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Abstract— We study a game where agents interacting
over a network engage in two coupled activities and
have to strategically decide their production for each of
these activities. Agent interactions involve local and global
network effects, as well as a coupling between activities.
We consider the general case where the network effects are
heterogeneous across activities, i.e., the underlying graph
structures of the two activities differ and/or the parameters
of the network effects are not equal. In particular, we apply
this game in the context of palm oil tree cultivation and
timber harvesting, where network structures are defined
by spatial boundaries of concessions. We first derive
a sufficient condition for the existence and uniqueness
of a Nash equilibrium. This condition can be derived
using the potential game property of our game or by
employing variational inequality framework. We show that
the equilibrium can be expressed as a linear combination
of two Bonacich centrality vectors.

I. INTRODUCTION

We study interactions between economic agents who
are simultaneously engaged in the production of multiple
goods and compete in a market to sell these goods.
In many situations, such trade relationships are de-
scribed by a network structure that captures how the
aggregate production of each good is influenced by the
manner in which each agent is connected with other
agents. When such network connections are heteroge-
neous across goods, their impact on the agents’ utility
need to be modeled separately. Often, the production
levels of goods (henceforth, referred as activities) are
coupled because of the underlying complementarity or
substituability effects.

For example, palm oil tree cultivation and timber
harvesting from forest concessions in the tropical re-
gions of Southeast Asia are inherently coupled activities
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[1, 2, 3]. Here, the incentives of individual agents
(palm oil and logging companies) are not only shaped
by the spatial distribution (i.e., network structure) of
timber and logging concessions, but also depend on how
these activities are coupled. One can argue that in this
example the coupling depends on the extent to which the
activities can be carried in a synergistic manner (e.g.,
by using similar means of production and transport of
harvested goods [4]) or compete with each other in terms
of resources (e.g., water, sunlight, and soil nutrients
and/or labor and capital [5, 6, 7]). The competition for
resources and economic outlet arises also at the global
level between agents, giving rise to a global network
effect besides a local network effect.

In this paper, we study a network game in which the
activities (i.e., production decisions) of each agent is
influenced by her interactions with other agents in the
network, as well as the coupling between these activities.
Importantly, the network interactions corresponding to
each activity can be heterogeneous and coupling vary
across agents. In this sense, our game-theoretic approach
extends the well-known network games with single
activity [8, 9, 10] and multiple activities [11, 12].

In [8, 9, 10, 13], the agent utility is a linear-
quadratic function given by u(yi, y−i,G) = pyi −
1
2cy

2
i − µ

∑n
j=1 yiyj + δ

∑n
j=1Gijyiyj , where G is

the adjacency matrix of the graph G(N , E) underlying
the network structure, where the set of nodes of the
graph N , with |N | = n, models agents and the set
of edges E represent their interactions. For any node
i, the neighborhood of i is the set of nodes j connected
to i by an edge, i.e., Gij = 1. Furthermore, yi is the
production of agent i, y−i is the production of all agents
except i, p is the price of the commodity, c is the
cost of production, µ is the parameter quantifying the
global network effect due to the competition of agents
in a market to sell their productions, δ is the parameter
quantifying the local network effect that arises from
the interaction of agents with their neighbors. While
[8] considered this model in the context of criminal
network, [9, 10, 13] applied it to education, R&D and
financial risk. Our focus is on production networks
and our context pertains to harvesting and trade of
coupled forest products (e.g., timber and palm oil) where
network effects arise from spatial connections between
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forest regions and concessions, and coupling arises from
other aspects such as availability of natural resources,
production technology and transportation routes [4, 5].

Previous works on network games with single activity
[8, 10, 13] have shown that provided the local network
effect is small enough compared to the parameter for
own concavity c, namely δλmax(G) < c, where λmax

is the largest eigenvalue of G, then a unique Nash equi-
librium exists and the production of individual agents at
the equilibrium can be expressed in terms of the vector
of Bonacich centralities, a canonical centrality measure
on network.

Definition 1. For a graph with adjacency matrix G and
scalar δ > 0, let M(G, δ) ≡ (I−δG)−1 =

∑+∞
k=0 δ

kGk.
Given a vector of weights w ∈ Rn

+, the vector of
weighted Bonacich centralities for the network G is
defined as

Bw(G, δ) = M(G, δ)w = (I− δG)−1w =

+∞∑
k=0

δkGkw.

When w = 1, we simply denote B1 = B. Then the
unweighted Bonacich centrality of node i is given by
Bi(G, δ) =

∑n
j=1 Mij(G, δ), where Mij is the (i, j)-

th entry of matrix M. As Gk
ij counts the number of

paths of length k from node i to node j, the Bonacich
centrality of node i counts the total number of walks
that start at node i in the graph with adjacency matrix
G. Each walk is exponentially discounted by δ, i.e.,
longer walks have a lower weight in the centrality
measure than shorter walks. In the context of trade, this
discounting captures reduced impact of nodes (agents)
that are connected via longer trading routes - with
distances counted as number of hops.

We can express the (unweighted) Bonacich centrality
as follows:

Bi(G, δ) = Mii(G, δ) +
∑
i 6=j

Mij(G, δ),

where Mii(G, δ) counts the number of self-loops from
i to itself and

∑
i6=j Mij(G, δ) counts the number of

outer walks from i to any other player j 6= i. By
definition Mii(G, δ) ≥ 1, hence Bi(G, δ) ≥ 1, with
equality when δ = 1.

A particularly relevant work to ours is [11] in
which the authors considered a game where agents
engage in two coupled activities with homogeneous
network effects (i.e., when both activities are subject
to identical network effects). In this game, agent’s
utility is given by u(yAi , y

A
−i, y

B
i , y

B
−i) = pAi y

A
i −

1
2c(y

A
i )2 + δ

∑n
j=1Gijy

A
i y

A
j + pBi y

B
i − 1

2c(y
B
i )2 +

δ
∑n

j=1Gijy
B
i y

B
j + βyAi y

B
i , where yAi and yBi are the

production of agent i in activity A and B respectively,
δA and δB are the local network effect for each activity,
and β is the parameter for the coupling effect, measuring
the interdependance between activities.

In the setting of [11], the networks for activities A
and B are assumed to be the same, i.e., the adjacency
matrix G encodes for the structure of the underlying
graph. Furthermore, the local network effect encoded by
the parameter δ is also identical for the two activities.
The authors show that in equilibrium, production of each
activity can be described by the sum of two terms, where
each term is a weighted Bonacich centrality associated
with the adjacency matrix G. In each of these terms, the
discount factor is determined by the level of coupling
β between activities, and weights depend on the price
vectors pA = [pA1 , · · · , pAn ]> and pA = [pB1 , · · · , pBn ]>.
Importantly, when the two activities are coupled, the
condition for existence and uniqueness of an equilibrium
is tighter, namely δλmax(G) < c− |β|. It is easy to see
that for the uncoupled case (β = 0), the equilibrium
level of each activity is given by a Bonacich centrality
associated with the adjacency matrix G, with discount
factor δ, and weight vectors pA and pB for activity A
and B respectively.

In this paper, we extend the work of [11] in two direc-
tions: firstly, we consider heterogeneous network effects
wherein an agent’s interaction with other agents for each
activity is described by a different network structure,
and/or the local network effect δ is different across activ-
ities. This allows us to capture more realistic situations
such as that of harvesting from timber concessions and
palm oil plantations, where the spatial configurations
of forest concessions and plantations are described by
different network structures and the production of the
two activities are coupled. In particular, we consider
agent-specific coupling parameter βi: a positive param-
eter βi expresses the complementarity of activities A
and B, for instance because of common technologies,
shared transportation and/or supply chains. By contrast,
a negative parameter βi means that activities A and
B are substitutes, for instance because of resources
competition (groundwater, land, nutrients, sunlight). 1

Secondly, we also consider a global network effect for
each activity (via fully connected network) to model
the competition that agents face in selling the produced
goods in a market (for example, global market of timber
and palm oil products).

Our technical contributions are as follows: We show
that the condition for the existence and uniqueness of
Nash equilibrium can be derived by analyzing the po-
tential game formulation, or by leveraging the results on
variational inequality for equilibrium. In Section III, we
derive this condition for our network game with coupled
activities (Theorem 1) by leveraging a preliminary result
(Lemma 1 in Section II). Furthermore, we show that the

1The coupling effect can modulate the local network effects since
a large parameter βi in absolute value will affect both the parameters
δA and δB , and the structures of the networks.

2

Authorized licensed use limited to: MIT Libraries. Downloaded on February 02,2023 at 09:12:14 UTC from IEEE Xplore.  Restrictions apply. 



equilibrium can be expressed as a linear combination of
two Bonacich centralities for our general network game
with heterogeneous local network effects and presence
of global competition among agents (Theorem 2). To fur-
ther interpret our results, we conduct numerical results
in Section IV. We provide some concluding remarks in
Section V.

II. PRELIMINARIES

Agents strategically interact over a network struc-
ture and each agent’s payoff thus depends on other
agents’ action. We denote the generic game by Γ :
〈N , (Yi)i∈N , (ui)i∈N 〉, where N = {1, · · · , n} is the
set of agents, Yi is the set of available actions for
agent i, and ui is the agent individual utility function.
We define by Y = Y1 × · · · × Yn the set of all
action profiles. Each agent’s action is multi-dimensional
and denoted by yi ∈ RN , where N is the number
of activities. For simplicity, we will limit our attention
to N = 2. We also define y−i the action profiles
for all players except i, and y = (yi,y−i) the action
profiles for all players. The objective of each agent is
to maximize her utility. An action profile y ∈ RnN

is called a Nash equilibrium (NE) if no agent has an
incentive to unilaterally change her strategy.

Definition 2. A pure strategy Nash equilibrium is a
profile of actions y ∈ Y = Y1×· · ·×Yn such that for
all i ∈ N :

ui(yi,y−i) ≥ ui(ỹi,y−i); ∀ỹi ∈ Yi.

It turns out that our network game Γ is a potential
game (See Section III).

Definition 3. A game Γ is a potential game if there
exists a function Φ : Y → R such that ∀i ∈ n, ∀y−i ∈
Y−i, ∀yi, ỹi ∈ Yi, we have

Φ(yi,y−i)− Φ(ỹi,y−i) = ui(yi,y−i)− ui(ỹi,y−i).

The function Φ is called the potential function of the
game Γ.

By [9] and [14], a profile of action y is a Nash equi-
librium of Γ if and only if y satisfies the Kuhn-Tucker
conditions of the problem maxy Φ(yi,y−i). Each agent
chooses its production as if she wanted to maximize
the potential function, given other agent’s production.
This maximization problem has a unique solution when
there is only one solution to its first-order conditions. For
yi ≥ 0, ∀i, a sufficient condition for a unique solution
is for the potential function Φ(yi,y−i) to be strictly
concave, i.e., if the negative of the Hessian matrix of
Φ(yi,y−i) is positive definite, −H � 0.

As an alternative to the potential function approach,
one can use the variational inequality framework [12,

15, 16] to study existence and uniqueness of network
games.

Assumption 4. For all i ∈ {1, · · · , n}, set Yi is
non-empty, closed and convex, and the utility function
ui(yi,y−i) is continuously differentiable and convex in
yi and for all yj ∈ Yj , ∀j 6= i in the neighborhood of
i. Furthermore, the utility function is twice differentiable
in [yi, zi]

>, and∇yi
ui(yi,y−i) is Lipschitz in [yi, zi]

>,
where zi = [

∑n
j=1G

X
ijy

X
j ]NX=1 ∈ RN .

Definition 5. A vector ȳ ∈ RnN solves the variational
ineqality VI(Y, V ) with set Y = Y1 × · · · × Yn and
operator V : Y → RnN if and only if

V (ȳ)>(y − ȳ) ≥ 0, ∀y ∈ Y. (1)

Under Assumption 4, [15, Proposition 1.4.2] show
that y is a Nash equilibrium for game Γ if and only if it
solves the variational inequality VI(Y, V ). Furthermore,
in [15, Theorem 2.3.3], the authors show that the vari-
ational inequality VI(Y, V ) (1), where V is continuous
and Y is nonempty, closed and convex, admits a unique
solution if V is strongly monotone.

Definition 6. An operator V is strongly monotone if
there exists α > 0, α ∈ R, such that(

V (y)− V (ỹ)
)>

(y − ỹ) ≥ α ‖y − ỹ‖22 ,

for all ỹ,y ∈ Y.

It follows that for y to be a Nash equilibrium of game
Γ, it is necessary and sufficient to prove that it solves the
variational inequality VI(Y, V ); moreover a sufficient
condition to prove the uniqueness of equilibrium is to
show that the operator V is strongly monotone.

If V is an affine map, strong monotonicity is equiva-

lent to strict monotonicity, i.e.,
(
V (y) − V (ỹ)

)>
(y −

ỹ) ≥ 0, ∀ỹ,y ∈ Y. A sufficient condition for V to be
strictly monotone is to show that its Jacobian ∇yV (y)
is positive definite [15, Proposition 2.3.2].

In fact, [14, Lemma 4.4] show that a game is a
potential game with potential function Φ if and only if
∇yΦ(y) = [∇yi

ui(yi,y−i)
>]ni=1. We define V (y) :=

−∇yΦ(y) = −[∇yi
u(yi,y−i)

>]ni=1. Then, the first-
order optimality conditions of the optimization problem
maxy Φ(y) can be expressed as ∇yΦ(ȳ)(ȳ − y)> ≥
0, which coincide with the variational inequality (1)
V (ȳ)>(y − ȳ) ≥ 0, ∀y ∈ Y . Consequently, we can
establish the equivalence between strict concavity of
Φ and strong monotonicity of V (y) := −∇yΦ(y) as
condition for uniqueness of Nash equilibrium.

Lemma 1. A game Γ with utility function
ui(yi,y−i), i ∈ {1, · · · , n} is a potential game
with potential function Φ(y) if and only if

3
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∇yΦ(y) = −V (y) = [∇yi
ui(yi,yi)

>]ni=1. Then,
there exists a unique Nash equilibrium if Φ is strictly
concave (equivalently if V is strongly monotone).

Proof. From [9], strict concavity of Φ guarantees
that the Nash equilibrium is unique. By definition,
Φ is strictly concave if and only if

(
∇yΦ(y) −

∇ȳΦ(ȳ)
)>

(ȳ−y) > 0, ∀ȳ,y ∈ Y; that is, there exists

α ∈ R, α > 0, such that
(
∇yΦ(y) − ∇ȳΦ(ȳ)

)>
(ȳ −

y) ≥ α ‖ȳ − y‖2. Equivalently, the Nash equilibrium
of Γ is unique if and only if −∇yΦ(y) is strongly
monotone. The strict concavity of Φ is equivalent to the
strong monotonicity of V .

III. EXISTENCE, UNIQUENESS AND EQUILIBRIUM
CHARACTERIZATION

In this section, we specify our network game Γ and
derive a condition for the existence and uniqueness of
NE, which we then characterize.

A. Model

In our model, n agents interact over a network.
Each agent’s decision is her levels of production of
two coupled activities denoted by A and B. Let GA

and GB denote the adjacency matrices for the network
influencing activity A and B, respectively. Each agent
corresponds to a single node in the graph GA(N , EA)
and the graph GB(N , EB), where N is the set of
nodes and EA (resp. NB , EB) is the set of edges in the
network A (resp. B). For any node i, the neighborhood
of i in the network A (resp. B) is the set of nodes j
connected to i by an edge, i.e., GA

ij = 1 (resp. GB
ij = 1).

Each agent chooses a level of production for activities
A and B, denoted by yAi and yBi respectively, when yAi
and yBi are non-negative. Each agent’s action is thus
two-dimensional. Let us denote yi = [yAi , y

B
i ]>,

yA = [yA1 , · · · , yAn ]>, yB = [yB1 , · · · , yBn ]>,
and y = [yA,yB ]>. We also define y−i =
[yA1 , y

B
1 , · · · , yAi−1, y

B
i−1, y

A
i+1, y

B
i+1, · · · , yAn , yBn ]>

the productions of agents other than i. We denote by
pA = [pA1 , · · · , pAn ]> and pB = [pB1 , · · · , pBn ]> the
vectors of prices.

The utility of agent i follows a linear-quadratic func-
tion:

ui(yi,y−i) =

pAi y
A
i −

1

2
cAi (yAi )2︸ ︷︷ ︸

Proceeds from A

+ pBi y
B
i −

1

2
cBi (yBi )2︸ ︷︷ ︸

Proceeds from B

− µA
n∑

j=1

yAi y
A
j︸ ︷︷ ︸

Global network effect in activity A

− µB
n∑

j=1

yBi y
B
j︸ ︷︷ ︸

Global network effect in activity B

+ δA
n∑

j=1

GA
ijy

A
i y

A
j︸ ︷︷ ︸

Local network effect from activity A

+ δB
n∑

j=1

GB
ijy

B
i y

B
j︸ ︷︷ ︸

Local network effect from activity B

+ βiy
A
i y

B
i︸ ︷︷ ︸

Interaction between activity A and activity B

.

(2)

The total utility of individual agents is the sum of their net gain
from trade of both products, the effect of network interaction
due to global competition between agents, the local network
effects corresponding to each activity and the coupling term
that captures the dependence of the two activities. Notice that
we make no assumption on the sign of βi for each agent i.
Thus, the activities A and B may be either complements (βi >
0) or substitutes (βi < 0) for some agents, and even uncoupled
for others (βi = 0). We explain model parameters in Table I.

Parameter Description
pAi Price for activity A in dollar per unit of production ($/m3)
pBi Price for activity B in dollar per unit of production ($/m3)
cAi Unit cost of activity A ($/m3)
cBi Unit cost of activity B ($/m3)
δA Marginal local network effect for activity A ($/m6)
δB Marginal local network effect for activity B ($/m6)
µA Marginal effect of global competition for activity A ($/m6)
µB Marginal effect of global competition for activity B ($/m6)
GA Adjacency matrix of the network underlying activity A
GB Adjacency matrix of the network underlying activity B
βi Agent-specific coupling parameter between activities ($/m6)

TABLE I: Notation

Note that the agents’ equilibrium activity levels can be
shaped by other factors. For example, one can consider
identical prices across agents (pAi ≡ pA and pBi ≡ pB)
or cost of production (cAi ≡ cA and cBi ≡ cB). Our
results (Theorem 2) can be used to evaluate the impact
of such factors, although our main focus is on the
impact of coupling introduced by βi on yAi , y

B
i under

heterogeneous network structures underlying A and B.

B. Existence and uniqueness
It is important to recall from [9] that a simpler

network game with a single activity admits a poten-
tial function. We establish analogous result for our
more general game of two coupled activities. We know
from [14] that for a game with continuous and twice-
differentiable utility function ui, there exists a potential
function if and only if ∂ui(yi,y−i)

∂yi∂yj
= ∂ui(yi,y−i)

∂yj∂yi
, ∀i, j ∈

{1 · · · , n}. Our game Γ satisfies these conditions since
∂ui(yi,y−i)

∂yA
i ∂yA

j
= ∂ui(yi,y−i)

∂yA
j ∂yA

i
= δAGA

ij , ∂ui(yi,y−i)

∂yB
i ∂yB

j
=

4
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∂ui(yi,y−i)

∂yB
j ∂yB

i
= δBGB

ij , and ∂ui(yi,y−i)

∂yA
i ∂yB

j
= ∂ui(yi,y−i)

∂yB
j ∂yA

i
=

0, thus Γ admits a potential function. We consider the
potential function of the game Γ:

Φ(yi,y−i)

= pAi

n∑
i=1

yAi −
cAi + µA

2

n∑
i=1

(yAi )2

+
δA

2

n∑
i=1

n∑
j=1

GA
ijy

A
i y

A
j −

µA

2

n∑
i=1

n∑
j=1

yAi y
A
j

+ pBi

n∑
i=1

yBi −
cBi + µB

2

n∑
i=1

(yBi )2

+
δB

2

n∑
i=1

n∑
j=1

GB
ijy

B
i y

B
j −

µB

2

n∑
i=1

n∑
j=1

yBi y
B
j

+

n∑
i=1

βiy
A
i y

B
i .

(6)

We can check that Φ, as defined in (6), satisfies Definition
3.

Its Hessian matrix is given by H =

[
−D β
β −Q

]
where

D = (cA + µA)I + µAJ− δAGA,

Q = (cB + µB)I + µBJ− δBGB .

and J is the matrix of full ones, and β is the diagonal matrix
such that βii = βi.

Recall from Section II, the game has a unique Nash equi-
librium if the potential function is strictly concave, i.e., if −H
is positive definite. As −H is a block matrix, it is positive
definite if and only if both ((cA + µ)I + µJ − δAGA) and
its Schur complement are positive definite. We simplify these
conditions to show the following result.

Theorem 1. If min(cA + µA; cB + µB) − maxi{|βi|} >
max(δAλmax(GA), δBλmax(GB)), then there exists a
unique Nash equilibrium to the game Γ.

The proof can be found in Appendix A. The authors in [11]
provide an analogous condition but without proof. Besides,
our condition applies to the game with global network effect
(non-zero µA and µB) and heterogeneous cost of two activities
(cA 6= cB). Intuitively, the condition given in Theorem 1 re-
quires that the network effect must be small enough compared
to own individual concavity, i.e., quadratic terms (here costs)
that only involve own agent’s production. Otherwise, a large
enough local network effect would compromise the positive
definiteness of −H. Notice that the global competition term
does not show this effect because they are counted negatively
in the utility function. In an economic context, it means that
the influence of direct neighbors should not exceed the effect
of one’s own production cost and global competition net the
coupling effect between the two activities.

In proving Theorem 1, we simply leveraged the fact that our
game is a potential game and concluded existence and unique-
ness of the Nash equilibrium based on positive definiteness of
the negative of the Hessian of potential function of the game.
On the other hand, authors of [12, 16] (building on results of
[15]), offer a more general result on the equilibrium existence
and uniqueness based on variational inequality framework
provided Assumption 4 and strong monotonicity of operator
V holds.

Indeed, for the game Γ, Theorem 1 can be also derived
through the lens of the variational inequality with set Y =
Y1 × · · · × Yn and operator V : Y → Rn×2, V (y) :=
−[∇yiui(y,y−i)

>]ni=1

C. Equilibrium characterization
For each agent i, the first-order conditions of the game

are given by:

pAi − cAi yAi + βiy
B
i − µAyAi − µA

n∑
j=1

yAj + δA
n∑

j=1

GA
ijy

A
j = 0,

pBi − cBi yBi + βiy
A
i − µByBi − µB

n∑
j=1

yBj + δB
n∑

j=1

GB
ijy

B
j = 0.

Following the notation in Section III-B, we can express
these conditions in matrix form:[

D −β
−β Q

] [
yA

yB

]
=

[
pA

pB

]
. (3)

If the existence and uniqueness condition in Theorem 1
holds, systems (3) is invertible (refer to [17, Lemma*]):[

yA

yB

]
=

[
D −β
−β Q

]−1 [
pA

pB

]
. (4)

Let us proceed with the following notation:

G̃A = − µA

cA + µA
J +

δA

cA + µA
GA,

G̃B = − µB

cB + µB
J +

δB

cB + µB
GB ,

LA =
1

cA + µA
(I− G̃A)−1,

LB =
1

cB + µB
(I− G̃B)−1.

Here, (cA + µA)LA and (cB + µB)LB are the so-
called Leontief matrices [13]. Let us also define BA =
(cA + µA)LA1 = (I − G̃A)−11 and BB = (cB +
µB)LB1 = (I − G̃B)−11. Following Definition 1, the
vectors BA and BB can be interpreted as Bonacich
centralities for the networks with adjacency matrices G̃A

and G̃B respectively.
We also define the weighted Bonacich centralities

B̂A = (cA + µA)LAp
A = (I − G̃A)−1pA and B̂B =

(cB + µB)LBp
B = (I− G̃B)−1pB , where the weights

are the corresponding price vectors for activities A and
B, i.e., pA = [pA1 , · · · , pAn ]> and pB = [pB1 , · · · , pBn ]>.

For ease of notation and simplify equations, let us
adopt the following notation:

B̄A ≡
1

cA + µA
B̂A

B̄B ≡
1

cB + µB
B̂B .

Rewriting (4), the system to be solved is the following:[
yA

yB

]
=

[
L−1

A −β
−β L−1

B

]−1 [
pA

pB

]
=

[
Z1 Z2

Z3 Z4

] [
pA

pB

]
,
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where by the inversion formulae of block diagonal matrices,
Z1,Z2,Z3 and Z4 are given as follows:

Z1 = [L−1
A − βLBβ]−1,

= [I− LAβLBβ]−1LA

Z2 = LAβ[L−1
B − βLAβ]−1,

= LAβ[I− LBβLAβ]−1LB

Z3 = LBβ[L−1
A − βLBβ]−1,

= LBβ[I− LAβLBβ]−1LA

Z4 = [L−1
B − βLAβ]−1,

= [I− LBβLAβ]−1LB .

Further, in order to simplify notation, we introduce coeffi-
cients K1,K2, K̃1 and K̃2, such that Z1 = K1LA,Z2 =
K̃2LB ,Z3 = K̃1LA and Z4 = K̃2LB , where we define

K1 = [I− LAβLBβ]−1,

K2 = [I− LBβLAβ]−1,

K̃1 = LBβ[I− LAβLBβ]−1 = LBβK1,

K̃2 = LAβ[I− LBβLAβ]−1 = LAβK2.

We can now characterize the equilibrium of the game Γ.

Theorem 2. Assume min(cA+µA; cB +µB)−maxi{|βi|} >
max(δAλmax(GA), δBλmax(GB)), then the game Γ admits
a unique Nash equilibrium given by:

yA = K1B̄A + K̃2B̄B,

yB = K̃1B̄A + K2B̄B.
(5)

For the special case of uniform prices across agents (i.e., pA =
pA1 and pB = pB1):

yA = pAK1BA + pBK̃2BB ,

yB = pAK̃1BA + pBK2BB .
(6)

To interpret this result, we recall that [11] consider a simpler
game in which the activities A and B have the same structure
(GA = GB) and δA = δB . In their case, they show that,
in equilibrium activities can be expressed as a sum of two
Bonacich centralities. In our game, networks GA and GB

are different and δA 6= δB . Theorem 2 provides that the
equilibrium for the game Γ - if unique - exists, can be given
by a linear combination of B̄A and B̄B, i.e., the vectors of
Bonacich centralities of the networks with adjacency matrices
G̃A and G̃B respectively.

Furthermore, if there is no coupling between activities (i.e.
β = 0), then yA = B̄A and yB = B̄B. Indeed, in such a case,
the equilibrium of each activity can be analyzed independently,
and we are left with the result from [8, 9, 10, 13]. When
β 6= 0, the vectors of Bonacich centralities B̄A and B̄B only
depend on the corresponding network for A and B respectively
and are weighted by the weight matrices K1, K2, K̃1 and K̃2.
We can interpret these weight matrices coefficient by going
back to matrices Z1,Z2,Z3 and Z4.
Let us discuss the general case of agent-specific prices pA

and pB . Consider a marginal increase in the price for agent
1, that is pA1 increases by +1 for agent 1. Then, by Theorem
2, Equation (5), the new equilibrium is given by

yA
new = Z1p

A+Z1[1, 0, · · · , 0]>+Z2p
B = yA+Z1[1, 0, · · · , 0]>.

Since Z1[1, 0, · · · , 0]> is equal to the first column of Z1, we
deduce that the i-th column of Z1 is the change in effort in
activity A for each agent after the price pAi of product A has
been raised by +1 for agent i.

If now the price pA is uniform across agents, then by
Theorem 2, Equation (6), the sum of the entries of the j-row
of Z1 is the change in effort in activity A for agent j after the
price pA of product A has been (globally) raised by +1.

An analogous interpretation can be provided for Z2, Z3 and
Z4.

Moreover, the entry (K1)ji represents the weight of agent
i, due to its engagement in activity A, on the production of
agent j in activity A. If the price pAi of agent i is increased
by +1, then the vector of Bonacich centralities B̄A becomes
B̄new

A = B̄A + (LA)i, where (LA)i is the i-th column
of LA. The new vector of productions at the equilibrium
becomes yA

new = yA +K1(LA)i. Therefore, the sum-product∑n
l=1(K1)jl(LA)li is the change in production produced by

agent j, when the price pAi of agent i is increased by +1. The
same reasoning follows for K2, K̃1 and K̃2.

In the context of trade, pA and pB can be determined
in equilibrium. For instance, assuming homogeneous prices
across agents, one can consider the consumer utility function
π(qA, qB) = aAqA− 1

2
pA(qA)2 +aBqB− 1

2
pB(qB)2, where

qA =
∑n

i=1 y
A
i , q

B =
∑n

i=1 y
B
i , and aA, aB are consumers’

marginal monetary value for activity A and B respectively.
Solving for the first-order conditions aA − pAqA = 0 and
aB − pBqB = 0, the prices are endogenously given by
pA = aA∑n

i=1 yA
i

and pB = aB∑n
i=1 yB

i
respectively.

IV. NUMERICAL STUDY

In this section, we conduct some numerical experiments in
order to analyze how the equilibrium activity level of activity
A varies with the local network effects δA and δB , and with
the coupling parameters between activities βi. By symmetry,
we would follow the same reasoning for yB . For simplicity, we
henceforth assume that the coupling parameters are identical
across agents, βi = β, ∀i.

We first consider the effect of the parameter δA. We
consider a network with 10 agents, cA = cB = 10, global
network effect µ = 0.01, coupling parameter β = 0.4 and we
vary the parameter δA. We compute the effect of this variation
for different network structures GA and GB . The effort in
activity A is displayed (in log) in Figure 1 as a function of
δA (here we set δA = δB).

We first notice that for given network structures in A and
B and a positive cross-activity parameter β, the level of effort
in A at the equilibrium increases with the network parameters
δA. For a positive network effect δA > 0, the feedback from
neighbors affect individual agents positively. In such situation,
an increase in magnitude in δA enables to improve further
the positive effect of the local network term in (2). If δA < 0,
then the negative feedback from neighbors decreases individual
activity levels. Under this circumstance, an increase in the
magnitude δA allows to mitigate the negative effect of the
local network term in (2).

When the coupling parameter β is negative, then an increase
in the local network effect parameter δA has an ambiguous ef-
fect. In such a situation, an increase in δA may tend to increase
production through the local network term

∑n
j=0G

B
ijy

A
i y

A
j .

However, such an increase may be counterbalanced by the
cross-activity term βyAi y

B
i . The effect of an increase in

magnitude in δA will thus depend on the relative magnitude
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Fig. 1: Individual production (in log) of activity A as a
function of the network parameter δA. We assume δA =
δB , µA = µB = 0.01, βi = β = 0.4, ∀i.

between the local network parameters delta δA, δB and the
coupling parameter β.

The density of the network structures also affects the pro-
duction level at the equilibrium. For positive network effects
δA, δB and a positive coupling effect β, a denser network
in A (e.g. complete network where all agents are connected)
increases the effort made by the agents compared to a sparser
network (e.g., empty network where the degree of every node
is 0). This is expected as a positive network effect δA > 0
means that the feedback from neighbors affect individual
agents positively. When δA < 0, the feedback from neighbors
is negative. In such a case, a denser network in activity A will
negatively affect the equilibrium activity levels.

The density of the other activity B also impacts the effort
in activity A, because of the coupling β between activities.
In particular, assuming β > 0, given a network structure in
activity A, if the network effects δA and δB are positive, the
production in A will be higher when the network structure
for activity B is denser. For instance, in Figure 1, when
the network structure in A is complete and δA, δB > 0
(respectively δA, δB < 0), the production in A is higher
(respectively smaller) when the network structure in activity
B is complete compared to an empty network.

These effects are ambiguous if β and (δA, δB) are of
different signs. For instance, if β < 0 (and δA > 0, δB > 0),
a denser network in B increases the utility through the local
network term δB

∑n
j=1 GB

ijy
B
i y

B
j , but this also has a negative

impact because of the cross-activity term βyAi y
B
i . If β > 0

(and δA < 0, δB < 0), a denser network in B decreases the
utility through the local network term δB

∑n
j=1 GB

ijy
B
i y

B
j ,

thus pushing yAi downwards, while the cross-activity term
βyAi y

B
i tends to push it upwards.

Ceteris paribus, the analysis in the coupling parameter β
is more straightforward. A negative β parameter affects the
equilibrium level negatively while it has a positive effect when
it is positive (β > 0). Overall, for fixed local parameters
δA, δB and fixed network structures, an increase in β increases
the level of effort at the equilibrium.

In summary, a trade-off arises between the local network
effect (δA, δB) and the coupling parameter (β), namely for a
given production level, a decrease (resp. increase) in the local
network terms δA

∑n
j=1 GA

ijy
A
i y

A
j , δ

B∑n
j=1 GB

ijy
B
i y

B
j can

be traded against an increase (resp. decrease) in the coupling
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Fig. 2: Curves of iso-production in activity A for an in-
dividual agent at the equilibrium. The network structure
is complete for both GA and GB , n = 20, µ = 0.01.

term βxAi x
B
i . This trade-off is illustrated in Figure 2.

V. CONCLUSION

We study a linear-quadratic game with two activities and
heterogeneous network structures for these activities. We find
a sufficient condition for the existence and uniqueness of a
Nash equilibrium and we show that this condition can be
equivalently studied through the potential game property of
this game or using variational inequality results. Furthermore,
we prove that the equilibrium can be written as a linear combi-
nation of Bonacich centralities. As future work, an econometric
analysis based on this model should be conducted in order to
empirically test our theoretical model and in particular estimate
the effect of the local network terms. In the context of illegal
logging, such an analysis would enable us to estimate the effect
of the spatial layout of concessions.

APPENDIX

A. Proof of Theorem 1
In order to simplify the notation, we show the proof for

Theorem 1 assuming µA = µB = µ. ((cA+µ)I+µJ−δAGA)
is positive definite if and only if:

a>((cA + µ)I + µJ− δAGA)a > 0, ∀a 6= 0,

(cA + µ)a>a + µa>Ja > δAa>GAa, ∀a 6= 0,

(cA + µ)
a>a

a>GAa
+ µ

a>Ja

a>GAa
> δA, ∀a 6= 0.

(7)

In particular, this must be true for any a 6= 0. We have:

(cA + µ) min
a6=0

a>a

a>GAa
+ µmin

a6=0

a>Ja

a>GAa
> δA,

(cA + µ) min
a6=0

a>a

a>GAa
+ µmin

a6=0

a>Ja

a>a

a>a

a>GAa
> δA,

(cA + µ)
1

maxa6=0
a>GAa

a>a

+ µmin
a6=0

a>Ja

a>a

1

maxa6=0
a>a

a>GAa

> δA.

(8)

By the Rayleigh-Ritz theorem, we have maxa6=0
a>GAa

a>a
=

λmax(GA), where λmax(GA) is the largest eigenvalue of
GA and mina6=0

a>GAa
a>a

= λmin(GA) where λmin(GA) is
the smallest eigenvalue of GA. Hence, the condition for the
positive definiteness property is,

δA < (cA + µ)λmax(GA) + µ
λmin(J)

λmax(GA)
. (9)
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The eigenvalues of J are n with multiplicity 1 and 0 with
multiplicity n − 1. We thus deduce that ((cA + µ)I + µJ −
δAGA) is positive definite if and only if

cA + µ > δAλmax(GA). (10)

Let us now find a sufficient condition for the positive defi-
niteness of the Schur complement of ((cA+µ)I+µJ−δAGA).
The Schur complement of ((cA + µ)I + µJ − δAGA) is
((cA+µ)I+µJ−δAGA)−β((cB +µ)I+µJ−δBGB)−1β.
We thus want to show a condition such that

((cA + µ)I + µJ− δAGA)

− β((cB + µ)I + µJ− δBGB)−1β > 0,

((cA + µ)I + µJ− δAGA)

− (max
i
{βi})2((cB + µ)I + µJ− δBGB)−1 > 0,

((cB + µ)I + µJ− δBGB)

((cA + µ)I + µJ− δAGA) > (max
i
{βi})2I.

(11)

Then ∀a> 6= 0, we have:

max
a> 6=0

a>((cB + µ)I + µJ− δBGB)((cA + µ)I + µJ− δAGA)a

aTa

> (max
i
{|βi|})2.

(12)

Furthermore, for A and B two positive definite matrices, we
have λmax(AB) < λmax(A)λmax(B). Therefore, we have:

max
a> 6=0

a>((cA + µ)I + µJ− δAGA)a

aTa

max
a> 6=0

a>((cB + µ)I + µJ− δBGB)a

aTa
> (max

i
{|βi|})2,

max
X∈{A,B}

(
max
a> 6=0

a>((cA + µ)I + µJ− δAGA)a

aTa

)2

> (max
i
{|βi|})2.

(13)

Quantities on both sides of the inequality are positive scalars
and we can take the square root of these quantities.

max
X∈{A,B}

max
a> 6=0

a>((cX + µ)I + µJ− δXGX)a

a>a
> max

i
{|βi|}.

(14)

Since λmax(J) = n, a sufficient condition is:

max
X∈{A,B}

(cX + µ)− max
a> 6=0

δX
a>GXa

a>a
> max

i
{|βi|},

max(δAλmax(GA); δBλmax(GB))

< −max
i
{|βi|}+ max(cA + µ; cA + µ),

(15)

and we deduce that the condition for existence and uniqueness
of a Nash equilibrium is

min(cA + µ−max
i
{|βi|}; cB + µ−max

i
{|βi|})

> max(δAλmax(GA), δBλmax(GB)).
(16)
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