
Modular software for

real-time quantum control systems

Leon Riesebos∗†, Brad Bondurant∗, Jacob Whitlow∗, Junki Kim‡, Mark Kuzyk∗, Tianyi Chen§, Samuel Phiri∗,

Ye Wang∗, Chao Fang∗, Andrew Van Horn∗, Jungsang Kim∗ and Kenneth R. Brown∗

∗Department of Electrical and Computer Engineering, Duke University, NC 27708, USA
†Email: leon.riesebos@duke.edu

‡SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering,

Sungkyunkwan University, Suwon 16419, Korea
§Department of Physics, Duke University, NC 27708, USA

Abstract—Real-time control software and hardware is essential
for operating quantum computers. In particular, the software
plays a crucial role in bridging the gap between quantum pro-
grams and the quantum system. Unfortunately, current control
software is often optimized for a specific system at the cost of flex-
ibility and portability. We propose a systematic design strategy
for modular real-time quantum control software and demonstrate
that modular control software can reduce the execution time
overhead of kernels by 63.3% on average while not increasing
the binary size. Our analysis shows that modular control software
for two distinctly different systems can share between 49.8% and
91.0% of covered code statements. To demonstrate the modularity
and portability of our software architecture, we run a portable
randomized benchmarking experiment on two different ion-trap
quantum systems.

Index Terms—real-time control systems, modular software,
software portability, quantum computing

I. INTRODUCTION

The field of quantum computing is rapidly evolving in

the areas of software and hardware. On the software side,

quantum programming languages and compilers are becoming

more available and feature-rich [1]–[6]. At the same time,

quantum hardware is becoming increasingly powerful with

recent systems demonstrating computations on tens of qubits

[7]–[13]. An often underexposed area in the field of quantum

computing is the control software and hardware that bridges

the gap between the quantum program and the targeted quan-

tum system. Recent papers [7], [11], [14], [15] have shown that

current state-of-the-art quantum systems already require tens

to hundreds of devices to be controlled with high precision

and strict real-time requirements, proving to be a significant

challenge for the control system. Existing control hardware as

described in [16]–[20] provides the required real-time control

of devices, but it is up to the real-time control software to close

the remaining gap between device-level control hardware and

quantum programs as illustrated in Figure 1.

Control software for quantum systems that runs on the real-

time controller is similar to high-performance and resource-

constrained embedded software. The software is responsible

for real-time control of a set of devices while capturing and

processing data simultaneously. Real-time controlled devices

include direct digital synthesis (DDS) devices, digital I/O, and

Fig. 1. A real-time control system bridging the gap between the quantum
program and the quantum system.

digital-to-analog converters (DACs). Additionally, the real-

time control system for a quantum system functions as a copro-

cessor and maintains a connection with a host computer. Due

to the performance requirements and the strong dependence

between the software and hardware, real-time control software

is often tailored for a specific quantum system at the cost of

flexibility and portability. Since quantum computing is still an

emerging technology, most quantum systems are unique. As a

result, real-time control software is often redeveloped for each

system which causes significant development overhead.

In this paper, we propose a systematic design strategy

for real-time quantum control software. We present an open-

source software framework for the advanced real-time infras-

tructure for quantum physics (ARTIQ) open-source software

and hardware ecosystem [16], [21] to apply our design con-

cepts to real-time quantum control software. Our framework

supports the development of modular control software to

enhance flexibility and portability on the level of real-time

system code. Portability on the application level is achieved

by introducing software abstractions. We show that modular

control software developed with our framework can reduce

the execution time overhead of real-time software and achieve

high degrees of code portability. Reduced execution time

overhead is achieved by fine-grained timing management and

data offloading features of the modular software. We demon-

strate the capabilities of our software framework by running

a portable randomized benchmarking experiment on two dif-

ferent ion-trap quantum systems that are fully controlled by

software based on our framework.

The remainder of this paper is structured as follows. Related

work is discussed in Section II. In Section III we present our

design strategy and modular software architecture for real-

545

2022 IEEE International Conference on Quantum Computing and Engineering (QCE)

978-1-6654-9113-6/22/$31.00 ©2022 IEEE
DOI 10.1109/QCE53715.2022.00077

2
0
2
2
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 Q

u
an

tu
m

 C
o
m

p
u
ti

n
g
 a

n
d
 E

n
g
in

ee
ri

n
g
 (

Q
C

E
)

| 9
7
8
-1

-6
6
5
4
-9

1
1
3
-6

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/Q

C
E

5
3
7
1
5
.2

0
2
2
.0

0
0
7
7

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

time quantum control software. Our performance analysis and

code portability analysis can be found in Section IV and V,

respectively. In Section VI we present experimental results

from two ion-trap quantum systems. We conclude our paper

in Section VII.

II. RELATED WORK

Control software for ARTIQ systems can be developed

without the use of our proposed framework. Programmers

will have access to a classically complete programming en-

vironment, basic data storage utilities, and device drivers to

program real-time devices. However, ARTIQ is set up as a

fully generic control system and no utilities are provided to

support modular software development. As a result, control

software is often tightly coupled to the hardware and needs

to be completely redeveloped for each system. Especially the

real-time timing of the software is often highly dependent on

the controlled devices. The tight coupling of the hardware

and software makes it difficult to change devices in existing

systems since any modification likely introduces timing issues.

At this moment, we are not aware of any other frameworks

or libraries to support the development of modular control

software for ARTIQ. Other real-time control systems similar

to ARTIQ, such as M-ACTION [11], [17] and IonControl [18],

suffer from the same limitations.

QCoDeS [22] is a modular data acquisition framework

mainly intended to orchestrate the setup and data collection

of instruments and devices part of a quantum control system.

Some of these instruments can have real-time features, but

QCoDeS does not control instruments in real-time while an

experiment runs. Instead, all code involving QCoDeS runs

on the host computer in a Python environment. Real-time

instruments are also much more coarse compared to ARTIQ.

A single ARTIQ real-time controller with many real-time I/O

devices would correspond to a single QCoDeS instrument. The

concepts behind QCoDeS show some similarities with the non-

real-time components of the ARTIQ host environment. What

sets ARTIQ apart from QCoDeS is its seamless integration and

combination of real-time software within the host environment.

ARTIQ puts the real-time controller in the center based on the

principles of the accelerator model, while QCoDeS behaves

more as a hypervisor for devices. The concepts presented in

this paper apply to low-level real-time control software and its

interaction with the host, and QCoDeS is not involved in the

former. QCoDeS does have features for software modularity

but these are limited to the instrument level without introduc-

ing any form of hierarchy. Other software based on or derived

from QCoDeS, such as PycQED [23], is built on the same

principles and has the same limitations.

Qiskit [3] is an open-source library for creating, compiling,

and executing quantum programs at the gate level. While it

does allow users to execute quantum programs, Qiskit itself

does not transparently connect to any device-level drivers and

is not directly involved in the real-time control of devices when

the compiled quantum program runs. Hence, Qiskit merely

describes a circuit and is not directly part of the real-time

Fig. 2. Schematic overview of the accelerator model with a host program
and one or more kernels.

control software that runs the circuit on hardware. Even the

pulse-level control provided in Qiskit is an opaque abstraction

over the device-level drivers. The same holds for related and

similar tools such as OpenQASM [2], OpenPulse [24], Q#[1],

and Cirq [6].

III. SOFTWARE ARCHITECTURE

Our software architecture targets the advanced real-time

infrastructure for quantum physics (ARTIQ) open-source soft-

ware and hardware ecosystem [16], [21] which is used by

dozens of research groups and has deployed over 200 real-

time control systems worldwide. ARTIQ follows the principles

of the accelerator model [1], [4], [19], [25]–[29] where a

program consists of a host program and one or more kernels.

The host program executes on a host machine and can offload

the execution of kernels to an accelerator. For ARTIQ, the

host program runs on a classical computer while kernels run

on the real-time control hardware as illustrated in Figure 2.

ARTIQ kernels are classically complete and have access to

real-time devices that interact with the quantum system (e.g.

direct digital synthesis (DDS) devices, digital I/O, and digital-

to-analog converters (DACs)). The real-time control hardware,

referred to as the core device, contains a classical CPU and

a real-time I/O (RTIO) subsystem that schedules events for

real-time devices on a timeline using a timeline cursor as

described in [19], [30]. The ARTIQ system is programmed in

a Python host environment and kernels are functions written

in the ARTIQ domain-specific language (DSL), which is

a Python-like language containing additional constructs for

manipulating the timeline cursor and inserting events. ARTIQ

allows host and kernel code to be combined in a single file, and

kernels are functions or methods decorated with the @kernel

decorator. When the host calls a kernel function, the host

will invoke the ARTIQ compiler that compiles the kernel to a

binary. The resulting binary is uploaded to and executed by the

core device. While the core device executes the kernel, the host

serves any synchronous or asynchronous remote procedure

calls (RPCs) from the core device. RPCs are often used to

stream real-time data to the host, access peripheral (i.e. non-

real-time) devices, and offload computationally heavy tasks to

the host. Once the kernel finishes execution, the host program

resumes execution. The ARTIQ programming environment is

set up generically and does not provide additional utilities for

organizing real-time control software. In this section, we will

546

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Schematic overview of the software components in our modular
architecture controlling a quantum system, in this case, trapped atomic ions.

present our design principles for real-time control software

written for an ARTIQ control system.

The first step towards code organization is to separate

common functionality of the system (i.e. system code) from

experiment-specific routines (i.e. experiment code). System

code can be collected in a base class, and each experiment

can inherit from such a class and add experiment-specific

routines. This approach is already common practice for most

ARTIQ experiments. Our software architecture focuses on the

development of modular system code. We propose to break

the system code into two components: device organization

with modules and extensible system-wide functionality using

services. Additionally, we will introduce the notion of a central

and searchable registry in which all modules and services

of a system are registered. To improve code portability, we

introduce abstractions with interfaces and clients. Figure 3

shows an architectural overview of the different components,

which we will describe in the remainder of this section.

A. Modules, services, and the registry

While most experiments require a large set of real-time

devices to collaborate closely, subsets of devices that perform

basic procedures often have a tighter relation from a control

perspective. A subset of devices might have strict control or

safety requirements independent from other devices in the

system. For example, two devices might always need to be

switched simultaneously to achieve some desired functionality.

We introduce the concept of modules to group such a logical

collection of devices.

A module is self-contained and controls zero or more

devices that depend on each other to perform basic proce-

dures. For example, a detection module can contain devices

required to apply a readout signal to the system together

with the input devices that read the state of the qubits during

detection. To guarantee that modules are independent from a

control perspective, a device can only be assigned to a single

module. Each module has access to its own persistent data

storage to store configuration and calibration data related to

its operation. The collective behavior of devices in a module

can be described using module functions. For example, a

detection module could have a function that controls the

readout signal and the input devices in parallel to perform a

detection procedure. Module functions are not solely used for

collective device behavior and can also be used to manipulate

devices separately, read or write configuration data, or update

calibration parameters.

A system contains one or more modules that are organized

in a tree structure. Every module in the system can contain

zero or more sub-modules, and the root module is known as the

system module. Parent modules can access features of all their

child modules, allowing hierarchical and transparent structur-

ing of devices and functionality. Because each device can only

be assigned to a single module, modules in non-overlapping

sub-trees of the system hierarchy are device-independent. Two

independent modules can be controlled in parallel, which

means they can both add events to the RTIO event timeline

without device conflicts. Hence, the width of the module tree

represents the amount of control- and device independence

between different parts of the system. Device dependencies are

encoded in the tree structure, and more independent modules

lead to more available control parallelism in the system. All

modules are added to the central registry of the system such

they can be easily found later. Modules form the first level of

system organization and introduce fundamental abstractions

for device control and dependencies.

Modules introduce a straightforward device and system

organization, but each separate module has limited power

due to its local scope. Only the system module (i.e. the root

module) can control all devices in the system, a requirement

for most meaningful operations on the quantum system. With

only modules, all system-wide functionality would have to be

implemented in the system module, reducing the modularity of

the software architecture. To overcome this issue, we introduce

services as a technique to organize system-wide functionality.

A service is a component that can control multiple modules

or even the whole system if desired. Through the registry, a

service can obtain any modules required for its functionality.

A single module in the system can be accessed by any number

of services. The functions of services usually describe the

collective behavior of multiple modules, and functionality can

vary from short operations to lengthy procedures. If modules

are device-independent, a service is allowed to control them

in parallel. Just as modules, services have access to their own

persistent data storage, and every service is added to the central

registry of the system.

Services are not limited to calling just modules. Through

the registry, services can also find other services to use their

functionality. Building services on top of other services allows

transparent layering of increasingly complex system behavior.

Hence, services are organized in a directed acyclic graph

(DAG). Services contain powerful functions and enable the

organization of system-wide functionality, but because of their

system-wide control, services can not operate on the system

in parallel with any other module or service as this could

potentially lead to device-control conflicts.

B. Interfaces and clients

System code can be organized with the concepts described

in Section III-A, but because most quantum systems are

547

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

unique, the majority of modules and services are still de-

veloped and optimized for a specific system. To abstract

system code, we introduce standardized interfaces. Interfaces

describe a set of functions that must be implemented by a

module or service. A single module or service can implement

multiple interfaces and a single interface can be implemented

by multiple modules or services in a system. For example, a

gate interface could expose a set of functions that implement

operations to perform quantum gates. Multiple instances of a

gate interface within a single system could represent different

gate implementations. To prevent device- and control conflicts,

interfaces should be considered as implemented by a service.

Hence, an interface can not operate on a system parallel with

any other module, service, or interface.

System code that implements one or more standardized

interfaces can run portable experiments, which we call clients.

Clients exclusively control a system through interfaces. A

client is instantiated against a system, and the necessary

interfaces will be obtained at runtime using the system registry.

With clients, we can develop portable experiments that can

run on different systems or different implementations of an

interface in a single system. The system code functions as

middleware between the generic experiment described in the

client and the system-specific implementation of the utilized

interfaces.

C. Implementation

We have implemented a software framework to support

the development of real-time control software based on the

presented concepts. The framework is part of our open-source

library Duke ARTIQ extensions (DAX) [31] , which integrates

tightly with the ARTIQ open-source software and hardware

ecosystem. DAX implements a set of base classes that de-

velopers must inherit when defining modules and services.

All these base classes provide direct access to data storage

functions and the central registry of the system. When modules

or services are instantiated, a unique hierarchical key and data

storage location is assigned to the object based on the module

tree or service DAG. In addition, the DAX library contains

standard modules and services with portable functionality that

can be used by any system. Such modules and services include

functionality for processing measurement data, device-safety

control, and common device control. Additionally, we have

developed a generic class that defines the standard control flow

of a single- or multi-dimensional scanning-type calibration

experiment. Our DAX framework relies heavily on multiple

inheritance to combine features of multiple classes, and fortu-

nately, the Python host environment supports this well.

DAX defines various interfaces that can be implemented by

modules and services. The two interfaces of interest for this

paper are the operation interface and the data-context inter-

face. The operation interface contains functions for common

gate-level quantum operations, including single- and two-qubit

Clifford operations, arbitrary rotation gates, and qubit state

preparation/measurement. The data-context interface is used to

store and process obtained measurement results. We developed

clients to perform randomized benchmarking (RB) [32]–[34]

and gate set tomography (GST) [35] which use the operation

interface and the data-context interface to execute benchmark

circuits. The RB and GST clients work with every system

that uses DAX-based control software and implements the

required interfaces. Both clients are based on the open-source

pyGSTi library [36] which is used to generate benchmarking

circuits and analyze results. Finally, we have defined an

application programming interface (API) that can be used to

write portable quantum programs in an ARTIQ environment

given an operation interface and a data-context interface. Using

this API, we implemented a program to perform single-qubit

state tomography (SQST) [37]. Such portable programs can be

executed by dynamically linking the program to the interfaces

of a system using the program loader client we developed.

IV. PERFORMANCE EVALUATION

To evaluate the benefits and overhead of modular con-

trol software developed with the DAX framework, we re-

implemented the control software for the software-tailored

architecture for quantum co-design (STAQ) system, an experi-

mental trapped-ion quantum processor . The real-time control

hardware of STAQ is based on a Kasli 2.0 controller [21],

which is part of the ARTIQ hardware ecosystem. The old

ARTIQ control software for STAQ is designed with a system-

specific and monolithic architecture while the new modular

control software is developed using our DAX framework. In

this section, we will compare the old control software with

the new DAX-based control software.

The old STAQ control software separates system code

from experiment code, but the system code has a monolithic

architecture and is highly hardware dependent. For example,

code related to RTIO timing is highly dependent on the

latencies introduced by the programming of real-time devices.

Any changes to the devices will likely cause RTIO timing

constraints violations throughout the code. Hence, the old

control software is not modular or portable. We did make

modifications to the old control software to optimize its

performance and make the comparison to the new control

software fair. All delays inserted on the event timeline used to

compensate for device programming times larger than 200 us

were reduced to 200 us or replaced by other efficient solutions

that satisfy timing constraints. Such delays are often necessary

to not violate any timing constraints of the RTIO system. The

new control software also uses 200 us delays to compensate for

device programming time, which has been found empirically

to be sufficient. Minor bugs found in the old code were also

fixed to ensure the old and new experiments are functionally

equivalent.

The new DAX-based system code for STAQ is modular

and organized in 11 modules and 11 services. Most modules

and services are system-specific, but two services use portable

DAX data-processing modules, and one module extends a

DAX module with safety-related functionality. The DAX-

based system code implements various DAX interfaces, in-

cluding the data-context interface and four implementations

548

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

Modules

Services

yb171

microwave_operation

cw

coolstate

detection microwave

system

Fig. 4. Subset of the STAQ modules and services relevant for the microwave
operation service.

of the operation interface. The new system code packs more

features and complexity, including control over more real-

time devices (increased from 23 to 35) and external devices

(increased from 4 to 8). Figure 4 shows a subset of the STAQ

modules and services relevant for the microwave operation

service, which implements the DAX operation interface. Solid

arrows show the tree structure and DAG dependencies for

modules and services, respectively. The dashed arrows indicate

modules that are directly used by services. The microwave

module controls a DDS to apply microwave pulses to the

ions. The photomultiplier tubes (PMTs) and lasers used for

detection are controlled by the detection module. The con-

tinuous wave (CW) module controls various other lasers for

cooling and pumping while the Yb171 module stores ion

calibration data. The cool service contains various subroutines

for cooling ions while the state service implements the data-

context interface and is used for state initialization and de-

tection. Finally, the microwave operation service uses all the

mentioned modules and services to perform microwave gates,

qubit state preparation, and measurements.

We chose five relevant experiments with a single real-

time kernel available in both the new and the old STAQ

control software for comparison. The selected experiments

include two microwave (MW) experiments (MW freq/time),

a qubit initialization experiment (qubit init), a tickle experi-

ment (tickle), and an Ytterbium spectroscopy experiment (Yb

spec). All experiments are one-dimensional (1D) scanning-

type experiments and scan over 20 data points. The new

control software utilizes the generic DAX scanning infras-

tructure while the old control software has defined scanning

control-flow procedures as part of the system code. Each

experiment takes 100 samples per point except for Yb spec,

which takes 30 samples per point. We ran each experiment

with the same configuration using the old and new control

software. Additionally, we run each experiment using the new

control software with buffering enabled. Buffering allows the

real-time control software to schedule the operations for the

next samples while the incoming data of earlier samples are

Fig. 5. Kernel execution time overhead for the old control software and new
DAX-based control software of the STAQ system.

kept temporally in hardware buffers. ARTIQ supports such

hardware buffers, but the real-time software must be designed

appropriately to utilize them. Buffering can further increase the

throughput and performance of kernels by reducing stalling

time at the cost of increased latency between receiving and

processing input events. None of the mentioned experiments

are sensitive to the increased latency and will benefit from

increased throughput. We configure a buffer size of 16 sam-

ples, which should be large enough to get the maximum

performance gain achievable with buffering. The old control

software does not include features for buffering. We measured

the execution time of the kernel with nanosecond precision

using the real-time clock available in the Kasli controller

(i.e. the core device). An execution time measurement starts

when the kernel starts execution, after the kernel binary is

compiled and uploaded to the core device, and stops when

the kernel finishes execution. Any RPCs from the core device

to the host are included in the execution time measurement.

We will use the execution time measurements to calculate the

overhead of the real-time software. The kernel binary size is

measured on the host at the output of the ARTIQ compiler and

is used to calculate any binary-size overhead caused by our

software framework. All our measurements are performed with

ARTIQ version 6.7659.c6a7b8a8 and the results are presented

in Figure 5 and 6.

A. Execution time overhead

The results in Figure 5 show the execution time overhead of

the kernel for each experiment using the old and new DAX-

based control software. For each experiment, we calculate

the minimal execution time tmin based on the pulse lengths,

detection times, and intentional wait times of the experiment.

Given the measured execution time of an experiment texe,

the execution time overhead is defined as (texe − tmin)/tmin.

Figure 5 shows that the old control software has an execution

time overhead between 52.4% and 62.6% for the two MW

and the qubit init experiments. These experiments consist of

relatively short and quick operations which increase the oper-

ation density and induce more strain on the RTIO subsystem.

Any inter-sample execution overhead introduced by the real-

time control software will quickly increase the total execution

overhead. The tickle experiment consists of slower operations

549

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

resulting in a measured overhead of 8.6% for the old control

software. Any software overhead will be less significant due

to the longer total duration of the experiment. The Yb spec

experiment has very slow operations and includes a 500 ms

wait time for each sample. Any overhead introduced by the

real-time control software will be negligible on the timescale

of the experiment.

If we look at the results of the DAX-based control software

(without buffering) in Figure 5, we see that the new control

software significantly reduces the execution time overhead

compared to the old control software. On average, the new

control software reduces the execution time overhead by

63.3% compared to the old control software. This average

overhead reduction also includes the Yb spec experiment

which already has a negligible execution time overhead for

the old control software. When not including the Yb spec

experiment, the average execution time overhead reduction is

55.4%. When we include buffering, we see that experiments

with short and quick operations benefit the most (i.e. the

two MW and the qubit init experiments). Buffering reduces

inter-sample overhead by scheduling multiple samples ahead

before retrieving results. Hence, the experiments most affected

by inter-sample overhead benefit the most from buffering.

The execution time overhead of the tickle experiment is not

further reduced by buffering. The new control software already

reduced its overhead to 1.4%, and inter-sample overhead does

not appear to be a significant part of that. Compared to

the old control software, the DAX-based control software

with buffering enabled reduces execution time overhead by

88.7% and 87.1% on average with and without the Yb spec

experiment, respectively.

We further analyzed our measurements to understand why

the DAX-based control software performs better than the

old control software. We attribute the reduced overhead to

two main sources: timing management and data offloading.

As mentioned earlier, real-time control software often inserts

some delays on the event timeline to compensate for device

programming times. The new control software groups devices

in modules which in turn provides functions to manipulate

those devices. The inserted delays can be optimized for each

function which reduces the overhead. The old control software

is less structured which often leads to larger worst-case delays

or redundant delays to be inserted. Modular and well-designed

real-time software allows us to insert more fine-grained delays,

which reduces the total execution time overhead. Modular

software design also leads to code that is more flexible and

robust to changes. When a module has any modifications to

its real-time devices or their behavior, its function might need

to be optimized again, but other modules and services are

not affected by the change. If devices in a module completely

change, a module might need to be redeveloped. Fortunately, if

the function signatures of the new module are compatible with

the old one, the modules could be swapped without affecting

other parts of the system.

The second major contributor to overhead reduction is

data offloading. Measurement data for an experiment is often

Fig. 6. Kernel binary size of the new control software normalized to the
kernel binary size of the old control software.
∗ In the new control software, the two microwave (MW) scan experiments
merged into a single 2D scan experiment causing an increased kernel size.

offloaded to the host using asynchronous RPCs while the

kernel is running. Such offloading can be very efficient and

transfers parts of computational tasks from the kernel to the

host while also reducing memory usage on the core device.

The new control software uses portable DAX data-processing

modules which are highly optimized to maximize the benefit of

the data offloading. As a result, the complexity and execution

time overhead of the kernel is reduced.

We would like to mention that better timing management

and data offloading is also achievable with monolithic control

software, but modular software makes it much easier. Devices

will always be addressed through the functions of the module

it is part of, making it easy to optimize the inserted delays for

each scenario and improve timing management. For data off-

loading, the DAX data-processing module is portable between

systems (see Section V) and only has to be developed and

optimized once thanks to the modular software architecture.

B. Kernel binary size

The results in Figure 6 show the kernel binary size of the

new control software normalized to the kernel size of the old

control software. We see that for the two MW experiments

the kernel size is increased by 43.0% to 43.8% while for

the other experiments the kernel size changed less than 1%.

While all experiments are 1D scanning-type experiments, the

two MW experiments merged into a single two-dimensional

(2D) scanning experiment in the new control software. For our

tests, we configured one dimension to be static to reduce the

experiment to a 1D scan. While this will result in a functional

1D scan, the DAX scanning infrastructure still stores data for

the static dimension for each point in the scan. Hence, the

kernel binary size increases. We manually modified the new

MW experiment to a 1D scan for frequency and time storing

the fixed value of the other dimension as a constant. When

we measure the kernel binary size again, the difference with

the old control software is less than 1%. From our results,

we can conclude that the ARTIQ compiler works well with

modular control software, and modular real-time software does

not cause extra overhead that increases the kernel binary size.

550

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

V. CODE PORTABILITY

A principal benefit of modular control software is the po-

tential for code portability between different quantum systems.

The ARTIQ ecosystem already successfully abstracts real-

time hardware with drivers and gateware to hide differences

between hardware configurations or even hardware platforms.

The DAX framework tries to achieve portability and abstrac-

tion on a higher level, more specifically the system-level

and application-level software. On the system-level, generic

DAX modules, services, and scanning infrastructure (see Sec-

tion III-C) allow portability of real-time control code between

systems. Portability for application-level software is achieved

by using interfaces and clients.

To evaluate the amount of code portability between two

different systems, we have implemented DAX-based control

software for a second experimental trapped-ion quantum sys-

tem known as the red chamber (RC) system [38] . The real-

time control hardware of RC is based on a KC705 [39]

evaluation board with custom breakout boards that contain

digital I/O and DDS devices. The control software for the RC

system consists of 20 modules and 7 services. Two services

use portable DAX data-processing modules and one module

extends the DAX module for safety-related functionality. The

RC system code implements multiple DAX interfaces, includ-

ing the data-context interface and two implementations of the

operation interface. The system code controls 30 real-time

devices and 1 external device. Notable is that the RC system

has more modules than the STAQ system even though there

are fewer real-time devices. The software of the RC system

was developed after that of the STAQ system, and we learned

it was better for modularity and portability to have a deeper

system tree with more and smaller modules.

Figure 7 shows a subset of the RC modules and services rel-

evant for the microwave operation service, which implements

the DAX operation interface. The graph looks very similar to

the one for the STAQ system shown in Figure 4 despite the

real-time devices and controlled hardware being significantly

different. The Yb171 and microwave modules are similar to

their STAQ counterparts while the main differences are found

in the CW and PMT modules. One key difference between

the systems is that the detection laser shares an upstream

master switch with other continuous wave lasers. Due to the

master switch, it is impossible to control the detection laser

independently from other lasers in the CW module without

potential conflicts. Hence, the detection laser is controlled by

the CW module and the PMTs are contained in an independent

module. A detection subroutine now requires the CW and PMT

module to work in parallel which is captured in the detection

service. The remaining services in the RC system are similar

to their STAQ equivalents. Figure 4 and 7 show that two

systems with significantly different real-time control systems

and devices can still have real-time control software with

similar architectures. Modules and services can successfully

abstract such differences.

To evaluate code portability between the STAQ and RC

Modules

Services

yb171

microwave_operation

microwavecw

cool

detection

state

pmt

system

Fig. 7. Subset of the RC modules and services relevant for the microwave
operation service.

system, we disabled modules and services not relevant for

microwave operations. We then run a set of six experiments

on each system. Three are MW calibration experiments and

include a MW frequency calibration, a MW Ramsey frequency

calibration, and a MW gate experiment that executes a se-

quence of X rotations to fine-tune the microwave Rabi gate

time. These calibration experiments are hardware-specific and

therefore have system-specific implementations. Two other

experiments are the DAX clients for RB and GST that use

the operation interface and the data-context interface. The last

experiment is the portable SQST quantum program that is

dynamically linked to the system using the program loader

client. The mentioned clients and portable experiments are

described in Section III-C.

All ARTIQ experiments have four execution phases: build,

prepare, run, and analyze. The build phase is used to instantiate

objects and process arguments. The prepare phase is the first

moment where code directly relevant to the experiment can

execute. This phase allows experiments to execute code on

the host without accessing any devices or data storage. The

run phase is the only moment where the experiment has

access to devices and data storage. Kernels can only execute

in the run phase of the experiment and any data analysis

for calibration purposes should also be done here. Finally,

the analysis phase is used for the post-experiment analysis

of data. The run, prepare, and analyze phases are separated

to pipeline experiments and maximize usage of the real-time

control system. Our code portability evaluation focuses on

the prepare and run phase, which are the two phases directly

relevant to the functionality of the experiment. We decided

not to add the build and analysis phase to not give ourselves

a potentially unfair advantage by including more code in the

coverage analysis.

For our code portability evaluation, we will run the six

mentioned experiments on both systems while keeping track

551

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Categorized and normalized proportions of covered statements for the
STAQ (solid bars) and RC (hatched bars) control software.

of the statement coverage of the prepare and run phase for

each experiment. Statement coverage is a technique often

used for testing and keeps track of code statements evaluated

at least once during program execution. The resulting data

gives insight into the quantity of code that is used during

program execution and does not provide information about the

execution time spent for each statement. We measure coverage

by simulating our kernel code using the DAX simulator [40]

in conjunction with Coverage.py [41]. Our statement coverage

data includes statements executed as part of host code, kernels,

and RPCs. For our analysis, we are interested in the coverage

of four categories of code: experiment code, system code,

DAX library code, and application code. The first two cate-

gories are already defined in Section III and the third category

is self-explanatory. We define application code as high-level

and portable code that extends or utilizes the real-time control

software to achieve its functionality. For the experiments we

chose, application code includes the pyGSTi library and the

SQST program. Coverage in other supporting libraries, such as

ARTIQ or the standard library, is not included in this analysis.

The coverage results are shown in Figure 8.

The results in Figure 8 show that for all experiments, the

proportions of code in each category do not differ much

between the STAQ and RC system. What can not be seen from

the figure is that the total number of statements covered for

each experiment does not differ more than 1.8% between the

two systems. Figure 8 shows that the three MW calibration

experiments have very similar results with 2.0% or less

experiment code, between 46.8% and 47.6% system code,

and 50.4% to 52.4% of DAX code. The covered statements

of DAX library can mainly be found in its data-processing

module, scanning infrastructure, and system initialization-

related code. The Direct RB and GST experiments both have

a large proportion of application code that covers parts of

the pyGSTi library. These are procedures used to generate

the benchmarking circuits. Both experiments also use pyGSTi

for measurement data analysis, but those procedures are not

included in our coverage data because they are part of the

analysis phase of the experiment. For the remaining portion

of covered statements for the Direct RB and GST experiments,

Fig. 9. Categorized and normalized proportions of covered statements from
STAQ that are shared with RC.

more than half is DAX library code which includes the code

of the client itself and the data processing module. Finally,

the SQST program contains 9.0% and 8.9% application code,

which is the portable SQST code itself, for the STAQ and RC

system, respectively. The DAX library code mainly includes

statements from the program loader client and the data-

processing module in addition to the initialization code used by

the loader to create and dynamically link the portable program

to the system.

The results in Figure 8 show that with a modular software

architecture, large portions of covered statements do not have

to be system-specific and can be shared as application code

or as part of a shared library for system code, such as DAX.

For each unique quantum system, only the experiment code

and system code would have to be developed which would

significantly reduce the development time. For the code that

does need to be developed, most of it is part of the system

code which is shared between experiments for a single system

and reduces development time even further.

Only covered statements in the DAX and application cate-

gories in Figure 8 are potentially portable between the STAQ

and RC systems. We took the coverage data for each exper-

iment and compared how many statements in the DAX and

application categories were covered by both systems. These

are the statements that are directly shared between the two

systems. The results, which are normalized to the total number

of covered statements for STAQ, are shown in Figure 9.

The results in Figure 9 show that even the system-specific

MW calibration experiments consists of 49.8% to 51.7%

of shared statements. Data-processing modules and scanning

infrastructure add a significant number of covered statements

during an experiment and are relatively easy to make portable.

By sharing portable modules and services, we achieve porta-

bility on the system-code level. The Direct RB and GST

experiments consist of 84.7% and 91.0% of shared statements,

respectively. The application code is a major contributor to

the proportion of shared statements but portable system code

also contributes a significant part. Application code on the

quantum operation level is inherently portable and we show

that by introducing interfaces and clients, we can successfully

connect to application-level software. Finally, the SQST pro-

gram contains 59.1% of shared statements of which 9.0% is

552

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

application code. The SQST program is small and therefore

does not contribute a lot of covered statements. The remaining

shared statements all originate from the system code.

To further increase the amount of shared code between the

STAQ and RC systems, we could generalize more modules

and services. For example, the microwave module, the state

service, and the microwave operation service of both systems

contain very similar code and could probably be converted to a

portable DAX module or service. So far, we have not done that

in favor of flexibility and code simplicity. A module or service

part of the system code can easily be modified for testing

or mitigating device-related issues. Especially in an academic

setting, flexibility can sometimes be more important than code

portability. Additionally, portable modules and services are

often required to have many configuration and customization

capabilities to function correctly for different systems. Hence,

portable code is often more complex which might not always

be desired. Instead, we keep such modules and services part

of the system code and manually ”port” them to new systems.

Overall development time can still be reduced by porting

modules and services while full flexibility is preserved.

VI. EXPERIMENTS

To demonstrate the capabilities of modular DAX-based

control software and the portability of clients, we used the RB

client presented in Section III-C to perform benchmarking on

two experimental quantum systems. The RB client uses the

operation interface which is implemented on both systems by

their respective MW operation services. These services utilize

a microwave horn to excite a dipole transition between the

hyperfine states of Ytterbium 171 (171Yb+), which is where

the qubit is encoded. This performs X and Y rotations on

the Bloch Sphere. To perform cooling, state preparation, and

measurement, the two systems use a 370nm laser to excite the

dipole transition between 2S1/2 and 2P1/2 [42].

Before performing coherent operations, very accurate

knowledge of the hyperfine frequency difference between the

qubit states is needed, along with the Rabi frequency corre-

sponding to oscillations between these states. The hyperfine

splitting between the states is very well known [43]. However,

a strong magnetic field is installed in our systems, slightly

altering this value. Assuming we have some knowledge of

what the frequency change should approximately be, three

calibration experiments are still needed. The first experiment

performs a sequence of timed microwave pulses near the

qubit transition frequency to get Rabi oscillations. We then

fit this data to get a rough estimate of the Rabi frequency. The

second experiment uses Ramsey interferometry to fine-tune

the qubit transition frequency. This experiment can be done

with incrementally smaller frequency ranges to get greater

precision of the resonance. Lastly, we perform increasingly

longer sequences of π-pulse rotations designed to end with

the qubit in the ground state in order to fine-tune the Rabi

frequency.

After calibration, we perform Direct RB, with circuit lengths

starting at 1 and scaling up exponentially to 1024. Direct RB is

Fig. 10. Single-qubit Direct randomized benchmarking fidelity results for the
STAQ and RC system using microwave gates. Error bars are calculated using
the 10th to 90th percentile as boundaries. RC starts at higher fidelity due to
better SPAM but decays quicker due to lower gate fidelity.

a modification of the original RB proposal which implements

randomized circuits by sampling a system’s native gates from a

user-provided distribution Ω [33]. For microwave gates on ion

trapping systems, the native gate sets are X and Y rotations,

and we chose Ω to be uniform. The sequences are provided by

the pyGSTi library [36] using the DAX RB client. For each

circuit length, we performed 10 different circuits with 100

samples for each. The circuits were designed such that output

was randomized to avoid skewed data because of bias toward

a particular outcome. For example, the detection process in

this experimental setup is designed such that the ground state

is dark when shining the 370nm laser on the ion. Thus, losing

the ion during an experiment would lead to always measuring

the ground state.

To demonstrate the flexibility of DAX and the portability

of the RB client, we perform Direct RB with two different

experimental setups: the STAQ and RC systems. Besides

the different real-time control systems and devices, the main

difference between these two setups is that STAQ is at

cryogenic temperatures while RC is at room temperature.

However, this shouldn’t have any drastic effect on microwave

operations and the data between the two systems should be

quite comparable. The results from this experiment can be

found in Figure 10. Here, the error per gate r is estimated

to be r = 4(1 − p)/3 = 1.45 × 10−4
± 2.58 × 10−5 for the

STAQ system and r = 2.28 × 10−4
± 1.94 × 10−5 for the

RC system, where p is calculated from fitting to the function

P (m) = 0.5 + Bpm. This number can also be interpreted as

1 − Fg , where Fg is the average gate fidelity of the system.

The difference in errors at low circuit depth is simply a result

of different state preparation and measurement (SPAM) error,

while the STAQ system can be seen to overtake RC at higher

circuit depth due to better gate calibration.

VII. CONCLUSION

We have presented a systematic design strategy and a modu-

lar architecture for real-time quantum control software that or-

ganizes devices and system-wide functionality in modules and

services, respectively. Our architecture supports the develop-

553

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

ment of modular control software and enhances the flexibility

and portability of real-time control software. We implemented

a software framework to develop real-time control software

based on our proposed architecture, which is part of our open-

source library Duke ARTIQ extensions (DAX). Our evaluation

shows that modular control software can reduce the execution

time overhead of kernels by 63.3% on average while not

increasing the binary size. Software portability is achieved on

the system level by introducing portable modules, services, and

scanning control flow. We achieve application-level portability

using interfaces and clients. Our analysis shows that modular

control software for two distinctly different systems can share

between 49.8% and 91.0% of covered code statements. Finally,

we have shown that we can run a portable Direct random-

ized benchmarking (RB) experiment on two different ion-trap

quantum systems that are fully controlled and calibrated by

software based on our framework.

ACKNOWLEDGMENT

This work is funded by EPiQC, an NSF Expeditions in

Computing (1832377), the Office of the Director of National

Intelligence - Intelligence Advanced Research Projects Activ-

ity through an ArmyResearch Office contract (W911NF-16-1-

0082), the NSF STAQ project (1818914), the U.S. Department

of Energy (DOE), Office of Advanced Scientific Computing

Research award DE-SC0019294, and DOE Basic Energy Sci-

ences award DE-0019449.

REFERENCES

[1] K. M. Svore, A. Geller, M. Troyer, et al., “Q#: Enabling

scalable quantum computing and development with a

high-level domain-specific language,” arXiv preprint

arXiv:1803.00652, 2018.

[2] A. W. Cross, A. Javadi-Abhari, T. Alexander, et al.,

Openqasm 3: A broader and deeper quantum assembly

language, 2021. arXiv: 2104.14722 [quant-ph].

[3] M. S. ANIS, H. Abraham, AduOffei, et al., Qiskit: An

open-source framework for quantum computing, 2021.

DOI: 10.5281/zenodo.2573505.

[4] X. Fu, J. Yu, X. Su, et al., “Quingo: A pro-

gramming framework for heterogeneous quantum-

classical computing with nisq features,” arXiv preprint

arXiv:2009.01686, 2020.

[5] D. S. Steiger, T. Häner, and M. Troyer, “ProjectQ: An

open source software framework for quantum comput-

ing,” Quantum, vol. 2, p. 49, Jan. 2018, ISSN: 2521-

327X. DOI: 10 . 22331 / q - 2018 - 01 - 31 - 49. [Online].

Available: https://doi.org/10.22331/q-2018-01-31-49.

[6] C. Developers, Cirq, version v0.10.0,

See full list of authors on Github:

https://github.com/quantumlib/Cirq/graphs/contributors,

Mar. 2021. DOI: 10 .5281 /zenodo .4586899. [Online].

Available: https://doi.org/10.5281/zenodo.4586899.

[7] F. Arute, K. Arya, R. Babbush, et al., “Quantum

supremacy using a programmable superconducting pro-

cessor,” Nature, vol. 574, no. 7779, pp. 505–510, Oct.

2019, ISSN: 1476-4687. DOI: 10 . 1038 / s41586 - 019 -

1666- 5. [Online]. Available: https://doi.org/10.1038/

s41586-019-1666-5.

[8] C. Ryan-Anderson, J. G. Bohnet, K. Lee, et al., “Re-

alization of real-time fault-tolerant quantum error cor-

rection,” Phys. Rev. X, vol. 11, p. 041 058, 4 Dec.

2021. DOI: 10 .1103/PhysRevX.11 .041058. [Online].

Available: https://link.aps.org/doi/10.1103/PhysRevX.

11.041058.

[9] L. Postler, S. Heußen, I. Pogorelov, et al., Demonstra-

tion of fault-tolerant universal quantum gate operations,

2021. DOI: 10 . 48550 / ARXIV. 2111 . 12654. [Online].

Available: https://arxiv.org/abs/2111.12654.

[10] Y. Wang, Y. Li, Z.-q. Yin, and B. Zeng, “16-qubit ibm

universal quantum computer can be fully entangled,”

npj Quantum information, vol. 4, no. 1, pp. 1–6, 2018.

[11] I. Pogorelov, T. Feldker, C. D. Marciniak, et al., “Com-

pact ion-trap quantum computing demonstrator,” PRX

Quantum, vol. 2, p. 020 343, 2 Jun. 2021. DOI: 10.1103/

PRXQuantum.2 .020343. [Online]. Available: https : / /

link.aps.org/doi/10.1103/PRXQuantum.2.020343.

[12] R. Acharya, I. Aleiner, R. Allen, et al., Suppressing

quantum errors by scaling a surface code logical qubit,

2022. DOI: 10 . 48550 / ARXIV. 2207 . 06431. [Online].

Available: https://arxiv.org/abs/2207.06431.

[13] G. Pagano, A. Bapat, P. Becker, et al., “A quantum

approximate optimization algorithm in a trapped-ion

quantum simulator,” en, Oct. 2020. [Online]. Available:

https://tsapps.nist.gov/publication/get pdf.cfm?pub id=

928237.

[14] J. Kim, T. Chen, J. Whitlow, et al., “Hardware design of

a trapped-ion quantum computer for software-tailored

architecture for quantum co-design (staq) project,”

in Quantum 2.0, Optical Society of America, 2020,

QM6A–2.

[15] M. Blok, V. Ramasesh, T. Schuster, et al., “Quantum

information scrambling in a superconducting qutrit pro-

cessor,” arXiv preprint arXiv:2003.03307, 2020.

[16] S. Bourdeauducq, R. Jördens, P. Zotov, et al., Artiq 1.0,

version 1.0, May 2016. DOI: 10.5281/zenodo.51303.

[Online]. Available: https : / /doi .org/10.5281/zenodo.

51303.

[17] V. Negnevitsky, “Feedback-stabilised quantum states in

a mixed-species ion system,” Ph.D. dissertation, ETH

Zurich, 2018.

[18] P. Maunz, J. Mizrahi, and J. Goldberg, Ioncontrol v.

1.0, version 00, Jul. 2016. [Online]. Available: https :

//www.osti.gov/biblio/1326630.

[19] X. Fu, L. Riesebos, M. A. Rol, et al., “Eqasm: An ex-

ecutable quantum instruction set architecture,” in 2019

IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2019, pp. 224–237.

DOI: 10.1109/HPCA.2019.00040.

554

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

[20] C. A. Ryan, B. R. Johnson, D. Ristè, B. Donovan, and

T. A. Ohki, “Hardware for dynamic quantum comput-

ing,” Review of Scientific Instruments, vol. 88, no. 10,

p. 104 703, 2017.

[21] G. Kasprowicz, P. Kulik, M. Gaska, et al., “Artiq and

sinara: Open software and hardware stacks for quantum

physics,” in OSA Quantum 2.0 Conference, Optical

Society of America, 2020, QTu8B.14. DOI: 10.1364/

QUANTUM . 2020 . QTu8B . 14. [Online]. Available:

http : / / www. osapublishing . org / abstract . cfm ? URI =

QUANTUM-2020-QTu8B.14.

[22] J. H. Nielsen, M. Astafev, W. H. Nielsen, et al.,

Qcodes/qcodes: V0.30.0.dev0, version v0.30.0.dev0,

Oct. 2021. DOI: 10 . 5281 / zenodo . 5595929. [Online].

Available: https://doi.org/10.5281/zenodo.5595929.

[23] M. Rol, C. Dickel, S.Asaad, et al., Pycqed py3, ver-

sion v0.2, Dec. 2019. DOI: 10.5281/zenodo.3574563.

[Online]. Available: https : / /doi .org/10.5281/zenodo.

3574563.

[24] D. C. McKay, T. Alexander, L. Bello, et al., Qiskit

backend specifications for openqasm and openpulse

experiments, 2018. arXiv: 1809.03452 [quant-ph].

[25] L. Riesebos, X. Fu, A. Moueddenne, et al., “Quan-

tum accelerated computer architectures,” in 2019 IEEE

International Symposium on Circuits and Systems (IS-

CAS), 2019, pp. 1–4. DOI: 10 . 1109 / ISCAS . 2019 .

8702488.

[26] T. Nguyen, A. Santana, T. Kharazi, D. Claudino, H.

Finkel, and A. McCaskey, “Extending c++ for hetero-

geneous quantum-classical computing,” arXiv preprint

arXiv:2010.03935, 2020.

[27] R. S. Smith, M. J. Curtis, and W. J. Zeng, “A practical

quantum instruction set architecture,” arXiv preprint

arXiv:1608.03355, 2016.

[28] F. T. Chong, D. Franklin, and M. Martonosi, “Program-

ming languages and compiler design for realistic quan-

tum hardware,” Nature, vol. 549, no. 7671, pp. 180–187,

2017.

[29] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel

programming standard for heterogeneous computing

systems,” Computing in science & engineering, vol. 12,

no. 3, p. 66, 2010.

[30] X. Fu, M. A. Rol, C. C. Bultink, et al., “An experi-

mental microarchitecture for a superconducting quan-

tum processor,” in Proceedings of the 50th Annual

IEEE/ACM International Symposium on Microarchitec-

ture, ser. MICRO-50 ’17, Cambridge, Massachusetts:

Association for Computing Machinery, 2017, pp. 813–

825, ISBN: 9781450349529. DOI: 10 . 1145 / 3123939 .

3123952. [Online]. Available: https://doi.org/10.1145/

3123939.3123952.

[31] L. Riesebos, B. Bondurant, and K. R. Brown, Duke

artiq extensions (dax), 2021. [Online]. Available: https:

//gitlab.com/duke-artiq/dax.

[32] E. Magesan, J. M. Gambetta, and J. Emerson, “Scal-

able and robust randomized benchmarking of quantum

processes,” Physical review letters, vol. 106, no. 18,

p. 180 504, 2011.

[33] T. J. Proctor, A. Carignan-Dugas, K. Rudinger, E.

Nielsen, R. Blume-Kohout, and K. Young, “Direct ran-

domized benchmarking for multiqubit devices,” Phys.

Rev. Lett., vol. 123, p. 030 503, 3 Jul. 2019. DOI: 10.

1103 / PhysRevLett . 123 . 030503. [Online]. Available:

https : / / link . aps . org / doi / 10 . 1103 / PhysRevLett . 123 .

030503.

[34] J. M. Epstein, A. W. Cross, E. Magesan, and J. M. Gam-

betta, “Investigating the limits of randomized bench-

marking protocols,” Physical Review A, vol. 89, no. 6,

p. 062 321, 2014.

[35] R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi,

J. D. Sterk, and P. Maunz, Robust, self-consistent,

closed-form tomography of quantum logic gates on a

trapped ion qubit, 2013. DOI: 10.48550/ARXIV.1310.

4492. [Online]. Available: https://arxiv.org/abs/1310.

4492.

[36] Erik, L. Saldyt, Rob, et al., Pygstio/pygsti: Version

0.9.10, version v0.9.10, Oct. 2021. DOI: 10 . 5281 /

zenodo.5546759. [Online]. Available: https://doi.org/

10.5281/zenodo.5546759.

[37] R. Schmied, “Quantum state tomography of a single

qubit: Comparison of methods,” Journal of Modern

Optics, vol. 63, no. 18, pp. 1744–1758, 2016.

[38] Y. Wang, S. Crain, C. Fang, et al., “High-fidelity

two-qubit gates using a microelectromechanical-system-

based beam steering system for individual qubit ad-

dressing,” Phys. Rev. Lett., vol. 125, p. 150 505, 15 Oct.

2020. DOI: 10.1103/PhysRevLett.125.150505. [Online].

Available: https://link.aps.org/doi/10.1103/PhysRevLett.

125.150505.

[39] Xilinx kc705. [Online]. Available: https://www.xilinx.

com/products/boards-and-kits/ek-k7-kc705-g.html.

[40] L. Riesebos and K. R. Brown, “Functional simulation

of real-time quantum control software,” in 2022 IEEE

International Conference on Quantum Computing and

Engineering (QCE), 2022.

[41] Coverage.py. [Online]. Available: https: / /github.com/

nedbat/coveragepy.

[42] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N.

Matsukevich, P. Maunz, and C. Monroe, “Manipulation

and detection of a trapped yb+ hyperfine qubit,” Phys-

ical Review A, vol. 76, no. 5, p. 052 314, 2007.

[43] P. T. Fisk, M. J. Sellars, M. A. Lawn, and G. Coles, “Ac-

curate measurement of the 12.6 ghz” clock” transition

in trapped/sup 171/yb/sup+/ions,” IEEE transactions

on ultrasonics, ferroelectrics, and frequency control,

vol. 44, no. 2, pp. 344–354, 1997.

555

Authorized licensed use limited to: UNIV OF CHICAGO LIBRARY. Downloaded on January 27,2023 at 23:11:47 UTC from IEEE Xplore. Restrictions apply.

