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ARTICLE INFO ABSTRACT
Keywords: Tropical peatlands are estimated to hold carbon stocks of 70 Pg C or more as partly decomposed organic matter,
Tropical peatlands or peat. Peat may accumulate over thousands of years into gently mounded deposits called peat domes with a

Spaceborne laser altimetry
Ground point classification
Aerial laser scanning

relief of several meters over distances of kilometers. The mounded shapes of tropical peat domes account for
much of the carbon storage in these landscapes, but their subtle topographic relief is difficult to measure. As
many of the world’s tropical peatlands are remote and inaccessible, spaceborne laser altimetry data from mis-

ATLAS
GEDI sions such as NASA’s Global Ecosystem Dynamics Investigation (GEDI) on the International Space Station (ISS)
Spatial filter and the Advanced Topographic Laser Altimeter System (ATLAS) instrument on the Ice, Cloud and land Elevation

Satellite-2 (ICESat-2) observatory could help to describe these deposits. We evaluate retrieval of ground eleva-
tions derived from GEDI waveform data, as well as single-photon data from ATLAS, with reference to an airborne
lidar dataset covering an area of over 300 km? in the Belait District of Brunei Darussalam on the island of Borneo.
Spatial filtering of GEDI L2A version 2, algorithm 1 quality data reduced mean absolute deviations from
airborne-lidar-derived ground elevations from 8.35 m to 1.83 m, root-mean-squared error from 15.98 m to 1.97
m, and unbiased root-mean-squared error from 13.62 m to 0.72 m. Similarly, spatial filtering of ATLAS ATL08
version 3 ground photons from strong beams at night reduced mean absolute deviations from 1.51 m to 0.64 m,
root-mean-squared error from 3.85 m to 0.77 m, and unbiased root-mean-squared error from 3.54 m to 0.44 m.
We conclude that despite sparse ground retrievals, these spaceborne platforms can provide useful data for
tropical peatland surface altimetry if postprocessed with a spatial filter.

organic matter, or peat (Richards, 1952), that is typically about 50%
carbon by mass (Warren et al., 2012). Thus, the gently convex shape of
many tropical peat deposits (Polak, 1933; Anderson, 1964; Lahteenoja
et al., 2009) accounts for much of their carbon storage (Cobb et al.,
2017; Silvestri et al., 2019; Vernimmen et al., 2020), which amounts to
over 70 Gt globally (Page et al., 2011; Draper et al., 2014; Dargie et al.,
2017; Warren et al., 2017). Where peatlands have dried out, primarily
because of drainage of these deposits for agriculture (Page and Hooijer,
2016), their carbon stores become vulnerable to decomposition and
catastrophic fire (Hooijer et al., 2012; Miettinen et al., 2017; Cobb et al.,

1. Introduction

The terrain of tropical peatlands is difficult to measure because they
can support dense forest canopies (Manuri et al., 2017; Davenport et al.,
2020; Honorio Coronado et al., 2021) up to 60 m tall (Anderson, 1983),
covering an underlying landscape relief of only meters over horizontal
distances of kilometers (Anderson, 1964; Hooijer, 2005; Jaenicke et al.,
2008; Cobb et al., 2017; Davenport et al., 2020). This subtle relief arises
from the accumulation over thousands of years of partly decayed
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Abbreviations

ATLAS  Advanced Topographic Laser Altimeter System
GEDI Global Ecosystem Dynamics Investigation
GLAS Geoscience Laser Altimeter System

ICESat  Ice, Cloud, and land Elevation Satellite

1SS International Space Station
LP DAAC Land Processes Distributed Active Archive Center

MAD Mean absolute deviation
NASA USA National Aeronautics and Space Administration
RMSE Root-mean-square error

ubRMSE Unbiased root-mean-square error

2020). Curbing decomposition and fire by rewetting tropical peatlands
(Dohong et al., 2018) could help to meet global climate targets (Leifeld
et al., 2019), but requires an understanding of the gradients that drive
water flow. Tropical peatland surface gradients tend to be small because
peat accumulates where decomposition is retarded by waterlogging,
filling in topographic lows and creating a surface topography that is
smooth at the landscape scale (Cobb et al., 2017). These surface gradi-
ents, however small, control the direction of water flow and also influ-
ence many ecological processes in peatlands (Polak, 1933; Anderson,
1964). Thus, maps of the terrain of tropical peatlands are essential for
their management and restoration, and also important for understand-
ing their ecology and carbon storage.

Many tropical peatlands are vast and inaccessible (Dargie et al.,
2017; Honorio Coronado et al., 2021), and therefore researchers have
explored the use of remote sensing approaches to measure their topog-
raphy, using both airborne (Vernimmen et al., 2019, 2020; Davenport
et al., 2020) and spaceborne platforms (Jaenicke et al., 2008; Ballhorn
et al., 2009; Berninger and Siegert, 2020). Some peatlands in Southeast
Asia are now covered by discrete-return airborne lidar datasets
commissioned by governments or private organizations (Vernimmen
et al., 2019). Discrete-return airborne lidar datasets are created by laser
systems mounted on aircraft typically flying at heights of 500 m—~1000 m
and emitting tens of thousands to hundreds of thousands of infrared
pulses per second (Lim et al., 2003; Liu, 2008). Some of the energy from
these pulses is reflected back from ground and canopy surfaces and
received by a detector on the aircraft. In discrete-return lidar systems,
peaks in the reflected energy that exceed a noise threshold are inter-
preted as reflections, or “returns”, from surfaces on the ground and in
the canopy. The geolocation of the reflecting surface is determined with
a typical accuracy of about 15 cm vertically and 20-200 cm horizontally
based on the travel time of the pulse to and from the surface, and the
precise position and orientation of the aircraft-mounted laser (Lim et al.,
2003; Liu, 2008). A subset of the geolocated returns is delivered to the
client, usually including at least the last return (the lowest surface that
reflected enough energy to exceed the threshold), and often including
also the first return and up to four returns in between (Lim et al., 2003;
Liu, 2008; Mallet and Bretar, 2009).

Deriving a terrain map from discrete-return lidar data requires
identifying which returns were reflected from canopy elements or other
objects, and which were reflected from the ground. This task, called
ground point classification, originally required a substantial amount of
manual processing (Sithole and Vosselman, 2004), and therefore
became an active area of research. Over the last 20 years, a large number
of ground point classification algorithms have been proposed (Sithole
and Vosselman, 2004; Roberts et al., 2019). Though they vary in other
respects, most algorithms create a model of the ground surface and
accept or reject each return as having been reflected from the surface
based on spatial information, or “context,” in some neighborhood (Sit-
hole and Vosselman, 2004). The most widely applied algorithms use
only the inferred %, y, z positions of the reflecting surfaces corresponding
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to the returns (Axelsson, 2000; Vosselman, 2000; Kraus and Pfeifer,
2001; Zhang et al., 2003, 2016; Evans and Hudak, 2007; Pingel et al.,
2013); typically, additional information (such as intensity of the returns,
or other remote sensing products) is not used and prior information is
provided only through the parameterization of the filter. Many ground
point classification algorithms work similarly well on real-world ex-
amples (Sithole and Vosselman, 2004; Chen et al., 2013) and digital
terrain maps created from airborne lidar with these algorithms are often
used as reference terrain maps in peatlands (Jaenicke et al., 2008;
Ballhorn et al., 2011; Berninger and Siegert, 2020).

As airborne lidar acquisition is expensive for large areas (Manuri
et al., 2017; Vernimmen et al., 2020), coverage is limited, and many
existing datasets are not publicly available, lidar from spaceborne
platforms has been examined as a source of tropical peatland terrain
elevation data in several studies (Ballhorn et al., 2009, 2011; Vernim-
men et al., 2020; Berninger and Siegert, 2020). Ballhorn et al. (2009,
2011) explored the measurement of peatland topography using the first
operational spaceborne lidar mission, the Geoscience Laser Altimeter
System (GLAS) on the Ice, Cloud, and land Elevation (ICESat) satellite.
GLAS data products record the amount of energy from each laser pulse
that was reflected back to the satellite in elevation intervals of 15 cm
near the earth’s surface (full waveform data; Harding and Carabajal,
2005; Schutz et al., 2005). Because GLAS data coverage was sparse, with
a 172 m along-track spacing between pulses and a track spacing of
29-30 km near the equator (Schutz et al., 2005; Abdalati et al., 2010),
many peatlands were hit by very few GLAS pulses, or were missed
entirely.

The ongoing Global Ecosystem Dynamics Investigation (GEDI)
mission, like GLAS, provides full waveform data, but is designed to
provide denser spatial coverage and better penetration of complex
tropical forest canopies (Dubayah et al., 2020). GEDI's denser spatial
coverage in the tropics arises partly from its orbit on the International
Space Station, covering 51.6°S to 51.6°N at a lower altitude than ICESat
(419 km vs. 600 km). In addition, GEDI’s three lasers have a faster pulse
rate (242 Hz vs. 40 Hz) and operate concurrently, with one of these
lasers’ output split into two beams (“coverage beams; ” Dubayah et al.,
2020). The coverage beams produce 4.2 mJ pulses, and the full power
beams 10.5 mJ pulses, that are dithered to create a total of 8 tracks on
the ground and are designed to penetrate extremely dense canopy cover
(Wake et al., 2019). The GEDI mission aims to measure canopy structure
metrics and above-ground biomass based on profiles of reflected laser
energy from the ground to the top of the canopy; the accuracy of these
metrics depends on the accuracy of the estimated ground elevation
(elev_lowestmode in the GEDI L2A product; Hofton and Blair, 2019)
because canopy height metrics are obtained by subtracting the ground
elevation from canopy elevations. The accuracy and precision of GEDI
L2A geolocation and ground elevation have been evaluated now in a
number of studies, including forests and surface waters (Adam et al.,
2020; Frappart et al., 2021; Liu et al., 2021; Xiang et al., 2021), although
we are not aware of any studies to date exploring its use in tropical
peatlands.

The Advanced Topographic Laser Altimeter System (ATLAS), in
contrast to GEDI, has primary and secondary missions of measuring
changes in polar land and sea ice; nonetheless, ATLAS has a tertiary
objective of estimating vegetation biomass (Abdalati et al., 2010), and
has been examined as a tool for describing terrain and canopy structure
in a number of forested ecosystems (Neuenschwander et al., 2020;
Berninger and Siegert, 2020; Davenport et al., 2020; Vernimmen et al.,
2020; Xing et al., 2020). Like GEDI, ATLAS provides altimetric data
based on the travel time of reflected energy from laser pulses; however,
ATLAS produces lower-energy pulses (45 and 175 pJ vs. 4.2 and 10.5
mJ) at a higher frequency (10 kHz vs. 242 Hz) from a higher altitude
(~500 km vs. ~419 km) but with a smaller nominal footprint diameter
(~11 m vs. ~25 m), and instead of characterizing the reflected energy
from the pulse statistically, provides data on individual photons of the
laser wavelength received by the detector on the satellite (Neumann
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Fig. 1. Study site in Brunei Darussalam. (a) Brunei (circled) and several ground
tracks for GEDI (green) and ATLAS (fuchsia). (b) Site location, showing peat-
lands (brown) and area with airborne lidar data (gray). (For interpretation of
the references to color in this figure legend, the reader is referred to the Web
version of this article.)

et al., 2019; Wake et al., 2019; Dubayah et al., 2020; Magruder et al.,
2021). ATLAS uses a green (532 nm) laser because of the maturity of
photon-sensitive detectors at that wavelength (Neumann et al., 2019),
with the tradeoff of a higher background solar irradiance and lower
typical reflectance of both canopy and ground elements at this wave-
length (Ollinger, 2010) than at the near-infrared (1064 nm) wavelength
used in GEDI (Wake et al., 2019) and many airborne lidar systems (Lim
et al., 2003; Liu, 2008). Like the GEDI instrument, ATLAS produces
multiple beams: in the case of ATLAS, the pulse from a single laser is split
by a diffractive optical element into six beams, the stronger of which
(“strong beams”) have an energy per pulse about 4 times that of the
weaker beams (“weak beams”; Neumann et al., 2019). ATLAS data
products provide geolocated photons (in data product ATL03), instead
of waveforms or peaks, with a higher-level product (ATLO8) that clas-
sifies photons as ground or canopy using a clustering algorithm called
Differential, Regressive and Gaussian Adaptive Nearest-Neighbor, or
DRAGANN (Neuenschwander and Pitts, 2019).

Several recent studies have explored ATLAS as a tool for character-
izing tropical peatland terrain and canopy structure (Berninger and
Siegert, 2020; Davenport et al., 2020; Vernimmen et al., 2020), and
showed that the dense canopy in some tropical peatlands can be

a
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problematic, as it may, in places, prevent the sensor from receiving any
photons reflected from the ground (Berninger and Siegert, 2020;
Davenport et al., 2020). These studies were able to obtain tropical
peatland terrain data from ATLAS by focusing on degraded areas with
thinner canopies and forest gaps, but there are still vast peatland areas
that are covered with dense vegetation, especially in the less-described
peatlands of New Guinea (Bleeker, 1983), the Congo (Evrard, 1968;
Dargie et al., 2017), and the Amazon (Lahteenoja et al., 2009; Hastie
et al., 2022).

In this study, we compare GEDI and ATLAS data to an airborne lidar
dataset covering an area of over 300 km? of forested tropical peatland in
the Belait District of Brunei Darussalam. We first examine the full
waveform data from the GEDI L1B product and geolocated bounce point
data from the ATLAS ATLO3 product to illustrate the general agreement
between these and the reference discrete-return airborne lidar data. We
then evaluate ground elevations from the GEDI L2A dataset and ATLAS
ATLO8 dataset with reference to ground returns from airborne lidar in
the neighborhood of each GEDI or ATLAS shot. Because of dense forest
cover—differing from previous studies but similar to the less-explored
peatlands of the tropics—we find that standard GEDI and ATLAS prod-
ucts in our study area often place the ground elevation within the can-
opy. We therefore explore whether GEDI and ATLAS can nonetheless
provide useful terrain elevations in tropical peatlands with a dense
canopy, if the data are postprocessed with a spatial filter.

2. Materials and methods

We first describe the vegetation and terrain in the study area, and
outline the pre-processing of the three datasets: airborne lidar, GEDI and
ATLAS. Next, we present our methods for spatial filtering of GEDI and
ATLAS ground elevations, and how the results were evaluated with
reference to airborne lidar.

2.1. Study site

The study area lies in the Belait district of Brunei Darussalam, on the
northwest coast of Borneo (Fig. 1). Vegetation consists primarily of
intact, closed-canopy peat forest (Fig. 2) dissected by tributaries to the
Belait River, with a few cleared areas from discontinued logging con-
cessions, and a naturally open, savanna-like vegetation type referred to
as padang keruntum (after a local name for the dominant tree, Com-
bretocarpus rotundatus) in the southwest corner of the study area. In the
forested areas, the canopy is multilayered, with a continuous or

Fig. 2. Forest cover in the study area. (a-c) Undisturbed forest within the area of full point cloud data, from above (a, ¢) and just below (b) the 50 m-high canopy. (d)
Surface microtopography created by buttresses, giant rhizomes and partly decayed organic matter.
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discontinuous upper canopy that is in most places dominated by the tall
dipterocarp tree Shorea albida, a lower canopy comprising a range of
other tree species, and a dense understory of giant herbs and saplings.
The underlying terrain is characterized by small surface gradients of
about 1 m/km, on which is superposed a complex microtopography with
a relief of about 30-50 cm created by buttresses, giant rhizomes and
partly decayed organic matter (Fig. 2).

The vegetation types of peatlands in northwest Borneo were
described by Anderson (1961, 1963, 1964) based on sample plots and
transects throughout Brunei and adjacent Sarawak (Malaysia). In the
savannah-like padang keruntum vegetation type, Anderson (1961)
observed an average of 297 trees ha ', with the largest trees 12.2-15.2
m tall, and an average tree basal area of 8.3 m? ha~l. In the
closed-canopy vegetation types (excluding the Tristania-Parastemon as-
sociation, which occupies a narrow transition zone around padang
keruntum), Anderson (1961) observed an overall canopy height range of
27.4-57.9 m, with averages of forest density by forest type ranging
504-756 trees ha ' and average basal area ranging from 33.5 to 49.6
m? ha™!. We have not found any studies of canopy cover in these forest
types preceding the airborne lidar analysis conducted here (section
2.2.1).

2.2. Datasets and pre-processing

We describe here the processing of airborne lidar, and the pre-
processing and subsetting of GEDI and ATLAS data. We include in this
section the classification of airborne lidar ground returns, because this
application of spatial filters is well established. In contrast, application
of spatial filters to GEDI and ATLAS data is the purpose of this study, and
is therefore described in subsection 2.3 (Methods).

2.2.1. Airborne lidar data

Airborne lidar data were obtained from the Brunei Survey Depart-
ment as 1 km x 1 km tiles produced by TerraScan software in LAS format
version 1. Data were collected in 2009 and early 2010 by an Optech
Gemini system on a NOMAD airplane. The system emitted near-infrared
(1064 nm) laser pulses at 100 kHz from a height of 1400 m, producing
an estimated 28 cm beam width on the ground. The laser was swept
through a scan angle of +22° at 40 Hz, producing a swath width of 1131
m and line spacing of 792 m (swath overlap 30%).

The LAS airborne lidar data tiles provided by the Brunei Survey
Department starting in 2010 included up to four returns (first, last, and
two intermediate). Later, data were provided in two data products
classified using an undisclosed method, with either a subset of the last
returns or of the first returns for each tile. We obtained full point clouds
(up to four returns) for 78.8 kmz, the subsets of first and last returns for
an additional 48.3 km?, and the subsets of last returns only for an
additional 194.3 km?, for a total of 321.4 km?. Because the first- and
last-return tiles only contained data from a subset of pulses, we esti-
mated the pulse density from the LAS tiles with full point cloud data (up
to four returns), as the total number of last returns reported in the LAS
files divided by their total area.

To classify ground returns within the airborne lidar data, we used the
progressive morphological filter (PMF) of Zhang et al. (2003) as
implemented in an open-source software package (the Point Data
Abstraction Library, PDAL; https://pdal.io/). This algorithm uses pro-
gressively larger windows, performing an erosion (mathematical
morphology) operation at each scale and discarding points lying more
than a threshold above the eroded surface. At each window size, points
that lie above the eroded surface by a distance of more than max -
distance, or more than window size x slope + initial distance, are
considered non-ground points. The roles of these parameters are there-
fore as follows: the initial _distance threshold constrains the allowable
relief at even the smallest scales, while the slope constrains the relief to a
range that increases with the window size. The maximum window size
determines the horizontal distance beyond which the constraint
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imposed by the slope parameter should no longer apply, and max -
distance sets an absolute limit on the relief allowed at any window size.
In practice, we were able to find a reasonable parameterization for
ground point classification in the airborne lidar data with little experi-
mentation based on prior knowledge of the microtopographic relief and
typical large-scale gradients at the site. We set initial_distance, slope and
max_distance to 15 cm, 0.02 and 2.5 m, respectively, and set the
maximum window size to 200 m.

To describe the extent to which dense vegetation prevented laser
energy from reaching the ground, we defined ground visibility from the
perspective of the airborne lidar system as the number of true ground
returns divided by the total number of pulses, and estimated ground
visibility as the density of last returns classified as ground by the spatial
filter, divided by the mean density of impulses in the area with full point
cloud data. In making this approximation, we assumed that the Survey
Department processing of the last-return “DTM” datasets did not remove
many true ground points (small omission error), which is consistent with
the occurrence of non-ground last returns in these files (commission
errors), as there is usually a tradeoff between omission and commission
errors in ground point classification algorithms (Sithole and Vosselman,
2004). We use “ground visibility” to emphasize that we do not assume or
estimate a precise relationship between this commonly used quantity
(Lovell et al., 2003) and gap fraction (nadir-projected gap area divided
by total area) or its complement, canopy cover, because this relationship
depends on: (1) the ratio of backscattering coefficients of vegetation and
ground elements (Ni-Meister et al., 2001; Harding et al., 2001); (2) the
distribution of energy in returns from ground and vegetation, which
does not have a well defined link to the “intensity” reported in airborne
lidar data (Mallet and Bretar, 2009; Armston et al., 2013); and (3) the
distribution of gap sizes relative to the width of the diffraction cone of
the beam from the aircraft, which affects whether reflected energy from
ground or vegetation is intense enough to generate a “return” via the
lidar system’s proprietary triggering mechanism (Mallet and Bretar,
2009; Armston et al., 2013).

2.2.2. Spaceborne lidar data: GEDI/ISS

We obtained all available GEDI L1B and L2A Version 2 data between
4.226 and 4.621°N, 114.246 and 114.450°E, from NASA’s Land Pro-
cesses Distributed Active Archive Center (LP DAAC; Dubayah et al.,
2022a,b) from the beginning of the mission through June 29th, 2022. To
illustrate the GEDI tracks intersecting the study area (Fig. 1), we also
obtained granule metadata (NASA Earthdata portal, https://earthdata.
nasa.gov/) for a northwest-southeast track from orbit 2973, and adja-
cent orbits (2969-2975); and for a southwest-northeast track from orbit
3073, and adjacent orbits (3069-3076).

To evaluate GEDI terrain data, we extracted GEDI ground elevation
estimates from GEDI L2A data. GEDI L2A version 2 provides several
different ground point estimates for each shot, obtained by smoothing
the received waveform with a Gaussian filter and identifying peaks that
exceed a threshold: there are 6 different parameterizations (“algo-
rithms”) used for waveform processing in the L2A product, which differ
in the width of the Gaussian filter (smoothwidth_zcross) and the
thresholds used to identify the top of the canopy (front_threshold) and
the ground (back_threshold; Hofton and Blair, 2019, Table 1). Algo-
rithms 1 and 4 use the widest smoothing kernel and the highest
threshold for ground detection, and are therefore the least likely to
mistake noise at the end of the waveform for a ground reflection, but the
most likely to miss a weak ground signal. Algorithms 1 and 4 have
identical parameters for ground detection, and therefore provide very
similar sets of ground points, but may flag different shots as valid
(quality_flag) because of different values for the parameter that iden-
tifies the top of the canopy (front_threshold). Algorithms 2, 3, 5 and 6 all
use the same kernel width, which is about 0.54 times the width used for
algorithms 1 and 4. Among these, the threshold for ground detection
decreases (and sensitivity increases) in the order 3, 6, 2, 5, where 3 has a
threshold equal to algorithms 1 and 4 (but with a narrower smoothing
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Table 1
GEDI waveform processing algorithm parameter sets, after Hofton and Blair
(2019). The parameter smoothwidth, equal to 6.5 for all algorithms, is not
shown.

Algorithm smoothwidth_zcross® front_threshold” back_threshold®
1 6.5 30! 6
2 3.5 30 30
3 3.5 30 60
4 6.5 60 60
5 3.5 30 20
6 3.5 30 46

@ Width of Gaussian filter used to search signal-only portion of waveform for
peaks.

Y Threshold above mean noise level for first (highest-elevation) peak.

¢ Threshold above mean noise level for last (lowest-elevation) peak.

4 6: noise standard deviation after initial smoothing.

Table 2
Parameterizations of progressive morphological filter of Zhang et al. (2003).

Application max_distance initial_distance slope max_window_size
Airborne lidar® 2.5m 15 cm 0.02 200 m

GEDI™* 12m 15 cm 0.0012 10 km

ATLAS" 12m 15 cm 0.0012 1 km

@ Application to airborne lidar is a standard use for this type of filter;
parameterization is shown for reference.

b Applied in one horizontal dimension along each flight transect.

¢ To explore sensitivity to these parameters, four additional parameterizations
were generated for this filter by increasing each parameter by 10%, one at a
time.

kernel; Hofton and Blair, 2019, Table 1).

In addition to the ground estimate obtained from each of these al-
gorithms as the lowest detected mode (elev_lowestmode), GEDI L2A also
stores a “selected” ground estimate, which is equal to a mode from one of
the 6 waveform processing parameterizations, but not necessarily the
lowest mode (Hofton and Blair, 2019). We analyzed the set of “selected”
ground estimates separately because (1) the “selected” algorithm may
differ for different shots, and therefore the set of “selected” ground el-
evations is a mixture of modes from the 6 waveform processing algo-
rithms; and (2) the “selected” mode for a shot may not be the lowest
mode of the “selected” algorithm, and therefore may not be equal to any
of the 6 other ground elevations for the shot. We extracted all points
flagged as viable for downstream use (quality_flag = 1; Hofton and Blair,
2019) from each of these sets of ground points.

2.2.3. Spaceborne lidar data: ATLAS/ICESat-2

We obtained all available ATLAS/ICESat-2 L2A Global Geolocated
Photon Data (ATLO3) and L3A Land and Vegetation Height (ATLO8)
Version 5 data from LP DAAC (Neuenschwander et al., 2022a; Neumann
et al.,, 2022) for the same spatial region as for GEDI data from the
beginning of the mission through June 29th, 2022. ATL03 provides the
geolocation of the bounce point of each photon at the ATLAS laser
wavelength received by the ATLAS telescope. We filtered geolocated
photon bounce points based on their classification as signal in the ATLO8
product (classed_pc_flag 1, 2, or 3; Neuenschwander et al., 2022b).
Because the name attached to each of the six ATLAS beams (GT1L,
GTIR, ...) depends on the spacecraft orientation (Neuenschwander
et al., 2022b), we used spacecraft orientation (sc_orient) to determine
the names for weak and strong beams in each transit. To illustrate the
ATLAS tracks intersecting the study area (Fig. 1), we also obtained
Reference Ground Tracks (RGTs) with dates and times as KML from the
ATLAS specifications page (https://icesat-2.gsfc.nasa.gov/science/specs
).
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2.3. Methods

We now describe the spatial filtering of GEDI and ATLAS data, and
the alignment and comparison of GEDI, ATLAS and airborne lidar
datasets. Because the flight paths of the ISS and ICESat-2 intersect one
another obliquely, we did not attempt to compare the GEDI and ATLAS
datasets directly. Instead, we evaluated GEDI and ATLAS elevations with
reference to the airborne lidar dataset, which provides ground eleva-
tions throughout the study area.

2.3.1. Spatial filtering of GEDI data

To simplify further analysis, we first defined a transect for each beam
and each pass of the GEDI instrument over the study area, by orthogonal
distance regression of the set of georeferenced beginning and end points
(bin0 and lastbin) from all GEDI waveforms in the transect. To explore
the use of spatial filters for removing outliers, we processed GEDI
ground elevations using the same type of spatial filter used for the
airborne lidar data (PMF, in PDAL), using, as input to the filter, the
elevation and along-track position of the interpolated ground point. We
selected parameters for the spatial filter based on typical surface gra-
dients in the study area and the spatial configuration of the GEDI shots,
followed by a few rounds of trial-and-error in which we examined
profiles of classified GEDI ground points without reference to the
airborne lidar data. We arrived at parameters of 12 m, 0.0012, 15 cm,
and 10 km for max_distance, slope, initial_distance, and max_window -
size, respectively (Table 2).

Because in some important applications one would not have access to
a reference airborne lidar dataset, we did not attempt to optimize the
parameters for filtering GEDI data. Instead, to explore the sensitivity of
GEDI ground point classification to the filter parameters, we perturbed
the four filter parameters by separately increasing each of them by 10%.
We then computed all error metrics (see section 2.3.4 for the error
metrics calculated) for all 5 parameter sets: the initial parameterization
(Table 2), and the four perturbed parameter sets produced by increasing
each parameter by 10%, one at a time.

2.3.2. Spatial filtering of ATLAS data

As with GEDI, to simplify further analysis, we first defined a transect
associated with each pass of each beam of the ATLAS instrument over
the study area by orthogonal distance regression of the ATLO3 reference
photons associated with the transect. We extracted geolocations of
ATLO3 photon bounce points classified as ground by the DRAGANN
algorithm in ATLO8 (Neuenschwander and Pitts, 2019). To explore the
use of spatial filters to identify bounce points misclassified as ground in
ATLO8, we processed the ATLO8 ground photons using the same spatial
filter used for the airborne lidar and GEDI data (PMF, in PDAL), using, as
input to the filter, the elevation and along-track position of the photon
bounce point. We used the same spatial filter parameters for
ATLO8-classified ground points as for geolocated GEDI ground eleva-
tions (section 2.3.1, “Spatial filtering of GEDI data”), but with a smaller
max_window_size of 1 km (Table 2) due to the higher density of candi-
date ground points per distance provided by ATLO8 ground photons
compared to GEDI shots. As with the filtering of GEDI ground points, we
explored sensitivity to these parameters for spatial filtering of ATLO8
ground photons by separately increasing each parameter by 10%, and
computing error metrics for each parameter set, yielding 5 sets of error
metrics (section 2.3.5).

2.3.3. Alignment of datasets

The typical geolocation error of airborne lidar systems is <2 m (Lim
etal., 2003; Liu, 2008). On-orbit evaluation has shown geolocation error
for all ATLAS beams to be in the range of 2.5-4.4 m (mean + 1o; Luthcke
et al., 2021), while GEDI geolocation error is estimated to be 10-20 m
(Dubayah et al., 2020). Although a number of previous studies have
added a horizontal offset to spaceborne lidar geolocations to maximize
agreement between spaceborne and airborne lidar vegetation profiles
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(Harding and Carabajal, 2005; Popescu et al., 2011; Neuenschwander
et al., 2020a), we did not perform this step because the small gradients
in surface elevation in the study area (about 1 m/km) would combine
with GEDI and ATLAS geolocation error to produce elevation errors of
<2 cm.

2.3.4. Data comparison: GEDI vs. airborne lidar

To compare GEDI waveforms and ground elevation data to airborne
lidar data, we extracted airborne lidar returns within the neighborhood
of GEDI transects (workflow shown in Fig. 3). We first pre-filtered
airborne lidar tiles by extracting data within 18 m of the bounding
box of the intersecting transect, then performed a spatial query (using
PostGIS, https://postgis.net/) to obtain only returns within 18 m of the
transect center line. These 36 m-wide strips of airborne lidar returns
were used in subsequent analyses to reduce the computing time for
spatial searches within the ~25 m-diameter footprint (Dubayah et al.,
2020) of each GEDI shot without omitting relevant data due to deviation
of individual shots from the transect center line.

To qualitatively compare GEDI waveforms to discrete-return
airborne lidar data within the study area, we constructed pseudowave-
forms, or vertical distributions of returns (Blair and Hofton, 1999), from
airborne lidar returns within each GEDI shot in the area of full (up to
four return) airborne lidar data. To extract airborne lidar returns within
a GEDI shot, we queried the airborne lidar returns to obtain only those
within the shot radius of 12.5 m of the slanted central axis of the GEDI
shot. We then constructed a pseudowaveform as the distribution of el-
evations of airborne lidar returns within the GEDI shot. We did not
weight returns by distance from the central axis of the GEDI shot because
weighting was found to make little qualitative difference in a similar
analysis of GLAS data (Popescu et al., 2011), and our primary focus was
on ground elevations.

To quantify the agreement between GEDI and airborne lidar terrain
data, we also compared each GEDI ground elevation to the mean
elevation of airborne lidar ground returns within the GEDI shot. We
were able to perform this comparison in all areas with airborne lidar
coverage, as all airborne lidar data included last returns classified as
ground using the spatial filter (section 2.2.1, “Airborne lidar data”). For
each set of GEDI ground elevations, we compared each GEDI ground
point to the mean airborne lidar ground elevation within each shot in
terms of bias (difference in mean), root mean squared error (RMSE), and
mean absolute difference (MAD). Because we are also interested in how
the overall shape of the peat surface estimated from GEDI corresponds to
the shape of the reference surface from airborne lidar data, we also
computed the unbiased root-mean-squared error (ubRMSE), defined as
the root-mean-squared difference between the deviations of GEDI and of
airborne lidar ground elevations from their respective means along each
transect. We evaluated these metrics for all ground elevations in the
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GEDI L2A product, and also for ground points that passed the spatial
filter. Finally, to explore sensitivity of these results to filter parameters,
we then recalculated all metrics for four sets of perturbed parameters
generated by separately increasing each filter parameter by 10% (sec-
tion 2.3.1).

2.3.5. Data comparison: ATLAS vs. airborne lidar

To compare ATLAS photon data and ground elevations to reference
airborne lidar data, we extracted airborne lidar returns within the
neighborhood of ATLAS transects using the same approach as for GEDI
transects (workflow shown in Fig. 3), but with narrower (17 m-wide)
strips of airborne lidar due to the smaller diameter of the ATLAS foot-
print (~11 m; Magruder et al., 2021).

To compare the vertical distribution of nadir-visible reflectors
detected in ATLAS geolocated photon data and from airborne lidar data,
we used a similar approach as for GEDI waveforms (section 2.3.4) but
additionally needed to construct pseudowaveforms from ATLAS photon
bounce points as follows. We divided the data from each transit of the
ATLAS instrument over areas with full point cloud airborne lidar data
(up to four returns) into 200 m along-track segments. We then con-
structed pseudowaveforms from the distribution of ATLO3 photon
bounce point elevations within the segment, which we compared to the
distribution of airborne lidar return elevations within the beam radius
(5.5 m) of the center line along each segment. As with the comparison to
GEDI waveforms, we performed no weighting of airborne lidar returns
by distance from the transect center line.

To quantify the agreement between ATLAS and airborne lidar terrain
data, we compared ATLO8 and airborne lidar ground elevations using
the same approach as for evaluation of GEDI ground points (section
2.3.4), with the sole difference being the radius used to identify airborne
lidar ground returns within the shot footprint (5.5 m for ATLAS vs. 12.5
m for GEDI).

3. Results
3.1. Ground visibility to airborne lidar

Filtered airborne lidar data provided a reference digital terrain map
that was free from outliers caused by false ground returns: because the
total relief of the study site is only 16.7 m, outliers from the 30-50 m
canopy would be immediately visible in a shaded relief image (Fig. 4a).
However, airborne lidar data also revealed that average ground visi-
bility in the study area was low: data from the area with full point cloud
data (up to four returns) indicated a pulse density of 1.945 m ™2, whereas
the density of ground-classified returns in the study area was 0.0550
m 2, for a mean ground visibility of 2.83%. Overall, 87.6% of the study
area had a ground visibility of less than 5% and 47.8% had a ground
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Fig. 3. Flow chart for GEDI, ATLAS and airborne lidar data processing.
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Fig. 4. Airborne lidar coverage and ground visibility in the study area. (a)
Shaded relief map of study area derived from airborne lidar (resolution 20 m x
20 m), showing areas with point cloud data (4 returns), first and last returns,
and last returns only. Total relief is 16.7 m. (b, ¢) Ground visibility in the study
area, defined as the ratio of returns classified as ground to the pulse density;
note logarithmic color scale. The demarcated area has naturally sparse vege-
tation (padang keruntum; Anderson, 1963). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of
this article.)

visibility of less than 2% (Fig. 4b and c). Ground visibility was much
higher in the sparsely vegetated (padang keruntum) area, with an
average of three times more ground-classified returns per area (0.1741
m~2; mean ground visibility 8.95%). Only 5.04% of the sparsely vege-
tated area had a ground visibility of less than 5% and only 0.11% had a

ground visibility of less than 2%.

3.2. Spaceborne lidar data: GEDI/ISS

The study area was crossed by 23 passes of the GEDI instrument;
across all 8 beams, the study area was intersected by 170 distinct tran-
sects, covering a total linear distance of 1099 km by coverage beams and
1037 km by full-power beams (Fig. 5). There were 38,275 GEDI shots in
the study area described in the GEDI L1B product, of which 20,634 were
at night (54%). In all, 5292 shots (14%) were flagged as suitable for
further analysis (quality_flag = 1) using the “selected” algorithm, 65% of
them at night (Fig. 5c). Based on the distance traversed, the linear
density of quality shots at night was 1.52 shots km™! from the coverage
beams and 4.11 shots km ! from the full-power beams. There was good
qualitative agreement between GEDI waveforms and airborne lidar
returns where full point cloud airborne lidar data were available, as
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Fig. 5. GEDI coverage of the study area. (a) Beam configuration of GEDI. Shots
from GEDI full power and coverage lasers from a single transit by the ISS and
(b) GEDI transects over the study area from full power (green) and coverage
beams (gray). Shots marked as valid for downstream use (quality flag = 1,
“selected” algorithm) in the GEDI L2A product are shown as points (small
points: night; smaller points: day). (¢) Number of GEDI shots from full power
and coverage beams in the area of airborne lidar data; filled portions indicate
quality-filtered shots from the “selected” algorithm of the GEDI L2A product
(shots flagged as valid differ somewhat across algorithms). (For interpretation
of the references to color in this figure legend, the reader is referred to the Web
version of this article.)

evident in cross-sections (Figs. 6 and 7). Nonetheless, the lowest mode of
the GEDI waveforms often appeared somewhat higher than the mean
elevation of ground-classified airborne lidar returns (Fig. 6).

Profiles of GEDI ground elevations with airborne lidar data in
densely forested areas showed that ground elevations selected in the
GEDI L2A product included a number of high outliers (Fig. 8), even
under the best conditions (passing quality flags, sensitivity >98%, full-
power beam at night). These high outliers occurred when the GEDI
L2A ground elevation was placed within the canopy in areas of dense
forest cover. Most or all of these canopy “ground” elevations were
removed by the spatial filter, depending on which GEDI L2A algorithm
was used to determine the ground elevation for each shot (see below).
The filtered GEDI L2A-selected ground elevations lay near, but mostly
above, the elevation of the airborne lidar ground returns (Figs. 8, 9a and
9b).

For all GEDI L2A algorithm settings, ground elevations that passed
the spatial filter were more accurate and precise than unfiltered ground
elevations, including shots with a sensitivity of over 98%, according to
all error metrics (bias, RMSE, ubRMSE and MAD) and all algorithms
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(Fig. 9c—e) except for a larger bias with spatial than with sensitivity
filtering for algorithm 5 (Fig. 9e). For those algorithms that identified
some shots in the study area as having sensitivities of over 98%, the
distribution of residuals for those high-sensitivity shots was similar to
the overall distribution of residuals of ground elevations determined by
that algorithm (Fig. 9c). With algorithms 2, 3, 5, and 6, some positive
outliers remained in the filtered ground points, whereas in algorithms 1
and 4 the spatial filter appeared to remove all non-ground outliers.
Ground points from algorithms 1 and 4 were identical except that two
shots were flagged as viable by algorithm 4 but not by algorithm 1 (3344
vs. 3342 quality shots), and because of this difference, one less point
passed the spatial filter in the algorithm 4 point set (1153 vs. 1154;
results in Fig. 9 plots were visually indistinguishable).

Algorithms 2, 3, 6 and especially 5 additionally included some large
negative outliers, which cannot be removed by the spatial filter we used;
there were also some negative outliers among the ground elevations
selected in the GEDI L2A product, attributable to the selection of algo-
rithm 5 for some shots. Nonetheless, error metrics of ground points from
the entire study area that passed the spatial filter approached, and in
most cases improved on, the accuracy and precision of ground points
from quality GEDI shots in the sparsely vegetated southwest corner of
the study area. For example, GEDI L2A ground points from algorithm 1
in the sparsely vegetated area, alone, had much better error metrics than
the complete set of ground points, with a vertical offset (bias) of 3.08 vs.
8.35 m, a MAD of 3.08 vs. 8.35 m (bias and MAD were nearly equal for
these point sets), a RMSE of 3.86 vs. 15.98 m, and a ubRMSE of 2.32 vs.
13.62 m. However, the 1154 out of 3342 ground points from the entire
study area that passed the spatial filter had still better error metrics, with
a bias and MAD, RMSE, and ubRMSE of 1.83, 1.97, and 0.72 m,
respectively: 4.6, 8.1 and 19 times better than the metrics for unfiltered
ground points (Fig. 9d and e).

3.3. Spaceborne lidar data: ATLAS/ICESat-2

The study area was crossed by 12 passes of the ATLAS instrument;
across all 6 beams, the study area was intersected by 37 distinct tran-
sects, covering a total linear distance of 302 km by weak beams and 334
km by strong beams (Fig. 10). From these transects, there were
3,593,941 photons received by ATLAS and described in the ATLO3
product as having bounce points in the study area, of which 73,575 were

received at night (2.27%). In all, 112,800 of the received photons
(3.14%) were classified as signal in the ATLO8 product, 51.0% of them at
night (Fig. 10c). Based on the distance traversed, the linear density of
ATLO8-classified signal photons was 41.4 photons km™! from the weak
beams and 300.6 photons km ™! from the strong beams.

Point cloud data from ATLO3 bounce points and airborne lidar
returns appeared qualitatively similar in cross-sections (Figs. 11 and 12).
Pseudowaveforms produced from ATLO3 photon bounce points and
airborne lidar returns were also qualitatively similar, though the
airborne lidar canopy profiles were more detailed (Fig. 11a and c)
because of the higher density of airborne lidar returns (1.945 returns
m 2 in airborne lidar vs. 0.106 ATLO8 signal photons m~2 from strong
beams at night). In areas of dense forest cover, profiles showed that there
were intervals of more than 50 m in which none of the ATLAS photon
bounce points were on the ground (Fig. 12).

Photon bounce points classified as ground in ATLO8 were not always
on the ground; some were close to the ground but above it (Fig. 11),
others were within the forest canopy (Fig. 13). The daytime ATLAS shots
did not seem to produce any useful data (data not shown); however,
both strong and weak beams at night yielded good ground elevations
(Fig. 14). Similar to the GEDI L2A ground elevations, residual plots
showed that the mode of ATLO8 nighttime ground photon bounce points
lay above the reference ground surface derived from airborne lidar
(Fig. 14b); in addition, and in contrast to the ground elevations from
some GEDI L2A algorithms, almost all ATLO8 ground elevations lay at or
above the mean elevation of airborne lidar ground points within the
ATLAS shot (Figs. 13c and 14). As with GEDI L2A ground elevations, the
spatial filter effectively removed the canopy photons misclassified as
ground in ATLO8 nighttime data (Figs. 13 and 14), resulting in error
metrics that were close to those of unfiltered ATLO8 ground points in the
area of sparse vegetation. For example, of the 4112 ground points from
the strong beam at night, the 1090 points that passed the spatial filter
had a bias, MAD, RMSE and ubRMSE that were 2.4, 2.4, 5.0, and 8.0
times better than the full set of points (0.63, 0.64, 0.77, and 0.44 m vs.
1.51, 1.51, 3.85 and 3.54 m), and approached the metrics for ground
points from the sparsely vegetated area (0.53, 0.53, 0.59, and 0.26 m;
Fig. 14).
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3.4. Sensitivity of error metrics to spatial filter parameters

The spatial filters used on GEDI and ATLAS classified up to 8.9%
more or 5% fewer points as ground points after each parameter was
individually increased by 10% (Fig. 15). Filtering of GEDI and ATLAS
point sets was insensitive to a 10% increase in max_distance. Increases in
initial_distance and slope make the filters more permissive, and resulted
in more points classified as ground. An increase in max_window size
makes the filter more restrictive, and resulted in fewer ATLAS points
classified as ground; increasing the large (10 km) maximum window size
of the GEDI filter had no effect on the classification of GEDI point sets.

The differences in ground-classified point sets after 10% increases in
each filter parameter caused GEDI and ATLAS error metrics to change by
—0.174 to 0.041 m (Fig. 15). The error metrics for all the perturbed
parameter sets are plotted in Fig. 9d and e, and in Fig. 14c and d, but are
visually indistinguishable from the metrics for the unperturbed param-
eter sets. In most cases, perturbations that made the filter more

10

restrictive (that is, the 10% increase max window_size for ATLAS)
reduced the error, and perturbations that made the filter more permis-
sive (increases in initial distance and slope) increased the error. The
exceptions were GEDI algorithm 5 and the “selected” ground elevations
in the L2A product, for which all error metrics were reduced by up to
17.4 cm with more permissive filtering; in addition, increases in the
slope parameter reduced error metrics for some other GEDI algorithms
by up to 4.5 cm (Fig. 15).

4. Discussion

Both GEDI L2A and ATLAS ATLO8 products produced useful terrain
data in this tropical peatland, though extracting the useful data was
complicated by dense forest canopies (Fig. 2). Dense canopies are known
to pose problems for terrain estimation using lidar (Lim et al., 2003;
Dubayah et al., 2010; Neuenschwander and Pitts, 2019), and the need to
penetrate the dense canopies of tropical forests was part of the
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motivation for the high energy of GEDI shots (Dubayah et al., 2020). The
dense canopy cover in the study area was apparent in the low ground
visibility (ratio of ground returns to all returns) in the airborne lidar
data: the mean ground visibility in the area of airborne lidar coverage
was only 2.83%, with 87.6% of the area having a ground visibility of less
than 5% and 47.8% having a ground visibility of less than 2% (Fig. 4). As
98% and 95% canopy cover correspond to the design specifications of
the full-power and coverage beams of GEDI, respectively (Dubayah
et al., 2020), it is to be expected that GEDI shots did not always detect
the ground in this setting. Cases where little, if any, laser energy reached
the ground and was reflected back to the instrument can be identified in
waveforms without a discernible ground peak (Fig. 7) and ground
elevation estimates that lie at or near the top of the canopy (Fig. 8).
Similar outliers at the canopy height have been observed in
higher-latitude forests with dense canopies using GEDI (Spracklen and
Spracklen, 2021), and have also been observed in ATLAS data from
tropical peat swamps by Davenport et al. (2020) and Berninger and
Siegert (2020).

The difficulty of collecting terrain altimetry in areas with dense
vegetation is well known from studies using airborne lidar dating back
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more than 20 years (Vosselman, 2000; Zhang et al., 2003; Lim et al.,
2003). In processing discrete-return airborne lidar data, the established
methods for identifying non-ground returns are based on the idea that
incoherent jumps in elevation between returns are most likely caused
not by ground features, but by non-ground objects. These “objects” may
vary in size: in cityscapes, they might be roofs of buildings; in dense
forests they might be areas where, by chance, there are no ground
returns. In both cases, most ground point classification algorithms
remove objects of varying sizes by using a multiscale or hierarchical
strategy using spatial information, or “context,” from points at a range of
scales. If objects in the setting are large, a larger maximum scale of
context is required to remove them; in the case of our airborne lidar
dataset, a maximum window size of 200 m was needed to effectively
remove canopy points from areas without ground returns. These mul-
tiscale strategies are highly effective at removing objects while retaining
ground features in most settings, and there have not been major im-
provements in accuracy of ground point classification algorithms in
recent years (Chen et al., 2013; Zhang et al., 2016; Zhao et al., 2016).

Our results show that ground point classification algorithms can also
be usefully applied to spaceborne lidar ground points, whether from
modes in waveforms (GEDI L2A) or from ground-classified photon
bounce points (ATLAS ATLO08). The basic logic is the same as in ground
point classification of airborne lidar datasets: visually, we consider an
isolated spike to be more likely attributable to a misclassified canopy
return than to a ground feature. A conceptually similar approach is used
in the DRAGANN algorithm used to produce the ATLO8 data product:
nearby photon bounce points are merged into clusters that are inter-
preted as belonging to ground or canopy surfaces, discarding (classifying
as noise) photons that are spatially isolated. Because of power con-
straints, the number of candidate ground points per area from space-
borne lidar (1.65 x 10~* quality shots m~2 and 0.106 signal photons
m ™2, from GEDI and ATLAS respectively, in full-power and strong beams
at night) is necessarily much lower than in airborne lidar data sets
(typically 2-3 m~2; Manuri et al., 2017). Given the lower spatial density
of candidate ground points in spaceborne lidar data, for ground points to
be distinguishable from canopy points, the ground surface must be
smoother. Thus, part of the reason that a spatial filtering approach works
in this setting is that, because of the mechanism of peat accumulation
(Cobb et al., 2017), the ground surface is smooth at the landscape scale
(Manuri et al., 2017).

In more complex terrain, spatial filters could be difficult to apply,
especially on GEDI data, for which the smallest scale of spatial infor-
mation is the 60 m along-track shot spacing. The difficulties created by
complex terrain are easy to picture when examining profiles (Fig. 8):in a
setting where some of the “spikes” in GEDI ground elevation estimates
might plausibly represent a terrain feature, parameters that remove
canopy returns could also artificially smooth out the terrain. In partic-
ular, the problems created by tall vegetation on steep slopes, much
explored in studies of GLAS data (Lefsky et al., 2007; Hilbert and
Schmullius, 2012) and also relevant to GEDI (Adam et al., 2020;
Spracklen and Spracklen, 2021), will not be solved by this approach, and
will require other strategies such as filtering by estimated canopy cover
(Tang and Armston, 2019) or considering constraints on reasonable
foliage profiles (Tang et al., 2014).

The limitation of spatial filtering strategies to smooth terrain may be
relaxed somewhat as the spatial density of GEDI and ATLAS data con-
tinues to increase until the end of these missions. Note, however, that
our current implementation works on one spaceborne lidar track at a
time, using only the along-track position of ground elevation estimates;
filtering data from multiple tracks together could be possible with some
algorithms, but strongly uneven point density (caused by gaps between
tracks) creates additional challenges (Roberts et al., 2019). Spatial
filtering of spaceborne lidar data will also require adaptation in studies
of peatland terrain that include steep edges, such as scars from fires that
have burnt away part of the peat surface (Ballhorn et al., 2009; Simpson
et al., 2016).
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After the removal of canopy outliers with spatial filters, ground el-
evations from both GEDI L2A and ATLO8 remained higher than corre-
sponding airborne lidar ground elevations by 183.1 cm (average from
algorithm 1 quality shots) and 63.4 cm (average from strong beams at
night) respectively. GEDI L2A (algorithms 1-4 and 6) and ATLO8 ground

and from

elevations were also higher than corresponding airborne lidar ground
points in the sparsely vegetated part of the study area (Figs. 9 and 14).
(Filtered GEDI ground elevations from waveform processing algorithm 5
“selected” ground points had offsets that were negative
because of negative outliers, which resulted in a relatively low precision,
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indicated by a high ubRMSE.) We briefly consider four possible expla-
nations for the higher ground elevation estimates from GEDI and ATLAS
data: (1) surface changes (peat accumulation) between the time of
acquisition of the airborne lidar and the GEDI and ATLAS data; (2)
geolocation and altimetric errors in the spaceborne lidar datasets; (3)
difference in vertical datum; and (4) peat surface microtopography.

Although the airborne lidar data were collected 10-11 years before
the ATLAS and GEDI data, the higher elevations in the spaceborne lidar
datasets cannot be explained by peat accumulation (explanation 1): a
typical rate of peat accumulation in coastal Southeast Asia peatlands,
including at this site (Dommain et al., 2015), is 2 mm/y (Dommain et al.,
2011). This accumulation rate yields an increase in surface elevation of
about 2 cm, too small to explain the higher ground elevations obtained
from GEDI and ATLAS.

As for geolocation and altimetric errors for the two missions
(explanation 2), because of the small terrain gradients at the site, geo-
location errors have little effect on ground elevations: with a 1 m/km
surface gradient, a 10-20 m geolocation error, as estimated for GEDI’s
early calibrated data products (Dubayah et al., 2020), introduces just a
1-2 cm bias, and therefore geolocation errors could not contribute sig-
nificant average vertical offsets in this setting. Altimetric errors in
ATLO3 photon bounce points were found to be better than 5 cm in an
evaluation on the Antarctic Ice Sheet (Brunt et al., 2019), and a com-
parison of airborne lidar and ATLAS terrain elevations across non-tundra
sites from the United States National Ecological Observatory Network
(NEON) found a —20 cm offset between ATLAS and airborne lidar
terrain elevations (Liu et al., 2021). The same comparison found a 117
cm difference in offset between ATLAS and GEDI terrain elevations,
similar to the 119.7 cm difference found here, so it is possible that the
same source of error could explain the difference in offsets that we
observed between GEDI and ATLAS elevations. As the vertical datum for
the airborne lidar data is unknown (explanation 3), difference between
this datum and the EGM96 geoid to which we transformed the GEDI and
ATLAS elevations could explain a constant offset between the airborne
and spaceborne lidar elevations, though not the difference in offset be-
tween GEDI and ATLAS ground elevations.

Finally, elevation offsets between airborne lidar, GEDI and ATLAS
data could be affected by the hummock-hollow microtopography of
about 30-50 cm relief found in our study area as well as other peatlands in
this region (explanation 4; Lampela et al., 2016; Cobb et al., 2017).
Because of this microtopographic relief, the airborne lidar, GEDI and
ATLAS datasets are likely to differ in the subset of reflecting surfaces
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sensed and classified as ground. In the case of GEDI, the ground elevation
is obtained from a peak (mode) in the waveform, which could lie some-
where between the elevations of local depressions (hollows) and local
high points (hummocks) in the peat surface, whereas spatial filtering of
airborne lidar data could remove many of the returns from hummocks
(Fig. 6). Similarly, because of their sparseness, ATLAS photon bounce
points from hummocks might be accepted by a spatial filter more often
than returns from hummocks in airborne lidar datasets (Fig. 11), which
could result in a higher average elevation in spatially filtered ATLO8
ground elevations than in spatially filtered airborne lidar returns.

Notwithstanding these residual elevation offsets relative to the
airborne lidar dataset, both GEDI (algorithm 1 or 4) and nighttime
ATLAS ground points captured the overall terrain shape well after
spatial filtering, with relatively low ubRMSE (71.5 cm and 44.5 cm, for
quality shots and for strong beams at night, respectively, reduced from
1362.0 cm to 353.7 cm before filtering). Even with the vertical offsets
included, RMSE values from the spatially filtered GEDI and ATLAS data
(196.6 cm with GEDI algorithm 1 quality shots, 77.4 cm with ATLAS
strong beams at night) compare favorably to the RMSEs of 403 cm and
224 cm observed for terrain elevations from GEDI and ATLAS, respec-
tively, across non-tundra NEON sites (Liu et al., 2021).

We found that error metrics of filtered GEDI and ATLAS data were
relatively insensitive to perturbation of the parameters of the spatial
filter we used (PMF; Zhang et al., 2003). Increases of 10% in each
parameter yielded small changes in error metrics (—0.174 to 0.041 m).
Further, starting with a basic knowledge of site terrain and vegetation,
we arrived at the parameters after minimal trial and error, without
optimization or reference to airborne lidar data. Though other spatial
filters use different parameters, these findings suggest that there is a
large region of parameter space in which the error metrics of filtered
ground points from these peatlands are excellent.

The availability of terrain elevations in densely forested tropical
peatlands via spatial filtering of GEDI and ATLAS data has several ben-
efits. First, the ability to derive useful ground points from these products
provides terrain data from peatlands all over the tropics for free,
including in places that are remote and inaccessible (Lahteenoja and
Page, 2011; Dargie et al., 2017; Hastie et al., 2022). Second, more ac-
curate ground elevations in these settings also enable more accurate
canopy height estimates, because canopy heights are obtained by sub-
tracting top-of-canopy elevations from the ground elevation (Hofton and
Blair, 2019), and thus can only be as accurate as the ground elevations.
Third, the success of this approach in tropical peatlands suggests a
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(purple; see Fig. 4). (¢) Mean absolute deviations from (b), with number of
photons shown above each point and indicated by point area. (d) Unbiased
RMSE and bias as in (c); RMSE is given by distance from the origin. Error
metrics from four perturbed spatial filter parameterizations (each parameter
increased by 10%) are plotted in (c) and (d) but are indistinguishable. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

strategy to explore in other environments: spatial filters could be useful
tools for finding misclassified ground points wherever the terrain is
known to be smooth.

14

Science of Remote Sensing 7 (2023) 100074

b 0.05

a ! 2 31 o1
8 i 1P VRPN H H S 4
o -] S S
a As 0.00 & s s s s
€ 3 s
Es :3 ‘w 8 ®s 5 & ¢ ¢ ¢ w
(=} -
g 1 S| & -005 %6 wyu ww ww
1<) & £ ¢s ©Os &s
= 0 g
® & -0t @5
K=
= o o5
< Vs
S
2 -0.15+ o5
-5+ vw
®5
GEDI ATLAS MAD [Bias RMSE ubRMSE MAD |Bias| RMSE ubRMSE
L IL ]
GEDI ATLAS

Fig. 15. Sensitivity of spaceborne lidar ground point classification to spatial
filter parameters. (a) Percent change in the number of GEDI (green) and ATLAS
(fuchsia) points classified as ground after a 10% increase in each filter
parameter, one at a time: initial distance (up triangles); slope (diamonds);
max_window_size (down triangles). Filtering of ATLAS points was insensitive to
a 10% increase in max_window_size (not shown); filtering of all point sets was
insensitive to a 10% increase in max_distance. Annotations on GEDI points
indicate ground points obtained from the lowest mode identified by each GEDI
waveform processing algorithm (1-6) or the selected (“s”) mode in the GEDI
L2A product; annotations on ATLAS points indicate strong (“s”) vs. weak (“w”)
beam at night. (b) Change in error metrics after a 10% increase in each filter
parameter: mean absolute difference (MAD); absolute bias (|Bias|); root-mean-
squared error (RMSE); unbiased root-mean-squared error (ubRMSE). (For
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5. Conclusions

Tropical peatlands are landscapes that consist entirely of organic
matter and are now threatened by drainage that enables catastrophic
fire and globally significant greenhouse gas emissions. Mitigation of
peatland drainage requires terrain data that are difficult to obtain from
densely forested peatlands. Fortunately, the challenge of estimating
tropical peatland terrain is well matched by the strengths and limita-
tions of GEDI and ATLAS spaceborne lidar products. The density of peat
forest canopies can cause reflections from the mid- or upper canopy to be
misinterpreted as ground points. However, we found that these outliers
could be removed using spatial filters typically applied to airborne lidar.
Spatial filtering of GEDI L2A algorithm 1 quality data reduced MAD,
RMSE and ubRMSE from 8.35, 15.98 and 13.62 m to 1.83, 1.97, and
0.72 m. Similarly, spatial filtering of ATLAS ATL0O8 ground photons from
strong beams at night reduced MAD, RMSE, and ubRMSE from 1.51,
3.85 and 3.54 m to 0.64, 0.77 and 0.44 m. These improvements were
facilitated by the low relief of the underlying terrain. In complex terrain,
this approach could be difficult to apply, especially on GEDI data, for
which the smallest scale of spatial information is the 60 m along-track
spacing. Nonetheless, spatial filters could be useful tools for finding
misclassified ground points in settings, like peatlands (Cobb et al.,
2017), in which the surface is known to be smooth on a landscape scale.
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