with the new set of indices I .
In fact, this algorithm can be warm-started by consid-
ering I � supp(σ1(Smin,b1)), and repeated until an op-
timal solution of (MCG(I )) is found.

Thus, we arrive at the computational procedure
shown below to exactly solve problem (P).

Algorithm 1 (Optimal Solution of (P))
Input: Detection model G � (V,E, {Ci, i ∈ V}), tar-

get detection rate α ∈ [0, 1], MSC Smin ∈ S
of size n∗, and MSP Tmax ∈M of size m∗.

Output: Number of detectors b∗1 and inspection
strategy σ1

∗
.

A1: Run a binary search method in the discrete inter-
val〚�αm∗�, �αn∗�〛:

A2: Select b1
A3: I ← supp(σ1(Smin,b1))
A4: Solve (LP1) by considering b2 � 1 using col-

umn generation:
A5: (σ1∗ ,z∗), (ρ∗,z′∗ ) ← optimal primal and

dual solutions of (MCG(I))
A6: (x∗,y∗) ← optimal solution of (SCG(ρ∗))
A7: If −∑

e∈Eρ
∗
ey

∗
e − z′∗ < 0, then

A8: I ← I ∪ supp(x∗) and go to (A5)
A9: else

A10: Output σ1
∗
and r∗b1 � 1− z∗

A11: end if
A12: Terminate the binary search with b∗1 � arg min

{b1∈〚�αm∗�, �αn∗�〛| r∗b1 ≥ α}
After each iteration of the column generation

algorithm (A5)–(A11) on (LP1) for a given b1 ∈
〚�αm∗�, �αn∗�〛, let σ1′ and 1− r′ denote the current
inspection strategy and value of the objective
function, respectively; note that r′ �mine∈Er(σ1′ , e).
Then, one can derive performance guarantees for σ1

′

by solving (IMSP), similar to (14). Indeed, given m∗, an
upper bound on the relative loss in detection
performance is given by ℓ′ � 1− r′max{b1,m∗}=b1.
When the support of the MSC-based inspection
strategy σ1(Smin,b1) is used to warm-start the column
generation algorithm, the first iteration of the master
problem will give r′ � b1=n∗, for which we find again
the expression of the loss in detection performance in
(14). Then, ℓ′ decreases as the number of iterations
of the column generation algorithm increases. If
r′ ≥ α, then (b1,σ1′ ) is a feasible solution of (P),
with optimality gap given by b1 − �αm∗�.

When (LP1) is solved to optimality for a given b1,
the optimal dual variables of (LP1) represent the prob-
abilities with which the network components are tar-
geted by P2 in an equilibrium of the game Γ(b1, 1). In
the Appendix, we derive a procedure that uses these
probabilities to construct an attack strategy in equilib-
rium of Γ(b1,b2) for b2 <m∗.

A downside of Algorithm 1 is that it can output a
significantly complex inspection strategy; for example,
one that randomizes over |E | detector positionings on
a node basis of size b1 |E |, as opposed to our MSC-
based inspection strategy σ1(Smin,b1) that uniformly
randomizes over n∗ detector positionings on a node
basis of size n∗. Thus, scheduling a network inspection
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according to this new strategy would likely require a
larger level of preparation and operational capability
on the part of the defender. Our approach enables the
defender to compute and choose an inspection strate-
gy with a tradeoff between detection performance
and ease of implementation.

5. Computational Results
In this section,wedemonstrate the scalability andperfor-
mance guarantees of our approach for large-scale net-
works. We consider a batch of benchmark water distri-
bution networks varying in their size and complexity
that are typically used to test network monitoring algo-
rithms. Table 3 lists the characteristics of the 13 networks
considered in our study. The data for these networks can
be found in Perelman et al. (2008), University of Exeter
(2014), and Jolly et al. (2014). The water networks in our
study range frommedium-sized to very-large-sized net-
works serving populations from 3,000 to 250,000 con-
sumers (U.S. Environmental Protection Agency 2007).
All network simulations were implemented in Matlab,
and all optimization problems were solved using the
Gurobi solver on a computer with a 2.3-GHz, 8-Core In-
tel Core i9 processor and 32GB of RAM.

We consider an application of problem (P), in
which pipelines are subject to attack-induced disrup-
tions. To detect these attacks, we consider that the wa-
ter utility has access to the relevant sensing technolo-
gy, such as pressure loggers that can easily be
mounted at various nodes (e.g., access points such as
valves and hydrants), and shifted from one node to
another (Allen et al. 2011, Wright et al. 2015, Xing and
Sela 2019). For this application, the set of monitoring
locations V is given by the set of network nodes, and
the set E of critical components is the set of pipes.
Then, for each possible monitoring location i ∈ V, we
compute the monitoring set Ci (defined in Section 2.1).
In our study, monitoring sets are computed through
simulations using a threshold-based detection model,
as proposed in Deshpande et al. (2013) and Sela Perel-
man et al. (2016).

We then apply our solution approach for each net-
work (see Section EC.3.1 in the online appendix for an
illustrative example using a small-sized pipeline net-
work from Giustolisi et al. (2008)): We solve (IMSC) to
compute the number of detectors �αn∗� that are suffi-
cient to achieve the target detection rate α, and deter-
mine an MSC Smin that should be prepared by the wa-
ter utility for inspection. Then, the utility’s schedule of
inspections can be generated from the inspection strat-
egy σ1(Smin, �αn∗�). Next, we solve (IMSP), which ena-
bles us to evaluate the performance of our solution,
i.e., we compute the optimality gap �αn∗� − �αm∗� giv-
en in Section 4.1 and the relative loss of performance

1−max {�αn∗�,m∗}=n∗ derived from (14). The compu-
tational results are summarized in Table 3.

We observe that the sizes of MSCs and MSPs are
equal for 6 of the 13 networks. Thus, for these six net-
works, our MSC/MSP-based solution is optimal for
(P). For the remaining seven networks, we note that
the relative difference between n∗ and m∗ is small,
which implies that our estimate of the optimal value
of (P), �αn∗�, is close to the optimal value b∗1. Addition-
ally, we can see from Table 3 that the loss in detection
performance by choosing σ1(Smin, �αn∗�) in comparison
with the optimal performance is also small (2.7% on
average over all networks).

We note that (IMSC) and (IMSP) can be solved quick-
ly. For networks with less than 1,500 nodes and com-
ponents, Gurobi computes an optimal solution in less
than 0.5 seconds, which directly enables us to con-
struct an approximate solution to (P). For larger net-
works, we can obtain n∗ and m∗ in approximately one
minute. Thus, our MSC/MSP-based solution is scal-
able to large-scale networks.

Next, we run the refinement procedure (Algorithm 1)
to improve our solution for the seven networks for
which m∗ < n∗. Table 4 summarizes the computational
results for the four networks for which the procedure
terminated in a reasonable time.

For instance, we find that for network ky13, an
optimal solution of (P) requires one fewer detector
than the MSC/MSP-based solution does to satisfy
the target detection performance α. Furthermore,
the equilibrium expected detection rate r∗b∗1 im-
proves by 3.39% the detection performance of the
MSC-based inspection strategy σ1(Smin,b∗1). Finally,
we find that the optimal inspection strategy σ1

∗
has

a support of size 47 and randomizes over 205 dis-
tinct locations.

Table 4 shows that for four of the remaining seven
networks, Algorithm 1 optimally solves (P). First, we
observe that the optimal solutions require only one
fewer detector than the MSC-based solution. Second,
given b∗1 detectors, the improvement between the opti-
mal and MSC-based inspection strategies is between
1.79% and 3.39% and is achieved under 50 minutes.
We note that solving (IMSP) significantly reduces
the runtime of the refinement procedure by limiting
the binary search to the interval 〚�αm∗�, �αn∗�〛:
(LP1) is solved for only one value of b1 for networks
ky5, ky2, and ky4 and is solved for two values of b1
for network ky13.

However, for the three larger networks (dover,
bswn2, mnsr), the refinement procedure did not ter-
minate after 72 hours of runtime. One of the main rea-
sons is that the restricted master problem (MCG(I))
faces degeneracy issues when the subset of variables
I is small: Even if the subproblem (SCG(ρ∗)) finds a
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variable with negative reduced cost, adding that vari-
able to I does not change the new optimal solution of
(MCG(I )). On the other hand, when the subset of vari-
ables I is large, the runtime of one iteration of the col-
umn generation algorithm (A5)–(A11) is large.

In Figure 2, we compare the column generation al-
gorithm applied to (LP1) for network ky4 with and
without the MSC-based warm-start. The left plot (re-
spectively, right plot) represents the worst-case detec-
tion rate (respetively, node basis size) of the inspection
strategy found by column generation, as a function of
the algorithm's runtime. We recall that the worst-case
detection rate of an inspection strategy is given by one
minus its objective value in (LP1). Additional figures
are presented in Section EC.3.2 in the online appendix.

Figure 2 shows that as the column generation algo-
rithm (A4) runs, the objective value of the inspection strat-
egy obtained by solving the master problem (MCG(I ))
decreases, which results in an increase in the worst-case
detection rate. Furthermore, for this network, initiating
the column generation algorithm (A4) with the variables
corresponding to the detector positionings in the support
of the MSC-based strategy reduces the runtime by half.
Interestingly,we observe a peak in the size of the node ba-
sis, that is, the number of distinct monitored locations, of
the solution σ1 to the restrictedmaster problem (MCG(I )).
In the first iterations, P2’s best response (given by the
dual variables of (MCG(I))) targets parts of the network

that are not monitored by the inspection strategy. Thus,
the algorithm first “explores” the network and positions
the detectors in a greedy-like manner on locations that
are more spread out. As the inspection strategy im-
proves, P2 selects attack strategies that are more evenly
spread in the network. This in turn forces the algorithm
to consolidate the support of the inspection strategy
and position detectors onmore strategic locations.

Finally, we note that MSC-based strategies are signifi-
cantly simpler than the optimal inspection strategies.
For instance, for network ky4, the MSC-based strategy
randomizes over n∗ � 64 different locations, whereas
the optimal strategy randomizes over 311 different loca-
tions. Similarly, for network ky2, the MSC-based strate-
gy has a support of size n∗ � 19, whereas the support of
the optimal strategy is of size 39.

In conclusion, our computational results show a
tradeoff between the optimal and MSC-based strate-
gies. Specifically, the optimal strategies only provide a
marginal improvement in terms of number of utilized
detectors and detection performance. Conversely, im-
plementing the optimal strategies would require a
much higher level of effort in preparing the detectors’
locations and in scheduling the inspections. Thus, de-
pending on her operational capabilities, the defender
can decide to implement a simple MSC-based strategy
with good performance guarantees, or a more com-
plex optimal strategy.

Table 3. Network Data and Computational Results of the MSC/MSP-Based Solution: α � 0:75

Network
Total

length (km) No. of pipes
No. of
nodes

Running
time (s)
(IMSP)

Running
time (s)
(IMSC) m∗ n∗ �αn∗�

Optimality
gap

Relative loss of
performance

bwsn1 37.56 168 126 0.05 0.11 7 7 6 0% 0%
ky3 91.29 366 269 0.01 0.03 15 15 12 0% 0%
ky5 96.58 496 420 0.02 0.05 18 19 15 1 (7.14%) 5.3%
ky7 137.05 603 481 0.09 0.08 28 28 21 0% 0%
ky6 123.20 644 543 0.08 0.06 24 24 18 0% 0%
ky1 166.60 907 791 0.03 0.08 31 31 24 0% 0%
ky13 153.30 940 778 0.06 0.08 28 30 23 2 (9.52%) 6.7%
ky2 152.25 1,124 811 0.39 0.41 18 19 15 1 (7.14%) 5.3%
ky4 260.24 1,156 959 0.03 0.05 62 64 48 1 (2.13%) 3.1%
ky8 247.34 1,614 1,325 0.14 0.22 45 45 34 0% 0%
dover 779.86 16,000 14,965 4.34 8.36 119 121 91 1 (1.11%) 1.7%
bswn2 1,844.04 14,822 12,523 0.77 4.06 352 361 271 7 (2.65%) 2.5%
mnsr 476.67 25,484 24,681 58.89 68.67 50 52 39 1 (2.63%) 3.8%

Table 4. Computational Results of the Refinement Procedure (Algorithm 1): α � 0:75

Network Running time (s) b∗1 r∗b∗1

No. of detectors
improvement
�αn∗�−b∗1

Detection performance
improvement
r∗b∗1−b∗1=n∗ |supp(σ1∗ )| |Vσ1∗ |

ky5 22.74 14 0.75 1 0.0132 (1.79%) 27 94
ky13 643.86 22 0.7582 1 0.0248 (3.39%) 47 205
ky2 153.11 14 0.75 1 0.0132 (1.79%) 39 133
ky4 2,901.90 47 0.7510 1 0.0165 (2.26%) 73 311
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6. Final Remarks
In this article,we studied a generic yet practically relevant
formulation of a large-scale bilevel optimization problem
for strategic network inspection. In this problem, the de-
fender seeks a randomized inspection strategy that
uses a minimum number of detectors while ensuring
that the expected detection performance against worst-
case attack strategies is above a desirable threshold.
We developed a novel approach that analyzes the
equilibria of a zero-sum game, which enables us to
solve the inspection problem for large-scale networks
along with performance guarantees.

Our equilibrium analysis involves (i) deriving use-
ful qualitative properties satisfied by all NE of the
zero-sum game; (ii) obtaining bounds on the expected
detection rate in equilibrium based on solutions of the
MSC and MSP problems; and (iii) showing that, in
equilibrium, the expected detection rate and inspec-
tion strategies are independent of the attack resources.

Our equilibrium analysis leads to a tractable approach
to solve the inspection problem: First, the MSC andMSP
problems are solved to obtain an approximate solution
that estimates the required number of detectors (with
optimality gap) and provides an inspection strategy
with guarantees on the expected detection performance.
Then, a column generation–based procedure further im-
proves the guarantees of our solution. We demonstrat-
ed the scalability and performance of our approach for
the allocation of sensing resources in large-scale urban
water networks facing security attacks. Our results
highlight an important tradeoff between the optimal
and MSC/MSP-based solutions in terms of perfor-
mance guarantees and ease of implementation.

A future research question is to solve the inspection
problem under a more refined detection model that
accounts for the imperfect detection of attacks (and
other types of compromises). Typically, the diagnostic

ability of the sensing technology can be represented
by a probabilistic detection rate for any given false
alarm rate. In fact, as mentioned in Section 2.1, the
guarantees provided by our approach can be extend-
ed (via simple scaling) to the case when the detection
probability is a priori known and homogeneous for all
detectors. The general case of heterogeneous detection
rates can be addressed by extending our detection
model; in particular, by adding a weight to each in-
spected node to represent the probability of detecting
an attack within the node’s monitoring set.

Another research question is to extend our solution
approach to account for the heterogeneity of the
network components in terms of their criticality to the
overall network functionality. In principle, this case
can be addressed by adding weights to the detection
function. However, in many practical situations, the
defender can only qualitatively distinguish the criti-
cality of various components (high versus low). In
such cases, our approach for strategic network inspec-
tion can be applied to each group of components with
homogeneous criticality levels, and the inspection
strategies for individual groups can be then integrated
based on the defender’s operational constraints.

Overall, the outcomes of the proposed approach can
be used to inform and guide public utilities to design
inspection strategies for protecting critical infrastruc-
tures against intentional threats. The results indicate
that a small number of defense resources, if allocated
in a strategic manner, can be sufficient to achieve a
high level of protection in large-scale networks, which
is especially appealing for budget-constrained utilities.
With advances in sensing and detection technologies,
randomized inspection strategies, such as the ones
proposed in this work, are expected to be essential for
reducing risks and for building greater resilience in
critical infrastructure systems.

Figure 2. (Color online) Results of ColumnGeneration Applied to (LP1) for Network ky4 (b1 � 47)
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Appendix. Column Generation and NE of G
In Section 4.2, we presented a column generation algorithm
to solve the linear program (LP1) for b2 � 1 and obtain an
inspection strategy in equilibrium of any game Γ(b1,b2)
with b2 <m∗. Next, we discuss how a second column gener-
ation algorithm can be applied to derive attack strategies in
equilibrium of any game Γ(b1,b2) with b2 <m∗.

Consider (LP1) for b2 � 1, and assume that the column
generation algorithm (A4) finds an optimal solution. Then,
the optimal dual variables (ρ∗

e)e∈E of (MCG(I )) represent the
probabilities with which each component can be targeted in
equilibrium of the game Γ(b1, 1). In the proof of Theorem 2,
we show how to reallocate these probabilities to create an
attack strategy in equilibrium of Γ(b1, 1) with the additional
property that each component is not targeted with probabili-
ty more than 1=m∗. Then, given b2 <m∗, Lemma EC.4 in the
online appendix and the proof of Theorem 2 show that an at-
tack strategy in equilibrium of Γ(b1,b2) can be computed by

solving the following feasibility problem: Find σ2 ∈ R
|A2 |+

such that
∑

{T∈A2 | e∈T}σ
2
T � b2ρ∗

e for every e ∈ E. This can be
done by considering the following auxiliary linear problem:

(F (b2ρ∗)) : minimize
σ2, s

∑
e∈E

se

subject to
∑

{T∈A2 | e∈T}
σ2T + se � b2ρ∗

e, ∀e ∈ E

σ2 ≥ 0|A2 |, s ≥ 0|E|:

Problem (F (b2ρ∗)) can also be solved using column gener-
ation, with (σ2, s) � (0|A2 |,b2ρ

∗) as initial feasible solution.
Given the current restricted master problem generated by
the column generation algorithm, let β∗ ∈ R

|E| denote its opti-
mal dual variables. Then, the index T∗ ∈A2 with lowest re-
duced cost is given by T∗ ∈ arg maxT∈A2

∑
e∈Tβ

∗
e. Therefore, T

∗

can be efficiently computed by simply finding the b2 highest
values of β∗e. Lemma EC.4 in the online appendix guarantees
that the optimal value of (F (b2ρ∗)) is zero, and an optimal so-
lution is an equilibrium attack strategy of Γ(b1,b2).

In conclusion, we obtain the following procedure for com-
puting NE of the game Γ(b1,b2) in the general case m∗ ≤ n∗.

Algorithm A.1 (NE of Gðb1,b2Þ)
Input: Detection model G � (V,E, {Ci, i ∈ V}), and players’

resources b1 < n∗ and b2 <m∗.
Output: Strategy profile (σ1∗ ,σ2∗ ).
Solve (LP1) by considering b2 � 1 using column
generation:

(σ1∗ , z∗), (ρ∗, z′∗ ) ← optimal primal and dual solu-
tions of (LP1)

Reallocate probabilities in ρ∗ so that ρ∗
e ≤ 1=m∗ for every e ∈ E

Solve (F (b2ρ∗)) using column generation:
(σ2∗ ,0|A2 |) ← optimal primal solution of (F (b2ρ∗))
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