2022 IEEE International Conference on Quantum Computing and Engineering (QCE) | 978-1-6654-9113-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/QCE53715.2022.00077

2022 IEEE International Conference on Quantum Computing and Engineering (QCE)

Modular software for
real-time quantum control systems

Leon Riesebos*T, Brad Bondurant*, Jacob Whitlow*, Junki Kim*, Mark Kuzyk*, Tianyi Chen®, Samuel Phiri*,
Ye Wang*, Chao Fang*, Andrew Van Horn*, Jungsang Kim* and Kenneth R. Brown*
*Department of Electrical and Computer Engineering, Duke University, NC 27708, USA
TEmail: leon.riesebos @duke.edu
ISKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering,
Sungkyunkwan University, Suwon 16419, Korea
§Department of Physics, Duke University, NC 27708, USA

Abstract—Real-time control software and hardware is essential
for operating quantum computers. In particular, the software
plays a crucial role in bridging the gap between quantum pro-
grams and the quantum system. Unfortunately, current control
software is often optimized for a specific system at the cost of flex-
ibility and portability. We propose a systematic design strategy
for modular real-time quantum control software and demonstrate
that modular control software can reduce the execution time
overhead of kernels by 63.3% on average while not increasing
the binary size. Our analysis shows that modular control software
for two distinctly different systems can share between 49.8% and
91.0% of covered code statements. To demonstrate the modularity
and portability of our software architecture, we run a portable
randomized benchmarking experiment on two different ion-trap
quantum systems.

Index Terms—real-time control systems, modular software,
software portability, quantum computing

1. INTRODUCTION

The field of quantum computing is rapidly evolving in
the areas of software and hardware. On the software side,
quantum programming languages and compilers are becoming
more available and feature-rich [1]-[6]. At the same time,
quantum hardware is becoming increasingly powerful with
recent systems demonstrating computations on tens of qubits
[7]-[13]. An often underexposed area in the field of quantum
computing is the control software and hardware that bridges
the gap between the quantum program and the targeted quan-
tum system. Recent papers [7], [11], [14], [15] have shown that
current state-of-the-art quantum systems already require tens
to hundreds of devices to be controlled with high precision
and strict real-time requirements, proving to be a significant
challenge for the control system. Existing control hardware as
described in [16]-[20] provides the required real-time control
of devices, but it is up to the real-time control software to close
the remaining gap between device-level control hardware and
quantum programs as illustrated in Figure 1.

Control software for quantum systems that runs on the real-
time controller is similar to high-performance and resource-
constrained embedded software. The software is responsible
for real-time control of a set of devices while capturing and
processing data simultaneously. Real-time controlled devices
include direct digital synthesis (DDS) devices, digital I/O, and

Quantum
system

Results

Quantum Real-time control system
program Host -
computer Control Dewce
software drivers

Fig. 1. A real-time control system bridging the gap between the quantum
program and the quantum system.

digital-to-analog converters (DACs). Additionally, the real-
time control system for a quantum system functions as a copro-
cessor and maintains a connection with a host computer. Due
to the performance requirements and the strong dependence
between the software and hardware, real-time control software
is often tailored for a specific quantum system at the cost of
flexibility and portability. Since quantum computing is still an
emerging technology, most quantum systems are unique. As a
result, real-time control software is often redeveloped for each
system which causes significant development overhead.

In this paper, we propose a systematic design strategy
for real-time quantum control software. We present an open-
source software framework for the advanced real-time infras-
tructure for quantum physics (ARTIQ) open-source software
and hardware ecosystem [16], [21] to apply our design con-
cepts to real-time quantum control software. Our framework
supports the development of modular control software to
enhance flexibility and portability on the level of real-time
system code. Portability on the application level is achieved
by introducing software abstractions. We show that modular
control software developed with our framework can reduce
the execution time overhead of real-time software and achieve
high degrees of code portability. Reduced execution time
overhead is achieved by fine-grained timing management and
data offloading features of the modular software. We demon-
strate the capabilities of our software framework by running
a portable randomized benchmarking experiment on two dif-
ferent ion-trap quantum systems that are fully controlled by
software based on our framework.

The remainder of this paper is structured as follows. Related
work is discussed in Section II. In Section III we present our
design strategy and modular software architecture for real-

978-1-6654-9113-6/22/$31.00 ©2022 IEEE
DOI 10.1109/QCE53715.2022.00077

545

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

time quantum control software. Our performance analysis and
code portability analysis can be found in Section IV and V,
respectively. In Section VI we present experimental results
from two ion-trap quantum systems. We conclude our paper
in Section VII.

II. RELATED WORK

Control software for ARTIQ systems can be developed
without the use of our proposed framework. Programmers
will have access to a classically complete programming en-
vironment, basic data storage utilities, and device drivers to
program real-time devices. However, ARTIQ is set up as a
fully generic control system and no utilities are provided to
support modular software development. As a result, control
software is often tightly coupled to the hardware and needs
to be completely redeveloped for each system. Especially the
real-time timing of the software is often highly dependent on
the controlled devices. The tight coupling of the hardware
and software makes it difficult to change devices in existing
systems since any modification likely introduces timing issues.
At this moment, we are not aware of any other frameworks
or libraries to support the development of modular control
software for ARTIQ. Other real-time control systems similar
to ARTIQ, such as M-ACTION [11], [17] and IonControl [18],
suffer from the same limitations.

QCoDeS [22] is a modular data acquisition framework
mainly intended to orchestrate the setup and data collection
of instruments and devices part of a quantum control system.
Some of these instruments can have real-time features, but
QCoDeS does not control instruments in real-time while an
experiment runs. Instead, all code involving QCoDeS runs
on the host computer in a Python environment. Real-time
instruments are also much more coarse compared to ARTIQ.
A single ARTIQ real-time controller with many real-time I/O
devices would correspond to a single QCoDeS instrument. The
concepts behind QCoDeS show some similarities with the non-
real-time components of the ARTIQ host environment. What
sets ARTIQ apart from QCoDeS is its seamless integration and
combination of real-time software within the host environment.
ARTIQ puts the real-time controller in the center based on the
principles of the accelerator model, while QCoDeS behaves
more as a hypervisor for devices. The concepts presented in
this paper apply to low-level real-time control software and its
interaction with the host, and QCoDeS is not involved in the
former. QCoDeS does have features for software modularity
but these are limited to the instrument level without introduc-
ing any form of hierarchy. Other software based on or derived
from QCoDeS, such as PycQED [23], is built on the same
principles and has the same limitations.

Qiskit [3] is an open-source library for creating, compiling,
and executing quantum programs at the gate level. While it
does allow users to execute quantum programs, Qiskit itself
does not transparently connect to any device-level drivers and
is not directly involved in the real-time control of devices when
the compiled quantum program runs. Hence, Qiskit merely
describes a circuit and is not directly part of the real-time

546

D
» Kernel O
Host program
> Kernel 1
Host computer Core device

-

Fig. 2. Schematic overview of the accelerator model with a host program
and one or more kernels.

control software that runs the circuit on hardware. Even the
pulse-level control provided in Qiskit is an opaque abstraction
over the device-level drivers. The same holds for related and
similar tools such as OpenQASM [2], OpenPulse [24], Q#[1],
and Cirq [6].

III. SOFTWARE ARCHITECTURE

Our software architecture targets the advanced real-time
infrastructure for quantum physics (ARTIQ) open-source soft-
ware and hardware ecosystem [16], [21] which is used by
dozens of research groups and has deployed over 200 real-
time control systems worldwide. ARTIQ follows the principles
of the accelerator model (1], [4], [19], [25]-[29] where a
program consists of a host program and one or more kernels.
The host program executes on a host machine and can offload
the execution of kernels to an accelerator. For ARTIQ, the
host program runs on a classical computer while kernels run
on the real-time control hardware as illustrated in Figure 2.
ARTIQ kernels are classically complete and have access to
real-time devices that interact with the quantum system (e.g.
direct digital synthesis (DDS) devices, digital I/O, and digital-
to-analog converters (DACs)). The real-time control hardware,
referred to as the core device, contains a classical CPU and
a real-time I/O (RTIO) subsystem that schedules events for
real-time devices on a timeline using a timeline cursor as
described in [19], [30]. The ARTIQ system is programmed in
a Python host environment and kernels are functions written
in the ARTIQ domain-specific language (DSL), which is
a Python-like language containing additional constructs for
manipulating the timeline cursor and inserting events. ARTIQ
allows host and kernel code to be combined in a single file, and
kernels are functions or methods decorated with the @kernel
decorator. When the host calls a kernel function, the host
will invoke the ARTIQ compiler that compiles the kernel to a
binary. The resulting binary is uploaded to and executed by the
core device. While the core device executes the kernel, the host
serves any synchronous or asynchronous remote procedure
calls (RPCs) from the core device. RPCs are often used to
stream real-time data to the host, access peripheral (i.e. non-
real-time) devices, and offload computationally heavy tasks to
the host. Once the kernel finishes execution, the host program
resumes execution. The ARTIQ programming environment is
set up generically and does not provide additional utilities for
organizing real-time control software. In this section, we will

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

Experiments / Clients
DAX Services
(This work) System &
TEZIEy Modules
ARTIQ Devices

Quantum system

Fig. 3. Schematic overview of the software components in our modular
architecture controlling a quantum system, in this case, trapped atomic ions.

present our design principles for real-time control software
written for an ARTIQ control system.

The first step towards code organization is to separate
common functionality of the system (i.e. system code) from
experiment-specific routines (i.e. experiment code). System
code can be collected in a base class, and each experiment
can inherit from such a class and add experiment-specific
routines. This approach is already common practice for most
ARTIQ experiments. Our software architecture focuses on the
development of modular system code. We propose to break
the system code into two components: device organization
with modules and extensible system-wide functionality using
services. Additionally, we will introduce the notion of a central
and searchable registry in which all modules and services
of a system are registered. To improve code portability, we
introduce abstractions with interfaces and clients. Figure 3
shows an architectural overview of the different components,
which we will describe in the remainder of this section.

A. Modules, services, and the registry

While most experiments require a large set of real-time
devices to collaborate closely, subsets of devices that perform
basic procedures often have a tighter relation from a control
perspective. A subset of devices might have strict control or
safety requirements independent from other devices in the
system. For example, two devices might always need to be
switched simultaneously to achieve some desired functionality.
We introduce the concept of modules to group such a logical
collection of devices.

A module is self-contained and controls zero or more
devices that depend on each other to perform basic proce-
dures. For example, a detection module can contain devices
required to apply a readout signal to the system together
with the input devices that read the state of the qubits during
detection. To guarantee that modules are independent from a
control perspective, a device can only be assigned to a single
module. Each module has access to its own persistent data
storage to store configuration and calibration data related to
its operation. The collective behavior of devices in a module
can be described using module functions. For example, a
detection module could have a function that controls the
readout signal and the input devices in parallel to perform a
detection procedure. Module functions are not solely used for

547

collective device behavior and can also be used to manipulate
devices separately, read or write configuration data, or update
calibration parameters.

A system contains one or more modules that are organized
in a tree structure. Every module in the system can contain
zero or more sub-modules, and the root module is known as the
system module. Parent modules can access features of all their
child modules, allowing hierarchical and transparent structur-
ing of devices and functionality. Because each device can only
be assigned to a single module, modules in non-overlapping
sub-trees of the system hierarchy are device-independent. Two
independent modules can be controlled in parallel, which
means they can both add events to the RTIO event timeline
without device conflicts. Hence, the width of the module tree
represents the amount of control- and device independence
between different parts of the system. Device dependencies are
encoded in the tree structure, and more independent modules
lead to more available control parallelism in the system. All
modules are added to the central registry of the system such
they can be easily found later. Modules form the first level of
system organization and introduce fundamental abstractions
for device control and dependencies.

Modules introduce a straightforward device and system
organization, but each separate module has limited power
due to its local scope. Only the system module (i.e. the root
module) can control all devices in the system, a requirement
for most meaningful operations on the quantum system. With
only modules, all system-wide functionality would have to be
implemented in the system module, reducing the modularity of
the software architecture. To overcome this issue, we introduce
services as a technique to organize system-wide functionality.

A service is a component that can control multiple modules
or even the whole system if desired. Through the registry, a
service can obtain any modules required for its functionality.
A single module in the system can be accessed by any number
of services. The functions of services usually describe the
collective behavior of multiple modules, and functionality can
vary from short operations to lengthy procedures. If modules
are device-independent, a service is allowed to control them
in parallel. Just as modules, services have access to their own
persistent data storage, and every service is added to the central
registry of the system.

Services are not limited to calling just modules. Through
the registry, services can also find other services to use their
functionality. Building services on top of other services allows
transparent layering of increasingly complex system behavior.
Hence, services are organized in a directed acyclic graph
(DAG). Services contain powerful functions and enable the
organization of system-wide functionality, but because of their
system-wide control, services can not operate on the system
in parallel with any other module or service as this could
potentially lead to device-control conflicts.

B. Interfaces and clients

System code can be organized with the concepts described
in Section III-A, but because most quantum systems are

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

unique, the majority of modules and services are still de-
veloped and optimized for a specific system. To abstract
system code, we introduce standardized interfaces. Interfaces
describe a set of functions that must be implemented by a
module or service. A single module or service can implement
multiple interfaces and a single interface can be implemented
by multiple modules or services in a system. For example, a
gate interface could expose a set of functions that implement
operations to perform quantum gates. Multiple instances of a
gate interface within a single system could represent different
gate implementations. To prevent device- and control conflicts,
interfaces should be considered as implemented by a service.
Hence, an interface can not operate on a system parallel with
any other module, service, or interface.

System code that implements one or more standardized
interfaces can run portable experiments, which we call clients.
Clients exclusively control a system through interfaces. A
client is instantiated against a system, and the necessary
interfaces will be obtained at runtime using the system registry.
With clients, we can develop portable experiments that can
run on different systems or different implementations of an
interface in a single system. The system code functions as
middleware between the generic experiment described in the
client and the system-specific implementation of the utilized
interfaces.

C. Implementation

We have implemented a software framework to support
the development of real-time control software based on the
presented concepts. The framework is part of our open-source
library Duke ARTIQ extensions (DAX) [31] , which integrates
tightly with the ARTIQ open-source software and hardware
ecosystem. DAX implements a set of base classes that de-
velopers must inherit when defining modules and services.
All these base classes provide direct access to data storage
functions and the central registry of the system. When modules
or services are instantiated, a unique hierarchical key and data
storage location is assigned to the object based on the module
tree or service DAG. In addition, the DAX library contains
standard modules and services with portable functionality that
can be used by any system. Such modules and services include
functionality for processing measurement data, device-safety
control, and common device control. Additionally, we have
developed a generic class that defines the standard control flow
of a single- or multi-dimensional scanning-type calibration
experiment. Our DAX framework relies heavily on multiple
inheritance to combine features of multiple classes, and fortu-
nately, the Python host environment supports this well.

DAX defines various interfaces that can be implemented by
modules and services. The two interfaces of interest for this
paper are the operation interface and the data-context inter-
face. The operation interface contains functions for common
gate-level quantum operations, including single- and two-qubit
Clifford operations, arbitrary rotation gates, and qubit state
preparation/measurement. The data-context interface is used to
store and process obtained measurement results. We developed

548

clients to perform randomized benchmarking (RB) [32]-[34]
and gate set tomography (GST) [35] which use the operation
interface and the data-context interface to execute benchmark
circuits. The RB and GST clients work with every system
that uses DAX-based control software and implements the
required interfaces. Both clients are based on the open-source
pyGSTi library [36] which is used to generate benchmarking
circuits and analyze results. Finally, we have defined an
application programming interface (API) that can be used to
write portable quantum programs in an ARTIQ environment
given an operation interface and a data-context interface. Using
this API, we implemented a program to perform single-qubit
state tomography (SQST) [37]. Such portable programs can be
executed by dynamically linking the program to the interfaces
of a system using the program loader client we developed.

IV. PERFORMANCE EVALUATION

To evaluate the benefits and overhead of modular con-
trol software developed with the DAX framework, we re-
implemented the control software for the software-tailored
architecture for quantum co-design (STAQ) system, an experi-
mental trapped-ion quantum processor . The real-time control
hardware of STAQ is based on a Kasli 2.0 controller [21],
which is part of the ARTIQ hardware ecosystem. The old
ARTIQ control software for STAQ is designed with a system-
specific and monolithic architecture while the new modular
control software is developed using our DAX framework. In
this section, we will compare the old control software with
the new DAX-based control software.

The old STAQ control software separates system code
from experiment code, but the system code has a monolithic
architecture and is highly hardware dependent. For example,
code related to RTIO timing is highly dependent on the
latencies introduced by the programming of real-time devices.
Any changes to the devices will likely cause RTIO timing
constraints violations throughout the code. Hence, the old
control software is not modular or portable. We did make
modifications to the old control software to optimize its
performance and make the comparison to the new control
software fair. All delays inserted on the event timeline used to
compensate for device programming times larger than 200 us
were reduced to 200 us or replaced by other efficient solutions
that satisfy timing constraints. Such delays are often necessary
to not violate any timing constraints of the RTIO system. The
new control software also uses 200 us delays to compensate for
device programming time, which has been found empirically
to be sufficient. Minor bugs found in the old code were also
fixed to ensure the old and new experiments are functionally
equivalent.

The new DAX-based system code for STAQ is modular
and organized in 11 modules and 11 services. Most modules
and services are system-specific, but two services use portable
DAX data-processing modules, and one module extends a
DAX module with safety-related functionality. The DAX-
based system code implements various DAX interfaces, in-
cluding the data-context interface and four implementations

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

Modules

microwave_operation

Services

Fig. 4. Subset of the STAQ modules and services relevant for the microwave
operation service.

of the operation interface. The new system code packs more
features and complexity, including control over more real-
time devices (increased from 23 to 35) and external devices
(increased from 4 to 8). Figure 4 shows a subset of the STAQ
modules and services relevant for the microwave operation
service, which implements the DAX operation interface. Solid
arrows show the tree structure and DAG dependencies for
modules and services, respectively. The dashed arrows indicate
modules that are directly used by services. The microwave
module controls a DDS to apply microwave pulses to the
ions. The photomultiplier tubes (PMTs) and lasers used for
detection are controlled by the detection module. The con-
tinuous wave (CW) module controls various other lasers for
cooling and pumping while the Yb171 module stores ion
calibration data. The cool service contains various subroutines
for cooling ions while the state service implements the data-
context interface and is used for state initialization and de-
tection. Finally, the microwave operation service uses all the
mentioned modules and services to perform microwave gates,
qubit state preparation, and measurements.

We chose five relevant experiments with a single real-
time Kernel available in both the new and the old STAQ
control software for comparison. The selected experiments
include two microwave (MW) experiments (MW freq/time),
a qubit initialization experiment (qubit init), a tickle experi-
ment (tickle), and an Ytterbium spectroscopy experiment (Yb
spec). All experiments are one-dimensional (1D) scanning-
type experiments and scan over 20 data points. The new
control software utilizes the generic DAX scanning infras-
tructure while the old control software has defined scanning
control-flow procedures as part of the system code. Each
experiment takes 100 samples per point except for Yb spec,
which takes 30 samples per point. We ran each experiment
with the same configuration using the old and new control
software. Additionally, we run each experiment using the new
control software with buffering enabled. Buffering allows the
real-time control software to schedule the operations for the
next samples while the incoming data of earlier samples are

549

B Old software
[0 DAX software
B DAX software (buffered)

Execution time overhead

MW freq MW time

Qubit init

Tickle Yb spec

Fig. 5. Kernel execution time overhead for the old control software and new
DAX-based control software of the STAQ system.

kept temporally in hardware buffers. ARTIQ supports such
hardware buffers, but the real-time software must be designed
appropriately to utilize them. Buffering can further increase the
throughput and performance of kernels by reducing stalling
time at the cost of increased latency between receiving and
processing input events. None of the mentioned experiments
are sensitive to the increased latency and will benefit from
increased throughput. We configure a buffer size of 16 sam-
ples, which should be large enough to get the maximum
performance gain achievable with buffering. The old control
software does not include features for buffering. We measured
the execution time of the kernel with nanosecond precision
using the real-time clock available in the Kasli controller
(i.e. the core device). An execution time measurement starts
when the kernel starts execution, after the kernel binary is
compiled and uploaded to the core device, and stops when
the kernel finishes execution. Any RPCs from the core device
to the host are included in the execution time measurement.
We will use the execution time measurements to calculate the
overhead of the real-time software. The kernel binary size is
measured on the host at the output of the ARTIQ compiler and
is used to calculate any binary-size overhead caused by our
software framework. All our measurements are performed with
ARTIQ version 6.7659.c6a7b8a8 and the results are presented
in Figure 5 and 6.

A. Execution time overhead

The results in Figure 5 show the execution time overhead of
the kernel for each experiment using the old and new DAX-
based control software. For each experiment, we calculate
the minimal execution time t,,;, based on the pulse lengths,
detection times, and intentional wait times of the experiment.
Given the measured execution time of an experiment ty,,
the execution time overhead is defined as (tee — tmin)/tmin-
Figure 5 shows that the old control software has an execution
time overhead between 52.4% and 62.6% for the two MW
and the qubit init experiments. These experiments consist of
relatively short and quick operations which increase the oper-
ation density and induce more strain on the RTIO subsystem.
Any inter-sample execution overhead introduced by the real-
time control software will quickly increase the total execution
overhead. The tickle experiment consists of slower operations

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

resulting in a measured overhead of 8.6% for the old control
software. Any software overhead will be less significant due
to the longer total duration of the experiment. The Yb spec
experiment has very slow operations and includes a 500 ms
wait time for each sample. Any overhead introduced by the
real-time control software will be negligible on the timescale
of the experiment.

If we look at the results of the DAX-based control software
(without buffering) in Figure 5, we see that the new control
software significantly reduces the execution time overhead
compared to the old control software. On average, the new
control software reduces the execution time overhead by
63.3% compared to the old control software. This average
overhead reduction also includes the Yb spec experiment
which already has a negligible execution time overhead for
the old control software. When not including the Yb spec
experiment, the average execution time overhead reduction is
55.4%. When we include buffering, we see that experiments
with short and quick operations benefit the most (i.e. the
two MW and the qubit init experiments). Buffering reduces
inter-sample overhead by scheduling multiple samples ahead
before retrieving results. Hence, the experiments most affected
by inter-sample overhead benefit the most from buffering.
The execution time overhead of the tickle experiment is not
further reduced by buffering. The new control software already
reduced its overhead to 1.4%, and inter-sample overhead does
not appear to be a significant part of that. Compared to
the old control software, the DAX-based control software
with buffering enabled reduces execution time overhead by
88.7% and 87.1% on average with and without the Yb spec
experiment, respectively.

We further analyzed our measurements to understand why
the DAX-based control software performs better than the
old control software. We attribute the reduced overhead to
two main sources: timing management and data offloading.
As mentioned earlier, real-time control software often inserts
some delays on the event timeline to compensate for device
programming times. The new control software groups devices
in modules which in turn provides functions to manipulate
those devices. The inserted delays can be optimized for each
function which reduces the overhead. The old control software
is less structured which often leads to larger worst-case delays
or redundant delays to be inserted. Modular and well-designed
real-time software allows us to insert more fine-grained delays,
which reduces the total execution time overhead. Modular
software design also leads to code that is more flexible and
robust to changes. When a module has any modifications to
its real-time devices or their behavior, its function might need
to be optimized again, but other modules and services are
not affected by the change. If devices in a module completely
change, a module might need to be redeveloped. Fortunately, if
the function signatures of the new module are compatible with
the old one, the modules could be swapped without affecting
other parts of the system.

The second major contributor to overhead reduction is
data offloading. Measurement data for an experiment is often

550

B Original
3 Modified to 1D

1.00 +- --- i ittt Rt --
0.75 |
0.50 A
0.25 1
0.00 -

MW freq MW time Qubit init Tickle Yb spec

= —
N w

w (=]
|

Normalized kernel size

Fig. 6. Kernel binary size of the new control software normalized to the
kernel binary size of the old control software.

* In the new control software, the two microwave (MW) scan experiments
merged into a single 2D scan experiment causing an increased kernel size.

offloaded to the host using asynchronous RPCs while the
kernel is running. Such offloading can be very efficient and
transfers parts of computational tasks from the kernel to the
host while also reducing memory usage on the core device.
The new control software uses portable DAX data-processing
modules which are highly optimized to maximize the benefit of
the data offloading. As a result, the complexity and execution
time overhead of the kernel is reduced.

We would like to mention that better timing management
and data offloading is also achievable with monolithic control
software, but modular software makes it much easier. Devices
will always be addressed through the functions of the module
it is part of, making it easy to optimize the inserted delays for
each scenario and improve timing management. For data off-
loading, the DAX data-processing module is portable between
systems (see Section V) and only has to be developed and
optimized once thanks to the modular software architecture.

B. Kernel binary size

The results in Figure 6 show the kernel binary size of the
new control software normalized to the kernel size of the old
control software. We see that for the two MW experiments
the kernel size is increased by 43.0% to 43.8% while for
the other experiments the kernel size changed less than 1%.
While all experiments are 1D scanning-type experiments, the
two MW experiments merged into a single two-dimensional
(2D) scanning experiment in the new control software. For our
tests, we configured one dimension to be static to reduce the
experiment to a 1D scan. While this will result in a functional
1D scan, the DAX scanning infrastructure still stores data for
the static dimension for each point in the scan. Hence, the
kernel binary size increases. We manually modified the new
MW experiment to a 1D scan for frequency and time storing
the fixed value of the other dimension as a constant. When
we measure the kernel binary size again, the difference with
the old control software is less than 1%. From our results,
we can conclude that the ARTIQ compiler works well with
modular control software, and modular real-time software does
not cause extra overhead that increases the kernel binary size.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

V. CODE PORTABILITY

A principal benefit of modular control software is the po-
tential for code portability between different quantum systems.
The ARTIQ ecosystem already successfully abstracts real-
time hardware with drivers and gateware to hide differences
between hardware configurations or even hardware platforms.
The DAX framework tries to achieve portability and abstrac-
tion on a higher level, more specifically the system-level
and application-level software. On the system-level, generic
DAX modules, services, and scanning infrastructure (see Sec-
tion III-C) allow portability of real-time control code between
systems. Portability for application-level software is achieved
by using interfaces and clients.

To evaluate the amount of code portability between two
different systems, we have implemented DAX-based control
software for a second experimental trapped-ion quantum sys-
tem known as the red chamber (RC) system [38] . The real-
time control hardware of RC is based on a KC705 [39]
evaluation board with custom breakout boards that contain
digital I/O and DDS devices. The control software for the RC
system consists of 20 modules and 7 services. Two services
use portable DAX data-processing modules and one module
extends the DAX module for safety-related functionality. The
RC system code implements multiple DAX interfaces, includ-
ing the data-context interface and two implementations of the
operation interface. The system code controls 30 real-time
devices and 1 external device. Notable is that the RC system
has more modules than the STAQ system even though there
are fewer real-time devices. The software of the RC system
was developed after that of the STAQ system, and we learned
it was better for modularity and portability to have a deeper
system tree with more and smaller modules.

Figure 7 shows a subset of the RC modules and services rel-
evant for the microwave operation service, which implements
the DAX operation interface. The graph looks very similar to
the one for the STAQ system shown in Figure 4 despite the
real-time devices and controlled hardware being significantly
different. The Yb171 and microwave modules are similar to
their STAQ counterparts while the main differences are found
in the CW and PMT modules. One key difference between
the systems is that the detection laser shares an upstream
master switch with other continuous wave lasers. Due to the
master switch, it is impossible to control the detection laser
independently from other lasers in the CW module without
potential conflicts. Hence, the detection laser is controlled by
the CW module and the PMTs are contained in an independent
module. A detection subroutine now requires the CW and PMT
module to work in parallel which is captured in the detection
service. The remaining services in the RC system are similar
to their STAQ equivalents. Figure 4 and 7 show that two
systems with significantly different real-time control systems
and devices can still have real-time control software with
similar architectures. Modules and services can successfully
abstract such differences.

To evaluate code portability between the STAQ and RC

551

Modules

microwave_operation

Services

Fig. 7. Subset of the RC modules and services relevant for the microwave
operation service.

system, we disabled modules and services not relevant for
microwave operations. We then run a set of six experiments
on each system. Three are MW calibration experiments and
include a MW frequency calibration, a MW Ramsey frequency
calibration, and a MW gate experiment that executes a se-
quence of X rotations to fine-tune the microwave Rabi gate
time. These calibration experiments are hardware-specific and
therefore have system-specific implementations. Two other
experiments are the DAX clients for RB and GST that use
the operation interface and the data-context interface. The last
experiment is the portable SQST quantum program that is
dynamically linked to the system using the program loader
client. The mentioned clients and portable experiments are
described in Section III-C.

All ARTIQ experiments have four execution phases: build,
prepare, run, and analyze. The build phase is used to instantiate
objects and process arguments. The prepare phase is the first
moment where code directly relevant to the experiment can
execute. This phase allows experiments to execute code on
the host without accessing any devices or data storage. The
run phase is the only moment where the experiment has
access to devices and data storage. Kernels can only execute
in the run phase of the experiment and any data analysis
for calibration purposes should also be done here. Finally,
the analysis phase is used for the post-experiment analysis
of data. The run, prepare, and analyze phases are separated
to pipeline experiments and maximize usage of the real-time
control system. Our code portability evaluation focuses on
the prepare and run phase, which are the two phases directly
relevant to the functionality of the experiment. We decided
not to add the build and analysis phase to not give ourselves
a potentially unfair advantage by including more code in the
coverage analysis.

For our code portability evaluation, we will run the six
mentioned experiments on both systems while keeping track

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

MW freq BN Experiment

3 System

MW Ramsey

I Application
MW gate
Direct RB
GST
SQST

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8. Categorized and normalized proportions of covered statements for the
STAQ (solid bars) and RC (hatched bars) control software.

of the statement coverage of the prepare and run phase for
each experiment. Statement coverage is a technique often
used for testing and keeps track of code statements evaluated
at least once during program execution. The resulting data
gives insight into the quantity of code that is used during
program execution and does not provide information about the
execution time spent for each statement. We measure coverage
by simulating our kernel code using the DAX simulator [40]
in conjunction with Coverage.py [41]. Our statement coverage
data includes statements executed as part of host code, kernels,
and RPCs. For our analysis, we are interested in the coverage
of four categories of code: experiment code, system code,
DAX library code, and application code. The first two cate-
gories are already defined in Section III and the third category
is self-explanatory. We define application code as high-level
and portable code that extends or utilizes the real-time control
software to achieve its functionality. For the experiments we
chose, application code includes the pyGSTi library and the
SQST program. Coverage in other supporting libraries, such as
ARTIQ or the standard library, is not included in this analysis.
The coverage results are shown in Figure 8.

The results in Figure 8 show that for all experiments, the
proportions of code in each category do not differ much
between the STAQ and RC system. What can not be seen from
the figure is that the total number of statements covered for
each experiment does not differ more than 1.8% between the
two systems. Figure 8 shows that the three MW calibration
experiments have very similar results with 2.0% or less
experiment code, between 46.8% and 47.6% system code,
and 50.4% to 52.4% of DAX code. The covered statements
of DAX library can mainly be found in its data-processing
module, scanning infrastructure, and system initialization-
related code. The Direct RB and GST experiments both have
a large proportion of application code that covers parts of
the pyGSTi library. These are procedures used to generate
the benchmarking circuits. Both experiments also use pyGSTi
for measurement data analysis, but those procedures are not
included in our coverage data because they are part of the
analysis phase of the experiment. For the remaining portion
of covered statements for the Direct RB and GST experiments,

552

MW freq B DAX
I Application
MW Ramsey
MW gate
Direct RB
GST
SQST
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 9. Categorized and normalized proportions of covered statements from
STAQ that are shared with RC.

more than half is DAX library code which includes the code
of the client itself and the data processing module. Finally,
the SQST program contains 9.0% and 8.9% application code,
which is the portable SQST code itself, for the STAQ and RC
system, respectively. The DAX library code mainly includes
statements from the program loader client and the data-
processing module in addition to the initialization code used by
the loader to create and dynamically link the portable program
to the system.

The results in Figure 8 show that with a modular software
architecture, large portions of covered statements do not have
to be system-specific and can be shared as application code
or as part of a shared library for system code, such as DAX.
For each unique quantum system, only the experiment code
and system code would have to be developed which would
significantly reduce the development time. For the code that
does need to be developed, most of it is part of the system
code which is shared between experiments for a single system
and reduces development time even further.

Only covered statements in the DAX and application cate-
gories in Figure 8 are potentially portable between the STAQ
and RC systems. We took the coverage data for each exper-
iment and compared how many statements in the DAX and
application categories were covered by both systems. These
are the statements that are directly shared between the two
systems. The results, which are normalized to the total number
of covered statements for STAQ, are shown in Figure 9.

The results in Figure 9 show that even the system-specific
MW calibration experiments consists of 49.8% to 51.7%
of shared statements. Data-processing modules and scanning
infrastructure add a significant number of covered statements
during an experiment and are relatively easy to make portable.
By sharing portable modules and services, we achieve porta-
bility on the system-code level. The Direct RB and GST
experiments consist of 84.7% and 91.0% of shared statements,
respectively. The application code is a major contributor to
the proportion of shared statements but portable system code
also contributes a significant part. Application code on the
quantum operation level is inherently portable and we show
that by introducing interfaces and clients, we can successfully
connect to application-level software. Finally, the SQST pro-
gram contains 59.1% of shared statements of which 9.0% is

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

application code. The SQST program is small and therefore
does not contribute a lot of covered statements. The remaining
shared statements all originate from the system code.

To further increase the amount of shared code between the
STAQ and RC systems, we could generalize more modules
and services. For example, the microwave module, the state
service, and the microwave operation service of both systems
contain very similar code and could probably be converted to a
portable DAX module or service. So far, we have not done that
in favor of flexibility and code simplicity. A module or service
part of the system code can easily be modified for testing
or mitigating device-related issues. Especially in an academic
setting, flexibility can sometimes be more important than code
portability. Additionally, portable modules and services are
often required to have many configuration and customization
capabilities to function correctly for different systems. Hence,
portable code is often more complex which might not always
be desired. Instead, we keep such modules and services part
of the system code and manually ”port” them to new systems.
Overall development time can still be reduced by porting
modules and services while full flexibility is preserved.

VI. EXPERIMENTS

To demonstrate the capabilities of modular DAX-based
control software and the portability of clients, we used the RB
client presented in Section III-C to perform benchmarking on
two experimental quantum systems. The RB client uses the
operation interface which is implemented on both systems by
their respective MW operation services. These services utilize
a microwave horn to excite a dipole transition between the
hyperfine states of Ytterbium 171 (}"1Yb™), which is where
the qubit is encoded. This performs X and Y rotations on
the Bloch Sphere. To perform cooling, state preparation, and
measurement, the two systems use a 370nm laser to excite the
dipole transition between 25 /5 and 2P, /5 [42].

Before performing coherent operations, very accurate
knowledge of the hyperfine frequency difference between the
qubit states is needed, along with the Rabi frequency corre-
sponding to oscillations between these states. The hyperfine
splitting between the states is very well known [43]. However,
a strong magnetic field is installed in our systems, slightly
altering this value. Assuming we have some knowledge of
what the frequency change should approximately be, three
calibration experiments are still needed. The first experiment
performs a sequence of timed microwave pulses near the
qubit transition frequency to get Rabi oscillations. We then
fit this data to get a rough estimate of the Rabi frequency. The
second experiment uses Ramsey interferometry to fine-tune
the qubit transition frequency. This experiment can be done
with incrementally smaller frequency ranges to get greater
precision of the resonance. Lastly, we perform increasingly
longer sequences of m-pulse rotations designed to end with
the qubit in the ground state in order to fine-tune the Rabi
frequency.

After calibration, we perform Direct RB, with circuit lengths
starting at 1 and scaling up exponentially to 1024. Direct RB is

553

1.00 A i & z i I T
LIS S T T T
0.95 A
2
Eo.go-
i X
0.85 1 ‘
¥ sSTAQ
0.80 A RC
100 10t 102 10°

Depth of Circuit

Fig. 10. Single-qubit Direct randomized benchmarking fidelity results for the
STAQ and RC system using microwave gates. Error bars are calculated using
the 10th to 90th percentile as boundaries. RC starts at higher fidelity due to
better SPAM but decays quicker due to lower gate fidelity.

a modification of the original RB proposal which implements
randomized circuits by sampling a system’s native gates from a
user-provided distribution €2 [33]. For microwave gates on ion
trapping systems, the native gate sets are X and Y rotations,
and we chose 2 to be uniform. The sequences are provided by
the pyGSTi library [36] using the DAX RB client. For each
circuit length, we performed 10 different circuits with 100
samples for each. The circuits were designed such that output
was randomized to avoid skewed data because of bias toward
a particular outcome. For example, the detection process in
this experimental setup is designed such that the ground state
is dark when shining the 370nm laser on the ion. Thus, losing
the ion during an experiment would lead to always measuring
the ground state.

To demonstrate the flexibility of DAX and the portability
of the RB client, we perform Direct RB with two different
experimental setups: the STAQ and RC systems. Besides
the different real-time control systems and devices, the main
difference between these two setups is that STAQ is at
cryogenic temperatures while RC is at room temperature.
However, this shouldn’t have any drastic effect on microwave
operations and the data between the two systems should be
quite comparable. The results from this experiment can be
found in Figure 10. Here, the error per gate r is estimated
tobe r = 4(1 — p)/3 = 1.45 x 1074 4 2.58 x 10~ for the
STAQ system and 7 = 2.28 x 1074 £ 1.94 x 10> for the
RC system, where p is calculated from fitting to the function
P(m) = 0.5 + Bp™. This number can also be interpreted as
1 — F,, where F, is the average gate fidelity of the system.
The difference in errors at low circuit depth is simply a result
of different state preparation and measurement (SPAM) error,
while the STAQ system can be seen to overtake RC at higher
circuit depth due to better gate calibration.

VII. CONCLUSION

We have presented a systematic design strategy and a modu-
lar architecture for real-time quantum control software that or-
ganizes devices and system-wide functionality in modules and
services, respectively. Our architecture supports the develop-

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

ment of modular control software and enhances the flexibility
and portability of real-time control software. We implemented
a software framework to develop real-time control software
based on our proposed architecture, which is part of our open-
source library Duke ARTIQ extensions (DAX). Our evaluation
shows that modular control software can reduce the execution
time overhead of kernels by 63.3% on average while not
increasing the binary size. Software portability is achieved on
the system level by introducing portable modules, services, and
scanning control flow. We achieve application-level portability
using interfaces and clients. Our analysis shows that modular
control software for two distinctly different systems can share
between 49.8% and 91.0% of covered code statements. Finally,
we have shown that we can run a portable Direct random-
ized benchmarking (RB) experiment on two different ion-trap
quantum systems that are fully controlled and calibrated by
software based on our framework.

ACKNOWLEDGMENT

This work is funded by EPiQC, an NSF Expeditions in
Computing (1832377), the Office of the Director of National
Intelligence - Intelligence Advanced Research Projects Activ-
ity through an ArmyResearch Office contract (W911NF-16-1-
0082), the NSF STAQ project (1818914), the U.S. Department
of Energy (DOE), Office of Advanced Scientific Computing
Research award DE-SC0019294, and DOE Basic Energy Sci-
ences award DE-0019449.

REFERENCES

K. M. Svore, A. Geller, M. Troyer, et al., “Q#: Enabling
scalable quantum computing and development with a
high-level domain-specific language,” arXiv preprint
arXiv:1803.00652, 2018.

A. W. Cross, A. Javadi-Abhari, T. Alexander, et al.,
Opengasm 3: A broader and deeper quantum assembly
language, 2021. arXiv: 2104.14722 [quant-ph].
M. S. ANIS, H. Abraham, AduOffei, et al., Qiskit: An
open-source framework for quantum computing, 2021.
DOI: 10.5281/zenodo.2573505.

X. Fu, J. Yu, X. Su, et al, “Quingo: A pro-
gramming framework for heterogeneous quantum-
classical computing with nisq features,” arXiv preprint
arXiv:2009.01686, 2020.

D. S. Steiger, T. Héner, and M. Troyer, “ProjectQ: An
open source software framework for quantum comput-
ing,” Quantum, vol. 2, p. 49, Jan. 2018, 1SSN: 2521-
327X. poI: 10.22331/q-2018-01-31-49. [Online].
Available: https://doi.org/10.22331/q-2018-01-31-49.
C. Developers, Cirgq, version v0.10.0,
See full list of authors on Github:
https://github.com/quantumlib/Cirg/graphs/contributors,
Mar. 2021. por1: 10.5281/zenodo.4586899. [Online].
Auvailable: https://doi.org/10.5281/zenodo.4586899.

(1]

(2]

(3]

(41

(51

(6]

554

(7]

(8]

(91

(10]

(11]

[12]

[13]

[14]

[15]

(16l

[17]

(18]

(191

F. Arute, K. Arya, R. Babbush, et al., “Quantum
supremacy using a programmable superconducting pro-
cessor,” Nature, vol. 574, no. 7779, pp. 505-510, Oct.
2019, I1SSN: 1476-4687. poI: 10.1038/s41586-019-
1666-5. [Online]. Available: https://doi.org/10.1038/
s41586-019-1666-5.

C. Ryan-Anderson, J. G. Bohnet, K. Lee, et al., “Re-
alization of real-time fault-tolerant quantum error cor-
rection,” Phys. Rev. X, vol. 11, p. 041058, 4 Dec.
2021. por: 10.1103/PhysRevX.11.041058. [Online].
Auvailable: https://link.aps.org/doi/10.1103/PhysRevX.
11.041058.

L. Postler, S. Heu3en, I. Pogorelov, et al., Demonstra-
tion of fault-tolerant universal quantum gate operations,
2021. por: 10.48550/ARXIV.2111.12654. [Online].
Available: https://arxiv.org/abs/2111.12654.

Y. Wang, Y. Li, Z.-q. Yin, and B. Zeng, “16-qubit ibm
universal quantum computer can be fully entangled,”
npj Quantum information, vol. 4, no. 1, pp. 1-6, 2018.
L. Pogorelov, T. Feldker, C. D. Marciniak, et al., “Com-
pact ion-trap quantum computing demonstrator,” PRX
Quantum, vol. 2, p. 020 343, 2 Jun. 2021. po1: 10.1103/
PRXQuantum.2.020343. [Online]. Available: https://
link.aps.org/doi/10.1103/PRXQuantum.2.020343.

R. Acharya, I. Aleiner, R. Allen, et al., Suppressing
quantum errors by scaling a surface code logical qubit,
2022. por: 10.48550/ARXIV.2207.06431. [Online].
Available: https://arxiv.org/abs/2207.06431.

G. Pagano, A. Bapat, P. Becker, et al., “A quantum
approximate optimization algorithm in a trapped-ion
quantum simulator,” en, Oct. 2020. [Online]. Available:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=
928237.

J. Kim, T. Chen, J. Whitlow, et al., “Hardware design of
a trapped-ion quantum computer for software-tailored
architecture for quantum co-design (staq) project,”
in Quantum 2.0, Optical Society of America, 2020,
QM6A-2.

M. Blok, V. Ramasesh, T. Schuster, et al., “Quantum
information scrambling in a superconducting qutrit pro-
cessor,” arXiv preprint arXiv:2003.03307, 2020.

S. Bourdeauducq, R. Jordens, P. Zotov, et al., Artig 1.0,
version 1.0, May 2016. DOI: 10.5281/zenodo.51303.
[Online]. Available: https://doi.org/10.5281/zenodo.
51303.

V. Negnevitsky, “Feedback-stabilised quantum states in
a mixed-species ion system,” Ph.D. dissertation, ETH
Zurich, 2018.

P. Maunz, J. Mizrahi, and J. Goldberg, loncontrol v.
1.0, version 00, Jul. 2016. [Online]. Available: https:
/Iwww.osti.gov/biblio/1326630.

X. Fu, L. Riesebos, M. A. Rol, et al., “Eqasm: An ex-
ecutable quantum instruction set architecture,” in 2019
IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2019, pp. 224-237.
DoI: 10.1109/HPCA.2019.00040.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

C. A. Ryan, B. R. Johnson, D. Riste, B. Donovan, and
T. A. Ohki, “Hardware for dynamic quantum comput-
ing,” Review of Scientific Instruments, vol. 88, no. 10,
p. 104703, 2017.

G. Kasprowicz, P. Kulik, M. Gaska, et al., “Artiq and
sinara: Open software and hardware stacks for quantum
physics,” in OSA Quantum 2.0 Conference, Optical
Society of America, 2020, QTu8B.14. pOI: 10.1364/
QUANTUM . 2020 . QTu8B . 14. [Online]. Available:
http : // www . osapublishing . org / abstract . cfm ? URI =
QUANTUM-2020-QTu8B.14.

J. H. Nielsen, M. Astafev, W. H. Nielsen, et al.,
Qcodes/qcodes: V0.30.0.dev0, version v0.30.0.dev0,
Oct. 2021. poOI: 10.5281/zenodo.5595929. [Online].
Available: https://doi.org/10.5281/zenodo.5595929.

M. Rol, C. Dickel, S.Asaad, et al., Pycqed_py3, ver-
sion v0.2, Dec. 2019. por: 10.5281/zenodo.3574563.
[Online]. Available: https://doi.org/10.5281/zenodo.
3574563.

D. C. McKay, T. Alexander, L. Bello, et al., Qiskit
backend specifications for opengasm and openpulse
experiments, 2018. arXiv: 1809.03452 [quant-ph].
L. Riesebos, X. Fu, A. Moueddenne, et al., “Quan-
tum accelerated computer architectures,” in 2019 IEEE
International Symposium on Circuits and Systems (IS-
CAS), 2019, pp. 1-4. por: 10.1109/ISCAS .2019.
8702488.

T. Nguyen, A. Santana, T. Kharazi, D. Claudino, H.
Finkel, and A. McCaskey, “Extending c++ for hetero-
geneous quantum-classical computing,” arXiv preprint
arXiv:2010.03935, 2020.

R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical
quantum instruction set architecture,” arXiv preprint
arXiv:1608.03355, 2016.

F. T. Chong, D. Franklin, and M. Martonosi, ‘“Program-
ming languages and compiler design for realistic quan-
tum hardware,” Nature, vol. 549, no. 7671, pp. 180-187,
2017.

J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel
programming standard for heterogeneous computing
systems,” Computing in science & engineering, vol. 12,
no. 3, p. 66, 2010.

X. Fu, M. A. Rol, C. C. Bultink, et al., “An experi-
mental microarchitecture for a superconducting quan-
tum processor,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitec-
ture, ser. MICRO-50 17, Cambridge, Massachusetts:
Association for Computing Machinery, 2017, pp. 813—
825, 1SBN: 9781450349529. por: 10.1145/3123939.
3123952. [Online]. Available: https://doi.org/10.1145/
3123939.3123952.

L. Riesebos, B. Bondurant, and K. R. Brown, Duke
artiq extensions (dax), 2021. [Online]. Available: https:
//gitlab.com/duke-artig/dax.

E. Magesan, J. M. Gambetta, and J. Emerson, “Scal-
able and robust randomized benchmarking of quantum

555

[33]

[34]

(35]

[36]

(37]

(38]

(391

(401

[41]

(42]

[43]

processes,” Physical review letters, vol. 106, no. 18,
p- 180504, 2011.

T. J. Proctor, A. Carignan-Dugas, K. Rudinger, E.
Nielsen, R. Blume-Kohout, and K. Young, “Direct ran-
domized benchmarking for multiqubit devices,” Phys.
Rev. Lett., vol. 123, p. 030503, 3 Jul. 2019. pot: 10.
1103 /PhysRevLett. 123 .030503. [Online]. Available:
https://link . aps.org/doi/10.1103/PhysRevLett. 123.
030503.

J. M. Epstein, A. W. Cross, E. Magesan, and J. M. Gam-
betta, “Investigating the limits of randomized bench-
marking protocols,” Physical Review A, vol. 89, no. 6,
p- 062321, 2014.

R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi,
J. D. Sterk, and P. Maunz, Robust, self-consistent,
closed-form tomography of quantum logic gates on a
trapped ion qubit, 2013. DOI: 10.48550/ARXIV.1310.
4492. [Online]. Available: https://arxiv.org/abs/1310.
4492.

Erik, L. Saldyt, Rob, et al., Pygstio/pygsti: Version
0.9.10, version v0.9.10, Oct. 2021. por: 10.5281/
zenodo.5546759. [Online]. Available: https://doi.org/
10.5281/zenodo.5546759.

R. Schmied, “Quantum state tomography of a single
qubit: Comparison of methods,” Journal of Modern
Optics, vol. 63, no. 18, pp. 1744-1758, 2016.

Y. Wang, S. Crain, C. Fang, et al, “High-fidelity
two-qubit gates using a microelectromechanical-system-
based beam steering system for individual qubit ad-
dressing,” Phys. Rev. Lett., vol. 125, p. 150505, 15 Oct.
2020. por: 10.1103/PhysRevLett.125.150505. [Online].
Auvailable: https://link.aps.org/doi/10.1103/PhysRevLett.
125.150505.

Xilinx kc705. [Online]. Available: https://www.xilinx.
com/products/boards-and-kits/ek-k7-kc705-g.html.

L. Riesebos and K. R. Brown, “Functional simulation
of real-time quantum control software,” in 2022 IEEE
International Conference on Quantum Computing and
Engineering (QCE), 2022.

Coverage.py. [Online]. Available: https://github.com/
nedbat/coveragepy.

S. Olmschenk, K. C. Younge, D. L. Moehring, D. N.
Matsukevich, P. Maunz, and C. Monroe, “Manipulation
and detection of a trapped yb+ hyperfine qubit,” Phys-
ical Review A, vol. 76, no. 5, p. 052314, 2007.

P. T. Fisk, M. J. Sellars, M. A. Lawn, and G. Coles, “Ac-
curate measurement of the 12.6 ghz” clock™ transition
in trapped/sup 171/yb/sup+/ions,” IEEE transactions
on ultrasonics, ferroelectrics, and frequency control,
vol. 44, no. 2, pp. 344-354, 1997.

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

