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Abstract—Modern quantum computers rely heavily on real-
time control systems for operation. Software for these systems is
becoming increasingly more complex due to the demand for more
features and more real-time devices to control. Unfortunately,
testing real-time control software is often a complex process,
and existing simulation software is not usable or practical for
software testing. For this purpose, we implemented an interactive
simulator that simulates signals at the application programming
interface level. We show that our simulation infrastructure
simulates kernels 6.9 times faster on average compared to
execution on hardware, while the position of the timeline cursor
is simulated with an average accuracy of 97.9% when choosing
the appropriate configuration.

Index Terms—real-time control software, signal simulation,
software testing, quantum computing

I. INTRODUCTION

State-of-the-art quantum hardware is becoming increasingly

powerful with recent systems demonstrating computations on

tens of qubits [1]–[7]. Recent papers [1], [5], [8], [9] have

shown that such systems rely heavily on real-time control

systems to control tens to hundreds of devices with nanosec-

ond precision. Programmable real-time control systems, as de-

scribed in [10]–[14], are already available and widely adopted.

An often underexposed area of such real-time control systems

is the increasingly complex control software required to op-

erate them. Larger quantum systems control more real-time

devices, which leads to an increasing amount of software. In

addition, real-time software is taking on more responsibilities

ranging from hardware latency compensation to decomposing

quantum gates into device control which further increases its

complexity.

With the growing complexity of real-time control software,

functional testing and verification is becoming increasingly

important. Unfortunately, testing real-time control software

is often complex, time-consuming, and resource-intensive.

Testing on hardware requires access to control hardware and

test equipment, such as oscilloscopes and signal generators,

to probe and stimulate the control system, as illustrated in

Figure 1. Even if all required test equipment is available,

configuring the equipment to simulate the correct test signals

can be complex and time-consuming. Additionally, black-box

testing on hardware might not give enough insight into the

state of the software if incorrect behavior is observed. Software

testing with hardware requires hardware to be available, which

Fig. 1. The equipment required for hardware testing, which includes the real-
time control system, oscilloscopes, and signal generators.

might not be the case in the early stages of development. The

use of simulation could enable testing of real-time control

software, but simulators are usually not available for real-

time control systems, as is the case for [10]–[13]. Existing

simulation approaches that might be available, such as cycle-

accurate hardware simulation, often focus on the microarchi-

tectural level. Such simulations are too slow, inflexible, and

low-level to be useful for testing real-time control software.

In this paper, we present an open-source functional simula-

tor for real-time control software targeting the advanced real-

time infrastructure for quantum physics (ARTIQ) open-source

software and hardware ecosystem [10], [15]. Our interactive

simulator simulates all aspects of real-time control software,

including classical constructs, real-time events, and device

input. Real-time device signals are simulated at the application

programming interface (API) level, which enables functional

software testing and fast simulation speeds. Our simulator

integrates seamlessly into the ARTIQ host environment and

is capable of simulating interactions between the host and the

real-time control system. With our simulation infrastructure,

users can test and verify real-time control software using

existing tools for step debugging, unit testing, and continuous

integration. Without the need for any of the test hardware

shown in Figure 1, our simulator enables software testing

in the early development stages. We show that our kernel

simulation is on average 6.9 times faster than execution on

control hardware. Even with the presence of variable delays

and simplified timing models for devices, the position of the

timeline cursor is simulated with an average accuracy of 97.9%

when appropriately configured.

The remainder of this paper is structured as follows.
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Fig. 2. Schematic overview of the accelerator model with a host program
and one or more kernels.

Section II briefly covers related work, and in Section III

we will provide an overview of the ARTIQ hardware and

software components that we will simulate. The design of

our simulation platform is presented in Section IV, while the

results of our performance and accuracy measurements can be

found in Section V. We conclude our paper in Section VI.

II. RELATED WORK

Real-time control hardware and software can be simulated

with techniques similar to ones used for the simulation of

embedded systems. Previous work such as [16], [17] proposes

various techniques and approaches for such simulations. Real-

time control hardware can be simulated on a microarchitectural

level based on their hardware description using the same bina-

ries as the actual hardware. Cycle-accurate microarchitectural

simulations can be performed with tools such as GEM5 [18],

SystemC [19], [20], Chisel [21], or SimSoC [22]. Most of

these tools can perform low-level and detailed cycle-accurate

simulations of the hardware. Unfortunately, cycle-accurate

simulations are often not usable for software testing and

verification because simulations run slow and the simulated

signals are too low-level for testing real-time software and

device behavior. These simulations also require detailed device

models that might not be available in the early development

stages. The same holds for simulation techniques based on

communication models of the microarchitecture, such as [17],

[22]–[24].

High-level simulation approaches for quantum computer

architecture as discussed in [25]–[27] can be fast and test

real-time quantum programs. Unfortunately, these simulators

operate on the quantum-gate level and do not simulate the real-

time device control required to implement such operations.

Hence, high-level simulators are not usable for testing real-

time control software on a real-time device and signal level.

III. SYSTEM OVERVIEW

Our simulator targets the advanced real-time infrastruc-

ture for quantum physics (ARTIQ) open-source software and

hardware ecosystem [10], [15] which is used by dozens of

research groups and has deployed over 200 real-time con-

trol systems worldwide. The ARTIQ ecosystem combines a

Python-based software environment with modular real-time

control hardware, and its programming paradigm is based on

the accelerator model as described in [13], [26], [28]–[33].

The ARTIQ software environment runs on a host computer

Fig. 3. A schematic overview of the microarchitectural components in the
core device.

that communicates with the control hardware, also referred to

as the core device, over ethernet. Users can program the system

using a Python host environment while kernels are executed

on the core device as illustrated in Figure 2.

A. Hardware

The core device is driven by a field-programmable gate

array (FPGA) which contains a classical CPU combined with

an event-based real-time I/O (RTIO) subsystem similar to the

systems outlined in [13], [34]. Figure 3 shows a simplified

schematic of the relevant microarchitectural components in the

FPGA. The classical CPU will handle all classical instructions

of the kernel and has additional access to a timeline cursor

and an event timeline. The timeline cursor is a register that

holds the current position on a timeline. The cursor is stored

as an integer value that represents a time in machine units

(MU), which normally corresponds to a timestamp expressed

in nanoseconds. The CPU can also post events to the event

timeline where an event is defined as a tuple of a timestamp

and an I/O command. To change the state of a device, the CPU

sets the timeline cursor to the time at which the change should

occur before posting the I/O command to the event timeline.

The current value of the timeline cursor will be used to store

the event on the timeline. If the CPU posts two commands

for the same device at the same timestamp, the last event will

overwrite the first one. By posting a series of events, a program

can build up an event timeline that represents the real-time

control of devices.

In parallel to the CPU’s execution, the RTIO subsystem

continuously verifies if any events are due. The RTIO counter

represents a timestamp in MU and is incremented every

nanosecond. The RTIO engine reads the event timeline and

verifies if any events are due based on the current value of

the RTIO counter. If an event is due, the RTIO engine updates

the corresponding device according to the command defined

by the event. In case an event generates a return value, for

example, when reading the value of a digital input, the return

value is inserted into the input buffers. The CPU can read

results from the input buffers whenever they are available.

For the RTIO system to operate properly, the slack (i.e.

the difference between the timeline cursor and the RTIO

counter) must be positive. Posting an event with negative slack

translates to changing the state of a device in the past, which
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Fig. 4. A schematic overview of a host program a kernel with access to APIs
for the timeline cursor and device drivers.

is not possible. Doing so will result in an underflow exception.

Kernels normally start their program by synchronizing the

timeline cursor to the RTIO counter and incrementing the

timeline cursor with a fixed value of 125× 103 MU to ensure

positive slack at the start of the program.

B. Software

The ARTIQ software environment is Python-based and

programs that run on the system are called experiments. An

experiment consists of Python code that runs on the host and

can additionally contain kernel functions that run on the core

device. Kernel functions are written in the ARTIQ domain-

specific language (DSL) which is a subset of the Python lan-

guage. Inside kernels, programmers have access to additional

functions to manipulate the timeline cursor, post events, and

read input buffers. The latter two are normally not directly

used by programmers as these functions are encapsulated in

device drivers. Such device drivers provide an application

programming interface (API) to translate functional device

behavior (e.g. switch off a digital output pin) to low-level

events. A schematic overview of a host program and a kernel

with access to APIs for the timeline cursor and device drivers

is shown in Figure 4.

When the host calls a kernel function, the ARTIQ compiler

assembles a kernel binary at runtime which is then uploaded

to and executed by the core device. Variables from the host

environment that are accessed in a kernel will be compiled

into the binary. During kernel execution, the host will handle

any (a)synchronous remote procedure calls (RPCs) initiated by

the kernel. Once the kernel is finished executing, the context

switches back to the host, and any variables modified in the

kernel are synchronized with the host environment before

the experiment resumes executing on the host. As a result,

the context switch between host and kernel code is almost

seamless from a programmer’s perspective.

IV. SIMULATION

Our goal is to enable the simulation of real-time control

software for software testing and verification. A simulator

should integrate into the existing ARTIQ environment, sim-

ulate kernel execution, and simulate any interactions between

the host environment and the kernel as described in Section III.

The simulator should be fast enough to test complete experi-

ments within a reasonable time. No real-time control hardware

should be required to run simulations, only a model of the

hardware listing the available devices. Hardware/software co-

simulation for embedded systems is not new, and existing

work proposes various techniques and approaches for such

simulations [16], [17]. At the most detailed level, we find

cycle-accurate simulations, such as [18], [19], [21], that take

the same binary as the real system and simulate the compo-

nents and registers of the microarchitecture in great detail.

Such simulations require highly detailed models making them

inflexible and potentially time-consuming to develop. Cycle-

accurate simulators are extremely detailed and accurate but are

also slow. It is not our goal to do performance analysis on the

ARTIQ microarchitecture, and we do not need such a level of

detail. Since our target is software testing and not hardware

performance analysis, we will focus on API simulation. An

API simulation cross-compiles the target program to a simu-

lator that implements the same API as the target system. The

simulator requires no execution model of the hardware and

can therefore be fast. Based on our requirements, we decide

to target functional simulation of kernels and real-time devices

using API simulation. Timeline cursor manipulations will be

simulated at the API level. Real-time devices are simulated

at their driver API level, and functional behavior will be

based on a simplified device model. Hence, we will replace

the timeline cursor API and the device driver APIs shown in

Figure 4 with calls to our simulation infrastructure. The state

of the RTIO counter and RTIO engine are not simulated, which

would require the use of a cycle-accurate simulator. Instead,

we estimate the value of the RTIO counter when synchronizing

the timeline cursor with the RTIO counter.

For simulation of real-time kernels, we will need to cover

classical constructs (i.e. the CPU), the timeline cursor, the

event timeline, and input buffers. Since both the host code

and the classical constructs of the kernels are valid Python

code, we decided to use the host Python process to simulate

kernels. Hence, our simulator is implemented in Python and

all components in Figure 4 will be executed by the Python

interpreter. Using the same Python process will also instantly

implement host-kernel variable synchronization and handling

of RPCs. We decided to split the simulation of the remaining

components into two parts: time and signals. The time com-

ponent covers the simulation of the timeline cursor, and the

signals component covers the simulation of the event timeline

and input buffers. Figure 5 shows a schematic overview of the

simulated components. In the remainder of this section, we

will cover time and signal simulation.

A. Time

A kernel can read and write the value of the timeline cursor

using the functions now_mu() and at_mu(t), respectively.

Additionally, the cursor can be moved relative from its current

position using the functions delay_mu(d) and delay(d).

The latter function is used with a delay time expressed in

seconds instead of MU. Since the delay in seconds is converted

to a delay in MU, the delay(d) function is not further

discussed. Functions used to modify the timeline cursor behave

differently depending on the timing context in which they are
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Fig. 5. A schematic overview of the simulated microarchitectural components.

used. There are two timing contexts, sequential and parallel,

which are used as regular Python context managers using the

with statement. The two contexts are used to specify if a

set of RTIO operations should be executed sequentially or in

parallel. The contexts can be nested arbitrarily, and by default,

every function starts in a sequential context. As a result, the

timeline cursor simulation will have to adapt based on the

current timing context.

In a sequential context, any modification to the timeline

cursor is interpreted as a sequence of operations. Hence, two

successive delays with duration d0 and d1 is equal to one

delay with duration d0+d1. Any call to at_mu(t) is applied

instantly. Modifications to the timeline cursor in a parallel

context are postponed such that operations in the context can

be interpreted as parallel. When the program exits the parallel

context, the timeline cursor will be moved forward by the

duration of the longest positive delay. If a parallel context

containing delays with duration d0, . . . , dn is entered with

the timeline cursor at tstart, the timeline cursor will be set to

tstart+max (0, d0, . . . , dn) when the context exits. In a parallel

context, calls to at_mu(t) with value tnew are interpreted as

delays with duration tnew − tstart.

We simulate the timeline cursor using a stack of simulation

contexts that represent the nested timing contexts. The ap-

propriate simulation context is pushed on and popped off the

stack when a timing context is entered and exited, respectively.

Each simulation context holds a current time tcurrent and a

duration tduration variable in MU. When pushed to the stack,

tcurrent is inherited from the simulation context currently at the

top of the stack while tduration is always initialized to zero.

When a simulation context is popped off the stack, tduration

is propagated to the underlying simulation context as a delay.

There is a sequential and a parallel simulation context available

and when the simulation starts, the stack is initialized with a

sequential simulation context with tcurrent = 0. At any time,

interactions with the timeline cursor are handled by the context

at the top of the stack. now_mu() always returns tcurrent

while calls to delay_mu(d) are handled differently by the

sequential and parallel simulation context. For a sequential

simulation context, a delay with duration d will increment

tcurrent and tduration by d while for a parallel simulation context,

tcurrent is not changed and tduration = max (tduration, d). For both

simulation contexts, calls to at_mu(t) with value tnew are

converted to delays with duration tnew − tstart. The described

system using the stack of simulation contexts accurately sim-

ulates the behavior of the timeline cursor.

For correct synchronization of the timeline cursor to the

RTIO counter, we keep track of a timeline horizon which is

essentially an estimation RTIO counter state. For a simulation

with events at timestamps t0, . . . , tn, the timeline horizon is

defined as max (tcursor, t0, . . . , tn) where tcursor is the current

position of the timeline cursor. When we synchronize the

timeline cursor to the RTIO counter, we first set the position

of the timeline cursor to the position of the timeline horizon

before inserting a delay of 125× 103 MU. Using the timeline

horizon for synchronization is necessary to simulate code with

negative delays correctly. Negative delays are commonly used

to compensate for latencies of physical equipment.

B. Signals

For signal simulation, we need to simulate the event timeline

and the input buffers. Interactions with the event timeline

and input buffers happen through device drivers. We simulate

device drivers on an API level, and each driver simulates the

signals and state of a device based on a simplified model.

Signals will be simulated on a functional level, for example,

frequency and phase for a direct digital synthesis (DDS) chip

and a binary state for a digital output. To enable signal

simulation, we will capture all function calls to drivers by

replacing each device driver with a matching simulation driver.

During initialization, each simulation driver obtains one or

more named signal objects corresponding to the state of the

device. Each time a driver function is called to change the

state of the device, the driver will push new values to the

appropriate signal objects. Pushing a new value to a signal

object will cause an event to be created at the current position

of the timeline cursor. Each signal object stores its events

and therefore possesses a part of the complete event timeline

of the system. If two events for a single signal have the

same timestamp, the latest event overwrites the existing event.

Additionally, the simulation driver can keep an internal state

and perform any additional processing for proper signal and

time simulation.

To test real-time control software, we must have the ability

to read the value of a signal at any given timestamp. To pull

the value of a signal at a specific timestamp, we search for the

event with the highest timestamp that is less or equal to the

timestamp of interest. The value of that event will represent

the value of the signal at the given timestamp. If no event is

found, the signal has not been set, and its value is unknown.

The last component that must be simulated is the input

buffers. Values in these buffers originate from events with

return values, such as sampling the value of a digital input

device. For software testing, return values from input devices

must be configurable by a test case. For that purpose, we

introduce input signals that describe the state of a hypothetical
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device that generates the input signal observed by a device.

Just as output signals, input signals are obtained by the device

drivers during initialization, for example, an input probability

signal for a digital input device. When the simulation driver

is called to sample the input value, the driver pulls the current

value of the input probability signal and uses it to generate

a return value. The return value is stored in the input buffer

that is part of the simulation driver. Once the actual sampled

value is requested from the driver, the value is taken from the

buffer and returned. Each input device has input signals that

match the level of its functionality, such as input voltage for an

analog-to-digital converter (ADC) and input frequency for a

digital edge counter. During software testing, input signals can

be configured using the same push/pull infrastructure used for

output signals. This allows input signals to be adjusted using

the same event timeline as output signals.

C. Implementation

We have implemented a simulation platform for ARTIQ

based on the proposed methodologies for time and signal sim-

ulation. The simulator is part of our open-source library Duke

ARTIQ extensions (DAX) [35] which integrates tightly with

the ARTIQ open-source software environment. The integration

entry point for the DAX simulator is the device database

(DDB), a central file in every ARTIQ project that defines

the list of available real-time devices and their corresponding

drivers. To enable simulation, users make a small modification

that allows the DAX simulation infrastructure to mutate the

DDB before ARTIQ reads it at the start of an experiment.

During DDB mutation, all device drivers are replaced by

matching simulation drivers, and an extra simulation config-

uration device is inserted into the DDB. When the driver for

the core device is loaded in an experiment, the core device

simulation driver will be loaded, which in turn loads the driver

for the simulation configuration device. The DAX simulation

infrastructure is loaded during initialization of the simulation

configuration device, which includes the setup of a time and a

signal manager. Any other simulation drivers that are loaded

will request their signal objects from the signal manager.

When the experiment runs and a kernel function is called,

the core device driver is requested to compile the kernel and

execute it on the core device. Instead, the simulation driver

for the core device will just run the kernel function inside a

sequential time context using the current Python process. Any

interactions with the timeline cursor or time context APIs are

forwarded to the time manager for simulation while simulation

drivers will perform all the signal simulations. Events for

each signal are stored in a sorted dictionary based on their

timestamps, and binary search algorithms are used to push

and pull events.

We integrated our simulation platform with the standard

Python unit test framework such that users can run tests for

real-time control software using existing testing environments.

The DAX unit test base class, which inherits the standard

Python unit test class, provides functions to push, pull, and test

signal values at any timeline cursor position. Existing tools for

step debugging, automated testing, and continuous integration

will allow real-time control software to be tested to the same

level as any other production-level software project.

D. Limitations

Functional simulation of kernels at the API level is fast

and especially useful for testing and verification of real-time

control software, but it also has limitations. Without simulation

of the RTIO counter and the RTIO engine, slack can not be

reliably simulated. As a result, API simulation can not accu-

rately predict underflow exceptions. A low-level and cycle-

accurate microarchitectural simulation would be required to

simulate slack. Such simulators are much slower and are not

convenient for software testing and verification at the level

discussed in this paper.

Some limitations are specific to our implementation of the

simulation infrastructure. We use the running Python process

to execute kernels, but the ARTIQ DSL only supports a

subset of the Python language. Hence, the simulation is more

permissive than the ARTIQ compiler. We can mitigate this

issue by compiling kernels before simulation. By default, the

DAX simulator does not compile kernels to run simulations

faster.

Host-kernel attribute synchronization also behaves differ-

ently in simulation. When running on a core device, the

ARTIQ environment synchronizes host variables modified in a

kernel when the kernel finished executing (see Section III-B).

During simulation, attributes are continuously synchronized

due to the use of a single Python process for host and kernel

code. The behavior of the simulator could be different when

a kernel modifies the same variable used by an RPC function

it calls. Such code would have confusing semantics to start

with, and we have not encountered any such code.

The model of the parallel timing context described in Sec-

tion IV-A differs slightly from the timing model implemented

in the ARTIQ compiler. The DAX simulator propagates the

parallel semantics until a sequential context is entered (deep

parallel) while the ARTIQ compiler only propagates the par-

allel semantics to top-level statements in the context (shallow

parallel). Kernel code that potentially behaves differently with

deep and shallow parallel semantics can be detected using

abstract syntax tree (AST) analysis. We have developed a

separate tool [36] that flags such kernel code.

V. EVALUATION

To evaluate the performance of the DAX simulation plat-

form, we measured its kernel execution time and compared

it to the execution time on hardware. We used two experi-

mental trapped-ion quantum processors for our evaluation, the

software-tailored architecture for quantum co-design (STAQ)

system [8] and the red chamber (RC) system [37] . Both

systems are controlled by an ARTIQ control system, but

STAQ uses a core device based on the Kasli 2.0 controller

[15] while RC uses a KC705-based controller [38]. Besides

the different real-time control systems and devices, the main

difference between these two setups is that STAQ is at
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Label Experiment

mw freq Microwave frequency scan
mw rabi Microwave Rabi frequency scan
mw ramsey Microwave Ramsey scan
mw gate Microwave repeated gate scan
gco freq Global co-propagating frequency scan
gco rabi Global co-propagating Rabi frequency scan
gco ramsey Global co-propagating Ramsey scan
ico freq Individual co-propagating frequency scan
ico ttime Individual co-propagating time scan
state init Qubit state initialization scan
tickle Tickle scan
direct rb Direct randomized benchmarking
gst Gate set tomography
sqst Single-qubit state tomography

TABLE I
LIST OF EXPERIMENTS USED FOR THE EVALUATION.

cryogenic temperatures while RC is at room temperature. We

chose 14 commonly used experiments with a single kernel for

the STAQ system. The set of experiments, listed in Table I,

contains 11 scanning-type experiments used for calibration and

three benchmarking experiments including, Direct randomized

benchmarking (RB) [39]–[41], gate set tomography (GST)

[42], and single-qubit state tomography (SQST) [43]. Both

systems use modular real-time control software developed with

the DAX modular software framework [44], and parts of the

system-specific control software are available in the DAX-zoo

repository [45]. The three benchmark experiments are portable

and can also run on RC while the four microwave (MW)

calibration experiments have an equivalent implementation

for the RC system. All scanning-type experiments scan over

20 points and take 100 samples per point. Direct RB is

performed with circuit lengths starting at 1 and scaling up

exponentially to 16. For each circuit length, we benchmark

ten different circuits with 100 samples for each circuit. The

GST benchmarks are performed with a total of 523 different

circuits based on our germs, taking 100 samples per circuit.

Finally, SQST is performed with a grid of 5 times 10 angles

taking 100 samples for each point.

For our evaluation, we run the experiments for both sys-

tems on a Kasli 2.0 controller. The RC software can run

on an appropriately configured Kasli controller by replacing

the DDB. All calibration experiments are executed with and

without buffering. Buffering allows the real-time control soft-

ware to schedule the operations for the next samples while

the incoming data of earlier samples are kept temporally in

hardware buffers. ARTIQ supports such hardware buffers,

but the real-time software must be designed appropriately to

utilize them. Buffering can further increase the throughput

and performance of kernels by reducing stalling time at the

cost of increased latency between receiving and processing

input events. None of the experiments are sensitive to the

increased latency and will benefit from increased throughput.

We configure a buffer size of 16 samples, which should be

large enough to get the maximum performance gain achievable

with buffering. The Direct RB and GST experiments are

Fig. 6. Kernel execution time speedup for our simulator relative to the
execution time on a core device.

always buffered with a fixed buffer size of 1 and SQST is

always unbuffered. The kernel execution time is measured with

nanosecond precision using the real-time clock available in

the Kasli controller. We then run the same experiments using

our DAX simulation platform on a computer equipped with

an AMD Ryzen 7 3700X CPU and 32 GB of memory. The

computer runs on Ubuntu 20.04 LTS, and the execution time

of the kernel simulation is measured in nanoseconds using

the standard Python time library. All experiments run five

times on hardware and five times in simulation to take the

average simulation time. Our measurements are performed

using ARTIQ version 6.7659.c6a7b8a8 and the results are

presented in Figure 6.

The results in Figure 6 show that simulation speeds up

execution up to 26.8 times with an average speedup of 6.9

times. Especially the mw ramsey, gco ramsey, and tickle

experiments achieve large speedups. The exceptional speedup

for these experiments is caused by the long delays that are

part of the experiment. The core device waits for these delays

before the kernel finishes execution, while the simulator only

simulates the passing of time but does not wait for it. The

experiments that show the least speedup are the direct rb and

gst experiments. For STAQ, both experiments only yield a 1.3

times speedup, while for RC, the direct rb experiment has

no speedup and the gst experiment is slower with a speedup

of 0.8 times. The limited speedup of these two experiments

is caused by short delays and a high number of operations,

which results in a high event density. As a result, the simulator

must process many events while the experiment has a relatively

short execution time on hardware. In general, we could state

that the execution time on hardware thardware is mostly limited

by the length of delays inserted during the experiment. These

delays sum up to the total length of the timeline and therefore

the duration of the experiment when running on hardware.

The execution time of the simulator tsim is not much affected

by delays and instead is mostly limited by the total number
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of events present in the experiment. We know that speedup

is defined as S = thardware/tsim. Roughly speaking, we can

derive that the total duration of an experiment is proportional

to speedup while the total number of events is inversely

proportional to speedup.

We can see from Figure 6 that the experiments running

on the RC system always yield lower speedup compared to

the same experiment running on STAQ. The different results

are caused by differences in the control for the cooling and

pumping procedures. Both procedures are executed by all

experiments at the start of each sample. STAQ uses three

digital outputs and one DDS while RC has additional features

and uses five digital outputs and a DDS. As a result, RC

inserts more events for each cooling and pumping procedure.

Additionally, STAQ uses a constant DDS frequency for both

procedures while RC uses a different frequency for each proce-

dure which adds two additional DDS configuration events for

each sample. Hence, the total number of events for RC exper-

iments is higher than for STAQ which reduces the speedup.

The additional DDS operations also insert extra delays into

the experiment, but these delays do not compensate for the

increased number of events. Figure 6 also shows buffered

experiments tend to have slightly less speedup compared to

their unbuffered counterparts. Buffering can reduce the execu-

tion time overhead of experiments resulting in faster execution

on hardware. The total number of events per experiment is

not affected by buffering. The result is a reduced speedup for

experiments with buffering. The reduction in execution time

by buffering is limited though due to the highly optimized

control software.

In addition to speedup, we have also measured the timing

accuracy of the simulated timeline cursor compared to execu-

tion on the core device. High timing accuracy is not a specific

requirement for correct functional simulation, but a simulator

with high timing accuracy could be used for estimating the

timing of experiments. The timeline cursor simulation is ac-

curate, but variable delays and inaccurate delays in simulated

device drivers can still introduce errors. Variable delays mainly

occur when the timeline cursor is synchronized with the RTIO

counter. Such synchronization is performed at least once at

the start of the experiment (see Section III-A) but can also

occur at other moments. We simulate the synchronization

of the timeline cursor using a timeline horizon and insert

an additional delay of 125 × 103 MU. We would like to

emphasize that the presence of a variable delay indicates that

the relative timing between the events before and after the

delay is not relevant, and any variation will not negatively

impact the functionality of the experiment or the simulation.

Hence, simulating timeline cursor synchronization with a

timeline horizon is sufficient for correct functional simulation.

A variable delay can also occur when an experiment needs

to wait for an input event that occurs at an unpredictable

time, though none of the experiments in Table I contain such

constructions. Inaccurate delays in simulated device drivers

are often caused by a simplified timing model of the device

driver. In practically all cases with inaccuracy, the simulated

Fig. 7. The error of the simulated timeline cursor relative to the timeline
cursor of the core device. The filled markers represent the regular configuration
while empty markers represent the optimistic configuration.

driver inserts less delay than the actual driver.

To measure the timing accuracy of the simulated timeline

cursor, we store the value of the timeline cursor after the first

synchronization with the RTIO counter and at the end of the

experiment. The difference between the two values represents

the total length of the event timeline in MU. We run the

simulations with two configurations: regular and optimistic.

When the timeline cursor is synchronized with the RTIO

counter, our simulator inserts a fixed delay of 125× 103 and

0 MU for the regular and optimistic configuration, respectively.

We measured the event timeline length on the core device

and with the two simulation configurations for all experiments

listed in Table I using the STAQ and RC system. For each

combination of system, experiment, and configuration, we

calculate the relative error of the simulation which is defined

as (tsim − texe)/texe where texe and tsim are the measured event

timeline lengths on the core device and during simulation,

respectively. The results for are shown in Figure 7 and are

also listed in Table II and III.

The results in Figure 7 show the error of the simulated time-

line cursor relative to the timeline cursor of the core device.

The regular and optimistic configurations are represented by

the filled and empty markers, respectively. When comparing

the results of the two different configurations, we see that the

optimistic configuration always estimates a shorter timeline

length, which is expected. If we only look at the results for the

optimistic configuration, we see that all have a relative error

lower or equal to 0.0. The optimistic configuration represents

the lower-bound execution time where variable delays are

always zero. When running on actual hardware, variable delays

are not always zero, and as a result, the optimistic configura-

tion underestimates the timeline length. We also noticed that

all unbuffered results with regular configuration have a relative

error lower or equal to 0.0. When running on hardware without

buffers, the system has negative slack after each sample,

and timeline synchronizations will insert delays larger than
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Experiment STAQ STAQ (buffered)
Regular Optimistic Regular Optimistic

mw freq -4.9% -13.2% 7.4% -2.0%
mw rabi -4.6% -12.4% 6.9% -1.8%
mw ramsey -0.7% -1.8% 0.9% -0.2%
mw gate -2.9% -8.0% 4.4% -1.2%
gco freq -4.6% -12.7% 7.2% -1.9%
gco rabi -0.5% -1.4% 0.6% -0.2%
gco ramsey -0.7% -1.7% 0.9% -0.2%
ico freq -4.8% -12.8% 7.2% -1.9%
ico time -3.9% -10.3% 5.6% -1.5%
state init -5.0% -13.7% 7.8% -2.0%
tickle -1.2% -1.3% -1.2% -1.3%
direct rb 6.2% -1.3%
gst 6.5% -1.7%
sqst -1.9% -5.8%

TABLE II
THE ERROR OF THE SIMULATED TIMELINE CURSOR RELATIVE TO THE

TIMELINE CURSOR OF THE CORE DEVICE FOR STAQ.

Experiment RC RC (buffered)
Regular Optimistic Regular Optimistic

mw freq -4.2% -10.8% 5.6% -1.7%
mw rabi -4.0% -10.2% 5.3% -1.6%
mw ramsey -0.7% -1.7% 0.8% -0.3%
mw gate -2.8% -7.1% 3.5% -1.1%
direct rb 1.4% -3.2%
gst 2.5% -2.6%
sqst -1.6% -4.9%

TABLE III
THE ERROR OF THE SIMULATED TIMELINE CURSOR RELATIVE TO THE

TIMELINE CURSOR OF THE CORE DEVICE FOR RC.

125 × 103 MU. The regular configuration underestimates the

length of the variable delay and therefore underestimates the

total timeline length. Regardless, the estimation of the regular

configuration is better than that of the optimistic configu-

ration for unbuffered experiments. The opposite is true for

buffered experiments. Buffering reduces the length of variable

delays caused by timeline synchronizations by maintaining

slack between samples. The regular configuration is often too

pessimistic for buffered experiments and the estimation of the

optimistic configuration is better most of the time.

We noticed two other trends in Figure 7 that relate to

the total timeline length of experiments. First, the results of

some experiments have little spread, in particular mw ramsey,

gco rabi, gco ramsey, and tickle. These are all calibration

experiments with relatively long delays and long total timeline

lengths. The long timeline length combined with the limited

sources of errors (i.e. low density of variable delays and

events) results in a small relative error and therefore, a small

spread between different configurations. Second, the results

of the RC system tend to be closer to 0.0 than the equivalent

STAQ results. We already mentioned that due to differences

in the cooling and pumping procedures, the RC system in-

serts more events for each sample of the experiment. These

additional events also insert extra delays into the experiment.

As a result, the total timeline length of RC experiments are

on average 28.1% longer compared to their STAQ equivalents.

Again, the increased timeline length with no additional sources

of errors reduces the relative error.

Overall, the average relative error for the regular config-

uration is 3.6%, and for the optimistic configuration, the

average relative error is 4.4%. Based on our analysis of the

regular and optimistic configurations, we concluded that the

timeline length of buffered and unbuffered experiments are

better estimated by the regular and optimistic configurations,

respectively. When choosing the optimistic configuration for

buffered experiments and the regular configuration for un-

buffered experiments, the resulting average relative error is

reduced to 2.1%, leading to an average accuracy of 97.9%. We

can conclude that even in the presence of variable delays and

simulated device drivers with simplified timing models, the

position of the timeline cursor is simulated with high accuracy

when choosing the appropriate configuration.

VI. CONCLUSION

We have presented a functional simulation platform for

real-time control software that enables software testing and

verification. To simplify testing and verification, timeline ma-

nipulations and device drivers are simulated on the application

programming interface (API) level. Our simulation platform

accurately simulates a timeline cursor using a stack while

the event timeline is simulated using signals and events.

Input signals are also simulated on a functional level and

use the same interactive signal and event infrastructure used

for output signals. We implemented a simulator based on the

proposed concepts, which is part of our open-source library

Duke ARTIQ extensions (DAX). Our simulator integrates

tightly into the advanced real-time infrastructure for quantum

physics (ARTIQ) environment and is capable of simulating

real-time kernels and host-kernel interactions. We integrated

our simulator with the standard Python unit test frameworks

such that real-time control software can be tested using ex-

isting tools for step debugging, unit testing, and continuous

integration. Compared to kernel execution on the core device,

kernel simulation is 6.9 times faster on average. Even with

the presence of variable delays and simplified timing models

for device drivers, the position of the timeline cursor is

simulated with an average accuracy of 97.9% when choosing

the appropriate configuration.
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T. A. Ohki, “Hardware for dynamic quantum comput-

ing,” Review of Scientific Instruments, vol. 88, no. 10,

p. 104 703, 2017.

[15] G. Kasprowicz, P. Kulik, M. Gaska, et al., “Artiq and

sinara: Open software and hardware stacks for quantum

physics,” in OSA Quantum 2.0 Conference, Optical

Society of America, 2020, QTu8B.14. DOI: 10.1364/

QUANTUM . 2020 . QTu8B . 14. [Online]. Available:

http : / / www. osapublishing . org / abstract . cfm ? URI =

QUANTUM-2020-QTu8B.14.

[16] J. Rowson, “Hardware/software co-simulation,” in 31st

Design Automation Conference, 1994, pp. 439–440.

DOI: 10.1109/DAC.1994.204143.

[17] K. Hines and G. Borriello, “Dynamic communication

models in embedded system co-simulation,” in Proceed-

ings of the 34th Annual Design Automation Conference,

ser. DAC ’97, Anaheim, California, USA: Association

for Computing Machinery, 1997, pp. 395–400, ISBN:

0897919203. DOI: 10.1145/266021.266178. [Online].

Available: https://doi.org/10.1145/266021.266178.

[18] J. Lowe-Power, A. M. Ahmad, A. Akram, et al., The

gem5 simulator: Version 20.0+, 2020. DOI: 10.48550/

ARXIV.2007.03152. [Online]. Available: https://arxiv.

org/abs/2007.03152.

[19] P. R. Panda, “Systemc: A modeling platform supporting

multiple design abstractions,” in Proceedings of the

14th International Symposium on Systems Synthesis,
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