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Abstract—The NASA Soil Moisture Active Passive (SMAP)
satellite mission aims to produce enhanced resolution surface soil
moisture products by combining coincident but multiresolution
L-band active and passive microwave measurements. Since the
SMAP radar ceased operations early in the mission, Copernicus
Sentinel-1 C-band radar observations are used in the combined
product. The synergy is built on two basic foundations: first,
active and passive signals covary in a known and systematic
fashion, and second, measurements are available at multiple
resolutions. In this study, we perform numerical simulations and
assess global satellite observations to test the first foundation
(covariation). Specific focus lies on the role of the vegetation
canopy in modulating the active—passive relationship. We use
a discrete radiative transfer model to simulate the slope 3
and coefficient of determination R? of the relationship between
active and passive signals, considering three vegetation types
for which the model has been extensively assessed in previous
experimental studies. We find that a linear relationship between
backscatter and emissivity can be established over a range of
vegetation conditions. The coupling between active and passive
signals decreases with increasing vegetation water content, such
that moderate or higher correlations (nonzero slopes) are retained
up to 4 kg/m*> (6.3 kg/m*) for L-band/L-band and 1.5 kg/m?
(2 kg/m?) for the C-band/L-band configuration. We decompose
the effects of different soil-vegetation scattering mechanisms, such
as double-bounce, and different measurement error levels on
the active—passive relationship. Comparisons with satellite data
confirm that our simulations capture magnitudes and major
trends found across global vegetated land masses.

Index Terms— Active—passive microwave sensing, soil moisture,
vegetation.

I. INTRODUCTION

ATELLITE-BASED microwave instruments enable the
global monitoring of surface soil moisture, a key parame-
ter for determining water, carbon, and energy fluxes between
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land and the overlying atmosphere. These exchanges are
relevant to a broad range of applications, including weather
prediction, climate analysis, flood forecasting, and drought
monitoring [1]-[8]. In the microwave, two instrument types are
commonly distinguished: Passive instruments show a high sen-
sitivity to soil moisture, but spatial resolutions typically to not
exceed tens of kilometers. Active instruments enable subkilo-
meter spatial resolutions but are more sensitive to scattering
effects from vegetation and soil surface roughness. The Soil
Moisture Active Passive (SMAP) mission, launched in 2015,
aims to combine the relative strengths of both instrument
types [1]. Particularly, SMAP carries an L-band synthetic aper-
ture radar (SAR) to disaggregate coincident L-band radiome-
ter observations for an intermediate resolution soil moisture
product [9] (see [10], [11] for reviews of existing downscaling
techniques). Since a malfunction caused the active instrument
to stop operations in July 2015, the Sentinel-1 C-band SAR
was chosen as substitution [12], [13].

The SMAP synergistic approach is dependent on two main
factors: first, active and passive measurements covary in a
known and systematic fashion, and second, the signals are
available at multiple resolutions. In this study, we investigate
the first of these two factors by analyzing the slope (3) and
coefficient of determination (R2) of the linear relationship
between active and passive measurements. The slope /3 serves
as a critical algorithm parameter and is one of the main uncer-
tainty sources in the SMAP downscaling procedure [12], [14].
Previous studies found a dependence between [ and local
vegetation cover conditions [15]-[21], which is in line with
theoretical expectations [13]. However, slope estimates from
observational data can be affected by rapidly changing vege-
tation and soil roughness conditions [19], [20], subpixel land
cover heterogeneity [21]-[26], or biases induced by measure-
ment errors [27]. In addition, only few studies investigated
the active—passive slope and coefficient of determination when
higher frequency radar signatures in C-band are considered
[27]-[30]. Previous simulation studies assessed the slope
only for limited vegetation type conditions [31] or using
simplified physical models that ignore higher order scatter-
ing effects [32]. No previous simulation studies investigate
vegetation type diversity, the combination of L-band radiome-
ter and C-band radar signatures, or measurement error effects.

In this study, we use numerical simulations and global satel-
lite observations to assess the relationship between active and
passive microwave signatures over vegetated surfaces. We ask:
How is the relationship of active and passive signals from
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rough surfaces affected by the density of the overlying vege-
tation cover? Over what range of vegetation density can both
measurements be usefully combined? We assess these ques-
tions for the SMAP (L-band radar and radiometer) and novel
Sentinel-1 and SMAP (C-band radar and L-band radiometer)
frequency configurations. The analysis therefore applies to
the evaluation of the SMAP combined active—passive soil
moisture products [9], [12]. The study is structured as follows:
Analytical formulations for the active—passive slope and coef-
ficient of the determination in the presence of measurement
noise are developed in Section II. Backscatter and emissivity
signatures for three vegetation types are simulated using a
discrete radiative transfer model described in Section III.
Simulations are assessed using satellite observations described
in Section IV. The results are discussed and conclusions are
summarized in Sections V and VI, respectively.

II. RELATIONSHIP BETWEEN ACTIVE AND PASSIVE
MICROWAVE SIGNATURES

Active and passive microwave observations over land are
sensitive to geophysical parameters such as surface soil mois-
ture, soil surface roughness, and vegetation cover. These
variables change on different timescales: for short observation
periods like hours or days, vegetation and soil roughness con-
ditions are often considered quasi-constant, while soil moisture
can show significant variability due to wetting and dry down
events [33]-[35]. In this case, the backscatter coefficient ¢°
and emissivity e exhibit opposite responses to changes in soil
moisture, that is, the backscatter coefficient increases while
the emissivity decreases for increasing soil moisture (and vice
versa). A hypothesis was consequently stated in [36] that,
given the above conditions, backscatter and emissivity follow
a linear functional relationship

e=a+ [’ (1)

where « and [ are the intercept and slope parameters,
respectively. We investigate the relationship for linear unit
backscatter in accordance with the current SMAP algorithm
version [12]. Backscatter coefficients in this study are in linear
units unless otherwise stated.

A. Measurement Error Model

The backscatter and emissivity terms in (1) are subject to
errors when derived from radar and radiometer measurements.
This can weaken the linear relationship and introduce biases
on the intercept and slope parameters. To account for these
effects, we model backscatter and emissivity as two compo-
nents: the first component represents the geophysical signal,
assumed to be driven by changes in soil moisture #, and
the second component represents measurement noise

0'0:

(2)
(3)
where all terms are random variables and n and v are zero

mean random terms in backscatter and emissivity units, respec-
tively, assumed to be uncorrelated with each other and with the
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Fig. 1. Linear relationship between backscatter and emissivity due to changes

in surface soil moisture (TVM simulations, yellow through blue indicates soil

moisture contents of 0.05-0.40 m*m~3). The dependence on the vegetation

water content is indicated for an example case of corn, H-polarization and
L/L-band configuration. Note that the decrease in the slope with increasing
vegetation water content is inherent to the chosen example (see Fig. 4 for all
other cases). The slope of the error-free relationship, shown here, is referred
to as [y in this study.

geophysical signal (i.e., all respective covariances are zero).
Note that backscatter measurements follow multiplicative error
statistics; however, as we show in the Appendix, such errors
can be represented through the additive formulation above
while retaining the same error assumptions. The resulting
relationship is

(o +v)=a+pB(0h+n)+e 4)

where ¢ is a random residual term in emissivity units. Based
on (4), analytical formulations for the active—passive slope and
coefficient of determination are derived in the following.

B. Slope 3
The least-squares slope of the relationship in (4) is given

by

5= Cov (0’8+77,€9+l/)
N Var (69 + 1)

()

with Cov(-) and Var(-) denoting covariances and variances,
respectively. From the error term assumptions, (5) can be
simplified to

B Cov (09, eq) B Var (o)
= Var (09) + Var(n) Var (09) + Var (n)

where By = Cov(a9,e9)/Var(c)) is the slope of the
error-free relationship, illustrated through example simulations
in Fig. 1. We can express 3 conceptually as the product
B = ByB, where B = Var (o)) /[Var (¢f) + Var (n)]
is a bias factor taking values between zero and unity. It
follows that the slope of the relationship observed with
errors, (3, is generally smaller in magnitude than the slope of
the underlying relationship, By. This well-established effect,

(6)
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Impact of measurement errors on the active—passive relationship. (Left) Underlying relationship due to changes in surface soil moisture. (Middle)

Radar

Same relationship observed with errors. The slope is biased towards lower magnitudes and the coefficient of determination is weakened. Slope biases occur
only in the presence of radar measurement errors. (Right) Same relationship for high errors or low soil moisture sensitivities (constant soil moisture variability
assumed, axis limits may vary). The slope and coefficient of determination approach zero. The residual ¢ is indicated.

often referred to as “attenuation” in linear regression [37],
results from the residuals € being minimized in the emissivity
direction. A schematic illustration is provided in Fig. 2. Notice
that the bias depends solely on errors of the backscatter
term or, more specifically, the ratio of its signal and error
variances.

For further decomposition of the above expressions,
we introduce the assumption of linear backscatter and emis-
sivity soil moisture sensitivities. Possible approximation errors
of this assumption are discussed in Section II-D. Given linear
sensitivities, the error-free slope can be written as

E

Bo = 3 @)

where S and E are backscatter and emissivity soil moisture
sensitivities, respectively. The linear sensitivity assumption
further allows the decomposition of the backscatter signal
variance into Var (o) = S?03, where oy is the soil moisture
standard deviation. The resulting bias factor is

5] AN

B=——>7"—=|1
5203—1—072] +SQO'§

®)

where o, is the backscatter error standard deviation. Combin-
ing (7) and (8) results in the following expression for 3:

-1

E o2
B==|1+=% 9)
S 5203

where the first factor denotes the error-free slope 3y and the
second factor accounts for biases due to measurement errors.

C. Coefficient of Determination R’

The coefficient of determination of the relationship in (4) is
given by

Cov (O'g +1,e9 + 1/)2
Var (69 +n) Var (eg + v)

2
_ Cov (og, 6.9)
(Var (o) + 072]) (Var (eg) + 02)

which indicates the fraction of variance explained by the
linear relationship and is equivalent to the squared correlation

R® =

(10)

TABLE I
SIMULATION SCENARIOS CONSIDERED IN THIS STUDY

Scenario S&FE Kp ok (e}
High Precision TVM  0.07 (0.3dB) 15K 0.045 m3m=3
Low Precision TVM  0.12(05dB) 25K 0.045 m3m~—3

coefficient p? (we use the notation of R? throughout this
study). o, is the emissivity error standard deviation. The sec-
ond equality follows from the error term assumptions. By
decomposing the emissivity signal variance into Var (eg) =
E%g (see equivalent backscatter decomposition in Section II-
B), and using (7), it can be shown that

E?2S%0;
(8202 + 02) (E%03 + 02)

R? = (11)

where high soil moisture sensitivities and standard deviations
are favorable to strong active—passive correlations, while mea-
surement errors weaken the linear relationship. Note that R?,
in contrast to 3, depends on both the radar and radiometer error
terms, reflecting the symmetry of the correlation coefficient as
opposed to the slope parameter.

D. Monte Carlo Simulations

Analytical formulations developed in Sections II-B and II-C
rely on the assumption of linear backscatter and emissivity
soil moisture sensitivities to ensure closed-form expressions.
While this assumption is well-justified for simulations in this
study (linear correlations exceeding 0.98 in all cases), possi-
ble approximation errors are quantified here. We conducted
Monte Carlo simulations of all configurations considered in
this study (adding random errors to numerical model outputs
according to the two precision scenarios, not shown) and found
median (maximum) differences with respect to analytical
expressions of 0.001 (0.017) for R? and 0.01 (0.38) for f§.
Slope differences larger than 0.1 occurred only for magni-
tudes greater than 4. We conclude that the linear sensitivity
assumption introduces marginal errors that are negligible for
the purposes of this study.
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E. Simulation Scenarios

The closed-form expressions in (9) and (11) are the basis
for 3 and R? simulations conducted in this study. Table I lists
the required parameters, which are derived as follows.

1) Soil Moisture Sensitivities: Backscatter and emissivity
soil moisture sensitivities are derived from numerical simu-
lations, further described in Section III. For each vegetation
type, vegetation water content increment, and sensor con-
figuration, the sensitivity estimation is conducted separately
through linear regression along with a soil moisture range
of 0.05-0.30 m*m~3 (centered approximately on the mean
of globally observed soil moisture states and capturing 83%
of observed states based on SMAP data analysis, further
described in Section IV).

2) Measurement Errors: We quantify radar errors through
the K'p parameter and radiometer errors in units of Kelvin in
accordance with conventions for instrument precision alloca-
tion [38]. Measurement noise depends on several factors such
as instrument configuration, spatial resolution, and averaging.
We consider two scenarios: the “High Precision” scenario
assumes Kp = 0.07 (corresponding to 0.3 dB radar error
allocation) and a radiometer uncertainty standard deviation
of o =1.5 K. The superscript emphasizes the difference
in units with respect to o,. This scenario aims to provide
a lower uncertainty bound for relationships between satellite
radiometer and similar resolution scatterometer or aggregated
SAR signatures, as investigated in several previous studies [9],
[12], [20]. Note that these error estimates are conservative:
Satellite scatterometers can show calibration errors (including
noise-like and bias contributions) below 0.25 dB [39], and
extensively aggregated SAR observations are considered to
exhibit very low or negligible speckle noise [40]. Further,
the SMAP radiometer uncertainty budget of 1.3 K is slightly
lower than the estimate considered here [38]. However, since
several other factors exist that can lead to noise-like sig-
nal disturbances, such as subpixel heterogeneity or azimuth
angle effects [41], we consider the chosen error estimates
reasonable lower uncertainty bounds for the purposes of
this study. In the second scenario, named “Low Precision,”
we consider even more conservative error allocations of
Kp 0.12 (0.5 dB) and o = 2.5 K, respectively. This
scenario resembles a case where instrument noise or other
signal disturbances are enhanced, for instance, due to a lower
degree of SAR measurement aggregation. All calculations
in (9) and (11) are carried out in linear units. The emissivity
error term is converted using o, = oXT~! and assuming a
physical temperature of 7' = 288 K. The backscatter error
term is derived as described in the Appendix and assuming
average soil moisture conditions centered on the soil moisture
range used for sensitivity estimation.

3) Soil Moisture Variability: Soil moisture variability is a
scale-dependent parameter influenced by several geophysical
factors such as meteorological forcing, land use, and soil
properties [42]—[45]. To provide an estimate for scales relevant
to satellite observations, we analyzed SMAP soil moisture
retrievals globally and found a median temporal soil moisture
standard deviation of 0.044 m3m—3 (for details of this analysis,
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including the filtering of nonvegetated areas and regions with
negligible soil moisture variability, see Section IV). The spread
in these estimates was reasonable with an interquartile range of
0.028-0.063 m*m~3. According to previous studies, these esti-
mates can be considered conservative: Piles et al. [42] derived
global soil moisture standard deviations based on multiyear
satellite data time series and found a mode of approximately
0.045 m*>m—3, a significantly higher median (not specified),
and a considerable fraction of land areas exhibiting standard
deviations larger than 0.10 m>m~>. Famiglietti et al. [43]
analyzed data from thousands of in situ sensors and found a
spatial standard deviation interquartile range of approximately
0.06-0.08 m*m~? for scales relevant to satellite observations.
Based on the above considerations, and recognizing that
soil moisture variability can vary considerably geographically,
we consider the SMAP derived estimate (hereafter taken to be
0.045 m*m~—3) reasonable for the purposes of this study.

III. TOR VERGATA MODEL (TVM)

In this section, we describe the numerical model used
for backscatter and emissivity simulations. We characterize
the considered vegetation types and specify soil and sensor
parameters. Finally, we summarize previous TVM validation
studies.

A. Backscatter and Emissivity Simulations

The TVM is a discrete, radiative transfer-based microwave
scattering and emission model for vegetated soils [31]. Sim-
ulations of active and passive signatures follow a consistent
physical basis (for complete mathematical descriptions refer
to [46]-[48]). The soil-vegetation medium is divided into
three layers, indicated in Fig. 3. The rough surface soil is
represented through the integral equation method [49]. Stems
are modeled as vertically oriented cylinders. The upper canopy
is modeled through sublayers of randomly distributed cylinders
(representing branches, petioles, and needles) and disks (rep-
resenting leaves). The scattering and extinction characteristics
of the individual components are calculated using suitable
electromagnetic approximations [50]-[53]. Soil, stem, and
canopy contributions are combined by means of the matrix
doubling algorithm [49], taking higher order scattering effects
into account. The resulting bistatic scattering coefficient of
the soil-vegetation medium is the basis for both backscatter
and emissivity simulations. In the passive case, and assum-
ing thermal equilibrium, the emissivity of the soil-vegetation
medium is obtained from the bistatic scattering coefficient
using Kirchhoff’s law of energy conservation [54]. The bright-
ness temperature 7'b (measured by radiometer instruments) is
related to the emissivity through

Th=eT (12)
where 7' denotes the effective physical temperature. In the
active case, the backscatter coefficient o¥ (measured by radar
instruments) is obtained by evaluating the bistatic scattering
coefficient in the backward direction [31]. The backscatter
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Fig. 3.
indicated. Note different maximum heights for the three vegetation types.

coefficient can be decomposed into contributions from ele-
mentary scattering mechanisms as

0o_ 0 0 0 0
0 = Oyl + O doub + O mult + Uveg

(13)
where subscripts indicate contributions from soil surface scat-
tering, double bounce, multiple soil-vegetation interactions,
and vegetation volume scattering, respectively.

B. Wheat, Corn, and Forest Models

Three vegetation types are considered in this study: wheat,
corn, and coniferous forest. These configurations are chosen
since they differ significantly in geometry and have been exten-
sively validated in previous experimental studies. Individual
characteristics of model geometry (Fig. 3) and parameters
(Table II) are summarized in the following. This includes
the derivation of vegetation water content (VW ('), which is
defined as the total aboveground plant water per unit area and
is not a direct input for the numerical model.

In the case of wheat, elliptical disks in the stem and
upper canopy layers represent long-sheeted leaves. Stems are
modeled as thin cylinders with an areal density of 600 m~—2.
The full set of model parameters is based on in situ mea-
surements acquired in [55], further described in [56]. Here,
we model a wheat plant during its growing stage up to
70 cm, corresponding to a vegetation water content range
of approximately 0-2.5 kg/m”. Vegetation water content is
derived directly from the in situ dataset. In the case of corn,
small cylinders and disks in the upper canopy layer represent
petioles and leaves, respectively. Stems are thicker than in the
case of wheat and show a moderate areal density of 8 m—2.
The full parameter set is based on growth routines developed
in previous experimental campaigns [57]. Here, we model the
growing stage of a corn plant up to 200 cm, corresponding to a
vegetation water content range of approximately 0-6.7 kg/m?.
Contrasting to [57], we assume constant plant moisture con-
ditions to isolate the effects of growth, in accordance with
findings in [58]. Vegetation water content is derived from the
volumetric water fraction and volume of the individual plant
components. Volumetric and gravimetric water fractions are
related through an empirical relationship described in [59],
assuming a dry matter density of 0.25 g/cm?. In the case of
forest, small and large cylinders in the upper canopy represent

=,y = - & 4 A - ==, — &

AR SN i%ﬂﬁjmgsj 0>waf/‘//;i\\/ N a\;ﬁ\%
= o, N =

38 § 2= = S0 = 3 \>u;ﬂ) []%/-:\% \r;:/
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Corn

max. 11.5 m

<
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Simplified schematic of the TVM geometry for corn, wheat, and coniferous forest. The three layers, soil (1), stems (2), and upper canopy (3), are

TABLE I

SELECTED TVM VEGETATION PARAMETERS. MOISTURE
PERCENTAGES ARE GRAVIMETRIC

Wheat Corn Forest
Nominal
vwc 0-2.5 kg/m?  0-6.7 kg/m?  7-14.5 kg/m?
Geometry
Height 5-70 cm 10-200 cm 950* cm
Stem Density 600 m~2 8 m~2 0.05-0.1 m~—2
Stem Diameter 0.15-0.45 cm 0.5-3.5 cm 20* cm
Moisture
Stems ~87 % 80 % 50 %
Branches/Petioles - 80 % 60 %
Needles/Leaves 80 % 70 % 60 %

*Mean of truncated Gaussian distribution

needles and branches, respectively. A purely attenuating under-
story layer is included that is parametrized with an optical
depth of 0.2 Np [60]. The full parameter set is based on a
dedicated field study [61] and allometric relations developed
in [62]. Here, we model a coniferous forest stand with an
increasing areal density of 0.05-0.1 m—2 (500-1000 trees per
hectare), resulting in a dry biomass range of 60—130 tons per
hectare and a vegetation water content range of approximately
7-14.5 kg/mz. Tree height, stem diameter, and branch size
are modeled as truncated distributions that are assumed to be
constant. Vegetation water content is derived from the wet
biomass and gravimetric moisture content of the individual
plant components.

C. Soil and Sensor Parameters

We consider two different frequency configurations, namely,
L-band backscatter and L-band emissivity (L/L-band) and
C-band backscatter and L-band emissivity (C/L-band). These
configurations are analyzed for HH/H and VV/V active/passive
polarizations (hereafter referred to as “H-polarization” and
“V-polarization,” respectively), an incidence angle of 40°,
a radiometer frequency of 1.4 GHz (L-band), and radar
frequencies of 1.26 GHz (L-band) and 5.4 GHz (C-band).
Incidence angle effects are not investigated. Concerning soil
parameters, we consider a surface roughness root mean square
height of 1.0 cm and the autocorrelation length of 5.0 cm
with an exponential autocorrelation function. These parame-
ters correspond to typical roughness conditions in natural
settings and have been tested against experimental data in
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TABLE III

PREVIOUS TVM VALIDATION STUDIES FOR THE CONSIDERED VEGETATION AND SENSOR CONFIGURATIONS. ENTRIES MARKED WITH “*” INDICATE
DECIDUOUS FOREST STUDIES. ROOT MEAN SQUARE (RMS) ERRORS ARE PROVIDED IF AVAILABLE, LISTED IN THE SAME ORDER AS THE

CORRESPONDING REFERENCES. UNITS CORRESPOND

TO DECIBEL (DB), EMISSIVITY (=), AND KELVIN (K)

Vegetation Type  Sensor Type  Frequency RMS Error Reference

Wheat Active C-band (5.3 GHz) 1.78-2.23 (dB), 2.0 (dB) [571, [63]
Active L-band (1.3 GHz) 1.5-3.0 (dB) [64]
Passive L-band (1.4 GHz) 0.03 (-), 6.44-9.15 (K) [56], [65]

Corn Active C-band (4.6 — 5.4 GHz) 0.96-1.44 (dB), —, 1.57 (dB) [57], [66], [67]
Active L-band (1.2 — 2.5 GHz) —, 1.39 (dB) [66], [67]
Passive L-band (1.4 GHz) 4.14-9.83 (K) [65]

Forest Active C-band (5.3 GHz) 1.01 (dB) [68]
Active L-band (1.2 GHz) —, 0.95 (dB), — [48], [69]%, [66]
Passive L-band (1.4 GHz) —, 2.56 (K), 0.0076 (-), — [471*, [70], [71]*, [59]

previous studies [31], [56], [57]. The conversion between
permittivity and soil moisture content is conducted using the
dielectric model of [72], assuming a nominal clay fraction
of 15%.

D. Validation With Experimental Data

Table III provides an overview of previous TVM validation
studies for each vegetation type and sensor configuration
considered here. Root mean square (RMS) errors between
observations and simulations are listed where possible. Since
the basic models are similar [47], [48], both coniferous and
deciduous forest studies are included. In summary, RMS errors
are in the range of 0.95-3.0 dB for active simulations and
2.56-9.83 K and 0.0076-0.03 emissivity units for passive
simulations. Notice that errors exceeding 4 K, reported in [65],
are for large dynamic ranges on the order of 25-80 K and
with respect to ground-based observations of limited absolute
accuracy (3 K for the wheat case). Given that experimental
data sets suffer from their own error sources such as instru-
ment noise, the reported model-observation agreements can
be considered reasonable. Overall, the presented validation
record provides a satisfactory basis for conducting simula-
tions across several vegetation types and frequencies in this
study.

IV. SATELLITE DATA

All satellite data analysis in this study is conducted in
the period of April 13 to July 7, 2015, consistent with
SMAP radar data availability. To estimate global soil moisture
statistics in Section II-E, we use SMAP radiometer soil
moisture retrievals [73]. Only recommended quality retrievals
are included based on the provided flags. For consistency with
our simulations we mask nonvegetated areas based on Interna-
tional Geosphere-Biosphere Programme (IGBP) classification
and regions of negligible soil moisture variability during
the study period (o9 < 0.01 m*m~3). This excludes roughly
13.5% and 2.5% of global land area, respectively, affecting
mostly desert regions that are not relevant to the analysis
conducted here. To assess global active—passive relationships
in Section V-D, we analyze observations from SMAP and
the Advanced Scatterometer (ASCAT) instrument onboard the
EUMETSAT MetOp satellites [74]. For SMAP, we use L-band
V-polarized T'b observations that are posted on a 36-km global
EASE-grid [73]. The data are converted to emissivity using

ancillary effective land surface temperature information that
is used for SMAP science products and provided within
the SMAP project public-distribution data files. We also use
SMAP L-band VV-polarized backscatter observations [75],
which we aggregate to the radiometer grid-scale excluding the
nadir region in a 90-km range. For ASCAT, we use C-band
VV-polarized backscatter observations normalized to 40° inci-
dence angle, obtained from the H115 soil moisture climate
data record [76]. We re-grid the data to match with SMAP
through nearest neighbor resampling, using both MetOp-A and
MetOp-B observations to maximize temporal overlap. We filter
all data for radio frequency interference, mountainous terrain,
frozen or snow-covered regions, and proximity to water bodies,
using SMAP ancillary data. Nonvegetated areas and regions
of negligible soil moisture variability are also excluded (see
methodology described above). The resulting active and pas-
sive data pairs are used to estimate 3 and R? globally through
linear regression, requiring a minimum of ten paired observa-
tions and excluding regions with nonnegative slopes. Global
time-averaged vegetation water content estimates are derived
from SMAP ancillary data [77] based on a Normalized Dif-
ference Vegetation Index (NDVI) climatology observed by the
MODIS instrument.

V. RESULTS AND DISCUSSION

A. Slope

Fig. 4 shows simulation results of the active-passive slope /.
The slope quantifies the coupling strength between backscatter
and emissivity signatures, with higher magnitudes (larger
negative values) indicating stronger coupling. Results are
discussed with reference to radar and radiometer soil moisture
sensitivities (Fig. 6) where applicable. Our discussion focusses
on the two precision scenarios, hereafter referred to as “slope”
or “3.” The error-free slope [y is considered purely as a
theoretical upper bound.

Both the L/L-band and C/L-band configurations show
nonzero slopes. This suggests that coupling between backscat-
ter and emissivity signatures can be established across fre-
quencies and over a range of vegetation conditions. Nonzero
slopes (defined here as magnitudes larger than 0.5) occur
up to 6.3 kg/m? in L/L-band and 2 kg/m? in C/L-band,
assuming V-polarization and the “High Precision” scenario.
In H-polarization, slope magnitudes are retained for slightly
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Slope 3 (—) between backscatter and emissivity, simulated after (9). Results are displayed for H-polarization (upper two rows) and V-polarization

(lower two rows). Axis limits are adjusted to fit the dynamic ranges of the respective polarizations and vegetation types. Low and high measurement precision
scenarios and error-free conditions (3y) are indicated. The area below [y is shaded gray since it presents an upper bound for the magnitude of 3.

higher vegetation water contents. For the “Low Precision”
scenario, generally lower magnitudes arise.

Slope magnitudes show an overall decreasing trend with
increasing vegetation water content. This is consistent with
findings of previous studies [20], [32], [36] and suggests that
the active—passive coupling strength decreases with increas-
ing vegetation cover. According to (9), the trend can be
explained by decreasing radar and radiometer soil mois-
ture sensitivities. Three mechanisms can be differentiated:
First, for decreasing radar sensitivities, slope magnitudes
decrease due to increasing bias effects (visible as large differ-
ences between [y and (3). Second, for decreasing radiometer
sensitivities and constant or increasing radar sensitivities,
slope magnitudes decrease since (3p is shifted toward zero
(visible, e.g., for corn in L/L-band). Third, for decreasing

radar and radiometer sensitivities, both above-named effects
can occur jointly (visible, e.g., in the case of forest in
L/L-band).

The first mechanism, that is, the occurrence of bias effects,
is particularly noteworthy since it is not accounted for in
previous simulation studies [31], [32]. Specifically, signif-
icant biases are evident for configurations that show low
radar soil moisture sensitivities (mostly occurring in C/L-
band given moderate or high vegetation cover conditions).
This suggests that the coupling strength that is observable
by satellite instruments (denoted by ) can be significantly
lower than the underlying linear relationship (denoted by
(Bp) when the backscatter soil moisture signal becomes small
with respect to the measurement uncertainty. Note that (3,
as opposed to 3y, represents the “optimal” (in a least-squares
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Fig. 5. Coefficient of determination R? (—) of the linear relationship between backscatter and emissivity, simulated after (11). Red shading indicates a

threshold of R? > 0.25. Figure panels are the same as in Fig. 4.

sense) slope parameter for estimating emissivity signatures
in a given precision scenario. While a variety of measure-
ment error levels can occur in practical applications, errors
as low as Kp < 0.01 would lead to substantial biases (not
shown) as backscatter sensitivities converge to zero for cer-
tain configurations (Fig. 6). Consequently, and since satel-
lite data may include noise-like signal disturbances due to
azimuth angle effects or subpixel heterogeneity, slope para-
meter biases may apply even when backscatter observations
are extensively averaged. Slope biases may also occur as a
result of negligible soil moisture variability (not investigated).
Potential implications for algorithm parameter estimation in
the context of SMAP are beyond the scope of this study
but deserve attention in future research. For interpretation
of the above descriptions, note that bias magnitudes effec-
tively scale with the dB-unit backscatter sensitivity S%2
(instead of its linear unit counterpart .S) since the Kp error

model leads to a constant backscatter error allocation in
dB units.

Dynamics of [ vary between different vegetation types. This
indicates a dependence on plant structure and geometry in
addition to the aforementioned more general dependence on
vegetation cover, consistent with findings of previous studies
[32]. The main distinctions are listed in the following. Wheat
simulations show low slope dynamics in most cases, explained
by well-retained soil moisture sensitivities for the full vegeta-
tion water content range. As the only exception, wheat simu-
lations in C/L-band and V-polarization show nonmonotonic
slope dynamics. This is explained by a sharp decrease of
C-band radar sensitivities, leading to a sharp increase in (3
magnitudes that causes (5 magnitudes to temporarily increase
until noise effects become dominant. While we expect gen-
erally stronger vegetation attenuation at higher frequencies
[78], this behavior is likely attributed to an overestimation of
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C-band V-polarized signal attenuation from the dense vertical
wheat stems, further discussed in Section V-C. By the same
explanation, the sharp increase of g magnitudes likely causes
an overestimation of the effect of different noise levels, that
is, § magnitude differences between the two precision scenar-
ios (larger than 5 at the inflection point) significantly exceed
typical differences (median of 0.4 for all other configurations).
For corn, we find significant slope dynamics in all configura-
tions, which is explained by decreasing radar sensitivities due
to attenuation effects (C/L-band) and temporarily increasing
radar sensitivities due to double bounce (L/L-band). Note
that corn simulations, in contrast to wheat, exhibit generally
monotonic slope dynamics since C-band radar sensitivities do
not show a disproportionally sharp or polarization-dependent

decrease. For forest, we find overall low slope magnitudes
and dynamics due to bias effects (C/L-band) or low radar and
radiometer soil moisture sensitivities (L/L-band).

B. Coefficient of Determination R?

Fig. 5 shows simulation results of the coefficient of
determination R?, which quantifies the strength of the lin-
ear relationship between active and passive signals. Only
the two precision scenarios are displayed since we find
approximately unity (larger than 0.99) correlations for the
error-free case. Results are discussed with reference to radar
and radiometer soil moisture sensitivities (Fig. 6) where
applicable.
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Both the L/L-band and C/L-band configurations show
considerable active—passive correlations. This suggests that
a linear relationship between backscatter and emissivity,
as embedded in the SMAP downscaling algorithm, can hold
across frequencies and over a range of vegetation conditions.
Moderate or higher correlations (defined as R? > 0.25 in this
study, noting that synergies can retain meaningful information
below this threshold) are retained up to 4 kg/m? in L/L-band
and 1.5 kg/m? in C/L-band, assuming V-polarization and the
“High Precision” scenario. Note that both frequency config-
urations show comparable R? magnitudes for low vegetation
water contents, suggesting that the strength of the linear rela-
tionship across frequencies (C-band backscatter and L-band
emissivity) can be comparable to the original SMAP config-
uration (L-band backscatter and L-band emissivity) for low
vegetation cover conditions. Note also that the vegetation cover
thresholds are sensitive to vegetation type, precision scenario,
and polarization: for example, generally lower thresholds arise
for the “Low Precision” scenario, while higher thresholds are
obtained in H-polarization. Finally, note that vegetation water
content thresholds for R? are lower with respect to thresholds
reported for 3. This highlights the complementarity of both
metrics with respect to potential downscaling applications:
while low correlations may indicate increasing accuracy limi-
tations, nonzero slopes can imply that active—passive synergies
still contain useful information.

Magnitudes of R? decrease with increasing vegetation water
content. This finding is in agreement with previous studies
[15], [20] and reflects decreasing radar and radiometer soil
moisture sensitivities. Radar sensitivities act as the main
limiting factor, such that R? dynamics in Fig. 5 are in close
agreement with S dynamics in Fig. 6 (notice that, equivalent
to aforementioned (3 biases, R dynamics scale with the
dB-unit backscatter sensitivity S?Z). Note also that C/L-band
V-polarized simulations of wheat might underestimate R>
magnitudes due to an overestimation of signal attenuation,
further discussed in Section V-C.

C. Radar and Radiometer Sensitivities to Soil Moisture

Fig. 6 shows simulated backscatter and emissivity soil mois-
ture sensitivities. Contributions from double bounce, multiple
scattering, and surface scattering are indicated. Emissivity
and surface scattering sensitivities are indicative of one- and
two-way vegetation attenuation, respectively. Insets show the
dB-unit backscatter sensitivity S5,

Increasing vegetation cover generally leads to decreasing
soil moisture sensitivities. This trend is in agreement with
previous studies [24], [79] and is explained by increasing
signal attenuation from plant constituents. Note that linear
unit backscatter sensitivities can temporarily increase when
strong double bounce effects occur, such as for corn in
L-band. Contrarily, backscatter sensitivities in dB units show
generally monotonic decreasing trends. Similar results are
reported in [80].

We describe vegetation-type-specific trends in the following,
discussing model geometry (Fig. 3) where applicable. In the
case of wheat, soil moisture sensitivities are generally well
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retained over the vegetation water content range. As the only
exception, C-band VV-polarized backscatter shows a strong
sensitivity decrease. This effect is attributed to vertical stem
attenuation, as suggested by its polarization dependence and
findings in previous studies [56], [57]. A potential overesti-
mation of stem attenuation is discussed later in this section.
Interactions with the canopy are generally low at L-band
such that soil scattering is dominant. Considerable multiple
scattering is observed for C-band HH-polarized radar signa-
tures, suggesting interactions with leaves in the canopy. In the
case of corn, emissivity sensitivities show a strong initial
decrease (suggesting increasing stem and canopy attenuation)
but retain considerable magnitudes even for high vegetation
water contents. Emissivity sensitivities are consistently higher
in H-polarization with respect to V-polarization, suggesting
polarization-dependent attenuation from the vertically oriented
stems. For L-band backscatter sensitivities, double bounce
effects are dominant in both polarizations. VV-polarized dou-
ble bounce effects peak and decline for lower vegetation water
contents with respect to HH-polarization, suggesting again
polarization-dependent signal interactions with the vertical
stems. For C-band backscatter sensitivities, strong attenuation
and multiple scattering effects are evident in both polariza-
tions, the latter mechanism suggesting interactions with the
randomly distributed upper canopy constituents. In the case
of forest, backscatter and emissivity sensitivities are generally
low, with C-band backscatter showing almost no sensitivity.
This is in agreement with the expectation of substantial
canopy attenuation, which has been attributed mainly to branch
interactions in previous studies [59], [60]. Note, however,
that L-band HH-polarized backscatter retains considerable
sensitivity due to double bounce effects.

Recent studies suggest that radiative transfer modeling of
long vertical stems can lead to an overestimation of vegetation
attenuation [81], [82], particularly for high areal stem densi-
ties. This potentially explains the strong simulated sensitivity
decrease in C-band VV-polarized radar signatures over wheat,
leading to anomalous slope dynamics in this case (Figs. 4
and 7). Despite comparisons with satellite observations show
reasonable agreements in all other cases (Fig. 7), simulations
in this study could underestimate soil moisture sensitivities
for configurations where unaccounted transmission or coherent
scattering effects (e.g., due to large canopy gaps or inho-
mogeneous scatterer distributions) are important. While this
would translate into more conservative rather than overes-
timated 3 and R? magnitudes, comparisons of our results
with full-wave simulations are desirable targets for future
studies.

D. Comparison With Global Satellite Retrievals

Fig. 7 compares (3 and R? simulations to global statistical
retrievals from SMAP and ASCAT data. Simulations corre-
spond to the “High Precision” scenario (Section II-E).

Simulations and satellite retrievals show comparable 3 mag-
nitudes that exhibit similar trends with increasing vegetation
cover. As the only exception, wheat simulations in C/L-band
overestimate slope magnitudes for vegetation water contents
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around 1 kg/m?. This is likely explained by an overestimation
of vegetation attenuation as discussed in Section V-C. For
R?, while simulations reasonably capture the main retrieval
density hotspots and trends, unresolved retrievals remain
particularly for intermediate vegetation cover conditions. R?
retrievals also show significantly larger spreads with respect
to (. This indicates an enhanced sensitivity to confound-
ing factors in addition to vegetation cover, consistent with
findings of previous studies [29], [36]. Specifically, unresolved
retrievals around 2-3 kg/m? are partly attributed to regions
with enhanced soil moisture variability (e.g., Sudano-Sahel,
not shown), explaining that simulations (based on median
global soil moisture variability conditions) underestimate R>
magnitudes in these cases. A potential overestimation of
vegetation attenuation for wheat in C/L-band may be another
contributing factor. Note that comparisons between our simu-
lations and satellite retrievals inherently include a number of
potential sources of mismatch, including unresolved vegetation
structural or soil roughness conditions, subpixel heterogene-
ity, time-varying land cover conditions, or global vegeta-
tion water content estimates, based on optical data. Overall,
while satellite observations encompass a wide range of land
cover conditions that cannot be fully resolved by a limited
number of model configurations, the vegetation-type-specific
simulations conducted in this study reasonably capture mag-
nitudes and major trends found across global satellite-scale
retrievals.

VI. CONCLUSION

In this study, we investigate the relationship between active
and passive microwave signatures that capture surface soil
moisture changes under a vegetation canopy. We conduct
numerical simulations and analyze global satellite data to find
that a linear relationship—with slope [ and coefficient of
determination R?—between backscatter and emissivity can be
established over a range of vegetation conditions. We quantify
the range and extent of the relationship as a function of the
vegetation water content.

The coupling between active and passive signals decreases
with increasing vegetation water content. Moderate or higher
correlations (nonzero slopes) are simulated up to 4 kg/m?
(6.3 kg/m?) for L-band backscatter and L-band emissivity
and 1.5 kg/m? (2 kg/m?) for C-band backscatter and L-band
emissivity. While these thresholds depend on polarization
and measurement error assumptions, our results suggest
that linear active—passive relationships can be established
within vegetation cover ranges relevant to the SMAP and
Sentinel-1/SMAP combined soil moisture products [9], [12].
Active—passive relationships also depend on the vegetation
type, which is explained by different scattering and attenuation
mechanisms affecting radar and radiometer responses. The
simulations capture magnitudes and trends found across
global satellite-scale retrievals; however, simulations track
retrievals only if measurement errors are taken into account.
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Analytical formulations, developed in this study, suggest that
the active—passive slope is biased (and the linear relationship
is weakened) when radar (radar and radiometer) measurements
are subject to noise. Slope biases increase as the radar soil
moisture sensitivity decreases, particularly affecting the
C-band radar and L-band radiometer configuration for moder-
ate to high vegetation cover conditions. While such effects are
not accounted for in previous simulation studies [31], [32],
potential implications for algorithm parameter estimation in
the context of SMAP deserve attention in future research.

This study investigates the first foundation of the SMAP
downscaling approach, that is, the covariation of active and
passive microwave signatures. The second foundation, that
is, the combination of multiresolution data, includes additional
aspects (e.g., subpixel heterogeneity) that require dedicated
investigations in future studies. Further studies may also assess
coherent scattering and canopy gap transmission effects, not
accounted for in the radiative transfer scheme adopted here,
and different soil roughness and soil moisture variability
conditions, not investigated here. Overall, this study provides
new insights into the coupling of active and passive microwave
signals over land, aimed at assisting synergies between current
and future satellite sensors across frequencies.

APPENDIX

We consider the backscatter terms o and 08 from (2).
A standard error model for multiplicative noise is given by

o' =0)(1+ Kpw) = op + o) Kpw

where w ~ N (0, 1) and K'p is a dimensionless term scaling the
backscatter noise standard deviation. Following the notation of
(2) we define n = ¢ Kpw, noting that Couv(n, o)) = 0. The
expectation and variance of 7 are given by

Eln = E [0) Kpw] = KpE [09] E[w] =0
0'72] = Var (08 pr) =Kp’FE {(08)2}

with E[.] denoting the expected value and the last equality
following

Var (0§ Kpw) = Kp*Var(ojw)
= kp* {Cov[(09) ,?| + B [(69)°] E [*] —E [o] "}

=Kp’ F [(02)2]

since
Cov [(08)2 ,wQ} =0
E [wQ} =1
E agw} = 0.
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