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Abstract—Current efforts to build quantum computers focus
mainly on the two-state qubit, which often involves suppressing
readily-available higher states. In this work, we break this
abstraction and synthesize short-duration control pulses for gates
on generalized d-state qudits. We present Incremental Pulse Re-
seeding, a practical scheme to guide optimal control software
to the lowest-duration pulse by iteratively seeding the optimizer
with previous results. We find a near-linear relationship between
Hilbert space dimension and gate duration through explicit pulse
optimization for one- and two-qudit gates on transmons. Our
results suggest that qudit operations are much more efficient than
previously expected in the practical regime of interest and have
the potential to significantly increase the computational power of
current hardware.

Index Terms—quantum computing, qudit, quantum optimal
control, pulse synthesis

I. INTRODUCTION

Quantum computing traditionally focuses on the realization

of noise-robust two-level systems, known as qubits. However,

in many quantum architectures, each qubit is embedded in a

much larger Hilbert space, with all other energy levels being

ignored or suppressed. Qudits, the extension of qubits to d
levels, are a promising topic of study with the potential to

increase computational power of a machine without needing

to add additional logic units. For instance, a single four-

state qudit can store the same amount of information as two

qubits, and an eight-state qudit can encode the global state of

three qubits. There are many proposed or adapted qudit-based

quantum algorithms [1]–[5] and qudit-based improvements in

quantum circuit compilation [6], [7]. The latter presents a

method of using qudits in intermediate steps of a circuit that

asymptotically reduces the required number of ancilla in a

quantum algorithm at essentially equal circuit depth.

Qudits have been studied in different experimental settings.

Both IBM [8] and Rigetti [9] have demonstrated implementa-

tions of three-level qutrits on superconducting hardware, while
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Fig. 1. For quantum optimal control tasks to realize a certain gate or
state evolution, truncated control pulses can be used as initial guesses for
optimizations of shorter duration. Since they originate from a previous
optimization, they already drive the system close to the desired objective.
In this figure, the plot on the top shows a high-fidelity pulse being truncated
to a shorter duration, and the plot on the bottom is the result of re-optimizing
this truncated pulse (achieving the same high fidelity at a shorter duration).

qudits with d = 7 states have been successfully realized using

trapped 40Ca+ ions [10].

The potential benefits of using qudits are especially im-

portant in the near-future NISQ (Noisy Intermediate-Scale

Quantum) [11] era of quantum computing, as both total qubit

count and maximum circuit depth are severely limited by

current hardware. Harnessing qudits could allow current or

near-future devices to solve larger, more useful problems

sooner than with only qubits. However, qudit gate durations

theoretically scale in O(h2) time [12], with h being the Hilbert

space dimension; this appears to limit the usefulness of higher-

dimension qudits, as experimentally achieving the previously-

mentioned decreased ancilla or gate count could require much

longer individual gate durations.

Quantum logic gates are implemented through external

control pulses, meaning that the time it takes to apply a

certain gate depends on the duration of the corresponding

control pulse. Optimal control software such as GRAPE [13]

is designed to find the most accurate control pulse for a certain

gate and duration. This means that finding the high-accuracy

pulse of shortest duration for a given gate requires many

independent optimizations at different durations. In this work,
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we present the Incremental Pulse Re-seeding (IPR) scheme, a

method for repeatedly changing the pulse duration and using

previous results as new initial guesses for the optimizer, as

shown in the example in Figure 1. IPR provides improved

shortest-duration results and decreases the dependence on

random initial guesses, which is increasingly important for

larger Hilbert space dimension.

Using a transmon Hamiltonian, we apply our method to

optimizing single-qudit gates of dimension up to eight and

two-qudit gates for qudits of dimension up to four to determine

the relationship between Hilbert space dimension and shortest

gate duration. We recover the theoretical O(h2) duration

scaling but find it relatively weak for the range of dimensions

we consider, giving a promising near-linear relationship.

In Section II we discuss the basics of quantum computation

on qubits and qudits. In Section III we explain carrier wave-

based optimal control and justify the physical and compu-

tational parameters that we choose in our optimizations. In

Section IV, we introduce the Incremental Pulse Re-seeding

scheme. Finally, we present our optimized pulses and analyze

the scaling of gate duration with respect to Hilbert space

dimension in Section V.

II. BACKGROUND

A. Quantum computation with qubits

In this section, we briefly introduce quantum computation

on qubits, and then present the more general approach in-

volving qudits. For a more thorough explanation of quantum

computing, we refer the reader to [14].

The quantum counterpart to the classical bit is the qubit,

the traditional basis of quantum computation. While classical

bits can only assume values of either 0 or 1, qubits may exist

in a quantum superposition of the corresponding basis states

|0〉 =
[

1
0

]

and |1〉 =
[

0
1

]

. (1)

An arbitrary qubit state is then represented by |ψ〉 = α |0〉 +
β |1〉, where α, β ∈ C denote the complex amplitudes of the

respective basis states.

Instructions to manipulate the states of qubits are called

quantum gates. According to the laws of quantum theory, these

gates are reversible and can be represented by unitary opera-

tors. A set of commonly used gates are the Pauli operators:

X =

[

0 1
1 0

]

, Y =

[

0 −i
i 0

]

, Z =

[

1 0
0 −1

]

. (2)

Here the X gate corresponds to the quantum analogue of a

NOT operation, mapping the state |ψ〉 = α |0〉 + β |1〉 to

X |ψ〉 = α |1〉+ β |0〉. Useful gates for creating superposition

or manipulating the relative phases of qubits are the Hadamard

gate H and the T gate, respectively:

H =
1√
2

[

1 1
1 −1

]

, T = Z
1/4 =

[

1 0
0 eiπ/4

]

. (3)

Two-qubit gates involve logical operations on several qubits

at once, with the most common example being the CNOT
(controlled NOT) gate:

CNOT |q1〉 |q2〉 = |q1〉 |q2 ⊕ q1〉 . (4)

Like its classical version, this gate flips the state of the target

qubit |q2〉 if the control qubit |q1〉 is in state |1〉. The CNOT
gate plays a particularly important role in quantum circuits,

as it has the power to create entanglement between qubits.

Swapping the states of two qubits can be realized with a

SWAP gate:

SWAP |q1〉 |q2〉 = |q2〉 |q1〉 . (5)

The H , T , and CNOT gates comprise a universal gate set,

meaning any arbitrary qubit circuit can be decomposed into a

sequence of these gates.

B. From qubits to qudits

In many proposed quantum hardware systems, such as

superconducting or ion trap computers, each quantum logical

unit has an infinite spectrum of energy levels. The stan-

dard qubit abstraction suppresses the other states. Instead,

we consider d-dimensional qudits, which each consist of a

superposition of d computational basis states, expressed as

|ψ〉 = α0 |0〉+α1 |1〉+ · · ·+αd−1 |d− 1〉 =
d−1
∑

k=0

αk |k〉 . (6)

In this work we consider the generalized gates [15], [16]

Xd |k〉 = |k + 1mod d〉 ,
Xs

d : |0〉 ↔ |d− 1〉 ,

Hd |k〉 =
1√
d

d−1
∑

j=0

ωkj
d |j〉 ,

Td |k〉 = ω
k/4
d |k〉 ,

(7)

where ωd = e2πi/d. Xd maps a computational basis state to

the next higher one, and maps |d− 1〉 back to |0〉. As an

alternative generalization, Xs
d swaps the amplitudes of the

lowest and the highest state. The generalized Hadamard gate

Hd creates an equal-population superposition with different

relative phases depending on the input state. In analogy to

the qubit case, we define the Td as the fourth root of the

generalized Zd gate (where Zd |k〉 = ωk
d |k〉), such that it

preserves populations of the basis states but introduces phase

differences. For the above equations, the d = 2 case produces

the qubit gates as defined in (2) and (3).

Analogously, two-qudit gates can be generalized as well. For

example, the CNOT operation from (4) can be generalized to

the SUM gate [15] or other useful operations depending on

use case [6], [16]. Here we focus on the generalized qudit

SWAP gate, the straightforward extension of (5), which fully

swaps the amplitudes of two qudits.
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C. Quantum optimal control

Quantum systems can be purposefully steered by applying

external control fields, which are specific to particular hard-

ware. For instance, in superconducting architectures, the state

of qubits are manipulated through analog microwave pulses.

Generally, the evolution of a quantum system is determined

by its time-dependent Hamiltonian

H(t) = H0 +Hc(t). (8)

Here H0 denotes the system’s intrinsic drift Hamiltonian and

Hc(t) =
∑

k fk(t)Hk denotes the control Hamiltonian, which

is typically described by control operators Hk and classical

tunable control fields fk(t). Quantum optimal control aims to

find the optimal control paths fk(t) to realize a desired state

transition or target unitary. This is achieved by repeatedly solv-

ing the Schrödinger equation and adjusting the control fields

in every iteration to minimize a certain objective function.

Different algorithms and toolboxes have been designed for this

purpose [13], [17], [18].

III. SETUP

In this section we motivate the physical and computational

parameters that we have chosen to use in our optimizations.

We also introduce the concept of control pulses parameterized

through B-splines and carrier waves, which is a key aspect of

the optimizer we use.

A. Model Hamiltonian

We consider a system based on superconducting hardware

that consists of two weakly coupled, anharmonic transmons

[19] with drift Hamiltonian

H0 =

2
∑

k=1

[

ωka
†
kak +

ξk
2
a†ka

†
kakak

]

+ J(a†1a2 + a†2a1).

(9)

In order to describe qudits, we typically truncate the ladder

operators ak and a†k at level d + 2. Including two additional

guard states allows us to penalize population leakage into

higher energy states, while we have found that additional guard

states beyond two provide marginal fidelity improvements

for higher computational cost. We choose realistic physical

parameters inspired by [20]: The 0-1 transition frequencies

of the transmons are ω1/2π = 4.914GHz and ω2/2π =
5.114GHz, and both transmons have the same anharmonicity

ξ1/2π = ξ2/2π = −0.330GHz. They are effectively coupled

with J/2π = 3.8 MHz. While our specific results depend

explicitly on these parameters, our methods apply to systems

with very different parameters. Control of our model system is

possible through microwave drives that add or remove single

excitations, as described by

Hc(t) =

2
∑

k=1

fk(t)(ak + a†k). (10)

To numerically solve the Schrödinger equation, it is often

helpful to slow down the time variation by applying the

rotating wave approximation. In a rotating frame with equal

angular frequency ωr for both qudits, we thus obtain the full

transformed Hamiltonian

H̃(t) = H̃0 + H̃c(t)

=

2
∑

k=1

[

(ωk − ωr)a
†
kak +

ξk
2
a†ka

†
kakak

]

+ J(a†1a2 + a†2a1)

+

2
∑

k=1

[

pk(t)(ak + a†k) + iqk(t)(ak − a†k)
]

.

(11)

The rotating frame control functions pk(t) and qk(t) are

then related to the lab frame controls through fk(t) =
2Re

{

(pk(t) + iqk(t))e
iωrt

}

[17].

For the case that we want to describe only a single transmon,

we disregard the transmon at index 2 in the above equations

and restrict ourselves to a single anharmonic oscillator with

one lab frame control field f1(t).

B. Quantum optimal control with quadratic B-splines

Juqbox [17], [21] is an open-source software package de-

signed to solve quantum optimal control problems in closed

systems under the rotating wave approximation. In this section

we briefly summarize the differences between Juqbox and

conventional optimizers such as GRAPE [13], [22]. While

algorithms like GRAPE directly adjust the value of a control

pulse at each discrete point in time, Juqbox instead parame-

terizes the pulse with B-splines. The control functions pk(t)
and qk(t) in the rotating frame are given by a sum of Nf

carrier waves with fixed angular frequencies Ωk,j , where each

carrier wave has an amplitude envelope Sb(t) that consists of

Nb B-splines:

pk(t, �α) =

Nf
∑

j=1

Nb
∑

b=1

Re
{

αk,j,b e
iΩk,jt

}

Sb(t)

qk(t, �α) =

Nf
∑

j=1

Nb
∑

b=1

Im
{

αk,j,b e
iΩk,jt

}

Sb(t).

(12)

Juqbox finds optimal pulses by adjusting the 2NfNb real

coefficients αk,j,b = α
(re)
k,j,b,+iα

(im)
k,j,b for the quantum devices

indexed by k. The collection of these design variables is

denoted by �α. The benefit of this approach is that the B-

spline parameterization drastically reduces the dimensionality

of the optimal control problem, especially for long-duration

pulses, and allows carrier wave frequencies to be chosen to

specifically address the target state evolutions while avoiding

undesired transitions. Figure 2 shows an example pulse defined

by a single carrier wave and six B-splines.

The user of this tool must specify a number of physical and

numerical parameters for the optimizer, the most significant

of which are summarized in Table I and discussed in the

following subsection.
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(a) (b)

Fig. 2. Real part of an exemplary pulse in the rotating frame, with one carrier
wave (Nf = 1). (a) Six B-splines shape the envelope of the pulse. Grey dots
mark the support of each time-local basis function. (b) The final pulse is
constructed from a single carrier wave bounded by the B-spline envelope.
With Nf > 1, the final pulse is the sum of these individual pulses with one
carrier wave.

TABLE I
IMPORTANT PARAMETERS FOR OPTIMIZING IN JUQBOX

Symbol Description

T Total pulse duration
ωr,k Rotating frame frequencies

H̃0 Drift Hamiltonian in the rotating frame

H̃c Control Hamiltonian in the rotating frame
Ωk,j Carrier frequencies in the rotating frame
Nb B-spline basis functions per carrier wave
V Target unitary gate
αmax Bound on magnitude of B-splines
error_threshold Goal infidelity
max_iter Maximum optimization iterations

After specifying the required parameters, Juqbox applies

gradient-based methods to minimize an objective function

consisting mainly of the trace infidelity

J = 1− 1

h2

∣

∣

∣
Tr

{

U†
T (�α)V

}∣

∣

∣

2

(13)

between the target unitary V and the applied transformation

UT (�α), where h is the Hilbert space dimension (without guard

states). The quantum optimal control task is successful if a set

of coefficients �α is found that achieves an infidelity below a

desired error threshold. Throughout this work we will also use

fidelity F = 1−J to quantify the quality of pulses. For a given

target V , certain values of duration T will be too small for the

optimizer to find a high-fidelity pulse, in which case a larger

T is needed. In our work, the “gate duration” for a gate V
refers to the shortest T for which the optimizer converges to

our target fidelity.

C. Choosing optimization parameters

We observe that for high-dimensional quantum optimal

control problems, it is generally difficult to specify a set of

optimization parameters that guarantees finding high-fidelity

pulses. Parameters such as Nb, the number of B-splines per

pulse, must be large enough to give the optimizer freedom,

while not so large as to introduce unnecessary local minima

in the highly non-convex search space. In the following

subsection, we describe and justify the decisions we made

to choose significant optimization parameters.

The carrier frequency and B-spine envelope parameteriza-

tion of the control pulse has two benefits: It reduces the

dimensionality of the pulse, and additionally allows us to

easily target the desired state transitions in the qudits by using

carrier frequencies directly corresponding to the qudit states.

In the lab frame, the Nf carrier frequencies

Ωlab
k,j = ωk + jξk, j = 0, . . . , d− 2 (14)

correspond to the resonant frequencies of qudit k. For instance,

Ωlab
1,2 is the frequency of the |2〉 → |3〉 transition for qudit

1. For a two-qudit gate, each control pulse includes the

complete set of 2(d− 1) carrier frequencies in order to make

use of the cross-resonance effect [23], [24], where driving

one transmon at a resonant frequency of the other transmon

triggers a state transition in the latter. We choose not to

correct these frequencies to account for the weak coupling

between the transmons, since the small corrections fall inside

the widths of the respective Fourier peaks of pulses with finite

duration. From experience, we have found that considering

all (d − 1)2 true resonant frequencies significantly increases

the complexity of the problem without providing a noticeable

improvement.

Given the fixed set of 2(d − 1) lab frame carrier fre-

quencies Ωlab
k,j , we choose the average frequency as the ro-

tating frame frequency ωr = (Ωlab
max + Ωlab

min)/2, which is

equal for both qudits (the coupling term is then constant in

time, as shown in (11)). This minimizes the magnitude of

the carrier frequencies in the rotating frame, allowing the

optimizer to choose larger discrete time steps and decreasing

overall optimization run time. As an example we consider

two qutrits (d = 3). The lab frame carrier frequencies are

Ωlab
k,j/2π ∈ {4.914, 4.584, 5.114, 4.784}GHz, where the first

two correspond to the two resonant frequencies of transmon 1

and the latter two to the resonant frequencies of transmon

2. The rotating frame frequency is ωr/2π = (5.114 +
4.584)/2GHz = 4.849GHz. Thus, the carrier frequencies in

the rotating frame are given by Ωk,j/2π = (Ωlab
k,j − ωr)/2π ∈

{0.065,−0.265, 0.265,−0.065}GHz.

The number of B-spline basis functions Nb determines how

fast the pulse envelope can vary over time (see Figure 2).

While a larger number may enable shorter-duration pulses,

this will increase the dimensionality of the problem, as well as

introduce non-carrier-frequency control pulse oscillations. We

choose Nb = [T/(10 ns)] + 2 (where [ . ] denotes the nearest-

integer function) for two reasons. First, we want to maintain an

approximately constant B-spline density when varying T for

consistency between different optimization problems. Second,

this choice guarantees a minimum envelope rise time of around

15 ns, which is realistic in experiment [20]. The term +2
accounts for B-splines on the time domain boundaries, which

are always set to amplitude 0 in Juqbox’s implementation to

ensure that the final pulse starts and ends at 0.

The parameter αmax limits the amplitudes of the individual

B-splines, effectively limiting the maximum amplitude of the

final pulses. This is needed to ensure weak driving [25],

which increases the accuracy of approximate models like (11).

Additionally, limited power reduces the risk of leakage into

guard levels due to off-resonant transitions. We aim for lab
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frame pulse amplitudes of at most 40MHz and achieve this

by tuning αmax/2π = 40/(2
√
2Nf )MHz.

We set error_threshold, the target gate infidelity, to

10−3, corresponding to a fidelity of 99.9%. The optimization

terminates if the pulse fidelity reaches this target.

Finally, the parameter max_iter limits the number of

iterations of the optimizer if it does not terminate early due to

reaching error_threshold. This variable must be set suf-

ficiently large to ensure that the optimizer has converged very

nearly to a local minimum, and is generally set experimentally

depending on the dimension and target unitary (typically in the

range 200 . . . 1000).

IV. GATE DURATION OPTIMIZATION

In this section we describe our method for finding the

shortest-duration, high-fidelity pulse for a given target unitary.

Optimal control software generally works with a fixed pulse

duration, so finding the shortest high-fidelity pulse involves

repeated optimizations at different durations.

By default, each optimization begins with a random guess

for the coefficient vector �α within some bounds for each

coefficient (typically ±αmax/100 or ±αmax/10). Due to the

non-convex nature of the optimization space, it is generally

good practice to try multiple initial guesses if the first does

not work and the fidelity seems relatively close to the goal

fidelity.

A. Naive approaches to duration optimization

We first introduce two simple approaches to finding optimal

gate durations, the exhaustive method and the binary search

method, and explain their downsides. The exhaustive process

begins at some low T = Tstart and increases T at a fixed

interval, running an independent random-guess optimization

for each duration, until one value of T yields a high-fidelity

pulse. While this method will work (at least for low-dimension

qudits), it is computationally inefficient, motivating the second

approach: a binary search. This method involves specifying

Tmin and Tmax and then optimizing in a binary search pattern

within the bounds, decreasing T if optimization succeeds and

increasing if it fails (still running an independent, random-

guess optimization at each duration) until reaching the speci-

fied granularity.

While these approaches are relatively effective for small

qubit-based gates, they both have problems when transition-

ing to high-dimensional qudit gates. Larger qudit dimension

significantly increases computational cost of solving the opti-

mization, which means the exhaustive method can potentially

be very computationally expensive if the starting T is far below

the shortest convergent duration. The binary search method is

more efficient, but individual long-duration optimizations near

Tmax will still be quite expensive if Tmax is large.

However, the more significant issue is the increased com-

plexity of the optimization space for higher qudit dimensions.

We find that random guesses become less effective at consis-

tently converging to the optimal solution for a given T , as we

show in Section IV-D.

B. Incremental Pulse Re-seeding

We have developed an optimization scheme to address both

of these problems. The key idea is to reuse the coefficient

vector �α from failed optimizations as a seed for the next. For

example, if a pulse of duration T0 converges to a fidelity of

99.5%, we can reuse this pulse as the starting point for an

optimization at duration T0+δ, which we find to have a better

chance of converging to 99.9% fidelity than a random guess.

Depending on the success of the optimizer to find a high-

fidelity pulse for a certain duration, our algorithm changes the

duration for the next iteration by a discrete time step and reuses

the previous pulse (by extending or truncating it to fit the new

duration) as a seed. The step size decreases as the algorithm

approaches the final solution. We therefore call this scheme

Incremental Pulse Re-seeding (IPR). The variables used in IPR

are listed in Table II, and a flowchart of the method is shown

in Figure 3. We denote an optimized pulse as “successful” if

it has fidelity greater than our goal fidelity, and “failed” if not.

TABLE II
VARIABLES USED IN INCREMENTAL PULSE RE-SEEDING

Symbol Description

Tstart First duration tried by optimizer
step Time step to increase/decrease by
granularity Minimum step size
�αguess B-spline coefficients of initial guess pulse
error_threshold Target infidelity

The program starts from an initial duration Tstart with a

random guess �αguess. A flag variable found_time, which

indicates if a successful pulse has been found before, is set

to false. The optimizer then converges to a solution �α with

fidelity F . If the converged pulse is of sufficiently high fidelity,

the solution is stored as �αbest, the duration is stored as Tbest,

and found_time is set to true. We then reduce the gate

duration by the step size and re-seed the optimizer with a

truncated version of �αbest that fits the new duration. Figure 1
shows an example of a pulse being truncated and re-optimized.

If the target fidelity is not met, but a successful pulse

has been found before, we decrease the step size and repeat

the above steps, starting from Tbest − step with �αguess =
truncate(�αbest). This only happens if the step size is

larger than the predefined granularity limit (in our case 1 ns);
otherwise, the algorithm terminates and returns the converged

result with the shortest duration.

If the optimized pulse does not meet the target fidelity, and

no successful pulse has been found before, we increase the

duration and re-seed the optimizer with an extended version

of the previous pulse, for as long as the fidelity increases with

each optimization. If the fidelity decreases (compared to a

shorter duration) before any solution is found, we start the

entire procedure with a new random �αguess. In this case we

set Tstart = Tbest, the duration for which fidelity was highest.

C. Example: H4 gate

As an example, we present an application of Incremental

Pulse Re-seeding to find the optimal duration of the d = 4
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Fig. 3. The Incremental Pulse Re-seeding process. (a) The problem is initialized with a random pulse and duration guess Tstart. (b) The main optimization
function, which searches for the highest-fidelity pulse for a given duration using Juqbox, returning an optimized pulse �α and a fidelity F . (c) If an optimization
succeeds, save the duration and pulse, then decrease T and start from a truncated version of the successful pulse. (d) If an optimization fails but a successful
pulse has been found in the past, decrease step size and work backwards from Tbest again; if step size has reached granularity, return best pulse. (e) If no
successful pulse has been found so far, but fidelity improved, mark this duration as the best so far, extend the duration, and re-seed with the extended previous
pulse. (f) If no successful pulse has been found and fidelity decreased, restart the whole process with the highest-fidelity duration and a random guess.

(a)

extend

B C

A* B*

A

optimize truncate optimize

A

C

B
A*

B*

(b)

Fig. 4. Applying Incremental Pulse Re-seeding (IPR) to find the shortest duration for the H4 gate. (a) Visualization of attempted durations during the IPR
procedure, with the chronological order of steps indicated by the colored numbers. Green (red) arrows represent steps that did (did not) lead to meeting the
pulse target fidelity of 99.9%. Starting from Tstart = 70ns and a time step of 8 ns, three pulse extension and re-optimization steps are required before the
target fidelity is first reached at 94 ns. The duration is then reduced to 78 ns by successfully re-seeding with truncated pulses. After step 6 the time step is
halved because re-optimizing at T = 70ns with the truncated pulse does not meet the target fidelity. Repeating this scheme leads to the final duration of
Tgate = 76ns, highlighted by the star, as after step 10 the time step falls below the granularity of 1 ns. (b) Plot A shows the optimized pulse after IPR step
2. A new seed for the optimization at T = 94ns is generated by extending the previous result in duration (A*). At 94 ns the target fidelity is met, so the
optimized pulse is truncated (B*) and used as a seed for the second T = 84ns optimization, leading to the successful result shown in C.
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Hadamard gate H4 (see (7)). Figure 4(a) shows the sequence

of IPR steps, where the chronological order is given by the

numbered arrows. Red arrows represent steps that failed to

reach the target fidelity of 99.9%, while green arrows indicate

success. We start at Tstart = 70ns with an initial time step size

of 8 ns and a random guess for the coefficient vector �α. The

fidelity of the optimized pulse falls short of the target, so IPR

extends the output pulse and uses it to seed the optimizer at a

longer duration (step 1). This occurs two more times (steps 2
and 3) before a pulse that reaches the target fidelity is found

at T = 94ns. In step 4, this solution is then truncated and

used to revisit T = 86ns. This time the optimization task is

successful, so the duration can be further decreased (step 5),

resulting in another high-fidelity pulse at 78 ns. T = 70ns fails

to converge to a the target fidelity, so the time step is halved

and IPR tries 74 ns instead (step 7). After few more steps, the

minimum step granularity is reached, and Tgate = 76ns is

found to be the shortest duration to realize the H4 gate with

99.9% fidelity. It is important to note that durations 78 ns and

86 ns both initially resulted in failed optimizations, but then

succeeded when re-seeded with truncated successful pulses.

Fig. 5. Evolution of state populations when applying the H4 pulse of shortest
duration (76 ns) to a qudit with d = 4. Every computational basis state
is transformed into superposition of all four basis states with nearly equal
population, deviations only arising from the remaining 0.1% infidelity. At all
times the populations of the guard states |4〉 and |5〉 are below 2×10−3 and
10−6, respectively.

With the help of Figure 4(b), we take a closer look at steps

3 and 4 to explain how pulses are extended and truncated.

Initially (plot A), we have an optimized 86 ns pulse that falls

short of the target fidelity. The controls p(t) and q(t) are

numerically extended by appending 8 ns of idle time (zero

amplitude pulse). The number of B-spines Nb changes due to

the duration change, so we obtain the new coefficient vector

�αguess by applying a least-squares fit according to (12) with the

new number of B-splines. The approximation introduces small

distortions, as can be seen in plot A*, because the manually

modified control functions are not perfectly realizable with

the given parameterization. The following optimization (plot

B) meets the target fidelity, so the pulse is truncated to 86 ns
and re-parameterized (plot B*). Plot C shows the converged

pulse after step 4, which successfully reaches 99.9% fidelity.

Together, the series of plots (where A and C are both at

duration 86 ns) shows how a new minimum was found after

visiting 94 ns and then revisiting 86 ns with a better guess.

Figure 5 visualizes the evolution of the basis state pop-

ulations for the shortest pulse of 76 ns. It is clearly visible

how an equal-population superposition emerges in every case,

and the small imperfections at the final time come from the

remaining 0.1% infidelity. The populations of the guard states

cannot be seen because they are suppressed by multiple orders

of magnitude. This guard state suppression is achieved by

the carrier wave parameterization method, which allows us

to selectively induce state transitions.

D. Comparison with random guessing

For the X8 gate (see (7)), the IPR scheme finds a shortest-

duration pulse of 195 ns with target fidelity 99.9%. To compare

our approach with a naive approach, we run 20 random-

guess, single-duration Juqbox optimizations at every 5 ns
between 180 ns and 230 ns, where the components of �αguess

are sampled from [−0.1αmax, 0.1αmax]. Figure 6 shows the

distribution of pulse fidelities achieved by this naive random

guessing across a range of durations for the same gate, with

20 random attempts at each duration.

(a)

IPR best

(b)

IPR best

Fig. 6. Distribution of naive random-guess optimizations of the X8 gate
for invididual durations between 180 ns and 230 ns. Each boxplot consists
of 20 fidelities from 20 individual Juqbox optimizations, with the blue line
indicating the median value, the box indicating the middle 50% of fidelities,
and the whiskers indicating the full range of values. (a) The full data, showing
a general increase in fidelity as duration increases. (b) Focusing on the area
of interest (fidelities close to 99.9%). The IPR scheme outperforms random
guessing, finding a minimum duration of Tbest = 195 ns at 99.9% fidelity,
whereas none of the 20 random guesses at that duration reached the same
fidelity.

It is evident that there is significant variation in the naive

approach; no random-guess optimizations converged to 99.9
fidelity at 195 ns, and only 8 out of 20 random guesses con-

verged to 99.9% fidelity at 200 ns. Even for larger durations

such as 215 ns, not all guesses converged to the target fidelity.

This is clearly a problem for binary-search-based methods,

which implicitly assume that a given duration will either

always succeed or never succeed. In contrast, over ten IPR runs

(with Tstart sampled from [160, 240] ns; see Section V-A), we

find an average duration of 198.6 ns and a standard deviation

of 3.0 ns. This small standard deviation given the large range
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of starting times is evidence that our method is more stable

than random guessing for large Hilbert space optimizations.

V. QUDIT PULSE RESULTS

Previous work [6], [7] has shown that breaking the qubit

abstraction in quantum circuits can lead to substantially

reduced circuit complexity involving fewer ancilla, making

qudits promising candidates for quantum computation. How-

ever, these improvements can only be practical if the gate

duration overhead does not scale poorly with the Hilbert space

dimension while still maintaining high gate fidelity. In this

section we investigate this relation by explicitly constructing

short duration pulses of at least 99.9% fidelity for one- and

two-qudit gates using Incremental Pulse Re-seeding (IPR).

A. Single-qudit gates

We consider the single-qudit gates Xd, Xs
d , Hd and Td

presented in (7) for dimensions d = 2, ..., 8. In each case we

include two guard levels to account for and suppress leakage

into higher energy states. Expecting short gate durations, we

choose Tstart = 50ns for the qubit and qutrit (d = 3) cases,

and use the resulting shortest durations to estimate Tstart

for higher d with a linear extrapolation. We set step to

the power of two nearest to 0.1Tstart because this results

in integer durations. Having found durations Tbest for every

dimension, we then run IPR repeatedly with starting durations

randomly chosen from [0.8Tbest, 1.2Tbest] to identify other

local minima and reduce the gate time further, as well as to

measure the uncertainty of the method.

Figure 7 shows the minimum single-qudit gate durations

found over ten IPR runs for each dimension. The durations

for the generalized gates Xd, Xs
d and the Hadamard gate, Hd,

scale similarly with the qudit dimension. We suspect that the

generalized Td gate can be realized in lower time at higher

dimension compared to the others because it only causes a

change in phase, not in state populations. For this gate, we

observe that the best pulse found for d = 7 is of shorter

duration than the d = 6 pulse, when the reverse is intuitively

expected. This discrepancy suggests shorter pulses may exist

and indicates a highly complicated optimization space. The-

oretical studies [12] have shown that optimal gate durations

scale asymptotically with O(h2), where h is the dimension

of the Hilbert space. We therefore fit each sequence of data

points with a quadratic polynomial Tquad(d) = ad2 + bd + c
(solid grey lines) in d = h to compare our findings with

the theory. Furthermore, the layout of the data also motivates

linear regression, so we investigate the performance of a linear

model Tlin(d) = bd + c (dotted grey lines) as well. The fit

coefficients and their standard deviation estimates are given

in Table III, where for each gate the first line corresponds

to the linear fit and the second line to the quadratic fit. The

quality of each regression is quantified with the coefficient of

determination R2.

The near-ideal R2 values for quadratic fits to Xd, Xs
d and

Hd indicate that the quadratic models describe the empirical

scaling behaviors for these gates very well, which agrees with

TABLE III
LINEAR AND QUADRATIC FIT COEFFICIENTS FOR SINGLE-QUDIT GATE

DURATIONS

Gate a [ns] b [ns] c [ns] R2

Xd
26.79± 1.16 −26.07± 6.23 0.991

1.48± 0.12 12.02± 1.18 4.93± 2.67 1.000

Xs
d

28.64± 1.26 −29.79± 6.78 0.990
1.60± 0.16 12.69± 1.60 3.71± 3.63 1.000

Hd
26.04± 1.05 −24.61± 5.68 0.992

1.15± 0.36 14.49± 3.66 −0.36± 8.28 0.998

Td
14.36± 1.37 14.36± 7.36 0.957

−0.38± 0.86 18.17± 8.74 6.36± 19.78 0.959

the theoretical predictions. However, we emphasize that linear

scaling models capture the essential behavior in this low-

dimensional regime (compared to asymptotic considerations)

in good approximation too, deviating from the duration points

by less than 5 ns on average for those three gates. Barely

any difference between quadratic and linear regression is

noticeable for the Td gate, but the more scattered data points

lead to a reduced R2 value and larger uncertainty. Additionally,

the fit parameter a < 0 indicates an unrealistic scaling of

pulse duration because this leads to negative durations in the

limit of large d. Td is a good case study in the interplay

between theoretical expectations and empirical realizations.

Specifically, the poor fit obtained here indicates that for many

values of d, these gate durations may overestimate the optimal

gate times.

This result of essentially linear scaling over the practical

range of qudit dimensions has promising implications for the

current era where qudit experiments have been conducted

successfully [8]–[10]. It suggests that the computational ad-

vantage single-qudit gates can provide is not outweighed by

pulse time overhead.

B. Two-qudit SWAP gate

For the two-qudit case we consider the generalized SWAP
gate, which fully swaps the state amplitudes between the

qudits. In many architectures, this is an important operation

for communication, as limited connectivity between devices

requires quantum information to be moved around repeatedly.

We apply IPR to find SWAP durations for two qudits of

dimensions 2, 3, and 4, with corresponding Hilbert space

dimensions 4, 9, and 16, respectively. We limit our analysis

to these three cases because simulating the evolution of two

qudits with d ≥ 5 (plus guard states) becomes very resource-

expensive. We use two guard states for dimensions 2 and 3
and only one guard state for 4 due to the large Hilbert space.

As in the single-qudit case, each data point is the minimum

duration from ten IPR runs with different Tstart values.

Figure 8 shows shortest-duration results for the SWAP gate

with respect to the Hilbert space dimension h = d2. Given the

small number of points, we do not attempt a fit, but note that

the points appear nearly linear, as was the case with the single-

qudit gates. It is worth noting that fully swapping the states

of two ququarts (d = 4) is slightly less expensive (1128 ns)
than performing two sequential SWAP operations on qubits
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Fig. 7. Dependence of single-qudit gate durations from qudit dimension d. The four gates are defined in (7). Each data point shows the minimum duration of
applying Incremental Pulse Re-seeding (IPR) from ten different starting times. The unexpected discrepancy between d = 6 and d = 7 for the generalized Td

gate suggests a highly complicated optimization space and shows that shorter pulses for some d values may be possible. For each gate the scaling of duration
with dimension d is analyzed with quadratic and linear regressions, where the latter is less accurate but captures the essential behavior in this low-dimensional
regime. The fit coefficients are presented in Table III.

Fig. 8. Gate durations of two-qudit SWAP operations for qudit dimensions
d = 2, 3, 4. The horizontal axis corresponds to the dimension of the full
Hilbert space, h = d2. Due to the low number of data points, regression is
not applied, but a near-linear trend is visible.

(581 ns + 581 ns = 1162 ns). Given that a single ququart has

the same information capacity as two qubits, this represents

an efficient way of moving quantum information. Additionally,

given that the d = 4 SWAP optimization space is much more

complex than the qubit case, we expect that this duration could

be further decreased through more sampling or fine-tuning.

VI. DISCUSSION

We have presented the Incremental Pulse Re-seeding (IPR)

scheme, an efficient method for finding short-duration pulses

for quantum optimal control tasks, which performs better than

random-guess based methods for large Hilbert space gates. We

use this method together with the optimal control software

Juqbox to demonstrate that single-qudit gate duration scaling

is nearly linear for several useful gates, with dimension up to

d = 8. We also show that the two-qudit SWAP gate appears

to follow a similar trend for Hilbert space dimensions up to

d2 = 16.

We emphasize that while Incremental Pulse Re-seeding

helps to make intelligent initial pulse guesses for the optimizer

during intermediate steps, it does not eliminate the possibility

of converging to a local infidelity minimum. As quantum

optimal control problems are typically underconstrained, dif-

ferent initial guesses can converge to different solutions. In

our case, this means starting IPR with different values for

Tstart and �αguess may result in slightly different gate durations.

However, as an example, our simulations show a relatively

small variation in gate duration of 4.69 ns on average for

single-qudit gates, underlining the advantage of our algorithm.

Our results prompt several directions of future research:

• The efficiency of qudit gates motivates further explo-

ration into quantum circuits that explicitly use qudits for

computation, such as the asymptotic ancilla reductions

achieved in [6] and [7]. The computational advantages of

qudit circuits may allow NISQ devices to solve previously

intractable problems.

• In this work, we consider the generalized SWAP two-

qudit gate, which appears to scale nearly linearly for

small qudit dimension. This result encourages analysis

of duration scaling for more two-qudit gates, such as the

SUM gate (a generalization of CNOT) from [15].

• The presented results are based on a system Hamiltonian

modeling superconducting transmons. We emphasize that

our approach is not limited to this specific case and could

be directly applied to optimal control problems across a

wider class of quantum systems.

• Our optimizations use an approximate Hamiltonian in a

closed system (governed by the Schrodinger equation).

For a more accurate measure of gate duration scaling,

similar experiments are needed in an open system, where

errors can be modeled more realistically. This can be

achieved by describing the dynamics with the GKSL

master equation [26], [27]. In addition, benchmarking

the performance of qudit pulses on actual noisy quantum

architectures would help to investigate the accuracy of

models employed. Optimizing control pulses to specifi-

cally mitigate the increased sources of errors from oper-

ating on higher energy levels may lead to making qudit

computation practical.

Overall, our work highlights the potential of qudit-based

computation in the future and provides an effective method

for finding short-duration qudit pulses. We find high-fidelity

pulses of low duration for both one- and two-qudit gates with

nearly linear scaling in the hardware-practical regime, suggest-

ing that qudit computation can offer significantly increased

efficiency compared to qubit-only circuits.
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