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Abstract—Modern quantum computers rely heavily on real-
time control systems for operation. Software for these systems is
becoming increasingly more complex due to the demand for more
features and more real-time devices to control. Unfortunately,
testing real-time control software is often a complex process,
and existing simulation software is not usable or practical for
software testing. For this purpose, we implemented an interactive
simulator that simulates signals at the application programming
interface level. We show that our simulation infrastructure
simulates kernels 6.9 times faster on average compared to
execution on hardware, while the position of the timeline cursor
is simulated with an average accuracy of 97.9% when choosing
the appropriate configuration.

Index Terms—real-time control software, signal simulation,
software testing, quantum computing

I. INTRODUCTION

State-of-the-art quantum hardware is becoming increasingly
powerful with recent systems demonstrating computations on
tens of qubits [1]-[7]. Recent papers [1], [5], [8], [9] have
shown that such systems rely heavily on real-time control
systems to control tens to hundreds of devices with nanosec-
ond precision. Programmable real-time control systems, as de-
scribed in [10]-[14], are already available and widely adopted.
An often underexposed area of such real-time control systems
is the increasingly complex control software required to op-
erate them. Larger quantum systems control more real-time
devices, which leads to an increasing amount of software. In
addition, real-time software is taking on more responsibilities
ranging from hardware latency compensation to decomposing
quantum gates into device control which further increases its
complexity.

With the growing complexity of real-time control software,
functional testing and verification is becoming increasingly
important. Unfortunately, testing real-time control software
is often complex, time-consuming, and resource-intensive.
Testing on hardware requires access to control hardware and
test equipment, such as oscilloscopes and signal generators,
to probe and stimulate the control system, as illustrated in
Figure 1. Even if all required test equipment is available,
configuring the equipment to simulate the correct test signals
can be complex and time-consuming. Additionally, black-box
testing on hardware might not give enough insight into the
state of the software if incorrect behavior is observed. Software
testing with hardware requires hardware to be available, which
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Fig. 1. The equipment required for hardware testing, which includes the real-
time control system, oscilloscopes, and signal generators.

might not be the case in the early stages of development. The
use of simulation could enable testing of real-time control
software, but simulators are usually not available for real-
time control systems, as is the case for [10]-[13]. Existing
simulation approaches that might be available, such as cycle-
accurate hardware simulation, often focus on the microarchi-
tectural level. Such simulations are too slow, inflexible, and
low-level to be useful for testing real-time control software.

In this paper, we present an open-source functional simula-
tor for real-time control software targeting the advanced real-
time infrastructure for quantum physics (ARTIQ) open-source
software and hardware ecosystem [10], [15]. Our interactive
simulator simulates all aspects of real-time control software,
including classical constructs, real-time events, and device
input. Real-time device signals are simulated at the application
programming interface (API) level, which enables functional
software testing and fast simulation speeds. Our simulator
integrates seamlessly into the ARTIQ host environment and
is capable of simulating interactions between the host and the
real-time control system. With our simulation infrastructure,
users can test and verify real-time control software using
existing tools for step debugging, unit testing, and continuous
integration. Without the need for any of the test hardware
shown in Figure 1, our simulator enables software testing
in the early development stages. We show that our kernel
simulation is on average 6.9 times faster than execution on
control hardware. Even with the presence of variable delays
and simplified timing models for devices, the position of the
timeline cursor is simulated with an average accuracy of 97.9%
when appropriately configured.

The remainder of this paper is structured as follows.
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Fig. 2. Schematic overview of the accelerator model with a host program
and one or more kernels.

Section II briefly covers related work, and in Section III
we will provide an overview of the ARTIQ hardware and
software components that we will simulate. The design of
our simulation platform is presented in Section IV, while the
results of our performance and accuracy measurements can be
found in Section V. We conclude our paper in Section VL.

II. RELATED WORK

Real-time control hardware and software can be simulated
with techniques similar to ones used for the simulation of
embedded systems. Previous work such as [16], [17] proposes
various techniques and approaches for such simulations. Real-
time control hardware can be simulated on a microarchitectural
level based on their hardware description using the same bina-
ries as the actual hardware. Cycle-accurate microarchitectural
simulations can be performed with tools such as GEMS5 [18],
SystemC [19], [20], Chisel [21], or SimSoC [22]. Most of
these tools can perform low-level and detailed cycle-accurate
simulations of the hardware. Unfortunately, cycle-accurate
simulations are often not usable for software testing and
verification because simulations run slow and the simulated
signals are too low-level for testing real-time software and
device behavior. These simulations also require detailed device
models that might not be available in the early development
stages. The same holds for simulation techniques based on
communication models of the microarchitecture, such as [17],
[22]-[24].

High-level simulation approaches for quantum computer
architecture as discussed in [25]-[27] can be fast and test
real-time quantum programs. Unfortunately, these simulators
operate on the quantum-gate level and do not simulate the real-
time device control required to implement such operations.
Hence, high-level simulators are not usable for testing real-
time control software on a real-time device and signal level.

III. SYSTEM OVERVIEW

Our simulator targets the advanced real-time infrastruc-
ture for quantum physics (ARTIQ) open-source software and
hardware ecosystem [10], [15] which is used by dozens of
research groups and has deployed over 200 real-time con-
trol systems worldwide. The ARTIQ ecosystem combines a
Python-based software environment with modular real-time
control hardware, and its programming paradigm is based on
the accelerator model as described in [13], [26], [28]-[33].
The ARTIQ software environment runs on a host computer
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Fig. 3. A schematic overview of the microarchitectural components in the
core device.

that communicates with the control hardware, also referred to
as the core device, over ethernet. Users can program the system
using a Python host environment while kernels are executed
on the core device as illustrated in Figure 2.

A. Hardware

The core device is driven by a field-programmable gate
array (FPGA) which contains a classical CPU combined with
an event-based real-time I/O (RTIO) subsystem similar to the
systems outlined in [13], [34]. Figure 3 shows a simplified
schematic of the relevant microarchitectural components in the
FPGA. The classical CPU will handle all classical instructions
of the kernel and has additional access to a timeline cursor
and an event timeline. The timeline cursor is a register that
holds the current position on a timeline. The cursor is stored
as an integer value that represents a time in machine units
(MU), which normally corresponds to a timestamp expressed
in nanoseconds. The CPU can also post events to the event
timeline where an event is defined as a tuple of a timestamp
and an I/O command. To change the state of a device, the CPU
sets the timeline cursor to the time at which the change should
occur before posting the I/O command to the event timeline.
The current value of the timeline cursor will be used to store
the event on the timeline. If the CPU posts two commands
for the same device at the same timestamp, the last event will
overwrite the first one. By posting a series of events, a program
can build up an event timeline that represents the real-time
control of devices.

In parallel to the CPU’s execution, the RTIO subsystem
continuously verifies if any events are due. The RTIO counter
represents a timestamp in MU and is incremented every
nanosecond. The RTIO engine reads the event timeline and
verifies if any events are due based on the current value of
the RTIO counter. If an event is due, the RTIO engine updates
the corresponding device according to the command defined
by the event. In case an event generates a return value, for
example, when reading the value of a digital input, the return
value is inserted into the input buffers. The CPU can read
results from the input buffers whenever they are available.

For the RTIO system to operate properly, the slack (i.e.
the difference between the timeline cursor and the RTIO
counter) must be positive. Posting an event with negative slack
translates to changing the state of a device in the past, which
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Fig. 4. A schematic overview of a host program a kernel with access to APIs
for the timeline cursor and device drivers.

is not possible. Doing so will result in an underflow exception.
Kernels normally start their program by synchronizing the
timeline cursor to the RTIO counter and incrementing the
timeline cursor with a fixed value of 125 x 103 MU to ensure
positive slack at the start of the program.

B. Software

The ARTIQ software environment is Python-based and
programs that run on the system are called experiments. An
experiment consists of Python code that runs on the host and
can additionally contain kernel functions that run on the core
device. Kernel functions are written in the ARTIQ domain-
specific language (DSL) which is a subset of the Python lan-
guage. Inside kernels, programmers have access to additional
functions to manipulate the timeline cursor, post events, and
read input buffers. The latter two are normally not directly
used by programmers as these functions are encapsulated in
device drivers. Such device drivers provide an application
programming interface (API) to translate functional device
behavior (e.g. switch off a digital output pin) to low-level
events. A schematic overview of a host program and a kernel
with access to APIs for the timeline cursor and device drivers
is shown in Figure 4.

When the host calls a kernel function, the ARTIQ compiler
assembles a kernel binary at runtime which is then uploaded
to and executed by the core device. Variables from the host
environment that are accessed in a kernel will be compiled
into the binary. During kernel execution, the host will handle
any (a)synchronous remote procedure calls (RPCs) initiated by
the kernel. Once the kernel is finished executing, the context
switches back to the host, and any variables modified in the
kernel are synchronized with the host environment before
the experiment resumes executing on the host. As a result,
the context switch between host and kernel code is almost
seamless from a programmer’s perspective.

IV. SIMULATION

Our goal is to enable the simulation of real-time control
software for software testing and verification. A simulator
should integrate into the existing ARTIQ environment, sim-
ulate kernel execution, and simulate any interactions between
the host environment and the kernel as described in Section III.
The simulator should be fast enough to test complete experi-
ments within a reasonable time. No real-time control hardware
should be required to run simulations, only a model of the
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hardware listing the available devices. Hardware/software co-
simulation for embedded systems is not new, and existing
work proposes various techniques and approaches for such
simulations [16], [17]. At the most detailed level, we find
cycle-accurate simulations, such as [18], [19], [21], that take
the same binary as the real system and simulate the compo-
nents and registers of the microarchitecture in great detail.
Such simulations require highly detailed models making them
inflexible and potentially time-consuming to develop. Cycle-
accurate simulators are extremely detailed and accurate but are
also slow. It is not our goal to do performance analysis on the
ARTIQ microarchitecture, and we do not need such a level of
detail. Since our target is software testing and not hardware
performance analysis, we will focus on API simulation. An
API simulation cross-compiles the target program to a simu-
lator that implements the same API as the target system. The
simulator requires no execution model of the hardware and
can therefore be fast. Based on our requirements, we decide
to target functional simulation of kernels and real-time devices
using API simulation. Timeline cursor manipulations will be
simulated at the API level. Real-time devices are simulated
at their driver API level, and functional behavior will be
based on a simplified device model. Hence, we will replace
the timeline cursor API and the device driver APIs shown in
Figure 4 with calls to our simulation infrastructure. The state
of the RTIO counter and RTIO engine are not simulated, which
would require the use of a cycle-accurate simulator. Instead,
we estimate the value of the RTIO counter when synchronizing
the timeline cursor with the RTIO counter.

For simulation of real-time kernels, we will need to cover
classical constructs (i.e. the CPU), the timeline cursor, the
event timeline, and input buffers. Since both the host code
and the classical constructs of the kernels are valid Python
code, we decided to use the host Python process to simulate
kernels. Hence, our simulator is implemented in Python and
all components in Figure 4 will be executed by the Python
interpreter. Using the same Python process will also instantly
implement host-kernel variable synchronization and handling
of RPCs. We decided to split the simulation of the remaining
components into two parts: time and signals. The time com-
ponent covers the simulation of the timeline cursor, and the
signals component covers the simulation of the event timeline
and input buffers. Figure 5 shows a schematic overview of the
simulated components. In the remainder of this section, we
will cover time and signal simulation.

A. Time

A kernel can read and write the value of the timeline cursor
using the functions now_mu () and at_mu (t), respectively.
Additionally, the cursor can be moved relative from its current
position using the functions delay_mu (d) and delay (d).
The latter function is used with a delay time expressed in
seconds instead of MU. Since the delay in seconds is converted
to a delay in MU, the delay (d) function is not further
discussed. Functions used to modify the timeline cursor behave
differently depending on the timing context in which they are
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Fig. 5. A schematic overview of the simulated microarchitectural components.

used. There are two timing contexts, sequential and parallel,
which are used as regular Python context managers using the
with statement. The two contexts are used to specify if a
set of RTIO operations should be executed sequentially or in
parallel. The contexts can be nested arbitrarily, and by default,
every function starts in a sequential context. As a result, the
timeline cursor simulation will have to adapt based on the
current timing context.

In a sequential context, any modification to the timeline
cursor is interpreted as a sequence of operations. Hence, two
successive delays with duration dy and d; is equal to one
delay with duration dy+d;. Any call to at_mu (t) is applied
instantly. Modifications to the timeline cursor in a parallel
context are postponed such that operations in the context can
be interpreted as parallel. When the program exits the parallel
context, the timeline cursor will be moved forward by the
duration of the longest positive delay. If a parallel context
containing delays with duration dp,...,d, is entered with
the timeline cursor at t,,, the timeline cursor will be set to
tsare+max (0, do, . . ., d,,) when the context exits. In a parallel
context, calls to at_mu (t) with value ¢,,, are interpreted as
delays with duration %, — £

We simulate the timeline cursor using a stack of simulation
contexts that represent the nested timing contexts. The ap-
propriate simulation context is pushed on and popped off the
stack when a timing context is entered and exited, respectively.
Each simulation context holds a current time %y, and a
duration tg,4ri0n variable in MU. When pushed to the stack,
teurrent 15 inherited from the simulation context currently at the
top of the stack while ¢g,qi0n 1S always initialized to zero.
When a simulation context is popped off the stack, tguarion
is propagated to the underlying simulation context as a delay.
There is a sequential and a parallel simulation context available
and when the simulation starts, the stack is initialized with a
sequential simulation context with %y, = 0. At any time,
interactions with the timeline cursor are handled by the context
at the top of the stack. now_mu () always returns tcyenr
while calls to delay_mu (d) are handled differently by the
sequential and parallel simulation context. For a sequential
simulation context, a delay with duration d will increment
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teurrent a0d tyrarion DY d while for a parallel simulation context,
teurrens 1 not changed and ¢ gyrarion = Max (tguration, ). For both
simulation contexts, calls to at_mu (t) with value t,,, are
converted to delays with duration %, — tus. The described
system using the stack of simulation contexts accurately sim-
ulates the behavior of the timeline cursor.

For correct synchronization of the timeline cursor to the
RTIO counter, we keep track of a timeline horizon which is
essentially an estimation RTIO counter state. For a simulation
with events at timestamps to, ..., t,, the timeline horizon is
defined as max (tcursor; Lo, - - -, tn) Where Leusor is the current
position of the timeline cursor. When we synchronize the
timeline cursor to the RTIO counter, we first set the position
of the timeline cursor to the position of the timeline horizon
before inserting a delay of 125 x 103 MU. Using the timeline
horizon for synchronization is necessary to simulate code with
negative delays correctly. Negative delays are commonly used
to compensate for latencies of physical equipment.

B. Signals

For signal simulation, we need to simulate the event timeline
and the input buffers. Interactions with the event timeline
and input buffers happen through device drivers. We simulate
device drivers on an API level, and each driver simulates the
signals and state of a device based on a simplified model.
Signals will be simulated on a functional level, for example,
frequency and phase for a direct digital synthesis (DDS) chip
and a binary state for a digital output. To enable signal
simulation, we will capture all function calls to drivers by
replacing each device driver with a matching simulation driver.

During initialization, each simulation driver obtains one or
more named signal objects corresponding to the state of the
device. Each time a driver function is called to change the
state of the device, the driver will push new values to the
appropriate signal objects. Pushing a new value to a signal
object will cause an event to be created at the current position
of the timeline cursor. Each signal object stores its events
and therefore possesses a part of the complete event timeline
of the system. If two events for a single signal have the
same timestamp, the latest event overwrites the existing event.
Additionally, the simulation driver can keep an internal state
and perform any additional processing for proper signal and
time simulation.

To test real-time control software, we must have the ability
to read the value of a signal at any given timestamp. To pull
the value of a signal at a specific timestamp, we search for the
event with the highest timestamp that is less or equal to the
timestamp of interest. The value of that event will represent
the value of the signal at the given timestamp. If no event is
found, the signal has not been set, and its value is unknown.

The last component that must be simulated is the input
buffers. Values in these buffers originate from events with
return values, such as sampling the value of a digital input
device. For software testing, return values from input devices
must be configurable by a test case. For that purpose, we
introduce input signals that describe the state of a hypothetical
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device that generates the input signal observed by a device.
Just as output signals, input signals are obtained by the device
drivers during initialization, for example, an input probability
signal for a digital input device. When the simulation driver
is called to sample the input value, the driver pulls the current
value of the input probability signal and uses it to generate
a return value. The return value is stored in the input buffer
that is part of the simulation driver. Once the actual sampled
value is requested from the driver, the value is taken from the
buffer and returned. Each input device has input signals that
match the level of its functionality, such as input voltage for an
analog-to-digital converter (ADC) and input frequency for a
digital edge counter. During software testing, input signals can
be configured using the same push/pull infrastructure used for
output signals. This allows input signals to be adjusted using
the same event timeline as output signals.

C. Implementation

We have implemented a simulation platform for ARTIQ
based on the proposed methodologies for time and signal sim-
ulation. The simulator is part of our open-source library Duke
ARTIQ extensions (DAX) [35] which integrates tightly with
the ARTIQ open-source software environment. The integration
entry point for the DAX simulator is the device database
(DDB), a central file in every ARTIQ project that defines
the list of available real-time devices and their corresponding
drivers. To enable simulation, users make a small modification
that allows the DAX simulation infrastructure to mutate the
DDB before ARTIQ reads it at the start of an experiment.
During DDB mutation, all device drivers are replaced by
matching simulation drivers, and an extra simulation config-
uration device is inserted into the DDB. When the driver for
the core device is loaded in an experiment, the core device
simulation driver will be loaded, which in turn loads the driver
for the simulation configuration device. The DAX simulation
infrastructure is loaded during initialization of the simulation
configuration device, which includes the setup of a time and a
signal manager. Any other simulation drivers that are loaded
will request their signal objects from the signal manager.

When the experiment runs and a kernel function is called,
the core device driver is requested to compile the kernel and
execute it on the core device. Instead, the simulation driver
for the core device will just run the kernel function inside a
sequential time context using the current Python process. Any
interactions with the timeline cursor or time context APIs are
forwarded to the time manager for simulation while simulation
drivers will perform all the signal simulations. Events for
each signal are stored in a sorted dictionary based on their
timestamps, and binary search algorithms are used to push
and pull events.

We integrated our simulation platform with the standard
Python unit test framework such that users can run tests for
real-time control software using existing testing environments.
The DAX unit test base class, which inherits the standard
Python unit test class, provides functions to push, pull, and test
signal values at any timeline cursor position. Existing tools for
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step debugging, automated testing, and continuous integration
will allow real-time control software to be tested to the same
level as any other production-level software project.

D. Limitations

Functional simulation of kernels at the API level is fast
and especially useful for testing and verification of real-time
control software, but it also has limitations. Without simulation
of the RTIO counter and the RTIO engine, slack can not be
reliably simulated. As a result, API simulation can not accu-
rately predict underflow exceptions. A low-level and cycle-
accurate microarchitectural simulation would be required to
simulate slack. Such simulators are much slower and are not
convenient for software testing and verification at the level
discussed in this paper.

Some limitations are specific to our implementation of the
simulation infrastructure. We use the running Python process
to execute kernels, but the ARTIQ DSL only supports a
subset of the Python language. Hence, the simulation is more
permissive than the ARTIQ compiler. We can mitigate this
issue by compiling kernels before simulation. By default, the
DAX simulator does not compile kernels to run simulations
faster.

Host-kernel attribute synchronization also behaves differ-
ently in simulation. When running on a core device, the
ARTIQ environment synchronizes host variables modified in a
kernel when the kernel finished executing (see Section III-B).
During simulation, attributes are continuously synchronized
due to the use of a single Python process for host and kernel
code. The behavior of the simulator could be different when
a kernel modifies the same variable used by an RPC function
it calls. Such code would have confusing semantics to start
with, and we have not encountered any such code.

The model of the parallel timing context described in Sec-
tion IV-A differs slightly from the timing model implemented
in the ARTIQ compiler. The DAX simulator propagates the
parallel semantics until a sequential context is entered (deep
parallel) while the ARTIQ compiler only propagates the par-
allel semantics to top-level statements in the context (shallow
parallel). Kernel code that potentially behaves differently with
deep and shallow parallel semantics can be detected using
abstract syntax tree (AST) analysis. We have developed a
separate tool [36] that flags such kernel code.

V. EVALUATION

To evaluate the performance of the DAX simulation plat-
form, we measured its kernel execution time and compared
it to the execution time on hardware. We used two experi-
mental trapped-ion quantum processors for our evaluation, the
software-tailored architecture for quantum co-design (STAQ)
system [8] and the red chamber (RC) system [37] . Both
systems are controlled by an ARTIQ control system, but
STAQ uses a core device based on the Kasli 2.0 controller
[15] while RC uses a KC705-based controller [38]. Besides
the different real-time control systems and devices, the main
difference between these two setups is that STAQ is at
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Label Experiment
mw_{freq Microwave frequency scan
mw_rabi Microwave Rabi frequency scan
mw_ramsey  Microwave Ramsey scan
mw_gate Microwave repeated gate scan
gco_freq Global co-propagating frequency scan
gco_rabi Global co-propagating Rabi frequency scan
gco_ramsey  Global co-propagating Ramsey scan
ico_freq Individual co-propagating frequency scan
ico_ttime Individual co-propagating time scan
state_init Qubit state initialization scan
tickle Tickle scan
direct_rb Direct randomized benchmarking
gst Gate set tomography
sqst Single-qubit state tomography

TABLE I

LIST OF EXPERIMENTS USED FOR THE EVALUATION.

cryogenic temperatures while RC is at room temperature. We
chose 14 commonly used experiments with a single kernel for
the STAQ system. The set of experiments, listed in Table I,
contains 11 scanning-type experiments used for calibration and
three benchmarking experiments including, Direct randomized
benchmarking (RB) [39]-[41], gate set tomography (GST)
[42], and single-qubit state tomography (SQST) [43]. Both
systems use modular real-time control software developed with
the DAX modular software framework [44], and parts of the
system-specific control software are available in the DAX-zoo
repository [45]. The three benchmark experiments are portable
and can also run on RC while the four microwave (MW)
calibration experiments have an equivalent implementation
for the RC system. All scanning-type experiments scan over
20 points and take 100 samples per point. Direct RB is
performed with circuit lengths starting at 1 and scaling up
exponentially to 16. For each circuit length, we benchmark
ten different circuits with 100 samples for each circuit. The
GST benchmarks are performed with a total of 523 different
circuits based on our germs, taking 100 samples per circuit.
Finally, SQST is performed with a grid of 5 times 10 angles
taking 100 samples for each point.

For our evaluation, we run the experiments for both sys-
tems on a Kasli 2.0 controller. The RC software can run
on an appropriately configured Kasli controller by replacing
the DDB. All calibration experiments are executed with and
without buffering. Buffering allows the real-time control soft-
ware to schedule the operations for the next samples while
the incoming data of earlier samples are kept temporally in
hardware buffers. ARTIQ supports such hardware buffers,
but the real-time software must be designed appropriately to
utilize them. Buffering can further increase the throughput
and performance of kernels by reducing stalling time at the
cost of increased latency between receiving and processing
input events. None of the experiments are sensitive to the
increased latency and will benefit from increased throughput.
We configure a buffer size of 16 samples, which should be
large enough to get the maximum performance gain achievable
with buffering. The Direct RB and GST experiments are
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Fig. 6. Kernel execution time speedup for our simulator relative to the
execution time on a core device.

always buffered with a fixed buffer size of 1 and SQST is
always unbuffered. The kernel execution time is measured with
nanosecond precision using the real-time clock available in
the Kasli controller. We then run the same experiments using
our DAX simulation platform on a computer equipped with
an AMD Ryzen 7 3700X CPU and 32 GB of memory. The
computer runs on Ubuntu 20.04 LTS, and the execution time
of the kernel simulation is measured in nanoseconds using
the standard Python time library. All experiments run five
times on hardware and five times in simulation to take the
average simulation time. Our measurements are performed
using ARTIQ version 6.7659.c6a7b8a8 and the results are
presented in Figure 6.

The results in Figure 6 show that simulation speeds up
execution up to 26.8 times with an average speedup of 6.9
times. Especially the mw_ramsey, gco_ramsey, and tickle
experiments achieve large speedups. The exceptional speedup
for these experiments is caused by the long delays that are
part of the experiment. The core device waits for these delays
before the kernel finishes execution, while the simulator only
simulates the passing of time but does not wait for it. The
experiments that show the least speedup are the direct_rb and
gst experiments. For STAQ, both experiments only yield a 1.3
times speedup, while for RC, the direct_rb experiment has
no speedup and the gst experiment is slower with a speedup
of 0.8 times. The limited speedup of these two experiments
is caused by short delays and a high number of operations,
which results in a high event density. As a result, the simulator
must process many events while the experiment has a relatively
short execution time on hardware. In general, we could state
that the execution time on hardware ¢j4,gyare 18 mostly limited
by the length of delays inserted during the experiment. These
delays sum up to the total length of the timeline and therefore
the duration of the experiment when running on hardware.
The execution time of the simulator ¢, is not much affected
by delays and instead is mostly limited by the total number
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of events present in the experiment. We know that speedup
is defined as S = tuaraware/tsim- Roughly speaking, we can
derive that the total duration of an experiment is proportional
to speedup while the total number of events is inversely
proportional to speedup.

We can see from Figure 6 that the experiments running
on the RC system always yield lower speedup compared to
the same experiment running on STAQ. The different results
are caused by differences in the control for the cooling and
pumping procedures. Both procedures are executed by all
experiments at the start of each sample. STAQ uses three
digital outputs and one DDS while RC has additional features
and uses five digital outputs and a DDS. As a result, RC
inserts more events for each cooling and pumping procedure.
Additionally, STAQ uses a constant DDS frequency for both
procedures while RC uses a different frequency for each proce-
dure which adds two additional DDS configuration events for
each sample. Hence, the total number of events for RC exper-
iments is higher than for STAQ which reduces the speedup.
The additional DDS operations also insert extra delays into
the experiment, but these delays do not compensate for the
increased number of events. Figure 6 also shows buffered
experiments tend to have slightly less speedup compared to
their unbuffered counterparts. Buffering can reduce the execu-
tion time overhead of experiments resulting in faster execution
on hardware. The total number of events per experiment is
not affected by buffering. The result is a reduced speedup for
experiments with buffering. The reduction in execution time
by buffering is limited though due to the highly optimized
control software.

In addition to speedup, we have also measured the timing
accuracy of the simulated timeline cursor compared to execu-
tion on the core device. High timing accuracy is not a specific
requirement for correct functional simulation, but a simulator
with high timing accuracy could be used for estimating the
timing of experiments. The timeline cursor simulation is ac-
curate, but variable delays and inaccurate delays in simulated
device drivers can still introduce errors. Variable delays mainly
occur when the timeline cursor is synchronized with the RTIO
counter. Such synchronization is performed at least once at
the start of the experiment (see Section III-A) but can also
occur at other moments. We simulate the synchronization
of the timeline cursor using a timeline horizon and insert
an additional delay of 125 x 10> MU. We would like to
emphasize that the presence of a variable delay indicates that
the relative timing between the events before and after the
delay is not relevant, and any variation will not negatively
impact the functionality of the experiment or the simulation.
Hence, simulating timeline cursor synchronization with a
timeline horizon is sufficient for correct functional simulation.
A variable delay can also occur when an experiment needs
to wait for an input event that occurs at an unpredictable
time, though none of the experiments in Table I contain such
constructions. Inaccurate delays in simulated device drivers
are often caused by a simplified timing model of the device
driver. In practically all cases with inaccuracy, the simulated
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Fig. 7. The error of the simulated timeline cursor relative to the timeline
cursor of the core device. The filled markers represent the regular configuration
while empty markers represent the optimistic configuration.

driver inserts less delay than the actual driver.

To measure the timing accuracy of the simulated timeline
cursor, we store the value of the timeline cursor after the first
synchronization with the RTIO counter and at the end of the
experiment. The difference between the two values represents
the total length of the event timeline in MU. We run the
simulations with two configurations: regular and optimistic.
When the timeline cursor is synchronized with the RTIO
counter, our simulator inserts a fixed delay of 125 x 10% and
0 MU for the regular and optimistic configuration, respectively.
We measured the event timeline length on the core device
and with the two simulation configurations for all experiments
listed in Table I using the STAQ and RC system. For each
combination of system, experiment, and configuration, we
calculate the relative error of the simulation which is defined
as (tsim — texe)/texe Where oy and tyy, are the measured event
timeline lengths on the core device and during simulation,
respectively. The results for are shown in Figure 7 and are
also listed in Table II and III.

The results in Figure 7 show the error of the simulated time-
line cursor relative to the timeline cursor of the core device.
The regular and optimistic configurations are represented by
the filled and empty markers, respectively. When comparing
the results of the two different configurations, we see that the
optimistic configuration always estimates a shorter timeline
length, which is expected. If we only look at the results for the
optimistic configuration, we see that all have a relative error
lower or equal to 0.0. The optimistic configuration represents
the lower-bound execution time where variable delays are
always zero. When running on actual hardware, variable delays
are not always zero, and as a result, the optimistic configura-
tion underestimates the timeline length. We also noticed that
all unbuffered results with regular configuration have a relative
error lower or equal to 0.0. When running on hardware without
buffers, the system has negative slack after each sample,
and timeline synchronizations will insert delays larger than
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Experiment STAQ STAQ (buffered)
Regular ~ Optimistic ~ Regular ~ Optimistic
mw_freq -4.9% -13.2% 7.4% -2.0%
mw_rabi -4.6% -12.4% 6.9% -1.8%
mw_ramsey -0.7% -1.8% 0.9% -0.2%
mw_gate -2.9% -8.0% 4.4% -1.2%
geo_freq -4.6% -12.7% 7.2% -1.9%
gco_rabi -0.5% -1.4% 0.6% -0.2%
gco_ramsey -0.7% -1.7% 0.9% -0.2%
ico_freq -4.8% -12.8% 7.2% -1.9%
ico_time -3.9% -10.3% 5.6% -1.5%
state_init -5.0% -13.7% 7.8% -2.0%
tickle -1.2% -1.3% -1.2% -1.3%
direct_rb 6.2% -1.3%
gst 6.5% -1.7%
sqst -1.9% -5.8%
TABLE II

THE ERROR OF THE SIMULATED TIMELINE CURSOR RELATIVE TO THE
TIMELINE CURSOR OF THE CORE DEVICE FOR STAQ.

Experiment RC RC (buffered)
Regular  Optimistic ~ Regular ~ Optimistic
mw_freq -4.2% -10.8% 5.6% -1.7%
mw_rabi -4.0% -10.2% 5.3% -1.6%
mw_ramsey -0.7% -1.7% 0.8% -0.3%
mw_gate -2.8% -7.1% 3.5% -1.1%
direct_rb 1.4% -3.2%
gst 2.5% -2.6%
sqst -1.6% -4.9%
TABLE III

THE ERROR OF THE SIMULATED TIMELINE CURSOR RELATIVE TO THE
TIMELINE CURSOR OF THE CORE DEVICE FOR RC.

125 x 103> MU. The regular configuration underestimates the
length of the variable delay and therefore underestimates the
total timeline length. Regardless, the estimation of the regular
configuration is better than that of the optimistic configu-
ration for unbuffered experiments. The opposite is true for
buffered experiments. Buffering reduces the length of variable
delays caused by timeline synchronizations by maintaining
slack between samples. The regular configuration is often too
pessimistic for buffered experiments and the estimation of the
optimistic configuration is better most of the time.

We noticed two other trends in Figure 7 that relate to
the total timeline length of experiments. First, the results of
some experiments have little spread, in particular mw_ramsey,
gco_rabi, gco_ramsey, and tickle. These are all calibration
experiments with relatively long delays and long total timeline
lengths. The long timeline length combined with the limited
sources of errors (i.e. low density of variable delays and
events) results in a small relative error and therefore, a small
spread between different configurations. Second, the results
of the RC system tend to be closer to 0.0 than the equivalent
STAQ results. We already mentioned that due to differences
in the cooling and pumping procedures, the RC system in-
serts more events for each sample of the experiment. These
additional events also insert extra delays into the experiment.
As a result, the total timeline length of RC experiments are

542

on average 28.1% longer compared to their STAQ equivalents.
Again, the increased timeline length with no additional sources
of errors reduces the relative error.

Overall, the average relative error for the regular config-
uration is 3.6%, and for the optimistic configuration, the
average relative error is 4.4%. Based on our analysis of the
regular and optimistic configurations, we concluded that the
timeline length of buffered and unbuffered experiments are
better estimated by the regular and optimistic configurations,
respectively. When choosing the optimistic configuration for
buffered experiments and the regular configuration for un-
buffered experiments, the resulting average relative error is
reduced to 2.1%, leading to an average accuracy of 97.9%. We
can conclude that even in the presence of variable delays and
simulated device drivers with simplified timing models, the
position of the timeline cursor is simulated with high accuracy
when choosing the appropriate configuration.

VI. CONCLUSION

We have presented a functional simulation platform for
real-time control software that enables software testing and
verification. To simplify testing and verification, timeline ma-
nipulations and device drivers are simulated on the application
programming interface (API) level. Our simulation platform
accurately simulates a timeline cursor using a stack while
the event timeline is simulated using signals and events.
Input signals are also simulated on a functional level and
use the same interactive signal and event infrastructure used
for output signals. We implemented a simulator based on the
proposed concepts, which is part of our open-source library
Duke ARTIQ extensions (DAX). Our simulator integrates
tightly into the advanced real-time infrastructure for quantum
physics (ARTIQ) environment and is capable of simulating
real-time kernels and host-kernel interactions. We integrated
our simulator with the standard Python unit test frameworks
such that real-time control software can be tested using ex-
isting tools for step debugging, unit testing, and continuous
integration. Compared to kernel execution on the core device,
kernel simulation is 6.9 times faster on average. Even with
the presence of variable delays and simplified timing models
for device drivers, the position of the timeline cursor is
simulated with an average accuracy of 97.9% when choosing
the appropriate configuration.
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