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A B S T R A C T   

Tropical peatlands are estimated to hold carbon stocks of 70 Pg C or more as partly decomposed organic matter, 
or peat. Peat may accumulate over thousands of years into gently mounded deposits called peat domes with a 
relief of several meters over distances of kilometers. The mounded shapes of tropical peat domes account for 
much of the carbon storage in these landscapes, but their subtle topographic relief is difficult to measure. As 
many of the world’s tropical peatlands are remote and inaccessible, spaceborne laser altimetry data from mis
sions such as NASA’s Global Ecosystem Dynamics Investigation (GEDI) on the International Space Station (ISS) 
and the Advanced Topographic Laser Altimeter System (ATLAS) instrument on the Ice, Cloud and land Elevation 
Satellite-2 (ICESat-2) observatory could help to describe these deposits. We evaluate retrieval of ground eleva
tions derived from GEDI waveform data, as well as single-photon data from ATLAS, with reference to an airborne 
lidar dataset covering an area of over 300 km2 in the Belait District of Brunei Darussalam on the island of Borneo. 
Spatial filtering of GEDI L2A version 2, algorithm 1 quality data reduced mean absolute deviations from 
airborne-lidar-derived ground elevations from 8.35 m to 1.83 m, root-mean-squared error from 15.98 m to 1.97 
m, and unbiased root-mean-squared error from 13.62 m to 0.72 m. Similarly, spatial filtering of ATLAS ATL08 
version 3 ground photons from strong beams at night reduced mean absolute deviations from 1.51 m to 0.64 m, 
root-mean-squared error from 3.85 m to 0.77 m, and unbiased root-mean-squared error from 3.54 m to 0.44 m. 
We conclude that despite sparse ground retrievals, these spaceborne platforms can provide useful data for 
tropical peatland surface altimetry if postprocessed with a spatial filter.   

1. Introduction 

The terrain of tropical peatlands is difficult to measure because they 
can support dense forest canopies (Manuri et al., 2017; Davenport et al., 
2020; Honorio Coronado et al., 2021) up to 60 m tall (Anderson, 1983), 
covering an underlying landscape relief of only meters over horizontal 
distances of kilometers (Anderson, 1964; Hooijer, 2005; Jaenicke et al., 
2008; Cobb et al., 2017; Davenport et al., 2020). This subtle relief arises 
from the accumulation over thousands of years of partly decayed 

organic matter, or peat (Richards, 1952), that is typically about 50% 
carbon by mass (Warren et al., 2012). Thus, the gently convex shape of 
many tropical peat deposits (Polak, 1933; Anderson, 1964; Lähteenoja 
et al., 2009) accounts for much of their carbon storage (Cobb et al., 
2017; Silvestri et al., 2019; Vernimmen et al., 2020), which amounts to 
over 70 Gt globally (Page et al., 2011; Draper et al., 2014; Dargie et al., 
2017; Warren et al., 2017). Where peatlands have dried out, primarily 
because of drainage of these deposits for agriculture (Page and Hooijer, 
2016), their carbon stores become vulnerable to decomposition and 
catastrophic fire (Hooijer et al., 2012; Miettinen et al., 2017; Cobb et al., 
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2020). Curbing decomposition and fire by rewetting tropical peatlands 
(Dohong et al., 2018) could help to meet global climate targets (Leifeld 
et al., 2019), but requires an understanding of the gradients that drive 
water flow. Tropical peatland surface gradients tend to be small because 
peat accumulates where decomposition is retarded by waterlogging, 
filling in topographic lows and creating a surface topography that is 
smooth at the landscape scale (Cobb et al., 2017). These surface gradi
ents, however small, control the direction of water flow and also influ
ence many ecological processes in peatlands (Polak, 1933; Anderson, 
1964). Thus, maps of the terrain of tropical peatlands are essential for 
their management and restoration, and also important for understand
ing their ecology and carbon storage. 

Many tropical peatlands are vast and inaccessible (Dargie et al., 
2017; Honorio Coronado et al., 2021), and therefore researchers have 
explored the use of remote sensing approaches to measure their topog
raphy, using both airborne (Vernimmen et al., 2019, 2020; Davenport 
et al., 2020) and spaceborne platforms (Jaenicke et al., 2008; Ballhorn 
et al., 2009; Berninger and Siegert, 2020). Some peatlands in Southeast 
Asia are now covered by discrete-return airborne lidar datasets 
commissioned by governments or private organizations (Vernimmen 
et al., 2019). Discrete-return airborne lidar datasets are created by laser 
systems mounted on aircraft typically flying at heights of 500 m–1000 m 
and emitting tens of thousands to hundreds of thousands of infrared 
pulses per second (Lim et al., 2003; Liu, 2008). Some of the energy from 
these pulses is reflected back from ground and canopy surfaces and 
received by a detector on the aircraft. In discrete-return lidar systems, 
peaks in the reflected energy that exceed a noise threshold are inter
preted as reflections, or “returns”, from surfaces on the ground and in 
the canopy. The geolocation of the reflecting surface is determined with 
a typical accuracy of about 15 cm vertically and 20–200 cm horizontally 
based on the travel time of the pulse to and from the surface, and the 
precise position and orientation of the aircraft-mounted laser (Lim et al., 
2003; Liu, 2008). A subset of the geolocated returns is delivered to the 
client, usually including at least the last return (the lowest surface that 
reflected enough energy to exceed the threshold), and often including 
also the first return and up to four returns in between (Lim et al., 2003; 
Liu, 2008; Mallet and Bretar, 2009). 

Deriving a terrain map from discrete-return lidar data requires 
identifying which returns were reflected from canopy elements or other 
objects, and which were reflected from the ground. This task, called 
ground point classification, originally required a substantial amount of 
manual processing (Sithole and Vosselman, 2004), and therefore 
became an active area of research. Over the last 20 years, a large number 
of ground point classification algorithms have been proposed (Sithole 
and Vosselman, 2004; Roberts et al., 2019). Though they vary in other 
respects, most algorithms create a model of the ground surface and 
accept or reject each return as having been reflected from the surface 
based on spatial information, or “context,” in some neighborhood (Sit
hole and Vosselman, 2004). The most widely applied algorithms use 
only the inferred x, y, z positions of the reflecting surfaces corresponding 

to the returns (Axelsson, 2000; Vosselman, 2000; Kraus and Pfeifer, 
2001; Zhang et al., 2003, 2016; Evans and Hudak, 2007; Pingel et al., 
2013); typically, additional information (such as intensity of the returns, 
or other remote sensing products) is not used and prior information is 
provided only through the parameterization of the filter. Many ground 
point classification algorithms work similarly well on real-world ex
amples (Sithole and Vosselman, 2004; Chen et al., 2013) and digital 
terrain maps created from airborne lidar with these algorithms are often 
used as reference terrain maps in peatlands (Jaenicke et al., 2008; 
Ballhorn et al., 2011; Berninger and Siegert, 2020). 

As airborne lidar acquisition is expensive for large areas (Manuri 
et al., 2017; Vernimmen et al., 2020), coverage is limited, and many 
existing datasets are not publicly available, lidar from spaceborne 
platforms has been examined as a source of tropical peatland terrain 
elevation data in several studies (Ballhorn et al., 2009, 2011; Vernim
men et al., 2020; Berninger and Siegert, 2020). Ballhorn et al. (2009, 
2011) explored the measurement of peatland topography using the first 
operational spaceborne lidar mission, the Geoscience Laser Altimeter 
System (GLAS) on the Ice, Cloud, and land Elevation (ICESat) satellite. 
GLAS data products record the amount of energy from each laser pulse 
that was reflected back to the satellite in elevation intervals of 15 cm 
near the earth’s surface (full waveform data; Harding and Carabajal, 
2005; Schutz et al., 2005). Because GLAS data coverage was sparse, with 
a 172 m along-track spacing between pulses and a track spacing of 
29–30 km near the equator (Schutz et al., 2005; Abdalati et al., 2010), 
many peatlands were hit by very few GLAS pulses, or were missed 
entirely. 

The ongoing Global Ecosystem Dynamics Investigation (GEDI) 
mission, like GLAS, provides full waveform data, but is designed to 
provide denser spatial coverage and better penetration of complex 
tropical forest canopies (Dubayah et al., 2020). GEDI’s denser spatial 
coverage in the tropics arises partly from its orbit on the International 
Space Station, covering 51.6◦S to 51.6◦N at a lower altitude than ICESat 
(419 km vs. 600 km). In addition, GEDI’s three lasers have a faster pulse 
rate (242 Hz vs. 40 Hz) and operate concurrently, with one of these 
lasers’ output split into two beams (“coverage beams; ” Dubayah et al., 
2020). The coverage beams produce 4.2 mJ pulses, and the full power 
beams 10.5 mJ pulses, that are dithered to create a total of 8 tracks on 
the ground and are designed to penetrate extremely dense canopy cover 
(Wake et al., 2019). The GEDI mission aims to measure canopy structure 
metrics and above-ground biomass based on profiles of reflected laser 
energy from the ground to the top of the canopy; the accuracy of these 
metrics depends on the accuracy of the estimated ground elevation 
(elev_lowestmode in the GEDI L2A product; Hofton and Blair, 2019) 
because canopy height metrics are obtained by subtracting the ground 
elevation from canopy elevations. The accuracy and precision of GEDI 
L2A geolocation and ground elevation have been evaluated now in a 
number of studies, including forests and surface waters (Adam et al., 
2020; Frappart et al., 2021; Liu et al., 2021; Xiang et al., 2021), although 
we are not aware of any studies to date exploring its use in tropical 
peatlands. 

The Advanced Topographic Laser Altimeter System (ATLAS), in 
contrast to GEDI, has primary and secondary missions of measuring 
changes in polar land and sea ice; nonetheless, ATLAS has a tertiary 
objective of estimating vegetation biomass (Abdalati et al., 2010), and 
has been examined as a tool for describing terrain and canopy structure 
in a number of forested ecosystems (Neuenschwander et al., 2020; 
Berninger and Siegert, 2020; Davenport et al., 2020; Vernimmen et al., 
2020; Xing et al., 2020). Like GEDI, ATLAS provides altimetric data 
based on the travel time of reflected energy from laser pulses; however, 
ATLAS produces lower-energy pulses (45 and 175 μJ vs. 4.2 and 10.5 
mJ) at a higher frequency (10 kHz vs. 242 Hz) from a higher altitude 
(~500 km vs. ~419 km) but with a smaller nominal footprint diameter 
(~11 m vs. ~25 m), and instead of characterizing the reflected energy 
from the pulse statistically, provides data on individual photons of the 
laser wavelength received by the detector on the satellite (Neumann 
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et al., 2019; Wake et al., 2019; Dubayah et al., 2020; Magruder et al., 
2021). ATLAS uses a green (532 nm) laser because of the maturity of 
photon-sensitive detectors at that wavelength (Neumann et al., 2019), 
with the tradeoff of a higher background solar irradiance and lower 
typical reflectance of both canopy and ground elements at this wave
length (Ollinger, 2010) than at the near-infrared (1064 nm) wavelength 
used in GEDI (Wake et al., 2019) and many airborne lidar systems (Lim 
et al., 2003; Liu, 2008). Like the GEDI instrument, ATLAS produces 
multiple beams: in the case of ATLAS, the pulse from a single laser is split 
by a diffractive optical element into six beams, the stronger of which 
(“strong beams”) have an energy per pulse about 4 times that of the 
weaker beams (“weak beams”; Neumann et al., 2019). ATLAS data 
products provide geolocated photons (in data product ATL03), instead 
of waveforms or peaks, with a higher-level product (ATL08) that clas
sifies photons as ground or canopy using a clustering algorithm called 
Differential, Regressive and Gaussian Adaptive Nearest-Neighbor, or 
DRAGANN (Neuenschwander and Pitts, 2019). 

Several recent studies have explored ATLAS as a tool for character
izing tropical peatland terrain and canopy structure (Berninger and 
Siegert, 2020; Davenport et al., 2020; Vernimmen et al., 2020), and 
showed that the dense canopy in some tropical peatlands can be 

problematic, as it may, in places, prevent the sensor from receiving any 
photons reflected from the ground (Berninger and Siegert, 2020; 
Davenport et al., 2020). These studies were able to obtain tropical 
peatland terrain data from ATLAS by focusing on degraded areas with 
thinner canopies and forest gaps, but there are still vast peatland areas 
that are covered with dense vegetation, especially in the less-described 
peatlands of New Guinea (Bleeker, 1983), the Congo (Évrard, 1968; 
Dargie et al., 2017), and the Amazon (Lähteenoja et al., 2009; Hastie 
et al., 2022). 

In this study, we compare GEDI and ATLAS data to an airborne lidar 
dataset covering an area of over 300 km2 of forested tropical peatland in 
the Belait District of Brunei Darussalam. We first examine the full 
waveform data from the GEDI L1B product and geolocated bounce point 
data from the ATLAS ATL03 product to illustrate the general agreement 
between these and the reference discrete-return airborne lidar data. We 
then evaluate ground elevations from the GEDI L2A dataset and ATLAS 
ATL08 dataset with reference to ground returns from airborne lidar in 
the neighborhood of each GEDI or ATLAS shot. Because of dense forest 
cover—differing from previous studies but similar to the less-explored 
peatlands of the tropics—we find that standard GEDI and ATLAS prod
ucts in our study area often place the ground elevation within the can
opy. We therefore explore whether GEDI and ATLAS can nonetheless 
provide useful terrain elevations in tropical peatlands with a dense 
canopy, if the data are postprocessed with a spatial filter. 

2. Materials and methods 

We first describe the vegetation and terrain in the study area, and 
outline the pre-processing of the three datasets: airborne lidar, GEDI and 
ATLAS. Next, we present our methods for spatial filtering of GEDI and 
ATLAS ground elevations, and how the results were evaluated with 
reference to airborne lidar. 

2.1. Study site 

The study area lies in the Belait district of Brunei Darussalam, on the 
northwest coast of Borneo (Fig. 1). Vegetation consists primarily of 
intact, closed-canopy peat forest (Fig. 2) dissected by tributaries to the 
Belait River, with a few cleared areas from discontinued logging con
cessions, and a naturally open, savanna-like vegetation type referred to 
as padang keruntum (after a local name for the dominant tree, Com
bretocarpus rotundatus) in the southwest corner of the study area. In the 
forested areas, the canopy is multilayered, with a continuous or 

Fig. 1. Study site in Brunei Darussalam. (a) Brunei (circled) and several ground 
tracks for GEDI (green) and ATLAS (fuchsia). (b) Site location, showing peat
lands (brown) and area with airborne lidar data (gray). (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 2. Forest cover in the study area. (a–c) Undisturbed forest within the area of full point cloud data, from above (a, c) and just below (b) the 50 m-high canopy. (d) 
Surface microtopography created by buttresses, giant rhizomes and partly decayed organic matter. 
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discontinuous upper canopy that is in most places dominated by the tall 
dipterocarp tree Shorea albida, a lower canopy comprising a range of 
other tree species, and a dense understory of giant herbs and saplings. 
The underlying terrain is characterized by small surface gradients of 
about 1 m/km, on which is superposed a complex microtopography with 
a relief of about 30–50 cm created by buttresses, giant rhizomes and 
partly decayed organic matter (Fig. 2). 

The vegetation types of peatlands in northwest Borneo were 
described by Anderson (1961, 1963, 1964) based on sample plots and 
transects throughout Brunei and adjacent Sarawak (Malaysia). In the 
savannah-like padang keruntum vegetation type, Anderson (1961) 
observed an average of 297 trees ha−1, with the largest trees 12.2–15.2 
m tall, and an average tree basal area of 8.3 m2 ha−1. In the 
closed-canopy vegetation types (excluding the Tristania-Parastemon as
sociation, which occupies a narrow transition zone around padang 
keruntum), Anderson (1961) observed an overall canopy height range of 
27.4–57.9 m, with averages of forest density by forest type ranging 
504–756 trees ha−1 and average basal area ranging from 33.5 to 49.6 
m2 ha−1. We have not found any studies of canopy cover in these forest 
types preceding the airborne lidar analysis conducted here (section 
2.2.1). 

2.2. Datasets and pre-processing 

We describe here the processing of airborne lidar, and the pre- 
processing and subsetting of GEDI and ATLAS data. We include in this 
section the classification of airborne lidar ground returns, because this 
application of spatial filters is well established. In contrast, application 
of spatial filters to GEDI and ATLAS data is the purpose of this study, and 
is therefore described in subsection 2.3 (Methods). 

2.2.1. Airborne lidar data 
Airborne lidar data were obtained from the Brunei Survey Depart

ment as 1 km × 1 km tiles produced by TerraScan software in LAS format 
version 1. Data were collected in 2009 and early 2010 by an Optech 
Gemini system on a NOMAD airplane. The system emitted near-infrared 
(1064 nm) laser pulses at 100 kHz from a height of 1400 m, producing 
an estimated 28 cm beam width on the ground. The laser was swept 
through a scan angle of ±22◦ at 40 Hz, producing a swath width of 1131 
m and line spacing of 792 m (swath overlap 30%). 

The LAS airborne lidar data tiles provided by the Brunei Survey 
Department starting in 2010 included up to four returns (first, last, and 
two intermediate). Later, data were provided in two data products 
classified using an undisclosed method, with either a subset of the last 
returns or of the first returns for each tile. We obtained full point clouds 
(up to four returns) for 78.8 km2, the subsets of first and last returns for 
an additional 48.3 km2, and the subsets of last returns only for an 
additional 194.3 km2, for a total of 321.4 km2. Because the first- and 
last-return tiles only contained data from a subset of pulses, we esti
mated the pulse density from the LAS tiles with full point cloud data (up 
to four returns), as the total number of last returns reported in the LAS 
files divided by their total area. 

To classify ground returns within the airborne lidar data, we used the 
progressive morphological filter (PMF) of Zhang et al. (2003) as 
implemented in an open-source software package (the Point Data 
Abstraction Library, PDAL; https://pdal.io/). This algorithm uses pro
gressively larger windows, performing an erosion (mathematical 
morphology) operation at each scale and discarding points lying more 
than a threshold above the eroded surface. At each window size, points 
that lie above the eroded surface by a distance of more than max_
distance, or more than window_size × slope + initial_distance, are 
considered non-ground points. The roles of these parameters are there
fore as follows: the initial_distance threshold constrains the allowable 
relief at even the smallest scales, while the slope constrains the relief to a 
range that increases with the window size. The maximum window size 
determines the horizontal distance beyond which the constraint 

imposed by the slope parameter should no longer apply, and max_
distance sets an absolute limit on the relief allowed at any window size. 
In practice, we were able to find a reasonable parameterization for 
ground point classification in the airborne lidar data with little experi
mentation based on prior knowledge of the microtopographic relief and 
typical large-scale gradients at the site. We set initial_distance, slope and 
max_distance to 15 cm, 0.02 and 2.5 m, respectively, and set the 
maximum window size to 200 m. 

To describe the extent to which dense vegetation prevented laser 
energy from reaching the ground, we defined ground visibility from the 
perspective of the airborne lidar system as the number of true ground 
returns divided by the total number of pulses, and estimated ground 
visibility as the density of last returns classified as ground by the spatial 
filter, divided by the mean density of impulses in the area with full point 
cloud data. In making this approximation, we assumed that the Survey 
Department processing of the last-return “DTM” datasets did not remove 
many true ground points (small omission error), which is consistent with 
the occurrence of non-ground last returns in these files (commission 
errors), as there is usually a tradeoff between omission and commission 
errors in ground point classification algorithms (Sithole and Vosselman, 
2004). We use “ground visibility” to emphasize that we do not assume or 
estimate a precise relationship between this commonly used quantity 
(Lovell et al., 2003) and gap fraction (nadir-projected gap area divided 
by total area) or its complement, canopy cover, because this relationship 
depends on: (1) the ratio of backscattering coefficients of vegetation and 
ground elements (Ni-Meister et al., 2001; Harding et al., 2001); (2) the 
distribution of energy in returns from ground and vegetation, which 
does not have a well defined link to the “intensity” reported in airborne 
lidar data (Mallet and Bretar, 2009; Armston et al., 2013); and (3) the 
distribution of gap sizes relative to the width of the diffraction cone of 
the beam from the aircraft, which affects whether reflected energy from 
ground or vegetation is intense enough to generate a “return” via the 
lidar system’s proprietary triggering mechanism (Mallet and Bretar, 
2009; Armston et al., 2013). 

2.2.2. Spaceborne lidar data: GEDI/ISS 
We obtained all available GEDI L1B and L2A Version 2 data between 

4.226 and 4.621◦N, 114.246 and 114.450◦E, from NASA’s Land Pro
cesses Distributed Active Archive Center (LP DAAC; Dubayah et al., 
2022a,b) from the beginning of the mission through June 29th, 2022. To 
illustrate the GEDI tracks intersecting the study area (Fig. 1), we also 
obtained granule metadata (NASA Earthdata portal, https://earthdata. 
nasa.gov/) for a northwest-southeast track from orbit 2973, and adja
cent orbits (2969–2975); and for a southwest-northeast track from orbit 
3073, and adjacent orbits (3069–3076). 

To evaluate GEDI terrain data, we extracted GEDI ground elevation 
estimates from GEDI L2A data. GEDI L2A version 2 provides several 
different ground point estimates for each shot, obtained by smoothing 
the received waveform with a Gaussian filter and identifying peaks that 
exceed a threshold: there are 6 different parameterizations (“algo
rithms”) used for waveform processing in the L2A product, which differ 
in the width of the Gaussian filter (smoothwidth_zcross) and the 
thresholds used to identify the top of the canopy (front_threshold) and 
the ground (back_threshold; Hofton and Blair, 2019, Table 1). Algo
rithms 1 and 4 use the widest smoothing kernel and the highest 
threshold for ground detection, and are therefore the least likely to 
mistake noise at the end of the waveform for a ground reflection, but the 
most likely to miss a weak ground signal. Algorithms 1 and 4 have 
identical parameters for ground detection, and therefore provide very 
similar sets of ground points, but may flag different shots as valid 
(quality_flag) because of different values for the parameter that iden
tifies the top of the canopy (front_threshold). Algorithms 2, 3, 5 and 6 all 
use the same kernel width, which is about 0.54 times the width used for 
algorithms 1 and 4. Among these, the threshold for ground detection 
decreases (and sensitivity increases) in the order 3, 6, 2, 5, where 3 has a 
threshold equal to algorithms 1 and 4 (but with a narrower smoothing 
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kernel; Hofton and Blair, 2019, Table 1). 
In addition to the ground estimate obtained from each of these al

gorithms as the lowest detected mode (elev_lowestmode), GEDI L2A also 
stores a “selected” ground estimate, which is equal to a mode from one of 
the 6 waveform processing parameterizations, but not necessarily the 
lowest mode (Hofton and Blair, 2019). We analyzed the set of “selected” 
ground estimates separately because (1) the “selected” algorithm may 
differ for different shots, and therefore the set of “selected” ground el
evations is a mixture of modes from the 6 waveform processing algo
rithms; and (2) the “selected” mode for a shot may not be the lowest 
mode of the “selected” algorithm, and therefore may not be equal to any 
of the 6 other ground elevations for the shot. We extracted all points 
flagged as viable for downstream use (quality_flag = 1; Hofton and Blair, 
2019) from each of these sets of ground points. 

2.2.3. Spaceborne lidar data: ATLAS/ICESat-2 
We obtained all available ATLAS/ICESat-2 L2A Global Geolocated 

Photon Data (ATL03) and L3A Land and Vegetation Height (ATL08) 
Version 5 data from LP DAAC (Neuenschwander et al., 2022a; Neumann 
et al., 2022) for the same spatial region as for GEDI data from the 
beginning of the mission through June 29th, 2022. ATL03 provides the 
geolocation of the bounce point of each photon at the ATLAS laser 
wavelength received by the ATLAS telescope. We filtered geolocated 
photon bounce points based on their classification as signal in the ATL08 
product (classed_pc_flag 1, 2, or 3; Neuenschwander et al., 2022b). 
Because the name attached to each of the six ATLAS beams (GT1L, 
GT1R, …) depends on the spacecraft orientation (Neuenschwander 
et al., 2022b), we used spacecraft orientation (sc_orient) to determine 
the names for weak and strong beams in each transit. To illustrate the 
ATLAS tracks intersecting the study area (Fig. 1), we also obtained 
Reference Ground Tracks (RGTs) with dates and times as KML from the 
ATLAS specifications page (https://icesat-2.gsfc.nasa.gov/science/specs 
). 

2.3. Methods 

We now describe the spatial filtering of GEDI and ATLAS data, and 
the alignment and comparison of GEDI, ATLAS and airborne lidar 
datasets. Because the flight paths of the ISS and ICESat-2 intersect one 
another obliquely, we did not attempt to compare the GEDI and ATLAS 
datasets directly. Instead, we evaluated GEDI and ATLAS elevations with 
reference to the airborne lidar dataset, which provides ground eleva
tions throughout the study area. 

2.3.1. Spatial filtering of GEDI data 
To simplify further analysis, we first defined a transect for each beam 

and each pass of the GEDI instrument over the study area, by orthogonal 
distance regression of the set of georeferenced beginning and end points 
(bin0 and lastbin) from all GEDI waveforms in the transect. To explore 
the use of spatial filters for removing outliers, we processed GEDI 
ground elevations using the same type of spatial filter used for the 
airborne lidar data (PMF, in PDAL), using, as input to the filter, the 
elevation and along-track position of the interpolated ground point. We 
selected parameters for the spatial filter based on typical surface gra
dients in the study area and the spatial configuration of the GEDI shots, 
followed by a few rounds of trial-and-error in which we examined 
profiles of classified GEDI ground points without reference to the 
airborne lidar data. We arrived at parameters of 12 m, 0.0012, 15 cm, 
and 10 km for max_distance, slope, initial_distance, and max_window_
size, respectively (Table 2). 

Because in some important applications one would not have access to 
a reference airborne lidar dataset, we did not attempt to optimize the 
parameters for filtering GEDI data. Instead, to explore the sensitivity of 
GEDI ground point classification to the filter parameters, we perturbed 
the four filter parameters by separately increasing each of them by 10%. 
We then computed all error metrics (see section 2.3.4 for the error 
metrics calculated) for all 5 parameter sets: the initial parameterization 
(Table 2), and the four perturbed parameter sets produced by increasing 
each parameter by 10%, one at a time. 

2.3.2. Spatial filtering of ATLAS data 
As with GEDI, to simplify further analysis, we first defined a transect 

associated with each pass of each beam of the ATLAS instrument over 
the study area by orthogonal distance regression of the ATL03 reference 
photons associated with the transect. We extracted geolocations of 
ATL03 photon bounce points classified as ground by the DRAGANN 
algorithm in ATL08 (Neuenschwander and Pitts, 2019). To explore the 
use of spatial filters to identify bounce points misclassified as ground in 
ATL08, we processed the ATL08 ground photons using the same spatial 
filter used for the airborne lidar and GEDI data (PMF, in PDAL), using, as 
input to the filter, the elevation and along-track position of the photon 
bounce point. We used the same spatial filter parameters for 
ATL08-classified ground points as for geolocated GEDI ground eleva
tions (section 2.3.1, “Spatial filtering of GEDI data”), but with a smaller 
max_window_size of 1 km (Table 2) due to the higher density of candi
date ground points per distance provided by ATL08 ground photons 
compared to GEDI shots. As with the filtering of GEDI ground points, we 
explored sensitivity to these parameters for spatial filtering of ATL08 
ground photons by separately increasing each parameter by 10%, and 
computing error metrics for each parameter set, yielding 5 sets of error 
metrics (section 2.3.5). 

2.3.3. Alignment of datasets 
The typical geolocation error of airborne lidar systems is <2 m (Lim 

et al., 2003; Liu, 2008). On-orbit evaluation has shown geolocation error 
for all ATLAS beams to be in the range of 2.5–4.4 m (mean + 1σ; Luthcke 
et al., 2021), while GEDI geolocation error is estimated to be 10–20 m 
(Dubayah et al., 2020). Although a number of previous studies have 
added a horizontal offset to spaceborne lidar geolocations to maximize 
agreement between spaceborne and airborne lidar vegetation profiles 

Table 1 
GEDI waveform processing algorithm parameter sets, after Hofton and Blair 
(2019). The parameter smoothwidth, equal to 6.5 for all algorithms, is not 
shown.  

Algorithm smoothwidth_zcrossa front_thresholdb back_thresholdc 

1 6.5 3σd 6σ 
2 3.5 3σ 3σ 
3 3.5 3σ 6σ 
4 6.5 6σ 6σ 
5 3.5 3σ 2σ 
6 3.5 3σ 4σ  
a Width of Gaussian filter used to search signal-only portion of waveform for 

peaks. 
b Threshold above mean noise level for first (highest-elevation) peak. 
c Threshold above mean noise level for last (lowest-elevation) peak. 
d σ: noise standard deviation after initial smoothing. 

Table 2 
Parameterizations of progressive morphological filter of Zhang et al. (2003).  

Application max_distance initial_distance slope max_window_size 

Airborne lidara 2.5 m 15 cm 0.02 200 m 
GEDIb,c 12 m 15 cm 0.0012 10 km 
ATLASb,c 12 m 15 cm 0.0012 1 km  

a Application to airborne lidar is a standard use for this type of filter; 
parameterization is shown for reference. 

b Applied in one horizontal dimension along each flight transect. 
c To explore sensitivity to these parameters, four additional parameterizations 

were generated for this filter by increasing each parameter by 10%, one at a 
time. 
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(Harding and Carabajal, 2005; Popescu et al., 2011; Neuenschwander 
et al., 2020a), we did not perform this step because the small gradients 
in surface elevation in the study area (about 1 m/km) would combine 
with GEDI and ATLAS geolocation error to produce elevation errors of 
<2 cm. 

2.3.4. Data comparison: GEDI vs. airborne lidar 
To compare GEDI waveforms and ground elevation data to airborne 

lidar data, we extracted airborne lidar returns within the neighborhood 
of GEDI transects (workflow shown in Fig. 3). We first pre-filtered 
airborne lidar tiles by extracting data within 18 m of the bounding 
box of the intersecting transect, then performed a spatial query (using 
PostGIS, https://postgis.net/) to obtain only returns within 18 m of the 
transect center line. These 36 m-wide strips of airborne lidar returns 
were used in subsequent analyses to reduce the computing time for 
spatial searches within the ~25 m-diameter footprint (Dubayah et al., 
2020) of each GEDI shot without omitting relevant data due to deviation 
of individual shots from the transect center line. 

To qualitatively compare GEDI waveforms to discrete-return 
airborne lidar data within the study area, we constructed pseudowave
forms, or vertical distributions of returns (Blair and Hofton, 1999), from 
airborne lidar returns within each GEDI shot in the area of full (up to 
four return) airborne lidar data. To extract airborne lidar returns within 
a GEDI shot, we queried the airborne lidar returns to obtain only those 
within the shot radius of 12.5 m of the slanted central axis of the GEDI 
shot. We then constructed a pseudowaveform as the distribution of el
evations of airborne lidar returns within the GEDI shot. We did not 
weight returns by distance from the central axis of the GEDI shot because 
weighting was found to make little qualitative difference in a similar 
analysis of GLAS data (Popescu et al., 2011), and our primary focus was 
on ground elevations. 

To quantify the agreement between GEDI and airborne lidar terrain 
data, we also compared each GEDI ground elevation to the mean 
elevation of airborne lidar ground returns within the GEDI shot. We 
were able to perform this comparison in all areas with airborne lidar 
coverage, as all airborne lidar data included last returns classified as 
ground using the spatial filter (section 2.2.1, “Airborne lidar data”). For 
each set of GEDI ground elevations, we compared each GEDI ground 
point to the mean airborne lidar ground elevation within each shot in 
terms of bias (difference in mean), root mean squared error (RMSE), and 
mean absolute difference (MAD). Because we are also interested in how 
the overall shape of the peat surface estimated from GEDI corresponds to 
the shape of the reference surface from airborne lidar data, we also 
computed the unbiased root-mean-squared error (ubRMSE), defined as 
the root-mean-squared difference between the deviations of GEDI and of 
airborne lidar ground elevations from their respective means along each 
transect. We evaluated these metrics for all ground elevations in the 

GEDI L2A product, and also for ground points that passed the spatial 
filter. Finally, to explore sensitivity of these results to filter parameters, 
we then recalculated all metrics for four sets of perturbed parameters 
generated by separately increasing each filter parameter by 10% (sec
tion 2.3.1). 

2.3.5. Data comparison: ATLAS vs. airborne lidar 
To compare ATLAS photon data and ground elevations to reference 

airborne lidar data, we extracted airborne lidar returns within the 
neighborhood of ATLAS transects using the same approach as for GEDI 
transects (workflow shown in Fig. 3), but with narrower (17 m-wide) 
strips of airborne lidar due to the smaller diameter of the ATLAS foot
print (~11 m; Magruder et al., 2021). 

To compare the vertical distribution of nadir-visible reflectors 
detected in ATLAS geolocated photon data and from airborne lidar data, 
we used a similar approach as for GEDI waveforms (section 2.3.4) but 
additionally needed to construct pseudowaveforms from ATLAS photon 
bounce points as follows. We divided the data from each transit of the 
ATLAS instrument over areas with full point cloud airborne lidar data 
(up to four returns) into 200 m along-track segments. We then con
structed pseudowaveforms from the distribution of ATL03 photon 
bounce point elevations within the segment, which we compared to the 
distribution of airborne lidar return elevations within the beam radius 
(5.5 m) of the center line along each segment. As with the comparison to 
GEDI waveforms, we performed no weighting of airborne lidar returns 
by distance from the transect center line. 

To quantify the agreement between ATLAS and airborne lidar terrain 
data, we compared ATL08 and airborne lidar ground elevations using 
the same approach as for evaluation of GEDI ground points (section 
2.3.4), with the sole difference being the radius used to identify airborne 
lidar ground returns within the shot footprint (5.5 m for ATLAS vs. 12.5 
m for GEDI). 

3. Results 

3.1. Ground visibility to airborne lidar 

Filtered airborne lidar data provided a reference digital terrain map 
that was free from outliers caused by false ground returns: because the 
total relief of the study site is only 16.7 m, outliers from the 30–50 m 
canopy would be immediately visible in a shaded relief image (Fig. 4a). 
However, airborne lidar data also revealed that average ground visi
bility in the study area was low: data from the area with full point cloud 
data (up to four returns) indicated a pulse density of 1.945 m−2, whereas 
the density of ground-classified returns in the study area was 0.0550 
m−2, for a mean ground visibility of 2.83%. Overall, 87.6% of the study 
area had a ground visibility of less than 5% and 47.8% had a ground 

Fig. 3. Flow chart for GEDI, ATLAS and airborne lidar data processing.  
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visibility of less than 2% (Fig. 4b and c). Ground visibility was much 
higher in the sparsely vegetated (padang keruntum) area, with an 
average of three times more ground-classified returns per area (0.1741 
m−2; mean ground visibility 8.95%). Only 5.04% of the sparsely vege
tated area had a ground visibility of less than 5% and only 0.11% had a 
ground visibility of less than 2%. 

3.2. Spaceborne lidar data: GEDI/ISS 

The study area was crossed by 23 passes of the GEDI instrument; 
across all 8 beams, the study area was intersected by 170 distinct tran
sects, covering a total linear distance of 1099 km by coverage beams and 
1037 km by full-power beams (Fig. 5). There were 38,275 GEDI shots in 
the study area described in the GEDI L1B product, of which 20,634 were 
at night (54%). In all, 5292 shots (14%) were flagged as suitable for 
further analysis (quality_flag = 1) using the “selected” algorithm, 65% of 
them at night (Fig. 5c). Based on the distance traversed, the linear 
density of quality shots at night was 1.52 shots km−1 from the coverage 
beams and 4.11 shots km−1 from the full-power beams. There was good 
qualitative agreement between GEDI waveforms and airborne lidar 
returns where full point cloud airborne lidar data were available, as 

evident in cross-sections (Figs. 6 and 7). Nonetheless, the lowest mode of 
the GEDI waveforms often appeared somewhat higher than the mean 
elevation of ground-classified airborne lidar returns (Fig. 6). 

Profiles of GEDI ground elevations with airborne lidar data in 
densely forested areas showed that ground elevations selected in the 
GEDI L2A product included a number of high outliers (Fig. 8), even 
under the best conditions (passing quality flags, sensitivity ≥98%, full- 
power beam at night). These high outliers occurred when the GEDI 
L2A ground elevation was placed within the canopy in areas of dense 
forest cover. Most or all of these canopy “ground” elevations were 
removed by the spatial filter, depending on which GEDI L2A algorithm 
was used to determine the ground elevation for each shot (see below). 
The filtered GEDI L2A-selected ground elevations lay near, but mostly 
above, the elevation of the airborne lidar ground returns (Figs. 8, 9a and 
9b). 

For all GEDI L2A algorithm settings, ground elevations that passed 
the spatial filter were more accurate and precise than unfiltered ground 
elevations, including shots with a sensitivity of over 98%, according to 
all error metrics (bias, RMSE, ubRMSE and MAD) and all algorithms 

Fig. 5. GEDI coverage of the study area. (a) Beam configuration of GEDI. Shots 
from GEDI full power and coverage lasers from a single transit by the ISS and 
(b) GEDI transects over the study area from full power (green) and coverage 
beams (gray). Shots marked as valid for downstream use (quality_flag = 1, 
“selected” algorithm) in the GEDI L2A product are shown as points (small 
points: night; smaller points: day). (c) Number of GEDI shots from full power 
and coverage beams in the area of airborne lidar data; filled portions indicate 
quality-filtered shots from the “selected” algorithm of the GEDI L2A product 
(shots flagged as valid differ somewhat across algorithms). (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 4. Airborne lidar coverage and ground visibility in the study area. (a) 
Shaded relief map of study area derived from airborne lidar (resolution 20 m ×
20 m), showing areas with point cloud data (4 returns), first and last returns, 
and last returns only. Total relief is 16.7 m. (b, c) Ground visibility in the study 
area, defined as the ratio of returns classified as ground to the pulse density; 
note logarithmic color scale. The demarcated area has naturally sparse vege
tation (padang keruntum; Anderson, 1963). (For interpretation of the refer
ences to color in this figure legend, the reader is referred to the Web version of 
this article.)   
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Fig. 6. Sample GEDI waveforms and corresponding airborne lidar pseudowaveforms. (a, c) GEDI waveforms (green) from two shots at night from a full-power beam 
and pseudowaveforms constructed from airborne lidar point cloud data (gray) using a kernel density estimator; black horizontal lines show the elevation of the 
waveform mode identified as ground by GEDI L2A algorithm 1. (b) Profile of GEDI beams and of the airborne lidar returns used to construct the pseudowaveforms (a, 
c), shown with nominal beam width of 25 m. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 7. Profiles of GEDI waveforms (green; full power beams at night) and airborne lidar (gray). (a, d, g) Airborne lidar returns within 18 m of the GEDI transect 
center line (gray) and GEDI L1B waveform data (shades of green). (b, e, h) Sample GEDI waveforms (marked with triangles in a, d, g) from along each transect, as 
uncalibrated signal amplitudes (digital number, dn). Dashed line and shaded bands show estimated noise level and standard deviation from the GEDI L1B product. (c, 
f, i) Locations of profiles (a, d, g) in study area. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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(Fig. 9c–e) except for a larger bias with spatial than with sensitivity 
filtering for algorithm 5 (Fig. 9e). For those algorithms that identified 
some shots in the study area as having sensitivities of over 98%, the 
distribution of residuals for those high-sensitivity shots was similar to 
the overall distribution of residuals of ground elevations determined by 
that algorithm (Fig. 9c). With algorithms 2, 3, 5, and 6, some positive 
outliers remained in the filtered ground points, whereas in algorithms 1 
and 4 the spatial filter appeared to remove all non-ground outliers. 
Ground points from algorithms 1 and 4 were identical except that two 
shots were flagged as viable by algorithm 4 but not by algorithm 1 (3344 
vs. 3342 quality shots), and because of this difference, one less point 
passed the spatial filter in the algorithm 4 point set (1153 vs. 1154; 
results in Fig. 9 plots were visually indistinguishable). 

Algorithms 2, 3, 6 and especially 5 additionally included some large 
negative outliers, which cannot be removed by the spatial filter we used; 
there were also some negative outliers among the ground elevations 
selected in the GEDI L2A product, attributable to the selection of algo
rithm 5 for some shots. Nonetheless, error metrics of ground points from 
the entire study area that passed the spatial filter approached, and in 
most cases improved on, the accuracy and precision of ground points 
from quality GEDI shots in the sparsely vegetated southwest corner of 
the study area. For example, GEDI L2A ground points from algorithm 1 
in the sparsely vegetated area, alone, had much better error metrics than 
the complete set of ground points, with a vertical offset (bias) of 3.08 vs. 
8.35 m, a MAD of 3.08 vs. 8.35 m (bias and MAD were nearly equal for 
these point sets), a RMSE of 3.86 vs. 15.98 m, and a ubRMSE of 2.32 vs. 
13.62 m. However, the 1154 out of 3342 ground points from the entire 
study area that passed the spatial filter had still better error metrics, with 
a bias and MAD, RMSE, and ubRMSE of 1.83, 1.97, and 0.72 m, 
respectively: 4.6, 8.1 and 19 times better than the metrics for unfiltered 
ground points (Fig. 9d and e). 

3.3. Spaceborne lidar data: ATLAS/ICESat-2 

The study area was crossed by 12 passes of the ATLAS instrument; 
across all 6 beams, the study area was intersected by 37 distinct tran
sects, covering a total linear distance of 302 km by weak beams and 334 
km by strong beams (Fig. 10). From these transects, there were 
3,593,941 photons received by ATLAS and described in the ATL03 
product as having bounce points in the study area, of which 73,575 were 

received at night (2.27%). In all, 112,800 of the received photons 
(3.14%) were classified as signal in the ATL08 product, 51.0% of them at 
night (Fig. 10c). Based on the distance traversed, the linear density of 
ATL08-classified signal photons was 41.4 photons km−1 from the weak 
beams and 300.6 photons km−1 from the strong beams. 

Point cloud data from ATL03 bounce points and airborne lidar 
returns appeared qualitatively similar in cross-sections (Figs. 11 and 12). 
Pseudowaveforms produced from ATL03 photon bounce points and 
airborne lidar returns were also qualitatively similar, though the 
airborne lidar canopy profiles were more detailed (Fig. 11a and c) 
because of the higher density of airborne lidar returns (1.945 returns 
m−2 in airborne lidar vs. 0.106 ATL08 signal photons m−2 from strong 
beams at night). In areas of dense forest cover, profiles showed that there 
were intervals of more than 50 m in which none of the ATLAS photon 
bounce points were on the ground (Fig. 12). 

Photon bounce points classified as ground in ATL08 were not always 
on the ground; some were close to the ground but above it (Fig. 11), 
others were within the forest canopy (Fig. 13). The daytime ATLAS shots 
did not seem to produce any useful data (data not shown); however, 
both strong and weak beams at night yielded good ground elevations 
(Fig. 14). Similar to the GEDI L2A ground elevations, residual plots 
showed that the mode of ATL08 nighttime ground photon bounce points 
lay above the reference ground surface derived from airborne lidar 
(Fig. 14b); in addition, and in contrast to the ground elevations from 
some GEDI L2A algorithms, almost all ATL08 ground elevations lay at or 
above the mean elevation of airborne lidar ground points within the 
ATLAS shot (Figs. 13c and 14). As with GEDI L2A ground elevations, the 
spatial filter effectively removed the canopy photons misclassified as 
ground in ATL08 nighttime data (Figs. 13 and 14), resulting in error 
metrics that were close to those of unfiltered ATL08 ground points in the 
area of sparse vegetation. For example, of the 4112 ground points from 
the strong beam at night, the 1090 points that passed the spatial filter 
had a bias, MAD, RMSE and ubRMSE that were 2.4, 2.4, 5.0, and 8.0 
times better than the full set of points (0.63, 0.64, 0.77, and 0.44 m vs. 
1.51, 1.51, 3.85 and 3.54 m), and approached the metrics for ground 
points from the sparsely vegetated area (0.53, 0.53, 0.59, and 0.26 m; 
Fig. 14). 

Fig. 8. GEDI ground elevations. (a) GEDI L2A ground elevations before (algorithm 1; green dashed line) and after spatial filtering (points), and airborne lidar ground 
returns (gray). (b) Location of transect shown in (a, c, d). (c) Difference between spatially filtered GEDI L2A ground elevation and average elevation of airborne lidar 
ground returns within the same GEDI shot. (d) Ground visibility estimated from airborne lidar data along the transect. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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3.4. Sensitivity of error metrics to spatial filter parameters 

The spatial filters used on GEDI and ATLAS classified up to 8.9% 
more or 5% fewer points as ground points after each parameter was 
individually increased by 10% (Fig. 15). Filtering of GEDI and ATLAS 
point sets was insensitive to a 10% increase in max_distance. Increases in 
initial_distance and slope make the filters more permissive, and resulted 
in more points classified as ground. An increase in max_window_size 
makes the filter more restrictive, and resulted in fewer ATLAS points 
classified as ground; increasing the large (10 km) maximum window size 
of the GEDI filter had no effect on the classification of GEDI point sets. 

The differences in ground-classified point sets after 10% increases in 
each filter parameter caused GEDI and ATLAS error metrics to change by 
−0.174 to 0.041 m (Fig. 15). The error metrics for all the perturbed 
parameter sets are plotted in Fig. 9d and e, and in Fig. 14c and d, but are 
visually indistinguishable from the metrics for the unperturbed param
eter sets. In most cases, perturbations that made the filter more 

restrictive (that is, the 10% increase max_window_size for ATLAS) 
reduced the error, and perturbations that made the filter more permis
sive (increases in initial_distance and slope) increased the error. The 
exceptions were GEDI algorithm 5 and the “selected” ground elevations 
in the L2A product, for which all error metrics were reduced by up to 
17.4 cm with more permissive filtering; in addition, increases in the 
slope parameter reduced error metrics for some other GEDI algorithms 
by up to 4.5 cm (Fig. 15). 

4. Discussion 

Both GEDI L2A and ATLAS ATL08 products produced useful terrain 
data in this tropical peatland, though extracting the useful data was 
complicated by dense forest canopies (Fig. 2). Dense canopies are known 
to pose problems for terrain estimation using lidar (Lim et al., 2003; 
Dubayah et al., 2010; Neuenschwander and Pitts, 2019), and the need to 
penetrate the dense canopies of tropical forests was part of the 

Fig. 9. GEDI ground elevation vs. mean elevation of airborne lidar ground returns in each GEDI shot footprint. (a) GEDI L2A ground elevations (algorithm 1, quality- 
filtered shots at night) vs. mean elevation of airborne lidar ground returns within the 25 m GEDI shot footprint without (white) and with (green) spatial filtering of 
GEDI ground points. (b) Residuals from (a) plotted with respect to GEDI estimated shot sensitivity. (c) Distributions of residuals by GEDI waveform-processing 
algorithm, for all ground elevations (white), shots with sensitivity at least 98% (gray), ground elevations passing the spatial filter (green), and ground elevations 
within the area of sparse vegetation (purple; see Fig. 4). (d) Mean absolute deviations from (c), with number of shots shown above each point and indicated by point 
area. (e) Unbiased RMSE (ubRMSE) and bias as in (d); RMSE is given by distance from the origin. Error metrics from four perturbed spatial filter parameterizations 
(each parameter increased by 10%) are plotted in (d) and (e) but are indistinguishable. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

A.R. Cobb et al.                                                                                                                                                                                                                                 



Science of Remote Sensing 7 (2023) 100074

11

motivation for the high energy of GEDI shots (Dubayah et al., 2020). The 
dense canopy cover in the study area was apparent in the low ground 
visibility (ratio of ground returns to all returns) in the airborne lidar 
data: the mean ground visibility in the area of airborne lidar coverage 
was only 2.83%, with 87.6% of the area having a ground visibility of less 
than 5% and 47.8% having a ground visibility of less than 2% (Fig. 4). As 
98% and 95% canopy cover correspond to the design specifications of 
the full-power and coverage beams of GEDI, respectively (Dubayah 
et al., 2020), it is to be expected that GEDI shots did not always detect 
the ground in this setting. Cases where little, if any, laser energy reached 
the ground and was reflected back to the instrument can be identified in 
waveforms without a discernible ground peak (Fig. 7) and ground 
elevation estimates that lie at or near the top of the canopy (Fig. 8). 
Similar outliers at the canopy height have been observed in 
higher-latitude forests with dense canopies using GEDI (Spracklen and 
Spracklen, 2021), and have also been observed in ATLAS data from 
tropical peat swamps by Davenport et al. (2020) and Berninger and 
Siegert (2020). 

The difficulty of collecting terrain altimetry in areas with dense 
vegetation is well known from studies using airborne lidar dating back 

more than 20 years (Vosselman, 2000; Zhang et al., 2003; Lim et al., 
2003). In processing discrete-return airborne lidar data, the established 
methods for identifying non-ground returns are based on the idea that 
incoherent jumps in elevation between returns are most likely caused 
not by ground features, but by non-ground objects. These “objects” may 
vary in size: in cityscapes, they might be roofs of buildings; in dense 
forests they might be areas where, by chance, there are no ground 
returns. In both cases, most ground point classification algorithms 
remove objects of varying sizes by using a multiscale or hierarchical 
strategy using spatial information, or “context,” from points at a range of 
scales. If objects in the setting are large, a larger maximum scale of 
context is required to remove them; in the case of our airborne lidar 
dataset, a maximum window size of 200 m was needed to effectively 
remove canopy points from areas without ground returns. These mul
tiscale strategies are highly effective at removing objects while retaining 
ground features in most settings, and there have not been major im
provements in accuracy of ground point classification algorithms in 
recent years (Chen et al., 2013; Zhang et al., 2016; Zhao et al., 2016). 

Our results show that ground point classification algorithms can also 
be usefully applied to spaceborne lidar ground points, whether from 
modes in waveforms (GEDI L2A) or from ground-classified photon 
bounce points (ATLAS ATL08). The basic logic is the same as in ground 
point classification of airborne lidar datasets: visually, we consider an 
isolated spike to be more likely attributable to a misclassified canopy 
return than to a ground feature. A conceptually similar approach is used 
in the DRAGANN algorithm used to produce the ATL08 data product: 
nearby photon bounce points are merged into clusters that are inter
preted as belonging to ground or canopy surfaces, discarding (classifying 
as noise) photons that are spatially isolated. Because of power con
straints, the number of candidate ground points per area from space
borne lidar (1.65 × 10−4 quality shots m−2 and 0.106 signal photons 
m−2, from GEDI and ATLAS respectively, in full-power and strong beams 
at night) is necessarily much lower than in airborne lidar data sets 
(typically 2–3 m−2; Manuri et al., 2017). Given the lower spatial density 
of candidate ground points in spaceborne lidar data, for ground points to 
be distinguishable from canopy points, the ground surface must be 
smoother. Thus, part of the reason that a spatial filtering approach works 
in this setting is that, because of the mechanism of peat accumulation 
(Cobb et al., 2017), the ground surface is smooth at the landscape scale 
(Manuri et al., 2017). 

In more complex terrain, spatial filters could be difficult to apply, 
especially on GEDI data, for which the smallest scale of spatial infor
mation is the 60 m along-track shot spacing. The difficulties created by 
complex terrain are easy to picture when examining profiles (Fig. 8): in a 
setting where some of the “spikes” in GEDI ground elevation estimates 
might plausibly represent a terrain feature, parameters that remove 
canopy returns could also artificially smooth out the terrain. In partic
ular, the problems created by tall vegetation on steep slopes, much 
explored in studies of GLAS data (Lefsky et al., 2007; Hilbert and 
Schmullius, 2012) and also relevant to GEDI (Adam et al., 2020; 
Spracklen and Spracklen, 2021), will not be solved by this approach, and 
will require other strategies such as filtering by estimated canopy cover 
(Tang and Armston, 2019) or considering constraints on reasonable 
foliage profiles (Tang et al., 2014). 

The limitation of spatial filtering strategies to smooth terrain may be 
relaxed somewhat as the spatial density of GEDI and ATLAS data con
tinues to increase until the end of these missions. Note, however, that 
our current implementation works on one spaceborne lidar track at a 
time, using only the along-track position of ground elevation estimates; 
filtering data from multiple tracks together could be possible with some 
algorithms, but strongly uneven point density (caused by gaps between 
tracks) creates additional challenges (Roberts et al., 2019). Spatial 
filtering of spaceborne lidar data will also require adaptation in studies 
of peatland terrain that include steep edges, such as scars from fires that 
have burnt away part of the peat surface (Ballhorn et al., 2009; Simpson 
et al., 2016). 

Fig. 10. ATLAS coverage of the study area. (a) Beam configuration of ATLAS: 
reference photons from ATLAS weak and strong beams from a single transit by 
ICESat-2 of the northwestern edge of the study area. (b) ATLAS transects over 
the study area from the strong (fuchsia) and weak beams (gray). Reference 
photons for valid data are shown as points (small points: night; smaller points: 
day). (c) Total received photons in the region of airborne lidar coverage from 
strong and weak beams during the night and day, with filled portions indicating 
photons classified as ground, canopy, or top-of-canopy photons in the ATL08 
product.   
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After the removal of canopy outliers with spatial filters, ground el
evations from both GEDI L2A and ATL08 remained higher than corre
sponding airborne lidar ground elevations by 183.1 cm (average from 
algorithm 1 quality shots) and 63.4 cm (average from strong beams at 
night) respectively. GEDI L2A (algorithms 1–4 and 6) and ATL08 ground 

elevations were also higher than corresponding airborne lidar ground 
points in the sparsely vegetated part of the study area (Figs. 9 and 14). 
(Filtered GEDI ground elevations from waveform processing algorithm 5 
and from “selected” ground points had offsets that were negative 
because of negative outliers, which resulted in a relatively low precision, 

Fig. 11. Profiles of ATLAS photons (fuchsia) from strong beams at night, and airborne lidar returns (gray). (a, c) Sample ATLAS photon pseudowaveforms and 
airborne lidar return pseudowaveforms, constructed using a kernel density estimator with different bandwidths for airborne lidar returns (gray) and ATLAS photons 
(fuchsia). (b) ATLAS photons and airborne lidar returns used to construct the pseudowaveforms (a, c). 

Fig. 12. Profiles of ATLAS photons (fuchsia) from strong beams at night, and airborne lidar returns (gray). (a, c, e) Airborne lidar returns within 8.5 m of the ATLAS 
transect center line (gray) and ATL08 signal photons. (b, c, f) Locations of profiles (a, c, e) in study area. 
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indicated by a high ubRMSE.) We briefly consider four possible expla
nations for the higher ground elevation estimates from GEDI and ATLAS 
data: (1) surface changes (peat accumulation) between the time of 
acquisition of the airborne lidar and the GEDI and ATLAS data; (2) 
geolocation and altimetric errors in the spaceborne lidar datasets; (3) 
difference in vertical datum; and (4) peat surface microtopography. 

Although the airborne lidar data were collected 10–11 years before 
the ATLAS and GEDI data, the higher elevations in the spaceborne lidar 
datasets cannot be explained by peat accumulation (explanation 1): a 
typical rate of peat accumulation in coastal Southeast Asia peatlands, 
including at this site (Dommain et al., 2015), is 2 mm/y (Dommain et al., 
2011). This accumulation rate yields an increase in surface elevation of 
about 2 cm, too small to explain the higher ground elevations obtained 
from GEDI and ATLAS. 

As for geolocation and altimetric errors for the two missions 
(explanation 2), because of the small terrain gradients at the site, geo
location errors have little effect on ground elevations: with a 1 m/km 
surface gradient, a 10–20 m geolocation error, as estimated for GEDI’s 
early calibrated data products (Dubayah et al., 2020), introduces just a 
1–2 cm bias, and therefore geolocation errors could not contribute sig
nificant average vertical offsets in this setting. Altimetric errors in 
ATL03 photon bounce points were found to be better than 5 cm in an 
evaluation on the Antarctic Ice Sheet (Brunt et al., 2019), and a com
parison of airborne lidar and ATLAS terrain elevations across non-tundra 
sites from the United States National Ecological Observatory Network 
(NEON) found a −20 cm offset between ATLAS and airborne lidar 
terrain elevations (Liu et al., 2021). The same comparison found a 117 
cm difference in offset between ATLAS and GEDI terrain elevations, 
similar to the 119.7 cm difference found here, so it is possible that the 
same source of error could explain the difference in offsets that we 
observed between GEDI and ATLAS elevations. As the vertical datum for 
the airborne lidar data is unknown (explanation 3), difference between 
this datum and the EGM96 geoid to which we transformed the GEDI and 
ATLAS elevations could explain a constant offset between the airborne 
and spaceborne lidar elevations, though not the difference in offset be
tween GEDI and ATLAS ground elevations. 

Finally, elevation offsets between airborne lidar, GEDI and ATLAS 
data could be affected by the hummock-hollow microtopography of 
about 30–50 cm relief found in our study area as well as other peatlands in 
this region (explanation 4; Lampela et al., 2016; Cobb et al., 2017). 
Because of this microtopographic relief, the airborne lidar, GEDI and 
ATLAS datasets are likely to differ in the subset of reflecting surfaces 

sensed and classified as ground. In the case of GEDI, the ground elevation 
is obtained from a peak (mode) in the waveform, which could lie some
where between the elevations of local depressions (hollows) and local 
high points (hummocks) in the peat surface, whereas spatial filtering of 
airborne lidar data could remove many of the returns from hummocks 
(Fig. 6). Similarly, because of their sparseness, ATLAS photon bounce 
points from hummocks might be accepted by a spatial filter more often 
than returns from hummocks in airborne lidar datasets (Fig. 11), which 
could result in a higher average elevation in spatially filtered ATL08 
ground elevations than in spatially filtered airborne lidar returns. 

Notwithstanding these residual elevation offsets relative to the 
airborne lidar dataset, both GEDI (algorithm 1 or 4) and nighttime 
ATLAS ground points captured the overall terrain shape well after 
spatial filtering, with relatively low ubRMSE (71.5 cm and 44.5 cm, for 
quality shots and for strong beams at night, respectively, reduced from 
1362.0 cm to 353.7 cm before filtering). Even with the vertical offsets 
included, RMSE values from the spatially filtered GEDI and ATLAS data 
(196.6 cm with GEDI algorithm 1 quality shots, 77.4 cm with ATLAS 
strong beams at night) compare favorably to the RMSEs of 403 cm and 
224 cm observed for terrain elevations from GEDI and ATLAS, respec
tively, across non-tundra NEON sites (Liu et al., 2021). 

We found that error metrics of filtered GEDI and ATLAS data were 
relatively insensitive to perturbation of the parameters of the spatial 
filter we used (PMF; Zhang et al., 2003). Increases of 10% in each 
parameter yielded small changes in error metrics (−0.174 to 0.041 m). 
Further, starting with a basic knowledge of site terrain and vegetation, 
we arrived at the parameters after minimal trial and error, without 
optimization or reference to airborne lidar data. Though other spatial 
filters use different parameters, these findings suggest that there is a 
large region of parameter space in which the error metrics of filtered 
ground points from these peatlands are excellent. 

The availability of terrain elevations in densely forested tropical 
peatlands via spatial filtering of GEDI and ATLAS data has several ben
efits. First, the ability to derive useful ground points from these products 
provides terrain data from peatlands all over the tropics for free, 
including in places that are remote and inaccessible (Lähteenoja and 
Page, 2011; Dargie et al., 2017; Hastie et al., 2022). Second, more ac
curate ground elevations in these settings also enable more accurate 
canopy height estimates, because canopy heights are obtained by sub
tracting top-of-canopy elevations from the ground elevation (Hofton and 
Blair, 2019), and thus can only be as accurate as the ground elevations. 
Third, the success of this approach in tropical peatlands suggests a 

Fig. 13. ATLAS ground elevations. (a) ATL08 ground photon bounce points from a strong beam at night before (fuchsia dashed line) and after spatial filtering 
(points), and airborne lidar ground returns (gray). (b) Ground visibility estimated from airborne lidar data along the transect. (c) Location of transect shown in (a, b). 
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strategy to explore in other environments: spatial filters could be useful 
tools for finding misclassified ground points wherever the terrain is 
known to be smooth. 

5. Conclusions 

Tropical peatlands are landscapes that consist entirely of organic 
matter and are now threatened by drainage that enables catastrophic 
fire and globally significant greenhouse gas emissions. Mitigation of 
peatland drainage requires terrain data that are difficult to obtain from 
densely forested peatlands. Fortunately, the challenge of estimating 
tropical peatland terrain is well matched by the strengths and limita
tions of GEDI and ATLAS spaceborne lidar products. The density of peat 
forest canopies can cause reflections from the mid- or upper canopy to be 
misinterpreted as ground points. However, we found that these outliers 
could be removed using spatial filters typically applied to airborne lidar. 
Spatial filtering of GEDI L2A algorithm 1 quality data reduced MAD, 
RMSE and ubRMSE from 8.35, 15.98 and 13.62 m to 1.83, 1.97, and 
0.72 m. Similarly, spatial filtering of ATLAS ATL08 ground photons from 
strong beams at night reduced MAD, RMSE, and ubRMSE from 1.51, 
3.85 and 3.54 m to 0.64, 0.77 and 0.44 m. These improvements were 
facilitated by the low relief of the underlying terrain. In complex terrain, 
this approach could be difficult to apply, especially on GEDI data, for 
which the smallest scale of spatial information is the 60 m along-track 
spacing. Nonetheless, spatial filters could be useful tools for finding 
misclassified ground points in settings, like peatlands (Cobb et al., 
2017), in which the surface is known to be smooth on a landscape scale. 
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Fig. 14. ATLAS ground elevations vs. airborne lidar ground returns in the 
ATLAS shot footprint. (a) Elevations of ATL08 ground photon bounce points 
passing quality criteria (night) vs. mean elevation of airborne lidar ground 
returns within the 11 m ATLAS shot footprint without (white) and with 
(fuchsia) spatial filtering of ATL08 ground points. (b) Distributions of residuals 
from strong and weak beams at night without (white) and with (fuchsia) spatial 
filtering of ATLAS ground points, and from the area of sparse vegetation 
(purple; see Fig. 4). (c) Mean absolute deviations from (b), with number of 
photons shown above each point and indicated by point area. (d) Unbiased 
RMSE and bias as in (c); RMSE is given by distance from the origin. Error 
metrics from four perturbed spatial filter parameterizations (each parameter 
increased by 10%) are plotted in (c) and (d) but are indistinguishable. (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 15. Sensitivity of spaceborne lidar ground point classification to spatial 
filter parameters. (a) Percent change in the number of GEDI (green) and ATLAS 
(fuchsia) points classified as ground after a 10% increase in each filter 
parameter, one at a time: initial_distance (up triangles); slope (diamonds); 
max_window_size (down triangles). Filtering of ATLAS points was insensitive to 
a 10% increase in max_window_size (not shown); filtering of all point sets was 
insensitive to a 10% increase in max_distance. Annotations on GEDI points 
indicate ground points obtained from the lowest mode identified by each GEDI 
waveform processing algorithm (1–6) or the selected (“s”) mode in the GEDI 
L2A product; annotations on ATLAS points indicate strong (“s”) vs. weak (“w”) 
beam at night. (b) Change in error metrics after a 10% increase in each filter 
parameter: mean absolute difference (MAD); absolute bias (|Bias|); root-mean- 
squared error (RMSE); unbiased root-mean-squared error (ubRMSE). (For 
interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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Draper, F.C., Åkesson, C.M., Baker, T.R., Bhomia, R.K., Cole, L.E.S., Dávila, N., 
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Vasander, H., 2016. Ground surface microtopography and vegetation patterns in a 
tropical peat swamp forest. Catena 139, 127–136. https://doi.org/10.1016/j. 
catena.2015.12.016. 

Lefsky, M.A., Keller, M., Pang, Y., de Camargo, P.B., Hunter, M.O., 2007. Revised method 
for forest canopy height estimation from Geoscience Laser Altimeter System 
waveforms. J. Appl. Remote Sens. 1, 013537 https://doi.org/10.1117/1.2795724. 

Leifeld, J., Wüst-Galley, C., Page, S., 2019. Intact and managed peatland soils as a source 
and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947. https://doi. 
org/10.1038/s41558-019-0615-5. 

Lim, K., Treitz, P., Wulder, M., St-Onge, B., Flood, M., 2003. LiDAR remote sensing of 
forest structure. Prog. Phys. Geogr. 27, 88–106. https://doi.org/10.1191/ 
0309133303pp360ra. 

Liu, A., Cheng, X., Chen, Z., 2021. Performance evaluation of GEDI and ICESat-2 laser 
altimeter data for terrain and canopy height retrievals. Remote Sens. Environ. 264, 
112571 https://doi.org/10.1016/j.rse.2021.112571. 

Liu, X., 2008. Airborne LiDAR for DEM generation: some critical issues. Prog. Phys. 
Geogr. 32, 31–49. https://doi.org/10.1177/0309133308089496. 

Lovell, J.L., Jupp, D.L.B., Culvenor, D.S., Coops, N.C., 2003. Using airborne and ground- 
based ranging lidar to measure canopy structure in Australian forests. Can. J. Rem. 
Sens. 29, 607–622. https://doi.org/10.5589/m03-026. 

Luthcke, S.B., Thomas, T.C., Pennington, T.A., Rebold, T.W., Nicholas, J.B., Rowlands, D. 
D., Gardner, A.S., Bae, S., 2021. ICESat-2 pointing calibration and geolocation 
performance. Earth Space Sci. 8 https://doi.org/10.1029/2020ea001494. 

Magruder, L., Brunt, K., Neumann, T., Klotz, B., Alonzo, M., 2021. Passive ground-based 
optical techniques for monitoring the on-orbit ICESat-2 altimeter geolocation and 
footprint diameter. Earth Space Sci. 8 https://doi.org/10.1029/2020ea001414. 

Mallet, C., Bretar, F., 2009. Full-waveform topographic lidar: state-of-the-art. ISPRS J. 
Photogrammetry Remote Sens. 64, 1–16. https://doi.org/10.1016/j. 
isprsjprs.2008.09.007. 

Manuri, S., Andersen, H.E., McGaughey, R.J., Brack, C., 2017. Assessing the influence of 
return density on estimation of lidar-based aboveground biomass in tropical peat 
swamp forests of Kalimantan, Indonesia. Int. J. Appl. Earth Obs. Geoinf. 56, 24–35. 
https://doi.org/10.1016/j.jag.2016.11.002. 

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S.C., Page, S.E., 2017. From carbon sink 
to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. 
Environ. Res. Lett. 12, 024014 https://doi.org/10.1088/1748-9326/aa5b6f. 

Neuenschwander, A., Pitts, K., 2019. The ATL08 land and vegetation product for the 
ICESat-2 mission. Remote Sens. Environ. 221, 247–259. https://doi.org/10.1016/j. 
rse.2018.11.005. 

Neuenschwander, A., Guenther, E., White, J.C., Duncanson, L., Montesano, P., 2020. 
Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens. 
Environ. 251, 112110 https://doi.org/10.1016/j.rse.2020.112110. 

Neuenschwander, A.L., Pitts, K.L., Jelley, B.P., Robbins, J., Klotz, B., Popescu, S.C., 
Nelson, R.F., Harding, D., Pederson, D., Sheridan, R., 2022a. ATLAS/ICESat-2 L3A 
Land and Vegetation Height. version 5. http://nsidc.org/data/atl08/versions/5. 
(Accessed 29 June 2022). 

Neuenschwander, A.L., Popescu, S.C., Nelson, R.F., Harding, D.J., Pitts, K.L., Robbins, J. 
W., 2022b. ATLAS/ICESat-2 L3A Land and Vegetation Height. Version 5 User Guide. 
NASA National Snow and Ice Data Center, Boulder, Colorado, USA. Updated 26 May 
2022.  

Neumann, T.A., Brenner, A., Hancockp, D., Robbins, J., Saba, J., Harbeck, K., 
Gibbons, A., Lee, J., Luthcke, S.B., et al., T.R, 2022. AATLAS/ICESat-2 L2A global 
geolocated photon data version 5. http://nsidc.org/data/atl03/versions/5. 
(Accessed 29 June 2022). 

Neumann, T.A., Martino, A.J., Markus, T., Bae, S., Bock, M.R., Brenner, A.C., Brunt, K.M., 
Cavanaugh, J., Fernandes, S.T., Hancock, D.W., Harbeck, K., Lee, J., Kurtz, N.T., 
Luers, P.J., Luthcke, S.B., Magruder, L., Pennington, T.A., Ramos-Izquierdo, L., 
Rebold, T., Skoog, J., Thomas, T.C., 2019. The Ice, Cloud, and Land Elevation 
Satellite–2 mission: A global geolocated photon product derived from the Advanced 
Topographic Laser Altimeter System. Remote Sens. Environ. 233, 111325 https:// 
doi.org/10.1016/j.rse.2019.111325. 

Ni-Meister, W., Jupp, D., Dubayah, R., 2001. Modeling lidar waveforms in heterogeneous 
and discrete canopies. IEEE Trans. Geosci. Rem. Sens. 39, 1943–1958. https://doi. 
org/10.1109/36.951085. 

Ollinger, S.V., 2010. Sources of variability in canopy reflectance and the convergent 
properties of plants. New Phytol. 189, 375–394. https://doi.org/10.1111/j.1469- 
8137.2010.03536.x. 

Page, S.E., Hooijer, A., 2016. In the line of fire: the peatlands of Southeast Asia. Philos. T. 
R. Soc. B. 371, 20150176 https://doi.org/10.1098/rstb.2015.0176. 

Page, S.E., Rieley, J.O., Banks, C.J., 2011. Global and regional importance of the tropical 
peatland carbon pool. Glob. Change Biol. 17, 798–818. https://doi.org/10.1111/ 
j.1365-2486.2010.02279.x. 

Pingel, T.J., Clarke, K.C., McBride, W.A., 2013. An improved simple morphological filter 
for the terrain classification of airborne LIDAR data. ISPRS J. Photogrammetry 
Remote Sens. 77, 21–30. https://doi.org/10.1016/j.isprsjprs.2012.12.002. 

Polak, B., 1933. Ueber Torf and Moor in Niederländisch indien. Verhandelingen der 
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