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Equilibrium analysis of game on heterogeneous networks with
coupled activities

Jean-Baptiste Seby!, Charles Harvey? and Saurabh Amin?

Abstract— We study a game where agents interacting
over a network engage in two coupled activities and
have to strategically decide their production for each of
these activities. Agent interactions involve local and global
network effects, as well as a coupling between activities.
We consider the general case where the network effects are
heterogeneous across activities, i.e., the underlying graph
structures of the two activities differ and/or the parameters
of the network effects are not equal. In particular, we apply
this game in the context of palm oil tree cultivation and
timber harvesting, where network structures are defined
by spatial boundaries of concessions. We first derive
a sufficient condition for the existence and uniqueness
of a Nash equilibrium. This condition can be derived
using the potential game property of our game or by
employing variational inequality framework. We show that
the equilibrium can be expressed as a linear combination
of two Bonacich centrality vectors.

I. INTRODUCTION

We study interactions between economic agents who
are simultaneously engaged in the production of multiple
goods and compete in a market to sell these goods.
In many situations, such trade relationships are de-
scribed by a network structure that captures how the
aggregate production of each good is influenced by the
manner in which each agent is connected with other
agents. When such network connections are heteroge-
neous across goods, their impact on the agents’ utility
need to be modeled separately. Often, the production
levels of goods (henceforth, referred as activities) are
coupled because of the underlying complementarity or
substituability effects.

For example, palm oil tree cultivation and timber
harvesting from forest concessions in the tropical re-
gions of Southeast Asia are inherently coupled activities
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[1, 2, 3]. Here, the incentives of individual agents
(palm oil and logging companies) are not only shaped
by the spatial distribution (i.e., network structure) of
timber and logging concessions, but also depend on how
these activities are coupled. One can argue that in this
example the coupling depends on the extent to which the
activities can be carried in a synergistic manner (e.g.,
by using similar means of production and transport of
harvested goods [4]) or compete with each other in terms
of resources (e.g., water, sunlight, and soil nutrients
and/or labor and capital [5, 6, 7]). The competition for
resources and economic outlet arises also at the global
level between agents, giving rise to a global network
effect besides a local network effect.

In this paper, we study a network game in which the
activities (i.e., production decisions) of each agent is
influenced by her interactions with other agents in the
network, as well as the coupling between these activities.
Importantly, the network interactions corresponding to
each activity can be heterogeneous and coupling vary
across agents. In this sense, our game-theoretic approach
extends the well-known network games with single
activity [8, 9, 10] and multiple activities [11, 12].

In [8, 9, 10, 13], the agent utility is a linear-
quadratic function given by u(y;,y—;, G) = py; —
seyl — ndoi_yviy; + 025, Gijyiy;, where G is
the adjacency matrix of the graph G(N,E) underlying
the network structure, where the set of nodes of the
graph N, with |A| = n, models agents and the set
of edges &£ represent their interactions. For any node
1, the neighborhood of ¢ is the set of nodes j connected
to ¢ by an edge, i.e., G;; = 1. Furthermore, y; is the
production of agent ¢, y_; is the production of all agents
except ¢, p is the price of the commodity, ¢ is the
cost of production, p is the parameter quantifying the
global network effect due to the competition of agents
in a market to sell their productions, ¢ is the parameter
quantifying the local network effect that arises from
the interaction of agents with their neighbors. While
[8] considered this model in the context of criminal
network, [9, 10, 13] applied it to education, R&D and
financial risk. Our focus is on production networks
and our context pertains to harvesting and trade of
coupled forest products (e.g., timber and palm oil) where
network effects arise from spatial connections between
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forest regions and concessions, and coupling arises from
other aspects such as availability of natural resources,
production technology and transportation routes [4, 5].

Previous works on network games with single activity
[8, 10, 13] have shown that provided the local network
effect is small enough compared to the parameter for
own concavity ¢, namely dAq0.(G) < ¢, where Ao
is the largest eigenvalue of G, then a unique Nash equi-
librium exists and the production of individual agents at
the equilibrium can be expressed in terms of the vector
of Bonacich centralities, a canonical centrality measure
on network.

Definition 1. For a graph with adjacency matrix G and
scalar § > 0, let M(G, §) = (I-6G)~! = Y/ 6*GP.
Given a vector of weights w € R}, the vector of
weighted Bonacich centralities for the network G is
defined as

Bw(G,d) = M(G,d)w = (I 6G)~

lw = Zakck
When w = 1, we simply denote By = B. Then the
unweighted Bonacich centrality of node ¢ is given by
B;(G,d) = Z] 1 M;;(G, 6), where M is the (i, j)-
th entry of matrix M. As G counts the number of
paths of length &£ from node 4 to node j, the Bonacich
centrality of node ¢ counts the total number of walks
that start at node ¢ in the graph with adjacency matrix
G. Each walk is exponentially discounted by 4, i.e.,
longer walks have a lower weight in the centrality
measure than shorter walks. In the context of trade, this
discounting captures reduced impact of nodes (agents)
that are connected via longer trading routes - with

distances counted as number of hops.
We can express the (unweighted) Bonacich centrality
as follows:

B,(G,8) = Myi(G,0) + > My;(G,9),

i#]
where M;; (G, ¢) counts the number of self-loops from
i to itself and >, M;;(G,d) counts the number of
outer walks from 4 to any other player j # 4. By
definition M;;(G,d) > 1, hence B;(G,d) > 1, with
equality when 6 = 1.

A particularly relevant work to ours is [11]
which the authors considered a game where agents
engage in two coupled activities with homogeneous
network effects (i.e., when both activities are subject
to identical network effects). In this game, agent’s
wility s given by u(yily2, v, y2 ) = piy —
lc(yz ) + 52 1G2Jyz y] + pz yz C(yzB)z +
52:] | GijyP Yy + ByfyP, where y# and yZB are the
production of agent i in activity A and B respectively,
54 and 6% are the local network effect for each activity,
and (3 is the parameter for the coupling effect, measuring
the interdependance between activities.

In the setting of [11], the networks for activities A
and B are assumed to be the same, i.e., the adjacency
matrix G encodes for the structure of the underlying
graph. Furthermore, the local network effect encoded by
the parameter ¢ is also identical for the two activities.
The authors show that in equilibrium, production of each
activity can be described by the sum of two terms, where
each term is a weighted Bonacich centrality associated
with the adjacency matrix G. In each of these terms, the
discount factor is determined by the level of coupling
B between activities, and weights depend on the price
vectors p* = [p{, -, p;]" and p? = [pP,--- ,pf]"
Importantly, when the two activities are coupled, the
condition for existence and uniqueness of an equilibrium
is tighter, namely dAmux(G) < ¢ — |B]. It is easy to see
that for the uncoupled case (8 = 0), the equilibrium
level of each activity is given by a Bonacich centrality
associated with the adjacency matrix G, with discount
factor &, and weight vectors p and p® for activity A
and B respectively.

In this paper, we extend the work of [11] in two direc-
tions: firstly, we consider heterogeneous network effects
wherein an agent’s interaction with other agents for each
activity is described by a different network structure,
and/or the local network effect ¢ is different across activ-
ities. This allows us to capture more realistic situations
such as that of harvesting from timber concessions and
palm oil plantations, where the spatial configurations
of forest concessions and plantations are described by
different network structures and the production of the
two activities are coupled. In particular, we consider
agent-specific coupling parameter 3;: a positive param-
eter 3; expresses the complementarity of activities A
and B, for instance because of common technologies,
shared transportation and/or supply chains. By contrast,
a negative parameter (; means that activities A and
B are substitutes, for instance because of resources
competition (groundwater, land, nutrients, sunlight). !
Secondly, we also consider a global network effect for
each activity (via fully connected network) to model
the competition that agents face in selling the produced
goods in a market (for example, global market of timber
and palm oil products).

Our technical contributions are as follows: We show
that the condition for the existence and uniqueness of
Nash equilibrium can be derived by analyzing the po-
tential game formulation, or by leveraging the results on
variational inequality for equilibrium. In Section III, we
derive this condition for our network game with coupled
activities (Theorem 1) by leveraging a preliminary result
(Lemma 1 in Section II). Furthermore, we show that the

I'The coupling effect can modulate the local network effects since
a large parameter 3; in absolute value will affect both the parameters
64 and 6B, and the structures of the networks.
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equilibrium can be expressed as a linear combination of
two Bonacich centralities for our general network game
with heterogeneous local network effects and presence
of global competition among agents (Theorem 2). To fur-
ther interpret our results, we conduct numerical results
in Section IV. We provide some concluding remarks in
Section V.

II. PRELIMINARIES

Agents strategically interact over a network struc-
ture and each agent’s payoff thus depends on other
agents’ action. We denote the generic game by I' :
(N, (Yi)ien, (wi)ien), where N = {1,--- n} is the
set of agents, Y, is the set of available actions for
agent ¢, and u; is the agent individual utility function.
We define by Y = Y; x --- x Y, the set of all
action profiles. Each agent’s action is multi-dimensional
and denoted by y; € RY, where N is the number
of activities. For simplicity, we will limit our attention
to N = 2. We also define y_; the action profiles
for all players except i, and y = (y;,y—;) the action
profiles for all players. The objective of each agent is
to maximize her utility. An action profile y € R™N
is called a Nash equilibrium (NE) if no agent has an
incentive to unilaterally change her strategy.

Definition 2. A pure strategy Nash equilibrium is a
profile of actions y € Y = Y x--- XY, such that for
all i € N

wi(yi,y—i) > wi(¥i,y—i); V¥i € Y;.

It turns out that our network game I' is a potential
game (See Section III).

Definition 3. A game I' is a potential game if there
exists a function ® : Y — R such that Vi € n,Vy_; €
Y_;,Vy:,yi € Y;, we have

Q(yi,y—i) — ®(¥i,y—i) = wi(yi,y—i) — wi(¥i, y—i)-

The function ® is called the potential function of the
game I'.

By [9] and [14], a profile of action y is a Nash equi-
librium of I' if and only if y satisfies the Kuhn-Tucker
conditions of the problem maxy ®(y;, y_;). Each agent
chooses its production as if she wanted to maximize
the potential function, given other agent’s production.
This maximization problem has a unique solution when
there is only one solution to its first-order conditions. For
y; > 0,Vi, a sufficient condition for a unique solution
is for the potential function ®(y;,y_;) to be strictly
concave, i.e., if the negative of the Hessian matrix of
®(y;,y—:) is positive definite, —H > 0.

As an alternative to the potential function approach,
one can use the variational inequality framework [12,

15, 16] to study existence and uniqueness of network
games.

Assumption 4. For all i € {1,---,n}, set Y; is
non-empty, closed and convex, and the utility function
u;(yi,Y—i) is continuously differentiable and convex in
yi and for all y; € Y, Vj # i in the neighborhood of
i. Furthermore, the utility function is twice differentiable
in[yi,z:) ", and Vy,u;(yi,y—i) is Lipschitz in [y;, z] T,

where z; = [Z?zl Gﬁyf]ﬁgzl €RY.

Definition 5. A vector y € R™V solves the variational
ineqality VI(Y,V) with set Y = Y; x --- x Y,, and
operator V : 'Y — R™V if and only if

V) T(y-y) >0vyeY. (1)

Under Assumption 4, [15, Proposition 1.4.2] show
that y is a Nash equilibrium for game I' if and only if it
solves the variational inequality VI(Y, V). Furthermore,
in [15, Theorem 2.3.3], the authors show that the vari-
ational inequality VI(Y, V) (1), where V' is continuous
and Y is nonempty, closed and convex, admits a unique
solution if V' is strongly monotone.

Definition 6. An operator V is strongly monotone if
there exists a > 0, a € R, such that

S0\ " . 12
(V&) -v®) -9 =aly -3,
forally,y €Y.

It follows that for y to be a Nash equilibrium of game
T', it is necessary and sufficient to prove that it solves the
variational inequality VI(Y,V'); moreover a sufficient
condition to prove the uniqueness of equilibrium is to
show that the operator V' is strongly monotone.

If V is an affine map, strong monotonicity is eTquiva-

lent to strict monotonicity, i.e., (V(y) - V(Sf)) (y —
y) > 0,Vy,y € Y. A sufficient condition for V' to be
strictly monotone is to show that its Jacobian V,V (y)
is positive definite [15, Proposition 2.3.2].

In fact, [14, Lemma 4.4] show that a game is a
potential game with potential function @ if and only if
Vy®(y) = [Vy,ui(yi,y—i) TIi=;. We define V(y) =
~Vy®(y) = —[Vy,u(yi,y—i)"]7;. Then, the first-
order optimality conditions of the optimization problem
maxy ®(y) can be expressed as Vy@(¥)(y —y)' >
0, which coincide with the variational inequality (1)
V()" (y —y) > 0,Y¥y € Y. Consequently, we can
establish the equivalence between strict concavity of
® and strong monotonicity of V(y) := —V,®(y) as
condition for uniqueness of Nash equilibrium.

A game T with utility function
€ {l,---,n} is a potential game
O(y) if and only if

Lemma 1.

U’i(yia y—i)7 {
with  potential  function
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Vyd(y) = —Viy) = [V)’iui(yiayi)—r]?:r Then,
there exists a unique Nash equilibrium if ® is strictly
concave (equivalently if V is strongly monotone).

Proof. From [9], strict concavity of @ guarantees
that the Nash equilibrium is unique. By definition,

® is strictly concave if and only if (qu)(y) -
T
Vycb(y)) (¥y—y) > 0,Vy,y € Y; that is, there exists

-
a € R,a > 0, such that (qu)(y) - vy@(y)) (y —

y) > «a||y —y||*. Equivalently, the Nash equilibrium
of T' is unique if and only if —V,®(y) is strongly
monotone. The strict concavity of ® is equivalent to the
strong monotonicity of V. O

III. EXISTENCE, UNIQUENESS AND EQUILIBRIUM
CHARACTERIZATION

In this section, we specify our network game I' and
derive a condition for the existence and uniqueness of
NE, which we then characterize.

A. Model

In our model, n agents interact over a network.
Each agent’s decision is her levels of production of
two coupled activities denoted by A and B. Let G*
and G® denote the adjacency matrices for the network
influencing activity A and B, respectively. Each agent
corresponds to a single node in the graph G4(N,£4)
and the graph GB(N,EP), where N is the set of
nodes and £4 (resp. N'B, £P) is the set of edges in the
network A (resp. B). For any node i, the neighborhood
of i in the network A (resp. B) is the set of nodes j
connected to 7 by an edge, i.e., G{; = 1 (resp. G = 1).
Each agent chooses a level of production for activities
A and B, denoted by y#* and y? respectively, when y
and yP are non-negative. Each agent’s action is thus
two-dimensional. Let us denote y; = [y, yP]T,
yto= el yP o= bl ulll
and y = [y4,yP]T. We also define y ; =
[yiquff" 5y£17y£17yﬁ13y£k17"’ 7yrA;7y7]?]T
the productions of agents other than i. We denote by
pA = [p1147...7p£]'l' and pB = 1B> 7PE]T the
vectors of prices.

The utility of agent ¢ follows a linear-quadratic func-
tion:

ui(yi, y—i) =
Aaa L oa a 1
PiYi = 5€i W) +piyl — EC?(Z/@B)Q
Proceeds from A Proceeds from B
n n
A A A B B B
wD Tyt = wBD uly
j=1 j=1

(@)

Global network effect in activity A Global network effect in activity B
n n
A A A A B B B B
+ 6 E Gijvi vj + 6 E Gijyi y;
j=1 j=1

Local network effect from activity A Local network effect from activity B
A B
+ Bivi i
——
Interaction between activity A and activity B

The total utility of individual agents is the sum of their net gain
from trade of both products, the effect of network interaction
due to global competition between agents, the local network
effects corresponding to each activity and the coupling term
that captures the dependence of the two activities. Notice that
we make no assumption on the sign of 3; for each agent 1.
Thus, the activities A and B may be either complements (3; >
0) or substitutes (8; < 0) for some agents, and even uncoupled
for others (8; = 0). We explain model parameters in Table 1.

[ Parameter  Description

I Price for activity A in dollar per unit of production ($/m3)
ng Price for activity B in dollar per unit of production ($/m?)
cA Unit cost of activity A ($/m?)

ci% Unit cost of activity B ($/m?)

54 Marginal local network effect for activity A (3/m9)

5B Marginal local network effect for activity B ($/m5)

puA Marginal effect of global competition for activity A ($/mS%)
uB Marginal effect of global competition for activity B ($/m5)
GA Adjacency matrix of the network underlying activity A

GEB Adjacency matrix of the network underlying activity B

Bi Agent-specific coupling parameter between activities (3/m5)

TABLE I: Notation

Note that the agents’ equilibrium activity levels can be

shaped by other factors. For example, one can consider

identical prices across agents (p* = p# and pP = pP)

or cost of production (¢! = ¢4 and ¢? = ¢P). Our
results (Theorem 2) can be used to evaluate the impact
of such factors, although our main focus is on the
impact of coupling introduced by /; on ylA, y2 under

heterogeneous network structures underlying A and B.

B. Existence and uniqueness

It is important to recall from [9] that a simpler
network game with a single activity admits a poten-
tial function. We establish analogous result for our
more general game of two coupled activities. We know
from [14] that for a game with continuous and twice-
differentiable utility function wu;, there exists a potential

function if and only if 24¥iy=i) _ dulyiy-o) v ;¢

9yi 0y, 9y;9y; )
{1---,n}. Our game I satisfies these conditions since
uilyiy—i) _ Ouilyiy—id _ sAQA wulyiy—i)
Byfay;‘ - 8y;‘8y;4 - i Byfayf -
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Oui(yi,y—i) _ sBB Oui (yi,y—i) __ 8“1(}'17}’ 1) —
ByBByl =90 Gl]’ and oy 8y ayBayl

0, thus T admits a potential function. We consider the

potential function of the game I':

Q(yh y—l)

A A_C +po A\2
=pi ) v 3 Z(y )

=1
Z Z vy

514 n n
A A A
+7§:ZG”yzyj
=1 j=1

i=1 j=1

4! Z B cf +# Zy’ (6)
+722Gﬁy13y]3 ZZ% vy
i=1 j=1 i=1 j=1

n
A B
+Zﬁiyi Yi -
i=1

We can check that ®, as defined in (6), satisfies Definition

3.
. S -D g
Its Hessian matrix is given by H = 3 -Q where

D = (¢* + p ™I+ T — 64 GA,
Q= (" + )+ pP3-6°GP.

and J is the matrix of full ones, and 3 is the diagonal matrix
such that 3,; = f;.

Recall from Section II, the game has a unique Nash equi-
librium if the potential function is strictly concave, i.e., if —H
is positive definite. As —H is a block matrix, it is positive
definite if and only if both ((¢* 4+ )T + uJ — 6*G*) and
its Schur complement are positive definite. We simplify these
conditions to show the following result.

Theorem 1. If min(c® + p?;c? + p?) — max;{|8:]} >
max(§* Mnaz (GA), 6% Anae (GP)), then there exists a
unique Nash equilibrium to the game I'.

The proof can be found in Appendix A. The authors in [11]
provide an analogous condition but without proof. Besides,
our condition applies to the game with global network effect
(non-zero p** and 1) and heterogeneous cost of two activities

A —£ ¢B). Intuitively, the condition given in Theorem 1 re-
quires that the network effect must be small enough compared
to own individual concavity, i.e., quadratic terms (here costs)
that only involve own agent’s production. Otherwise, a large
enough local network effect would compromise the positive
definiteness of —H. Notice that the global competition term
does not show this effect because they are counted negatively
in the utility function. In an economic context, it means that
the influence of direct neighbors should not exceed the effect
of one’s own production cost and global competition net the
coupling effect between the two activities.

In proving Theorem 1, we simply leveraged the fact that our
game is a potential game and concluded existence and unique-
ness of the Nash equilibrium based on positive definiteness of
the negative of the Hessian of potential function of the game.
On the other hand, authors of [12, 16] (building on results of
[15]), offer a more general result on the equilibrium existence
and uniqueness based on variational inequality framework
provided Assumption 4 and strong monotonicity of operator
V holds.

Indeed, for the game I', Theorem 1 can be also derived
through the lens of the variational inequality with set Y =
Y1 x -+ x Y, and operator V : Y — R™2 V(y) :=
_[Vyiui(y7y7i)T]:’L:l

C. Equilibrium characterization

For each agent ¢, the first-order conditions of the game
are given by:

pit = ety + Byl — ptylt =Yyt 61 Gl =,
j—l j—l
piB_CiByiB"'_/BiyzA_MByiB_MBZyJ +5BZGUy] =

Following the notation in Section III-B, we can express
these conditions in matrix form:

D 4] [y']_[p?
[—ﬁ Q } {yB} N L)B ' @
If the existence and uniqueness condition in Theorem 1
holds, systems (3) is invertible (refer to [17, Lemma*]):

BQ} - {—% _éﬂ : [53] )

Let us proceed with the following notation:

GA__ pt n 5t A
CA+[,LA CA+,LLA ’
GF — _ P " GE
CB+;,LB CB+/,LB ’
1 S AN—1
L I-G
A CA+[LA( ) )
1 ~By—1
Lp=—— (1-G
CB+[,LB( )

Here, (c* + p4)LA and (c® + pP)LE are the so-
called Leontief matrices [13]. Let us also define By =
(c* + pLal = I - G*) ™1 and B = (& +

B)Lpl = (I — GP)~'1. Following Definition 1, the
vectors B4 and Bp can be interpreted as Bonacich
centralities for the networks with adjacency matrices G4
and G 7 respectively.

We also define the welghted Bonacich centralities
BA—(A pHLap? (I—GA) ! AandBB—
(P + uB)LBp = (I— GB)~1pB, where the weights
are the corresponding price vectors for activities A and
B, ie,p* =[pi,--- ,pp]" and p¥ = [p{', - p7]"

For ease of notation and simplify equations, let us
adopt the following notation:

_ 1 ~
Ba=——B
A At A A
_ 1 ~
Bg=——-Bsg.
B B+ B B

Rewriting (4), the system to be solved is the following:

yA B Lzl 7ﬁ -1 pA B Z1 22 pA
yB - _I@ Lgl pB - Z3 Z4 pB )
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where by the inversion formulae of block diagonal matrices,
Z1,7Z>,7Z3 and Z, are given as follows:

Z,=[L;' —pBLsB ",
=[I-LaBLBB] L

Zo = Lag[Lp' — BLAB| ",
=LA - LBBLAﬂ]_lLB

Zs; =LpB[L," — BLpA] "
=LpB[I— LAﬁLBm‘lLA

Zs = [Lp' — BLaB] ™

=[I-LpBLAB] 'Lp.

Further, in order to simplify notation, we introduce coeffi-
grents K1,K2LK1 and Ko, suc~h that Z, = K1LA7Z2 =
KoLp,Z3s = KiL4 and Z4 = KoL g, where we define

K, = [I-LaBLpA| ',
K, = [I-LpBLaA| ",
K, = LpB[I - LaBLsA] ! = LpBK;,
Ko = Lag[I — LpBLaB] ' = LaBKo.

We can now characterize the equilibrium of the game I'.

Theorem 2. Assume min(c* +pu?; c® 4 u%) —max;{|3:|} >
max(éA/\maz(GA), 5BAmaz(GB)), then the game T admits
a unique Nash equilibrium given by:

y* = KBa + K:Bg,

b o - ®)

y = K:Ba + K>Bsg.
For the special case of uniform prices across agents (i.e., p* =
p*1 and p® = p®1):

y* =p*KiBa + p°K:Bg,

~ 6
y” =p"KiBa + p"K:B5. ©

To interpret this result, we recall that [11] consider a simpler
game in which the activities A and B have the same structure
(G = GP) and 64 = 6. In their case, they show that,
in equilibrium activities can be expressed as a sum of two
Bonacich centralities. In our game, networks G4 and GZ
are different and 64 # §%. Theorem 2 provides that the
equilibrium for the game I' - if unique - exists, can be given
by a linear combination of Ba and Bg, i.e., the vectors of
Bonacich centralities of the networks with adjacency matrices
G* and G? respectively.

Furthermore if there is no couphng between activities (i.e.
B = 0),theny”? = Ba and y® = Bg. Indeed, in such a case,
the equilibrium of each activity can be analyzed independently,
and we are left with the result from [8, 9, 10, 13]. When
B # 0, the vectors of Bonacich centralities Ba and Bg only
depend on the corresponding network for A and B respectively
and are weighted by the weight matrices K1, K2, K and K.
We can interpret these weight matrices coefficient by going
back to matrices Zi, Zs, Z3 and Z4.
Let us discuss the general case of agent-specific prices p*
and p® Consrder a marginal increase in the price for agent
1, that is pf* increases by +1 for agent 1. Then, by Theorem
2, Equation (5), the new equilibrium is given by
=y +2:[1,0,-

y’r?ew = leA+Zl[1, 07 e ,0]T+ZzpB

Since Z1[1,0, - 0]T is equal to the first column of Z;, we
deduce that the i- th column of Z; is the change in effort in
activity A for each agent after the price p#* of product A has
been raised by +1 for agent 4.

If now the price p“ is uniform across agents, then by
Theorem 2, Equation (6), the sum of the entries of the j-row
of Z; 1s the change in effort in activity A for agent j after the
price p? of product A has been (globally) raised by +1.

An analogous interpretation can be provided for Z2, Z3 and
Z,.

Moreover, the entry (K1);; represents the weight of agent
i, due to its engagement in activity A, on the production of
agent j in activity A. If the price p#* of agent 1_is increased
by +1, then the vector of Bonacich centralities Ba becomes
Bx® = Ba + (La)i, where (La); is the i-th column
of La. The new vector of productions at the equilibrium
becomes yire,, = y* 4+ Ky (La);. Therefore, the sum-product
> (Ka)ji(La)u is the change in production produced by
agent j, when the price pi* of agent ¢ is increased by +1. The
same reasoning follows for Ko, K; and K2

In the context of trade, pA and p? can be determined
in equilibrium. For instance, assuming homogeneous prices
across a; ents one can cons1der the consumer utlllty function
m(q*,q") = a*q”* — 3p*(¢*)* +a” q —3p Z(¢")?, where
¢t = Zzzl vt q® =301 yP, and a*,a” are consumers’
marginal monetary value for activity A and B respectively.

Solving for the first-order conditions a®* — p“¢?* = 0 and
a® — pB q- = 0, the prices are endogenously given by
P 27 A and p? =sr.F respectively.

IV. NUMERICAL STUDY

In this section, we conduct some numerical experiments in
order to analyze how the equilibrium activity level of activity
A varies with the local network effects 6 and 6Z, and with
the coupling parameters between activities ;. By symmetry,
we would follow the same reasoning for y Z. For simplicity, we
henceforth assume that the coupling parameters are identical
across agents, 3; = 3, Vi.

We first consider the effect of the parameter 54, We
consider a network with 10 agents, ¢* = ¢ = 10, global
network effect p = O 01, coupling parameter 8 = 0.4 and we
vary the parameter 6. We compute the effect of this variation
for different network structures G and G. The effort in
activity A is displayed (in log) in Figure 1 as a function of
54 (here we set 6% = §%).

We first notice that for given network structures in A and
B and a positive cross-activity parameter 3, the level of effort
in A at the equilibrium increases with the network parameters
64, For a positive network effect 6 > 0, the feedback from
neighbors affect individual agents positively. In such situation,
an increase in magnitude in 64 enables to improve further
the positive effect of the local network term in (2). If 5 <0,
then the negative feedback from neighbors decreases individual
activity levels. Under this circumstance, an increase in the
magnitude 64 allows to mitigate the negative effect of the
local network term in (2).

When the coupling parameter £ is n Eatrve, then an increase
in the local network effect parameter d has an ambiguous ef-
fect. In such a situation, an increase in 6 may tend to increase
production through the local network term >.7_, g yf‘y]A.

However, such an 1ncrease may be counterbalanced by the

cross- act1v1ty term ByiyP. The effect of an increase in
O] magnitude in 64 will thus depend on the relative magnitude
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Fig. 1: Individual production (in log) of activity A as a
function of the network parameter 6 4. We assume 64 =
6B, ur = pB =0.01, B; = 5 =0.4,Vi.

between the local network parameters delta 64,65 and the
coupling parameter f3.

The density of the network structures also affects the pro-
duction level at the equilibrium. For positive network effects
64,6F and a positive coupling effect 3, a denser network
in A (e.g. complete network where all agents are connected)
increases the effort made by the agents compared to a sparser
network (e.g., empty network where the degree of every node
is 0). This is expected as a positive network effect §4 > 0
means that the feedback from neighbors affect individual
agents positively. When 6“ < 0, the feedback from neighbors
is negative. In such a case, a denser network in activity A will
negatively affect the equilibrium activity levels.

The density of the other activity B also impacts the effort
in activity A, because of the coupling S between activities.
In particular, assuming 8 > 0, given a network structure in
activity A, if the network effects 6 and 6% are positive, the
production in A will be higher when the network structure
for activity B is denser. For instance, in Figure 1, when
the network structure in A is complete and 6%,6% > 0
(respectively 6,68 < 0), the production in A is higher
(respectively smaller) when the network structure in activity
B is complete compared to an empty network.

These effects are ambiguous if S and (64,6%) are of
different signs. For instance, if 8 < 0 (and 6 > 0,6% > 0),
a denser network in B increases the utility through the local
network term 52 Z;;l Gf}y? y]B , but this also has a negative
impact because of the cross-activity term /Byfyf IS >0
(and 04 < 0,68 < 0), a denser network in B decreases the
utility through the local network term 67 ;_1 Gf;-y,LB yf ,
thus pushing y7* downwards, while the cross-activity term
By yP tends to push it upwards.

Ceteris paribus, the analysis in the coupling parameter 3
is more straightforward. A negative [ parameter affects the
equilibrium level negatively while it has a positive effect when
it is positive (8 > 0). Overall, for fixed local parameters
64,67 and fixed network structures, an increase in /3 increases
the level of effort at the equilibrium.

In summary, a trade-off arises between the local network
effect (64, 8%) and the coupling parameter (/3), namely for a
given production level, a decrease (resg. increase) in the local
network terms 84 e Ghyiyl,o > e GByPyP can
be traded against an increase (resp. decrease) in the coupling
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Fig. 2: Curves of iso-production in activity A for an in-
dividual agent at the equilibrium. The network structure
is complete for both G4 and GZ, n = 20, 1 = 0.01.

term Sz xP. This trade-off is illustrated in Figure 2.

V. CONCLUSION

We study a linear-quadratic game with two activities and
heterogeneous network structures for these activities. We find
a sufficient condition for the existence and uniqueness of a
Nash equilibrium and we show that this condition can be
equivalently studied through the potential game property of
this game or using variational inequality results. Furthermore,
we prove that the equilibrium can be written as a linear combi-
nation of Bonacich centralities. As future work, an econometric
analysis based on this model should be conducted in order to
empirically test our theoretical model and in particular estimate
the effect of the local network terms. In the context of illegal
logging, such an analysis would enable us to estimate the effect
of the spatial layout of concessions.

APPENDIX

A. Proof of Theorem 1
In order to simplify the notation, we show the proof for
Theorem 1 assuming = pu® = p. (*+p)I+pJ—64G4)
is positive definite if and only if:
al((c* + I+ pd —6*GMa>0,va#0,
(c* +pa a+pa’Ja>6%a’ G, Va £0,

a'a a'Ja

A A
(c +'u)aTGAa+uaTGAa > §7,Va # 0.
N
In particular, this must be true for any a # 0. We have:
T T
A . a a . Ja A
e T arena
T T T
A . aa . adJa aa A
—— — = >0,
("4 ) b aTGAa 1M aTa aTGAa
T
a Ja 1
(" +p) + pmin
@)
By the Rayleigh-Ritz theorem, we have maxao a:}?:" =

)\ma;c(GA), where )\mam(GA) is the largest eigenvalue of
TAHA
G* and mingo 282 = A\in(G*) where Anin (G4) is

aTa
the smallest eigenvalue of G*. Hence, the condition for the

positive definiteness property is,

Amin (J)

A A A
67 < (" + p)Amax (G )Jrli)\m(w(GA)'

©)
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The eigenvalues of J are n with multiplicity 1 and 0 with
multiplicity n — 1. We thus deduce that ((¢* + p)I + puJ —

64G™) is positive definite if and only if (

¢+ > 6% Amar (G7). (10)
[2]
Let us now find a sufficient condition for the positive defi-
niteness of the Schur complement of (¢ +pu)I4+uJ—54G*).
The Schur complement of ((c* + )T + puJ — 6*G#) is
((e* +m)I+pd =64 GH) = B((cP + ) 1+pI -7 GP) 8.
We thus want to show a condition such that
(" + I+ pd —5*GH) 3]
—B(” + I+ pI —°GP) 1B > 0,
((c* + wI+pd — 64°G?)
— (max{B:})2((c® + wI+pd —6°G") " >0, (D
((c® + I+ pd — 6°GP) (4]
(" + I+ pd —64GY) > (max{B:})°L (5]

Then Va' # 0, we have:

a’ ((” + I+ pd —6°GP)((* + w1+ pd — 6Gha

;I%ifé aTa
> (mf‘x{|5i‘})2~ [7]
(12)
Furthermore, for A and B two positive definite matrices, we
have Amaz(AB) < Amaz(A)Aimaz (B). Therefore, we have: (8]
T A ArA
max & (" +wWI+pd—07°G%)a
aT #0 aTa 9]
T((.B BB
a (¢ +wwI+upJ—-956°G%)a 2
max Ta > (max{|A:[})",
T/ A Aqay, 2 [10]
max ( max & (" +wI+pd-46°G )a)
Xe{A,B} \ aT #0 aTa
> (max{|8:[})”. [11]
13)

Quantities on both sides of the inequality are positive scalars
and we can take the square root of these quantities. (12]
T((X XX
I J-6"G
max  max — (e +p) i,u )a > max{|5i|}.
Xe{A,B}aT#o0 a'a i
(14) 113

Since Amaz(J) = n, a sufficient condition is:

THX
x xa G a _ (14]
xél{li’fs}(c + 1) ;171%5 ata > max{|Ail}, )
maX((SA)\max(GA); 68)\max(GB)) (15)
< —max{|;|} + max(c” + p; ¢ + p), [16]

and we deduce that the condition for existence and uniqueness  [17]
of a Nash equilibrium is

min(cA +u— mZaX{|/5'i|}; ? +p— m?X{‘ﬂ'L|})

(16)
> max(0* Amax (G™?), 6% Anax (GP)).
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