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1 | INTRODUCTION

Farshud Sorourifar |

Joel A. Paulson

Abstract

Many real-world design problems involve optimization of expensive black-box
functions. Bayesian optimization (BO) is a promising approach for solving such
challenging problems using probabilistic surrogate models to systematically trade-
off between exploitation and exploration of the design space. Although BO is
often applied to unconstrained problems, it has recently been extended to the
constrained setting. Current constrained BO methods, however, cannot identify
solutions that are robust to unavoidable uncertainties. In this article, we propose a
robust constrained BO method, constrained adversarially robust Bayesian optimi-
zation (CARBO), that addresses this challenge by jointly modeling the effect of the
design variables and uncertainties on the unknown functions. Using exact penalty
functions, we establish a bound on the number of CARBO iterations required to
find a near-global robust solution and provide a rigorous proof of convergence.
The advantages of CARBO are demonstrated on two case studies including a non-

convex benchmark problem and a realistic bubble column reactor design problem.

KEYWORDS
black-box optimization, derivative-free optimization under uncertainty, exact penalty functions,
Gaussian processes, robust Bayesian optimization

been a significant amount of work on so-called “optimization under
uncertainty,” as summarized in several review articles.®”® Two main

classes of methods for optimization under uncertainty are stochastic

Uncertainty is inevitably present in real-world problems due to noisy
and incomplete datasets, unknown parameters, environmental distur-
bances (such as product demand and prices), and implementation
errors. Therefore, so-called “optimal” solutions found by solving some
underlying nominal optimization problem, which neglects these many
sources of uncertainty can often be suboptimal, or even worse, infea-
sible.? Local and global sensitivity-based methods®~> are often used
to study the impact of any critical uncertainties on specific designs;
however, such methods focus on robustness analysis amongst a small,
finite set of designs, meaning they are unable to systematically syn-

thesize new designs with improved robustness directly. There has

1011 models the

and robust optimization. Stochastic optimization
uncertainty in the form of probability distributions, which must be
either estimated from data or selected according to expert opinion/
prior knowledge. An important challenge with this approach, however,
is that the true distribution of the uncertainties is rarely known in

12715 51 the

practice, which limits its applicability. Robust optimization,
other hand, is an alternative strategy that adopts a “min-max”
approach by defining the robust optimal design as the one with the
best worst-case performance subject to worst-case constraint satis-

faction. There has been a significant amount of work on the
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development of robust optimization theory and algorithms for both
convex and non-convex problems. In fact, it is worth noting that
robust optimization can be interpreted as a special category of gener-
alized semi-infinite programs (GSIP),*¢ which are optimization prob-
lems involving a finite number of decision variables subject to a
potentially infinite number of constraints in which the feasible set of
parameters may depend on the decision variables. Whenever the fea-
sible parameter set is independent of the decision variables, then the
problem falls into the category of a standard semi-infinite program
(SIP) for which we refer interested readers to Refs. [17-21] Within the
framework of robust optimization, uncertainty sets described by con-
vex inequality constraints can be efficiently handled, as discussed in,
for example, Refs. [22-24]. Several methods have also been devel-
oped for SIPs defined in terms of general non-convex functions
including cutting-plane algorithms,2>2” interval methods,?® and inte-
rior point techniques?® to name a few.

Although solving (G)SIPs with both explicit and implicit function
representations has been an active area of research for more than
three decades, the methods summarized above all require the struc-
ture of the objective and constraint functions to be known and
exploited within the algorithm. However, obtaining equation-oriented
models whose structure can be exploited by these methods for each
and every component of a complex system is frequently not possible.
For example, in addition to having many types of challenging nonline-
arities, engineering design problems often require the use of expensive
computer simulations or experiments, implying that the functional
relationship between the design variables and uncertain parameters
and the objective and constraints are unknown (often referred to as
“simulation-based” or “black-box” models). Some examples include
the choice of laboratory experiments in material and drug design,*°
calibration of expensive simulators to experimental data,” airfoil shape
design,®®2 hyperparameter tuning in machine learning algorithms,>3
and automated design of advanced multivariable control
structures® 3¢ to name a few. Due to lack of known structure in
these cases, one must resort to so-called derivative-free optimization
(DFO) methods,®” which only require the black-box functions to be
queried at specific input values such that these methods can be very
generally applied.

One of the first methods developed for robust optimization of
unconstrained simulation-based problems was presented in Ref. [1],
which was extended to constrained problems in Ref. [2]. These
methods are analogous to local search techniques (e.g., gradient
descent), as they iteratively take steps along descent directions that
preserve robust feasibility. They also require one to determine the set
of possible worst-case uncertainty values at each iteration, which
requires one to repeatedly solve the lower-level maximization prob-
lem. In Refs. [1,2] this lower-level problem is practically solved using
multiple gradient ascents from different starting designs to improve
efficiency. Therefore, under this assumption,*? are not DFO methods
since one must be able to extract gradient information from the simu-
lator, which limits their applicability. A natural extension of these
methods would be to replace the gradient ascent method with some

DFO method, which can be broadly categorized as either stochastic
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or deterministic. Stochastic DFO methods, such as genetic algorithm®®
or particle swarm optimization,®’ utilize random numbers within the
search process and are known to require a large number of function
evaluations, which prevents them from being applied to expensive
black-box functions. Deterministic DFO methods, on the other hand,
are often motivated by optimization of expensive functions and, in
particular, model-based DFO methods, which construct a surrogate
model of the unknown functions to guide the search process, have
become very popular in recent years. Model-based DFO methods
mainly differ by their choice of scale (e.g., local versus global
approximation) and type of function approximation technique
(e.g., polynomial, neural network, or radial basis function models). The

Bayesian optimization (BO) framework*®-43

is a global model-based
DFO method that takes advantage of probabilistic data-driven surro-
gate models, and has been found to empirically perform well on a vari-
ety of problems in many different disciplines. BO methods typically
rely on Gaussian process (GP) models since they are non-parametric
(i.e., can represent virtually any function given enough data) and
directly quantify uncertainty in future predictions in the form of prob-
ability distributions.** By combining these uncertain predictions from
the GP model with an expected utility (or acquisition function), BO
can systematically address the exploration-exploitation tradeoff in a
way that boosts data efficiency relative to many purely deterministic
surrogate-based DFO methods (see, e.g., Refs. [45-48]).

Even though BO has been successfully applied to many different
nominal optimization problems, it has proved difficult to extend BO to
the robust optimization setting due to the min-max problem struc-
ture, which involves two competing optimization stages. For example,
the fact that one would have to execute multiple BO runs at each iter-
ation of Refs. [1,2] would likely prevent this hybrid approach from
working on expensive functions. As opposed to using established BO
methods for lower-level maximization sub-problems, there has also
been work on extending BO to work directly on robust min-max opti-
mization problems. The MiMaReK algorithm®’ is one of the earliest
attempts to develop a robust BO strategy, which uses a two-level
expected improvement acquisition function. The main disadvantage
of MiMaReK is that a set of uncertainty samples are sequentially con-
structed such that it requires a growing number of expensive function
evaluations at each iteration. The probabilistically robust BO (PRBO)
approach®® is an alternative to MiMaReK that selects the minimum
number of uncertainty samples required to a priori provide a probabi-
listic robustness certificate at each iteration. However, both
MiMaReK and PRBO may require a large number of function evalua-
tions at every iteration, which still limits their applicability. The adver-
sarially robust BO (ARBO) method®1>2 attempts to overcome this
limitation by simultaneously modeling the effect of the design variables
and uncertainties on the objective function. ARBO only requires a sin-
gle expensive function evaluation at every iteration, which can poten-
tially result in a drastic reduction in the number of evaluations needed
to achieve convergence. Furthermore, ARBO can provide a bound on
the number of iterations needed to achieve convergence by exploiting
recent theory developed for the lower and upper confidence bounds
of the GP model. Although powerful, ARBO does not directly handle
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expensive-to-evaluate worst-case constraints, which are important in
a wide-variety of safety-critical applications in engineering and
beyond.

In this article, we propose a novel constrained extension of
ARBO, referred to as constrained adversarially robust Bayesian opti-
mization (CARBO), that is well-suited to constrained robust min-max
optimization problems whose objective and/or constraint functions
are defined in terms of noisy expensive black-box functions. Con-
straints are rigorously incorporated in CARBO by extending our
recent work on the construction of convergent constrained BO algo-
rithms using exact penalty functions in Ref. [53] to the min-max opti-
mization setting. CARBO executes two steps in alternating fashion at
each iteration: (i) select the design value that minimizes a lower confi-
dence bound on a penalized version of the original robust problem
(which we show can be interpreted as a probabilistic relaxation of the
original problem that contains the true unknown feasible region with
high probability) and (ii) select the uncertainty values that maximize
the upper confidence bound of the unknown objective and constraint
functions at the fixed design found in the previous step. In addition to
providing detailed descriptions of the practical implementation
aspects of CARBO, another key contribution of this article is a com-
prehensive theoretical analysis of CARBO's convergence properties.
To prove convergence to a robust global optimum, we introduce the
notion of penalty-based robust-regret, which measures the difference
in the quality of recommended point by CARBO and the unknown
robust global solution. By establishing that the cumulative penalty-
based robust-regret is a sublinear function of the number of CARBO
iterations under certain relatively mild assumptions, we can prove that
there must exist a finite iteration such that the recommended point is
arbitrarily close to the constrained robust global optimum. Since this
bound decays to zero with an increasing number of CARBO itera-
tions, we can immediately infer that CARBO is an asymptotically
consistent and convergent algorithm. To the best of our knowledge,
CARBO is the first method with guaranteed convergence proper-
ties that is applicable to constrained robust optimization problems
involving noisy expensive black-box functions. In fact, the only
other method we are aware of that is applicable to this class of
problems was proposed in Ref. [54]. An important challenge with
this method is that there are several internal parameters whose
selection is not discussed, making it difficult to implement and com-
pare against. Furthermore, Ref. [54] only selects uncertainty sample
points based on the predicted worst-case constraint value, which
may lead to a loss in worst-case performance, as demonstrated by
our theoretical results.

The remainder of this article is organized as follows. In Section 2,
we formulate the constrained robust optimization problem of interest
and summarize all relevant assumptions on the objective and con-
straint functions. In Section 3, the GP modeling approach and the pro-
posed CARBO algorithm are presented. The key theoretical
convergence results for CARBO are presented in Section 4, while sev-
eral practical implementation details are summarized in Section 5. The

main advantages of CARBO are demonstrated on two case studies in

Section 6, which includes a non-convex benchmark problem and a
realistic engineering design problem defined in terms of an expensive
bubble column reactor simulator for industrial waste gas recovery.
Lastly, we conclude the article and discuss some interesting directions

for future work in Section 7.

2 | PROBLEM FORMULATION

In this work, we are interested in solving the following constrained

robust black-box optimization problem

73,255 O )
st g;(6,w) <0, Ywe W(9), Vie {1,..,m}, (1b)

where 0 € RP! denotes the set of decision (or design) variables that
must reside in a set ® C R, w € R”2 denotes the set of uncertainties
(or external disturbances) that are restricted to a set W(0) C RP? that
can depend on 6, and f:RP* xR —R and g;:RP* xRP2 =R are
unknown black-box objective and constraint functions, respectively,
for all i=1,...,m. The objective function (1a) can be interpreted as a
sequential two-player game, with minymax,, reflecting the assumed
order of the game, meaning the design 6 must be selected first while
the adversary w is able to adapt to any given choice of 6. The con-
straints (1b), on the other hand, may represent critical safety and/or
performance requirements and must be satisfied for any feasible
uncertainty realization. Such constraints are often referred to as
“worst-case” constraints, as (1b) can be equivalently stated as
maxy e w)gi(6:w) <0 foralli=1,..,m. It is important to note that, in
general, different values of w produce the worst-case objective and
constraint functions, which will be an important factor in the deriva-
tion of our algorithm in Sections 3 and 4. We are interested in finding
globally optimal solutions to problem (1a and 1b), which falls under
the class of generalized semi-infinite programming (GSIP) problems. A
comprehensive review on GSIPs is provided in Ref. [16] while further
details on state-of-the-art numerical methods for GSIPs can be found
in, for example, Refs. [9,18,21]. The proper selection of an algorithm
for solving (2) depends on the underlying characteristics of the func-
tions F ={f,g1,...8m} and the constraint sets ® and W(0). Currently,
two main classes of numerical methods exist for GSIPs: discretization-
and local reduction-based methods. A key implicit assumption in these
methods is that the functions F are known (and often differentiable),
which is not the case in this work, as summarized in the following

assumption:

Assumption 1.

1. The feasible sets ® and W(0) are known and compact for all 6 € ©.

2. The worst-case uncertainty values wy (0) € argmaxyv(9,w) for all
functions ve F are unknown, so they cannot be determined/

estimated from prior knowledge.
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3. The objective f(6,w) and constraint functions {g;(9,w)}?, are fully
black-box in nature, meaning no closed-form expression or special
structure (e.g., convexity) is known.

4. The set of functions F are expensive to evaluate and only
provide zeroth order information, that is, we cannot obtain informa-
tion about the derivatives of the function output with respect to the
inputs.

5. The observations of v(6,w) for all ve F are corrupted by noise. That
is, y, =v(0,w) +&, where &, ~N (0,62 ).

6. The set of functions in F are independent such that they must be que-
ried separately.

Characteristics 1-3 imply that (2) can be used to represent a
wide-variety of problems since we do not require any prior struc-
tural knowledge of the objective or constraint functions. Character-
istic 4 is a key assumption in this work since it prevents the
application of any currently available robust optimization methods
that either exploit derivative information and/or require a large
number of function evaluations (which implicitly assume cheap
objective and constraint functions are readily available). In addition,
characteristic 5 further increases the complexity of the problem
since we do not assume access to highly accurate function evalua-
tions, which may not be available in practice. Even though we
assume the effective noise term is additive and normally distrib-
uted, our proposed algorithm can learn the parameters of this dis-
tribution as data is collected, which is discussed in more detail in
Section 5. Lastly, characteristic 6 is a minor assumption that we
make to study the limited information case and can be easily
relaxed (see Remark 2). It is worth noting that, if Assumption 1 was
replaced with standard assumptions from the GSIP literature, then
we could directly apply established numerical methods recently
summarized in Ref. [9]. However, to the best of our knowledge, no
such method exists for functions satisfying Assumption 1, which is
the main contribution of this work.

The most direct way to solve (1a and 1b) is to define an equiva-
lent constrained black-box optimization problem

min F(0), s.t. Gi(6) <0, Vie {1,...m}, (2)

where F(0) = maxyyg)f(6,w) and G;(0) = maxyy)8;(6,w). However,
this requires one to solve a set of lower-level optimization problems
at every iteration of the upper-level minimization algorithm. Such an
approach is not applicable to expensive functions since one may
spend the majority of the available evaluation budget on a single
(potentially poor) choice of 6. Since we are considering a very chal-
lenging class of problems, as highlighted by Assumption 1, we make
two additional assumptions to ensure that we can make progress on
solving these problems:

Assumption 2. The unknown functions v € F are suffi-
ciently smooth enough so that they can be modeled as
GPs, which are formally defined in Section 3.

AI?BIFJ R NALJ‘;;f20

Assumption 3. At least one global solution 8* to (2)
exists and the Mangasarian-Fromovitz Constraint Qualifi-
cation (MFCQ) for the upper-level problem (3) holds at

every global solution 6* .

Assumption 2 is a standard one considered in the Bayesian para-
digm. Assumption 3, which is based on results established in Ref. [55]
is used to provide some theoretical convergence properties of the
proposed algorithm and is fairly weak since the MFCQ conditions only
need to hold at global minimizers. Note that similar constraint qualifi-
cation assumptions are routinely made in the GSIP literature to estab-
lish convergence properties, as discussed in, for example, Ref. [56].
Instead of approaching (1a and 1b) by applying established black-box
optimization methods to the nested formulation (2), we look to refor-
mulate (1a and 1b) as a so-called bandit feedback problem. In particu-
lar, we would like to develop a sequential learning (or bandit)
algorithm that selects a batch of samples
{(Ovt, Wut) €@ X W(Oy)}, c 7 at which the objective and constraint
functions should be queried at each iteration t =1, 2, ... (where “itera-
tion” refers to the total evaluation period of the objective and con-
straints) and subsequently recommends a best point ¢; that ideally
converges to a global solution 6 — 6* with high probability. The
authors of this work recently proposed an approach based on Ref.
[51], termed adversarially robust Bayesian optimization (ARBO),>? that
provides such a convergence guarantee in the absence of constraints.
The theoretical analysis of ARBO is based on the instantaneous

robust-regret at iteration t, which is defined as follows

w O, W) — 6*,w), 3
= IO = 5 ) ©

where 8* denotes any global solution to (1a and 1b). An algorithm
that minimizes the cumulative robust-regret RY¥ =31 ,r¥ defined
over T iterations will ensure that we learn 8* as quickly as possible. It
is not possible to minimize Ry directly since it is defined in terms of
the unknown optimal solution #*. Instead, ARBO ensures that the no
robust-regret property is satisfied, that is, limr_,RY/T=0. In the
absence of constraints, the no robust-regret property ensures conver-

gence, which we can see by analyzing the simple robust-regret

Sf= min_r{= min <max f(Or,w) — max
te{l,...T}H \weW®) wewo*

)f(e*,w>>‘ (4)

Since r{ 20 must be non-negative if 6; € ® (trivial to guarantee
since O is known) and no black-box constraints are present (m=0),
and the minimum of a sequence must be less than the average, that is,
0<S7< %RVTV, the no robust-regret property directly implies that
S¥ — 0 can only happen when one of the sampled points belongs to
the set of global solutions. This analysis breaks down in the presence
of black-box constraints (m > 0) since the lower bound on S¥ may not
hold. In particular, we may have r}’ <0 for certain choices of 6; c®
that result in violation of the black-box constraints. Therefore, the

goal of this article is to develop an extension of ARBO that is
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applicable to constrained problems of the form (1a and 1b). We give a
detailed description of the proposed algorithm in the next section.
We then propose a new definition of robust-regret for constrained
problems and demonstrate how this can be used to establish
robust-regret bounds that lead to rigorous convergence guarantees in
Section 4.

3 | CONSTRAINED ADVERSARIALLY
ROBUST BAYESIAN OPTIMIZATION

In this section, we first summarize the GP regression methodology,
which is used to construct probabilistic surrogate models for the
unknown objective and constraint functions. We then present the
proposed CARBO algorithm, followed by a discussion on how to
reduce the number of samples needed at each CARBO iteration using

constraint aggregation methods.

3.1 | Gaussian process regression
Let x= [F)T,WT}T denote the concatenated vector of design variables
and uncertainties that are restricted to the space X =0 x W(®) C R’
where p=p4 +p,. Since we treat all of the black-box objective and
constraint functions in a similar fashion, we focus the presentation in
this section on a scalar function v: R? — R for any v € F. For simplicity
of notation, we also interchangeably denote v(6,w) as v(x) through-
out the article for all v e F. In accordance with Assumption 2, we can-
not make any parametric assumption about v due to lack of
knowledge about its underlying structure and must instead model v as
a sample of a GP, which is a commonly used class of models in non-
parametric Bayesian inference. As discussed in detail in Ref. [44] GPs
can be interpreted as an infinite collection of random variables for
which any finite subset has a joint Gaussian distribution, meaning they
generalize the notion of multivariate distributions over vector spaces
to probability distributions over the space of functions. It should be
noted that, in the absence of Assumption 2, any of the functions
ve F could be arbitrarily discontinuous at every input xe X in the
worst-case. Therefore, by leveraging GP models, we are in essence
encoding that some level of smoothness implicitly holds in these func-
tions without making rigid parametric assumptions.

We let v(x) ~GP(u,(x),ky(x,X")) denote a GP that is uniquely
specified by its mean function u,(x) and covariance (or kernel) func-

tion ky(x,X’), which are defined as follows
Hy(X)=E{v(x)}, (5a)
ky (%, X') = Ey{ (V%) =, () (v(X') — p, (X)) }- (5b)

The properties of the fitted functions v are derived from the
choice of k,. The proposed CARBO algorithm is applicable to GPs
with any covariance function including stationary and non-stationary

kernels. The theoretical results established in Section 4, however,

focus on covariance functions from the Matefn class,** defined as

follows

v

2t
/. __ 2
ky (%, X';0,¥) =¢ )

(\/Zr(x, x’))BL (\/Zr(x, x’)), (6)

where r(x,x) =1/(x—X)L"2(x—x) is the scaled Euclidean distance,
L=diag(ly,...,Ip) is a diagonal scaling matrix composed of length-scale
parameters Iy, ..., [, >0, v is a parameter that dictates smoothness (i.e.,
the corresponding function is /2 —1+ times differentiable), Pisa
scaling factor for the output variance, I' and B, are the Gamma and
modified Bessel functions, respectively, and ¥ ={,...,l,,{} are the
hyperparameters of the kernel for a fixed value of v. Training a GP
model corresponds to calibrating {¥,c.,} to the available data. For
now, we assume the kernel hyperparameters are known and discuss
the training procedure further in Section 5. It should be noted that
learning the length-scale parameters Iy, ...,I, is directly related to fea-
ture selection since the ith dimension [x]; is unimportant (i.e., does not
contribute to the output predictions) whenever [; — .

In addition to being non-parametric models, GPs have simple ana-
lytic expressions for the mean and covariance of the posterior distri-
bution when conditioned on (possibly noisy) function observations.
Let us assume that we have access to t noisy observations at known
input points, which are represented by the following matrices

XV,t = [Xv,I, Xy,2) ey vat]T S RtXp, (73)

YV,t = [YVJ‘ YV,Z’ ooy YV,t] ! € Rbdy (7b)

where y,; =Vv(xy;) +&; and &,;~N (0,02,) is i.i.d. Gaussian noise for
alli=1,...,t. As shown in section 2 of Ref. [44], the posterior distribu-
tion v(x) | Xe, Yye ~ GP (i, ¢ (X), kvt (x,X')) of the function v(x) remains a
GP with the following expressions for the posterior mean u,;(x),

covariance ky+(x,x’), and variance 031 (x)
-1
ﬂv,t(x) :ﬂv(x) +k§,t(x) (Kv,t +(7£,v|f) (YV,t _”V(X))’ (83)

ke =k (%X ) = ke () (K + 2, 0) e(), (8)

2,00 =ky(%,X), (8¢c)

O,

where ky¢(x) =k, (X;,x) e R™! is the vector of covariance values
between the test point x and the observed data points X,
Ky =ky(X¢, X¢) € R is the covariance matrix between the observed
data points, and I; is the t x t identity matrix. A key advantage of the
posterior GP expressions shown in (8a)-(8c) is that they quantify the
degree of uncertainty in the predictions such that they can straight-
forwardly be used to generate confidence bounds for v(6,w) at any
desired test input x= (6, w) € ® x W(0). In particular, given an explo-
ration parameter f,,,, the upper and lower confidence bounds on v

are defined as follows
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UCB, (6, W) =y (0,W) + Bt 300, (6, W), (9a)

LCB¢(6, W) =y (6,W) — B30, (6, W), (9b)

which can be readily computed from the GP posterior expressions in
(8a)-(8c). It turns out that both the upper and lower confidence
bounds provide important information that can be exploited by
CARBO, as discussed next.

3.2 | Overview of the CARBO algorithm

Given the posterior GP surrogate models for all unknown functions
v c F from (8a)-(8c), we can come up with several different strategies
for sequentially selecting sample points {x,:}, . » given previous data
{Xv,t—i‘Yv,t-1}v€;- For example, we could attempt to spend our eval-
uation budget on learning globally accurate representations of the
functions v € F as quickly as possible. We can interpret this goal as a
Bayesian experimental design (ED) problem,>” which suggests that we

select samples that maximize the predicted variance of each unknown
function, that is,

Xy¢ €argmax o2, 4(x), Ve F. (10)

xe X

This approach is good at exploring the functions v € F; however,
even in the unconstrained case, it is not particularly well-suited to the
optimization task since we only care about identifying values of
x={0,w} that minimize the worst-case value of f(6,w). This issue is
only exacerbated in the constrained case considered here since we
have more functions that must be explored, which implies an even
larger number of expensive function evaluations are needed to glob-
ally model every v € F. A natural alternative to the explorative Bayes-
ian ED approach is to select a single x; by solving the following min-

max optimization problem

min max - pee 1 (0,W) st g, 1(0,w) <0, YweW(9), Vie {1,..,m},

6e®we W)
(11)

ALGORITHM 1 CARBO: A sequential learning algorithm for constrained robust black-box optimization problems

Input: The set of the design variables ® and uncertainties WW(9) for all 8 € ©; GP priors {u,,k,}, ¢ &; exploration parameters {f;}, ,; con-

straint penalty weight factor p; and total number of iterations T.
1: fort=1to T do

2:  Solve the following min-max optimization problem for 6;

0teargmin< max LCB“ 1(6,w)

0cO wew

m +
Z( ma)((e)LCtht_1(n9,w)> ) (12)

where h™(x) = (h(x))™ = max{h(x),0} denotes the positive part of a function h(x).

3: Setf,=06; forallve F.

4:  for every unknown function v in the set 7 do

5: Solve the following maximization problem for w, ¢
wyt € argmax UCB, ¢ 1(0vt,w). (13)
w e W(6;)
6: Evaluate the unknown function v at {6+, w,;}, i.e,, collect data y, ; =v (O, Wy ¢) + vt
7: Update the GP posterior mean g, ;, variance avt, and confidence bounds LCB,; and UCB,; according to (8a)-(8¢c) and (%a

and 9b) with the newest available data.
8: end for
9: end for

10:  Return the recommended design point 67 = 6;- that corresponds to the sampled point with the smallest penalized upper confi-

dence bound, defined as follows

t* € argmin | max UCBgt_1(6r,w
te{1,.,T}\WeEW@)

.
+/)Z <w2ny:ix UCBg, ¢ 1(6% )> > (14)

i=1
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which is derived by substituting the mean representation of the pos-
terior objective and constraint functions into (1a and 1b). This type of
mean-based search rule is known to be greedy in the sense that it can
easily get stuck in shallow local solutions. Another major challenge
with such an approach is the inaccuracies in the mean constraint func-
tions can cutoff exploration in a large portion of the feasible region,
especially in the early iterations when limited data is available. In other
words, mean-based search strategies tends to over-exploit the cur-
rently available data. This over-exploitation is not a big issue when
data is abundant and/or cheap to collect, but is a major limitation in
the context of expensive function evaluations considered in Assump-
tion 1. Furthermore, in the robust optimization case, (11) does not
incentivize improved learning of the feasible region because the
uncertainty values are selected based on the predicted worst-case
objective function.

Motivated by the GP-LCB algorithm®® that has been shown to
work well in the nominal unconstrained case, we look to develop a
strategy that takes advantage of the confidence bounds defined in
(9a and 9b) to address the exploration-exploitation tradeoff. For suffi-
ciently large choices of ;. 4, these confidence bounds can be used to
guarantee that the true unknown function is contained within these
bounds with high probability, which is discussed in Section 4. The pro-
posed CARBO algorithm, which relies on the confidence bounds (9a
and 9b), is summarized below in Algorithm 1.

The suggested 6; is the one that leads to the minimum robust
penalized lower confidence bound, as shown in (12). Note that we
specifically penalize the constraints using a non-smooth penalty func-
tion, which will be needed to establish the theoretical convergence
results in the next section. To better interpret (12), let us recast it as

the following equivalent constrained min-max problem

m
. 1/2

min  max o,w)— _1(0,w E i 15a
6€0,620we W) ”mil( ) P il )+ i—1 “ ( )

s.t. max (ﬂgiyt,l(e, w) _ﬂt1/2gg‘_1t,1(0, w)) <g, Vie{l,..,m},

w e W(0)

(15b)

where ¢ denote slack variables that represent the degree of robust
constraint violation for the ith constraint. We delay a discussion on
how to practically solve (15a) until Section 5 and, for now, assume
that we can identify a global solution. From (15a), we see that Algo-
rithm 1 simplifies to the standard GP-LCB algorithm whenever there
is no uncertainty (i.e., W(6)={w} is a singleton containing only a
nominal value) and there are no constraints (m=0). However, the
inclusion of uncertainty and constraints do fundamentally change
the behavior of the method. We see that the constraints (15b) can be
interpreted as a “relaxation” of {#:G;(#) <0, Vi=1,...,m} that should
contain the true feasible domain with high probability (as long as
{Bi};», are appropriately chosen). To handle uncertainty, once we
have selected 6;, we also need to select feasible a set of uncertainty
values {wy+}, . ». This is accomplished by solving (13), which corre-

sponds to selecting the uncertainty value that maximizes the upper

confidence bound for each unknown function. CARBO is thus based
on two distinct principles that alternate within each step of the algo-
rithm: (i) make optimistic selections under uncertainty for the design
0; that is shared for all v e F and (ii) make pessimistic selections under
uncertainty for the anticipated worst-case values of {wy;},. » that
can differ between the unknown objective and constraint functions.
The first concept is similar to traditional BO algorithms, while the second
is unique to constrained robust BO algorithms that must mitigate the
effect of a potential adversary simultaneously on multiple functions. We
also see that CARBO reduces to the ARBO algorithm from Ref. [52]
whenever m =0, which only requires one evaluation at each iteration
because only the objective function is considered to be unknown.

Once the outer for loop is completed in Algorithm 1, a final
recommended point is selected out the sequence {01, ...,0r} using the
rule shown in (14). It should be noted that many different recommen-
dation procedures are possible (e.g., simply returning the final point
07 =0r); however, we select one that minimizes a pessimistic bound
on a penalized variation of the robust-regret from (3), which is based
on the theoretical results established in the next section. In addition,
the key parameters of the algorithm, mainly {f;},., and p, have been
left unspecified. We also analyze their impact on the convergence
properties of CARBO next.

Remark 1. In CARBO, m+1 function evaluations are
needed at each iteration, which scales with the number
of constraints considered in the original problem (1a and
1b). Thus, it can be valuable to aggregate constraints to
limit these evaluations. The simplest constraint aggrega-
tion approach is the maximum constraint method, which

replaces (1b) with a single constraint

max{g,(0,w),....gm(0,w)} <0, Yw e W(9). (16)

An important challenge with this approach is that
the resulting constraint may not satisfy the smoothness
requirement of Assumption 2. A better alternative is to
rely on the Kreisselmeier-Steinhauser (KS) function to
aggregate the constraints into the following smooth

composite function
1 m
KS(1(6, W), ..gm(6,W)) = I {Z e‘&'“’w] <0, Ywew(), (17)
i—1

where 1> 0 is a weight factor that ensures the KS function converges to
the max operator as A— co. Not only does the KS function provide the
desired smoothness properties, but also it can be shown to be an overesti-
mate of the original constraints g;(0,w) < 0,%? so that it can still be used
to establish robust feasibility guarantees in our context. Therefore, by repla-
cing (1b) with (17), CARBO only requires two samples at each iteration,
which is completely independent of m. It is worth noting that the computa-
tional cost of each CARBO iteration is also reduced when applying KS
aggregation since only two GP models are included in the sub-prob-
lems (12) and (13). The main downside to this KS simplification is that
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less information is provided to these sub-problem such that constraint

predictions may not be as accurately represented at each iteration.

Remark 2. In the description of CARBO provided in
Algorithm 1, we have focused on the case that the func-
tions v € F must be independently evaluated, as noted
in characteristic 6 of Assumption 1. There are certain
cases where the evaluation of the objective and con-
straints is coupled such that, when we query one of the
functions, we can cheaply obtain data for some or all of
the other functions of interest. One such example is
when the functions {f,g1,...,gn } are defined in terms of
a vector of outputs from a complex simulator that must
be evaluated simultaneously. Since the case considered
here is a special case of this more general setting, all of
the results proved in this article still hold. Furthermore,
we can easily incorporate this information into the GP
models by augmenting the datasets (7a and 7b) with
any additional measurements, which can be expected to

practically improve the rate of convergence.

4 | THEORETICAL CONVERGENCE
GUARANTEES FOR CARBO

The focus of this section is on theoretical analysis of the proposed
CARBO algorithm discussed in Section 3. First, we provide an overview
of exact penalty functions for constrained nonlinear programs of the
form (2), which is needed to formulate our modified definition of regret.
Then, we use established results on GP confidence bounds to determine
an upper bound on our proposed regret quantity. Finally, we show how
this newly derived upper regret-like bound is sufficient to establish con-

vergence of CARBO to the constrained global minimax solution.

4.1 | Proposed definition of exact penalty-based
robust-regret

As discussed previously, the original robust problem (1a and 1b) can
be represented by (2) where F(9) and G;(6) are defined in terms of the
lower-level optimization problems. Let us consider a related optimiza-
tion problem of the form

min P(6:p) = F(0) +/)Z G/ (0), (18)

where p 20 is a non-negative constant and P(¢;p) denotes the non-
differentiable penalty function. The key “exactness” property for P(-)
that is relevant to this work is summarized in the following theorem.

Theorem 1. (Exact Penalty Function®®) Let Assumption
3 hold. Then, there exists a finite threshold value p such
that, for any p € [p, ), every global solution to (2) is a
global solution of (18) and vice versa.

It is important to note that exact penalty property summarized in
Theorem 1 does not hold for all choices of penalty functions. As an
example, it is common to formulate the Lagrangian function (by linearly
penalizing constraints) and then apply duality theory to transform the
original problem into a dual problem that yields a lower bound on the
optimal objective function of the original (or primal) problem according
to the weak duality theorem. Unless certain strong convexity conditions
hold, however, there will exist a duality gap between the primal and dual
solutions, meaning we cannot directly use the dual problem to solve the
original primal problem. As discussed in Ref. [60] we can interpret the
solution to (18) as an extended dual function that ensures zero duality
gap (i.e.,, strong duality holds), which is a critical property for potentially
highly non-convex problems because it provides us with a path forward
to solving the original problem (2) (equivalent to (1a and 1b)) by solving
simpler problems of the form (18).

Let G(9) =[G1(6),...,Gm
upper-level constraints. Using the exact penalty function concept in

(0)]" denote a concatenated vector of the

(18), we define the instantaneous penalty-based robust-regret at any
iteration t as follows

repe(p) =F(6) +p | G"(6e)lls —F(6"),
N
:Wrenax f(Or,w +pz< max. g, (6, )> fwen%*)f(e W),

+
=r{ +/’Z< max g, (6, W )) .

(19)

Note that the term p || G*(8*)|l1 =0 by Assumption 3, that is, at
least one global solution exists to the original constrained problem (1a
and 1b). The second and third lines in (19) show that there is a clear
relationship between the original robust-regret r}’ and the penalized
version r¢, . (p), with the additional term having important implications

on convergence, as shown in detail in the subsequent sections.

Remark 3. The exact penalty function proposed in (18)
can be categorized as an L, penalty function and is one
of most recommended ones for (G)SIPs.°® Other exact
penalty functions have been proposed for this class of
problems including modified L; penalty functions®! and
L., penalty functions.®? In principle, these other penalty
functions can be used within the proposed CARBO
algorithm, though it is not clear what their effect would
be on the underlying numerics or rate of convergence.
We believe better understanding the impact on the
choice of penalty function used by CARBO would be an
interesting direction for future work.

4.2 | Upper bound on cumulative penalty-based
robust-regret

CARBO, presented in Algorithm 1, requires one to select the explora-

tion parameters {f;},,, that directly specify the width of the
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confidence intervals as seen in (9a and 9b). To see the importance of
these values, note that (15a and 15b) reduces to the mean-based
search method (11) when ;=0 (and ¢ =
information being completely ignored. We first extend a result from

0), which results in variance

Ref. [58] for one GP to multiple GPs. For simplicity, we summarize this
result for the case of a finite set X =0 x W(O) first and discuss the

extension to compact sets in Section 5.

Lemma 1. (GP Confidence Bounds) Let v(x)~
GP(u(x),k(x,x')) be a sample of a GP for which noisy
observations of the form (7a and 7b) are available for all
v € F. In addition, let f; = 2log ((m+1)|X|t?2%/(6a)) for
a specified failure probability a € (0,1) and discrete set
| X | < oo. Then, the following simultaneous bounds on the

objective and constraint functions

v(x) € [LCBt_1(x), UCB;_1(x)], Vxe X,Vt21,VveF, (20)

hold with probability 1 — a (over the set of GP posteriors at every itera-
tion t).

Proof. The result [58, lemma 5.1] proves (20) holds for
a single function v, that is, | 7 |=1. To extend this result,
we replace a with a smaller value a/ | F |. We then apply
the union bound (aka Boole's inequality) as follows

P{v gfv(x) ¢ [LCB¢—1(x)UCB;_1(x)], Yx € XVt 2 1}

Z P{v(x

veF

)¢ [LCBe_1(x)UCBy_1 (X)], VX € XVt > 1}.

The right-hand side above can be reduced to
Yver=a such that the stated claim holds
since | F |=m+1.

We also need the following bound that can be derived from the prop-

erties of the positive part operator.

Lemma 2. (Positive Part Difference) The inequality
at—b"<(a— b)+ holds for any real constants a,b € R.

Tepe(p) = UCByt 1(6r,wyy)+

UCBf,t,i (gt, Wf‘r)

< UCB(Yt_l (gt, Wf,t)

Ms E_Ms EMS EMS

= UCB(Yt,l (at, Wf,t)

Il
i

6co

(UCBg,—1(6t, Wy, ¢ )) - mE'B

Proof. There are four cases to consider: (i) a,b <0, (i)
a<0and b=0, (i) az0, b<0, and (iv) a,b = 0. For case
(i), the left-hand side is O while the right-hand side must
be >0 by definition. For case (ii), the left-hand side is
—b <0 while the right-hand side is 0. For case (iii), the
left-hand side is a while the right-hand side is
a+|b| >a. For case (iv), the left-hand side is a— b while
the right-hand side must always be 2a—b.

Let us now convert the GP confidence bounds in Lemma 1 to a
bound on our proposed regret measure r,, in (19) that depends only
on constants and the GP posterior variance.

Lemma 3. (Instantaneous Penalty-based Robust-Regret
Upper Bound) Let t=1 be fixed, the query points
{6t Wyit}, c » be selected according to CARBO (Algo-
rithm 1), and Assumptions 2 and 3 hold. Then, if
LCB,t-1(x) <v(x) <UCByt_1(x) holds for all xe X and
v e F, the instantaneous penalty-based robust-regret in
(19) satisfies the following bound

repe(p) < 2ﬁt1/2 vanv,pﬂé‘v,b Wyt), (21)
veF
where p, =1 forv=f and p, =p for all v e F f.

Proof. First, we need to establish a pessimistic estimate

of rgp(p), which we define as follows

Fepe(p) = L UCBft_1(6: W

— max f(0*,w).
wewo*)

N
+pz< max UCBy, -1 (01, W ))

we W)

We clearly see that rf;;(p) <Tgp,(p) given the upper bound assump-
tion on all ve F. Now let us use our previous definitions and results
to establish the following sequence of inequalities

where first line follows from the definition of w,; in (13); the second
line follows from 0* € © being feasible and satisfying worst-case con-

straints by Assumption 3; the third line follows from the lower bound

(UCtht,:[ (et’ Wg[,t))+ T w Ernvs();* )f(e* ’ W)’

w e W(0)

(UCBg, -1 (0, wg, ¢ )) — min{ max f(G,w)+pi< max 3"(9,w)>+]’

w e W(0) =1

we W

4
max LCB 6,w)+ < max LCBg ;_ 0,w> ,
{ =1 PZ X, LByt 1(6,w) }

m +
(UCBg‘t 1(0t’w& ))+_ max LCBft 1 Gt, —p < max LCBgt 1(015, )> ,

W(0¢ =1 w e W(6

m
< UCBy:-1(606 Wre) — LCBre-1(0 W)+ Y [ (UCBge1 (6 Wa,t)) = (LCBg-1 (0 we)) |,
i=1
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on all ve F; the fourth line follows from the definition of 8; in (12);
and the fifth line
maxy ¢ wg,) LCByt—1(6:, W) 2 LCByt_1(6:, wy) for any feasible choice
of wy € W(64).

Now that we have bounded a pessimistic estimate

follows from the fact that

of rgp(p) in terms of the upper and lower confidence
bounds on the unknown functions v € F, we can use the
definitions in (9a and 9b) to further simplify this

expression:

m
F‘évpyt(p) < UCBf,t—l (gh Wf,t) — LCBf,t—l(gtr Wf,t) +p Z (UCthtfl (Qtv ngyt)
i=1
— LCBg,,r—l (F)r, Wght) )+’

m
= 28201106 wee) +p Y 28t 05,01 (00, Wa,0),
i=1

where the first line follows from Lemma 2 and the second line follows
from (9a and 9b). The stated result follows by noticing 6, =6; for all
ve F (Line 3 of Algorithm 1) and simple rearrangement of the last

inequality.

Our final step is to convert the bound on instantaneous
penalty-based robust-regret into a cumulative one, so that we
are able to analyze the behavior of CARBO for more than just a sin-
gle iteration. Before presenting this main result, we define the
maximum information gain (MIG), which is a fundamental quantity in
Bayesian ED that provides a measure of informativeness of any
finite set of sampling points AC X. We will state our cumulative

penalty-based robust-regret bound directly in terms of MIG.

Definition 1. (Maximum Information Gain) Let AC X
denote any subset of sampling points from X. The maxi-
mum information gain (MIG) for any unknown function
v € F under the t noisy measurements from (7a and 7b)
is defined as

Yye= mMax %Iogdet(lt+a’2Kv,A)y (22)

AcX:| A=t

where K, 4 = [ky(x,X)] 4 is the positive definite covariance matrix

XX €
between the points A. Note the term inside of the max in (22) is often
referred to as the Shannon Mutual Information between v and the

observations at points x € A.

Theorem 2. (Cumulative Penalty-based Robust-Regret
Upper Bound) Let a € (0,1) denote the failure probabil-
ity, B =2log((m+1)|X|t>z%/(6a)), and Assumption 2
hold. Running CARBO (Algorithm 1), we obtain the fol-
lowing bound on the cumulative penalty-based robust-
regret for all p20

VT ¥1(p), VT2 1} >1-aq, (23)

P{R?P,T (p) =

where Rgpr(p) :Zfzirgvpyt(p) denotes the cumulative penalty-based

robust-regret and

/’) = Z Z/’v/’q\/?v,T?q,Tv (24)

veFqeF

is an aggregated MIG factor with 7,7 = (8log(1+0,2))y,r denoting
the scaled MIG for v € F after T CARBO iterations.

Proof. Combining Lemmas 1 and 3, we see that the fol-

lowing event

{ (Foe(p))?

holds with probability >1—a. Since f; is non-decreasing with t, we

< 4ﬁt Z vaﬂqgv,t—l (gv,t’ Wv,t)O'q,t—i (gq,t’ Wq,t)y vtz 1}7
veFqeF

know that the sum over T steps must satisfy

)
Z rEPt /)) <4ﬁTZZZﬂvﬂqut l(gvtvat)th 1(9qtqut)
t=1 veFqe F t=1

LoD WINID SN A

veFqeF

where the second line follows from the Cauchy-Schwarz inequality.
To further simplify the innermost terms, we need to rely on the fol-

lowing established result from [Ref. [58], lemma 5.4]

2 ~
Z”vt 1 gvtvat) Iog(1+a*2)y VT = 4 VYveF,

which upper bounds the sum of posterior variances of sampled points
in terms of the scaled MIG. Substituting this result into the inequality

above results in

T

Z Iepe(p )2 pr Z vapq\/?v,T?q,T =pr¥r(p),

t=1 veFqeF

where we have substituted the definition of ¥r(p) provided in (31).

Finally, tl result follows from the fact that
2

Repr(p) < ™, (r‘gpyt(p)) by the Cauchy-Schwarz inequality.

To explicitly determine the growth rate of Rgp 1 (p) with respect to
the total number of iterations T, we need to establish bounds on
Y1 (p) defined in (24). This can be done by exploiting bounds on the
MIG y, 1 for all v € F, which have been previously identified for com-
mon kernel choices. For example, the squared exponential (SE) kernel,
which can be derived from (6) when v — oo, results in a MIG that sat-
isfies yVYT:O((IogT)”“). Substituting this expression into (24), we
see that Yr(p)
the same order and {p,}, . » are constants. Finally, substituting this

= O((IogT)p“) since all terms in the summation have

order of magnitude result into (23), we can find that
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tor(p) =0 (VT(log(T)7), (25)

where O* is a variant of the traditional order of magnitude O notation
that hides dimension-independent log factors. Similar results can be
obtained for other kernel choices, implying REVP‘T(p) grows sublinearly
with respect to T for any p 20 with high probability for a sufficiently
small choice of a. This sublinear property of Rgyr(p) is crucial for

establishing global convergence of CARBO, which we show next.

4.3 | Establishing convergence to a constrained
robust global minimum

To establish convergence of CARBO to 6*, we need to analyze the
effect of the pessimistic recommendation procedure proposed in (14).
We now summarize our main result, which shows under what condi-
tions 67(p) converges to a global solution of the original problem (1a
and 1b).

Theorem 3. (Convergence of CARBO) Let Assumptions
1-3 hold and p be the threshold value such that P(6;p)
in (25) is an exact penalty function for any p = p, which
must exist according to Theorem 1. Furthermore, let
{61,....0r} be the sequence of points generated by
CARBO (Algorithm 1) where {,},, , is chosen to satisfy
the conditions of Theorem 2. Then, the recommended

point 6% (p) defined in (14) must satisfy the following
P{Tlilr:oeﬁ(p):e*}zl—(z, Vp € [p, ), (26)

where “=" implies in the set of global solutions.

Proof. Let us first define the simple penalty-based
robust-regret as Sgpr(p) = Mintc 1. 13rp;(0), Which is
similar to (4) but also incorporates the constraint penalty
term. Since rfp,(p) <Tgp(p) as shown in the proof of

Lemma 3, we can immediately infer that

t* is defined according the recommendation procedure
in (14) that is equivalent to t* € argmin, c (1, 1yFep+(0)- A
direct consequence of the exact penalty function prop-
erty is that Sgpr(p)20 for all T21 since
F@)+p||GT(0))12F(0*)forall@c® aslongas pzp.In
addition, we note that the cumulative penalty-based
robust-regret bound in (23) also holds for the pessimis-
tic version ﬁ;vn(p) = Zfzif‘é"pyt(p), as the proofs rely on
the bound established for Fip, (p). Since the minimum of
a sequence of points must be less than or equal to the
average of those points, we can establish the following

lower and upper bounds on S?P,T(/}):

_ 1= _
0<Stpr(p) <Tep;- () < TRepr(p), Y € [p,c0).

Because ﬁ‘gp,r(/’) is sublinear in T, as illustrated in,
for example, (25), we must have that Rppr(p)/T — 0 as
T — oo with probability 21 —a. Since both the lower
and upper bound on S, (p) converge to O, we must
have Sgpr(p) —0 when the above inequalities holds,
which only occurs when 67(p) — 0*. This immediately

implies (26) must hold.

Theorem 3 provides a set of conditions that must be satisfied for
CARBO to converge. There are two main practical implications of this
result. First, the exploration constants {,},,, and the penalty weight
p have important impacts on CARBO's convergence. In particular, if
we would like a high probability of convergence, then we must corre-
spondingly select larger values for the exploration constants, which
may result in worse short-term performance. Furthermore, if we
select p to be too small, then we are biased toward sampling and
recommending infeasible points, implying conservative estimates for p
should be preferred in practice. The second key insight is that the rec-
ommendation procedure plays an important role in the convergence
result. We are unable to use the original regret definition since we
cannot find the index t* that minimizes the sequence
{rVEVPJ(p),...,rEVP,T(p)} since robust-regret is defined in terms of a max
operator applied to the unknown functions. By using the pessimistic
version of penalty-based robust-regret, we have enough information
to identify t* that minimizes the sequence {Tfp,(p), ... Fgpr(p)} since
these terms are fully defined in terms of the known GP upper confi-
dence bounds. In the next section, we discuss several important prac-
tical implementation issues including how to numerically implement
Algorithm 1 and how to verify the assumptions required to prove The-

orems 2 and 3.

Remark 4. It is interesting to note that the recommen-
dation procedure summarized in (14) uses confidence
bounds computed from different sets of data. A poten-
tially more robust approach is to replace UCB, ;1 with a
common bound UCB, 1 for all v € F so that the selection
is based on the most recently available dataset. One can
show that the Theorem 3 will still hold for this rule, as
long as one intersects the set of confidence bounds at
each iteration {t—1,..., T} so that they are monotoni-

cally shrinking.

5 | PRACTICAL CONSIDERATIONS AND
IMPLEMENTATION DETAILS

In Section 4, we analyzed the theoretical convergence of CARBO
under certain assumptions. Although these results provide various

insights and serve as a useful guide for understanding performance,
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our practical implementation differs in certain aspects that are elabo-

rated on in detail in this section.

5.1 | Choice of exploration constant g,

Lemmas 1 and 3 and Theorems 2 and 3 are presented for discrete
spaces X; however, many real-world problems are modeled with con-
tinuous spaces. In Ref. [58] a discretization technique was developed
to generalize the bounds on the GP-LCB algorithm to compact and
convex sets by enlarging the exploration constant ;. This technique
can be applied when the covariance functions k, (x,x’) ensure the fol-
lowing high probability bounds on the derivatives of the propagated

GP sample paths for f hold for some constants a,b >0

P{supi >L} sae’(”b)z, Vi=1,..,p. (27)

xexd[X];

Whenever this condition holds, we can generalize Theorems 2 and 3
to compact and convex sets of the form X C [0, r]P by replacing g, with

the following larger value
2_2
i =2log (%) +2plog (tzpbr\/ log (4pa/a)). (28)

Note that it has been shown that these values of f; are often conser-
vative in practice such that a more aggressive strategy is usually pre-
ferred. We set ;=4 in our numerical experiments in Section 6 for

simplicity, though alternative methods could easily be used.

5.2 | Data-dependent GP prior

Our previous results in Sections 3 and 4 assume that the hyperpara-
meters {¥, o, } of the GP prior for all v € F are known. However, this
is often not true in practice, so that we must rely on some hyperpara-
meter estimation scheme to train the GP models. In this work, we
focus on the maximum likelihood estimation (MLE) framework, which
determines {\P*‘U:‘/’t} at every iteration t by maximizing the log-like-
lihood function

{¥r.ol}€ argrginLv_t(‘P, Gev) =108 (D (Vv Xut, W, 00v)). (29)

1 Oev

According to the GP prior, the measured data vector y, ; must follow a

multivariate Gaussian distribution, that is,

Yvit NN(Ov Ev,t(‘P, Ge,v))y [Ev,t(‘Pv Us,v)]ij = kv (Xi: Xj|\P) +6§v6ﬁ1 Vi,j S {1,

(30)

where §; denotes the Dirac delta function that is 1 when i=j and O
otherwise. We can then derive the following analytic expression for

the log-likelihood function

t},

AICBE RN AL 12972

1

5 log (det(Zy(¥, 0.y))) —

log (2x).
(31)

Lv,t (lyv Uz-,v) = *YLZ;‘E (lyy 0'5,V)Yv,t -

NIT

Since (31) is a differentiable function, the GP training optimization
problem (29) is a nonlinear program that can be efficiently solved to
local optimality using state-of-the-art methods such as IPOPT.®® To
avoid getting stuck in shallow local minima, we first use the global
solver DIRECT®* to find a good initial condition to provide to IPOPT
(i.e., the best solution found with DIRECT under its default settings is
used to initialize IPOPT).

Note that re-training the set of GP models for all ve F at each
iteration of CARBO can be somewhat expensive depending on the
size of the optimization problem (29), the number of data points, and
the number of constraints. A simple way to reduce this cost is to only
periodically update the hyperparameters (e.g., every 5 iterations).
Although this may slightly reduce performance, it is a strategy that
has been successfully employed in the Bayesian optimization litera-
ture on a variety of different problems. Another advantage of (periodi-
cally) updating the GP prior hyperparameters as new data is obtained
is that one can monitor the estimated values to see if they converge
as the number of iterations increase, which will occur whenever

Assumption 2 is satisfied.

5.3 | Verification of upper-level MFCQ conditions
The proofs of Theorems 2 and 3 invoked the constraint qualifica-
tion condition in Assumption 3, which we cannot easily verify holds
a priori since the functions v € F are fully black-box in nature. A rea-
sonable alternative is to instead check if Assumption 3 holds after the
CARBO algorithm is terminated. Under Assumption 2, the posterior
mean function in (8a)-(8c) should provide a reasonably accurate rep-
resentation of the true unknown functions, meaning we can verify
Assumption 3 for the learned GP models for every v € F. To run this
verification procedure, one would need to identify the set of global
solutions to the mean-based approximation to (2) (using, e.g., a
combination of a multistart procedure with some established
numerical method for GSIPs) and check if the MFCQ conditions
hold at each of these points. Since the posterior GP mean functions
are differentiable and cheap to evaluate, this procedure should
require significantly less computational cost than running the com-
plete CARBO algorithm.

54 | Choice of penalty weight factor p

As shown in Theorem 3, we can achieve convergence for any value of
p 2 p. Since the functions v € F are unknown, we cannot exactly deter-
mine p before running CARBO and must instead rely on conservative
estimates. Assuming the functions v € F have been reasonably well-
scaled, the easiest approach is to select a large value for p (e.g., a value

on the order to 10° — 10%). We set p = 10° in our simulation results. It
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should be noted that large p values may make the min-max optimiza-
tion problem (2) harder to solve numerically. An alternative approach
would be to take advantage of the strong duality result established
for (18), that is, max,>omingceP(6;p) =F(0*) by replacing P(6;p)
with its upper confidence bound UCBp;_1(6;p) that can be expressed
in terms of (9a and 9b). One can practically solve this trilevel optimiza-
tion problem by solving the inner min-max optimization problem for
an increasing set of p values. A conservative estimate of p then corre-
sponds to the p such that mingc ¢ UCBp;_1(8;p) converges to a nearly
constant value. Similarly to the hyperparameter training procedure
described in Section 5.2, one can update the estimate of p periodically
to reduce the computational cost of repeatedly solving the min-max
optimization problems.

5.5 | Initialization procedure

Since the MLE-based training procedure described in the previous
section can be unreliable when we have a very small amount of data,
we follow the recommendations from Ref. [65] by initializing CARBO
with Nj,i: points selected uniformly at random. This procedure is
meant to overcome limitations in the first few iterations whenever we
have an uninformative prior for each v, which is often the case in
practice. This procedure can easily be modified or replaced when
additional information is available.

5.6 | Constrained min-max optimization of the
CARBO acquisition function

The theoretical analysis in Section 4 assumes we can exactly
optimize the acquisition functions defined in terms of the lower
and upper confidence bounds in (12) and (13), respectively. The
maximization problem (13) resembles a standard sub-problem that
arises in BO (or GP-LCB to be specific) such that the same proce-
dures can be exploited to practically solve this finite nonlinear
program (NLP). In particular, we rely on a combination of
derivative-free global search with a local gradient-based solver
(IPOPT) to refine the solution. The min-max optimization prob-
lem (12), which can be equivalently formulated as the constrained
problem (15a and 15b), is a much more challenging problem to
solve. We could treat (15a and 15b) as a robust black-box optimi-
zation problem with constraints and apply the method developed
in Ref. [2] since the GP mean and variance evaluations are cheap
compared with the original unknown functions. However, this
method will produce a limited convergence rate in practice since
it does not exploit available derivative information from the pos-
terior GP mean and variance equations. Instead, we recognize
that (15a and 15b) can be formulated as a generalized semi-
infinite program (GSIP),%¢ that is, a mathematical program with a
finite number of decision variables subject to an infinite number
of constraints the index set of which is dependent on the deci-

sion variables, as follows

min  z,
0€0,620,z

st ppe 1(6,w) —ﬂti/Zaf,t,l(a, w) +/)Z:ils,~ —z<0, YweWw(0),
fig i 1(0.W) — 65 1(6,w) —€<0, Vie{l,...m}, YweW(d).
(32)

Whenever W =W(6) is independent of 0, which is a common case in
practice, the GSIP reduces to a standard semi-infinite program (SIP)
for which efficient algorithms have been developed. A particularly
simple and efficient approach for SIPs with non-convex lower-level
problems, such as (32), is described in Ref. [26] which we use in our
numerical experiments in Section 6. This approach obtains an upper
bound by restricting the right-hand side of the constraints above, that
is, replacing <0 with a negative value that changes in the algorithm.
To be able to evaluate this upper bound using a finite NLP, the infinite
set W is replaced by a finite set WYBP c W. The set WYBP is sequen-
tially populated in a way that guarantees convergence under relatively
mild assumptions. A converging lower bound is also obtained in a sim-
ilar fashion using successively tighter discretization following the prin-
ciple of Ref. [25]. Therefore, in addition to exploiting derivative
information, we can get a certificate of optimality for any user speci-
fied tolerance value, as long as we use global NLP solvers to solve

some of the sub-problems.

5.7 | Multipoint recommendation procedures

There is a natural tradeoff between performance and constraint satis-
faction in many real-world engineering problems, which can be com-
plicated even further when dealing with the effect of uncertainties.
Therefore, as commonly done in the multiobjective optimization
literature,®” it can be useful to recommend a set of viable solutions
instead of a single value as done in (14). To this end, as opposed to
just taking the minimum of the sequence, one may rank the results
according to the metric defined by the objective function in (14). In
addition to looking at this aggregated metric, however, one can also
look at the individual pessimistic estimates of the worst-case objec-
tive and constraint values. We have found that CARBO often gener-
ates natural clusters of points, with some clusters clearly producing
poor worst-case objective and constraint values that can be elimi-
nated from further consideration. Out of the remaining points, there
may be some that provide a similar value to the minimum of the
aggregated penalty-based metric by improving the worst-case objec-
tive at the cost of small amount of (predicted) worst-case constraint
violation. Since the metric in (14) is merely an estimate, we recom-
mend allocating some additional budget to improve upon the worst-
case estimates for the objective and any nearly active constraint by
running a standard BO procedure for these functions at “good” fixed
0; values. The definition of “good” and the allowable evaluation bud-
get will be problem-dependent; however, a good rule-of-thumb is to
prefer points whose worst-case upper confidence bound for the con-
straints is not too close to O whenever robust constraint satisfaction

is essential.
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5.8 | Modified search method to locate robustly
feasible points

Whenever robust constraint satisfaction is a critical requirement and
we have a limited evaluation budget, it may be preferable to initially
ignore the objective function by setting f(6,w) ~ 0. Although CARBO
is still applicable in this case, it turns out that the min-max optimiza-
tion problem (12) does not preferentially select between different
values of & whose lower confidence bound robustly satisfies con-
straints. Therefore, it can be advantageous to replace (12) with the

following alternative in such cases:

m

0 € argmaxH
gco i1

P{wren%o)g,-(a w) < O}, (33)
which directly maximizes the probability of robust constraint satisfac-
tion. Note that the evaluation of the probability operator in (33) is
very difficult since the maximum of a GP is no longer a GP. Thus, in
practice, it is likely preferred to reformulate the probability evaluation
in terms of an expectation over a standard normal Z; ~ N(0, 1) using
k68

the reparametrization trick®® as follows

P{w@%g;(& w) < 0} =Iz, {1mo] <w2“33§g) (.“gi,t—l(av W) +0g,-1(6, W)Zi)> }

(34)

where Ez {-} denotes the expectation with respect to random vari-
able Z;. One can then directly estimate this expected value for any
6 € ® using Monte Carlo (MC) integration. A hybrid method that ini-
tially uses (33) to find at least one robustly feasible 6; value (with high
probability) and then switches to (12) for improved objective perfor-
mance would be an interesting approach to study further in future work.

6 | CASESTUDIES

In this section, we demonstrate the performance of CARBO on two
problems. The first case study is a benchmark problem for robust

4
3 X
2
SS er e B!

L

optimization with constraints. Since we know the global solution to
this problem, we can straightforwardly compute the simple penalty-
based robust-regret measure at every iteration in order to test the
convergence claim made in Theorem 3. For our second case study,
we consider a challenging robust design problem for a bubble col-
umn reactor that converts industrial waste to valuable liquid fuels
using cellular fermentation. Since this bubble column problem is
defined in terms of an expensive high-fidelity simulator, we do not
have exact knowledge of the true solution. Therefore, instead of
analyzing penalty-based robust-regret, we demonstrate CARBO's
ability to identify a set of robust design parameters that result in
good worst-case performance and constraint satisfaction.

6.1 | Benchmark problem

We first consider a problem from Ref. [2] that is defined in terms of a
polynomial objective function with polynomial constraint functions of
the form

fooly(0) = 265 — 12.203 + 21.20% — 6.463 — 4.70% 1 6.204
+65 — 1165 +43.30% — 74.865 +56.965 — 100,  (35a)
—4.1010; —0.16362 +0.40201 +0.4620,,

ooy (0) = (01— 1.5)* + (6, — 1.5)* — 10.125, (35b)
Zpoy2(0) = —(2.5—01)° — (02 +1.5)° +15.75. (35¢)

The feasible set for the design variables is 6=[01,6,]"
€©®=[—-1,4)? cR% To define a problem of the form (1a and 1b), we
incorporate the effective of implementation errors (additive uncer-

tainty) as follows
f(6,w) = fpoy (6 +w), (36a)

81 (9’ W) =3poly,1 (‘9+ W), (36b)

FIGURE 1 Contour plot of the nominal objective fpq, (black)
and constraint g, 1 (blue) and g, (red) functions for the
benchmark problem. The points A, B, and C indicate three
different design choices with the corresponding boxes showing
the range of uncertainty. Point A is infeasible, Point B is feasible
but results in large worst-case objective values, and Point C is the
robust optimal solution.
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FIGURE 2 Simple penalty-based robust-regret SEPT( ) with
p=10° for CARBO (red), random search (blue), and max-variance
(yellow) on the benchmark problem. The runs are repeated five times
from different random initial conditions and the estimated average
Sep.r(p) with corresponding confidence intervals are shown as

error bars.

82 (0y W) =8poly,2 (0+W)! (36C)

where the set of possible uncertainty values is given by
W=[-0.5,0.5]> CR%. A contour plot of the nominal objective and
constraint functions in (35a)-(35c) is shown in Figure 1. We have
labeled three points A, B, and C to illustrate how uncertainty plays an
important role in this problem. In particular, point A is feasible for the
nominal set of constraints but becomes infeasible once uncertainty is
considered in (36a)-(36c). Point B, on the other hand, remains feasible
under perturbations but a relatively large worst-case objective value
(that is close to a local minima for this problem). Point C is the global
robust solution to this problem, as it clearly results in robust con-
straint satisfaction as well as a low worst-case objective value (since
the function is relatively flat in this region).

Our goal is to identify the constrained robust optimal solution
(Point C) in as few iterations as possible using only zeroth-order infor-
mation from (36a)-(36c). In accordance with Theorem 3, we use the
simple penalty-based robust-regret Sgp;(p)=min;cy, ., T} Epe(p) as
our metric. As discussed in Section 5.5, we initially select Nyt =5
points uniformly at random before running CARBO (Algorithm 1).
Since Sgpr(p) is a function of the randomly selected initial points,
SEP,T(P) is a random variable. We thus repeat CARBO Niepeat = 5 times
to obtain a sample average estimate for the expected simple penalty-
based robust-regret

Nrepeat

Z Sat (0) (37)

E{SK
{ EPT Nrepeat

where 52’,‘,(’? (p) denotes the simple penalty-based robust-regret for the

ith CARBO run. Because this estimate is constructed from a finite

number of samples, we also report confidence intervals estimated as
1.96 times the sample-based standard deviation divided by the num-
ber of replicates (based on the standard error formula).

As noted previously, CARBO is one of the first algorithms devel-
oped for the challenging class of problems considered in this work
such that we have limited options to compare against. Thus, we select
two baseline algorithms: (i) random search and (ii) the max-variance
method, which are commonly used in the black-box optimization liter-
ature. Random search selects the sampled point (6;,w;) by drawing
samples uniformly at random from the set ® x WW. The max-variance
methods selects the sampled point according to (10). The simple
penalty-based robust-regret plots for CARBO, random search, and
max-variance are shown in Figure 2. We clearly see that CARBO con-
verges at a much faster rate than random search and max-variance.
We also see that, on average, the value of Sy (p) drops more than an
order of magnitude within the first 10 iterations and drops another
order of magnitude within the next 10 iterations, which highlights the
quick progress toward the global robust solution. We also plot the set
of recommended points using (14) at three different set of total itera-
tions T=5,33,39 for CARBO, random search, and max-variance in
Figure 3 for additional insights. We see that the recommended points
are relatively spread out in the early iterations (left, T=5), but get
progressively closer to the true robust global solution (black star) in
the later iterations (right, T =33 and bottom, T = 39). Random search
and max-variance, on the other hand, consistently lead to recom-
mended points that are far away from the true solution since neither
method can navigate the exploration-exploitation tradeoff. This is a
key limitation, especially when a significant portion of @ leads to viola-

tion of the robust constraints.

6.2 | Design of a bubble column fermentation
reactor for waste gas recovery

Gas fermentation has emerged a promising route for converting
industrial waste gases and synthesis gas into renewable liquid fuels
and chemicals using specially developed bacteria. Clostridium auto-
ethaogenum, which is an acetogenic anaerobic bacterium, has the
potential to be effective at fermenting carbon monoxide into ethanol
and acetate through the Wood-Ljungdahi pathway; however, the
yield of ethanol in the wild-type strain is known to be low for ethanol
compared with acetate.®” An improved strain of C. autoethaogenum
that provides an increased biofuel yield has been developed by

researchers at LanzaTech.”®

However, the majority of studies on this
system have been done at the bench-scale using continuously stirred
tank reactors (CSTRs), which are not feasible for large-scale produc-
tion. Bubble column technology, on the other hand, are able to pro-
vide good heat and mass transfer efficiencies at low operating cost
due to mixing from established gas sparging configurations. Bubble
columns are more challenging to optimize due to spatial variation
throughout the column, which can lead to significantly different
growth environments as a function of column position. In Ref. [71] a

detailed spatiotemporal metabolic model was developed that
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FIGURE 3 Recommended points based on the sequence of {9t}tT:1 values generated by CARBO (red), random search (blue), and max-
variance (yellow) for the 5 runs used to generate Figure 2 for T =5 (left), T = 33 (right), and T = 39 (bottom). The black star denotes the true
unknown constrained robust global minimum. The black, green, and magenta contour lines correspond to the worst-case objective, constraint

1, and constraint 2 functions, respectively.
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Liquid
with products

Feed gas

FIGURE 4 Schematic of the bubble column reactor for
fermenting carbon monoxide into ethanol and acetate considered in
Ref. [71].

involves two key components: (i) a set multiphase convection-
dispersion equations that govern transport of carbon monoxide,
secreted byproducts, and biomass and (ii) a genome-scale reconstruc-

tion of C. autoethaogenum metabolism using the flux balance analysis

TABLE 1  Minimum and maximum values for the considered
design variables and uncertain variables in the bubble column reactor
case study

Variable Minimum Maximum Units
Ug 9.84 14.76 m/h
uy —190.2 —126.9 m/h
Tr 307.15 313.15 Kelvin
kiaco 518 528 1/h

method. A schematic of the overall process is shown below in
Figure 4. The focus of Ref. [71] was on the validation of this spatio-
temporal model using experimental data. To the best of our knowl-
edge, no systematic optimization studies have been performed on this
model due to its computational complexity and the presence of uncer-
tainty, making it a great candidate problem for CARBO, which is able
to address both of these challenges.

We developed our optimization model based on recommenda-
tions from Ref. [71]; interested readers are referred to this publication
for a complete description of the model. We focus on two decision

variables, mainly the superficial gas velocity ug and the liquid phase
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TABLE 2 Top 10 design values sampled by CARBO for the bubble column reactor case study

Iteration #  Worst-case objective x10 ">  Worst-case constraint 1 x 102 Worst-case constraint 2 x 102 Design 1(91)  Design 2 (65)

61 7.805 -2.316 -9.892 0.936 1

36 8.062 —3.946 —9.956 0.901 1

90 8.514 -4.911 —10.060 0.841 1

73 8.776 —6.994 —10.141 0.806 1

78 8.896 —7.425 —10.165 0.790 1

77 9.481 -9.131 -10.277 0.714 1

9 9.543 —6.307 -5.075 0.714 0

75 9.617 —9.557 —10.299 0.697 1

46 9.913 —~7.708 —5.059 0.667 0

84 9.923 —10.106 —10.348 0.658 1

Note: The worst-case objective and constraint values correspond to the individual terms in (39).

velocity u), and two key uncertain parameters, mainly the reactor tem-
perature Tg and the gas-liquid mass transfer coefficient for carbon
monoxide k dco. The considered ranges and units for these variables
are summarized in Table 1. We define  and w in terms of scaled ver-

sions of these variables, that is,

Ug — Ug mi Uy — Uj mi
8 g, min ,min
O=——"— bh=—"—",
Ug max — ug,min Ul max — Ul,min
TR — TRymin kiaco —kidco,min

W1

= s )= .
TR,max - TR,min kLaCO,max - kLaCO,min

The objective is to maximize the production of ethanol while
ensuring constraints on the selectivity (of ethanol vs. acetate produc-
tion) and the time-to-steady-state (TSS) are satisfied. Consequently,
we can state this problem in the form of the original problem (1a and

1b) as follows

min max f(6,w) := —Ce(,w)+15g/L

fdecOwe W 15 g/L ’
s.t. g1(0,w) = W <0, YweWw,
1.515g ethanol/g acetate —Sg/a (6, w)
= S
32(0,w) 1.515g ethanol/g acetate 0, VweWw,
(38)

where Cg, TSS, and Sg/x denote the ethanol concentration, time-to-
steady-state, and steady-state selectivity, respectively, which can be
computed by evaluating the aforementioned model at any
(6,w) € ® x W. Note that we have appropriately scaled the objective
and constraint functions to simplify the presentation of the results.
We used the high-fidelity simulator code available online (http://
www.ecs.umass.edu/che/henson_group/downloads.html) to perform
the evaluations needed by CARBO.

Due to the complexity of the simulation-based model considered
here, we do not have a priori knowledge of the exact robust global
solution such that we cannot verify the theoretical convergence
results (as we were able to do for the benchmark problem). We

instead only conduct a single CARBO run, assuming a fixed number of

iterations can be run, which is likely how CARBO would be applied to
a real-world problem. In line with Section 5.5, we select the first
Ninit = 10 samples uniformly at random and the remaining evaluations
using CARBO with T=90. As discussed in Section 5.7, we use a
multi-point recommendation procedure that ranks points 0; based on

the following metric:

n
( max UCBf,T(et,w)> +p< max UCBgin(Ht,w)>

w e W(6) w e W(6)
+

+p <W ?ﬁ?yt)UCBgz,T(et, w)) . (39)

The top 10 design values, ranked according to (39) from smallest
to highest, are shown in Table 2. We see that the pessimistic estimate
of the worst-case constraint violation is less than O for all 10 of these
designs, such that the second two terms in (39) are 0. The first three
designs indicate a tradeoff between worst-case performance and con-
straint satisfaction within the neighborhood of 0.85<6, <0.95 and
0, =1. To validate this prediction, we perform additional testing on
these three design values. In particular, we apply Monte Carlo
(MC) sampling by running the high-fidelity simulator for 200 randomly
sampled w € W values for each of these fixed designs. Furthermore,
to highlight the importance of considering uncertainty during the opti-
mization process, we also apply the same MC sampling procedure to
the nominal design estimated by solving the following optimization
problem

enominal S a';)gn;)in f(e’ Wnominal) s.t. g1 (07 Wnominal) < 01 82 (97 Wnominal) < 0,
€

(40)

where Wpominal = [O.S,O.S]T is the nominal uncertainty value. The
results of the MC sampling validation procedure are shown in
Figure 5. From these results, we clearly see that the top three ranked
designs perform much better than the nominal solution with respect
to constraint satisfaction. As expected, this improved constraint satis-

faction capability comes at the cost of performance (i.e., steady-state
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Steady-state ethanol concentration (g/L)

Time to steady state (h)
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Steady-state selectivity

Design Rank 1

Design Rank 2

Design Rank 3

Nominal Design

14 14.5 15 800 810 820

830 840 1.5 1.52 1.54 1.56

FIGURE 5 Histograms of the worst-case objective and constraint values obtained from 200 Monte Carlo samples of the high-fidelity
simulator for the top three ranked designs from Table 2 (first three rows) and the nominal design from (40) (fourth row). The shaded red region in

the middle and right columns indicates the infeasible constraint regions.

ethanol concentration), though average performance only drops
around 5%. In addition, we see that constraint violation probability
drops from around 2% to 0.5% to 0% for design ranks 1, 2, and
3, respectively, which exactly matches the predictions made in
Table 2.

7 | CONCLUSIONS AND FUTURE WORK

This article presents a new algorithm, referred to as CARBO, for solv-
ing robust optimization problems with constraints in a derivative-free
fashion wherein the underlying functions are defined in terms of noisy
and expensive high-fidelity simulations and/or experiments. CARBO
uses probabilistic surrogate models to jointly describe the effect of
the design variables and uncertainties on the black-box objective and
constraint functions. In particular, GP models are used because they
allow for simple analytic expressions for the posterior mean and vari-
ance (given available data in the form of function evaluations at
known points) that can be used to construct upper and lower confi-
dence bounds for the unknown objective and constraint functions. At
each iteration, CARBO follows two steps to decide the next batch of

sample points: (i) select the design value that minimizes the lower con-
fidence bound for a penalized version of the original robust problem
and (ii) select the set of uncertainty values that maximize the upper
confidence bound of the unknown objective and constraint functions
at the fixed design value from the previous step. These alternating
optimistic and pessimistic steps are repeated at every iteration until
some maximum allowed evaluation budget is exhausted. As a final
step, CARBO employs a novel recommendation procedure to recom-
mend a point out of the set of sampled points that is likely the closest
to the true global solution of the original robust problem. Using the
concept of exact penalty functions, we theoretically prove that CARBO
converges to the global solution with high probability under certain
assumptions by establishing rigorous bounds on a penalized version of
cumulative robust-regret (which is a commonly used metric for how
close a set of sampled points are to the true solution). We also discuss
several important practical implementation details and extensions of
CARBO. To demonstrate its effectiveness, we apply CARBO to two
simulation case studies including a non-convex benchmark problem
and a realistic engineering design problem related to industrial waste
gas recovery using microbial fermentation. Our results highlight that
CARBO can consistently identify near-global robust solutions that
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ensure worst-case constraint satisfaction using on the order of tens to
hundreds of function evaluations, which is considerably less than
alternative methods. Our future work will mainly focus on incorporat-
ing more complex non-Gaussian noise models, extending CARBO to
work for multiobjective problems, and studying the effect of the con-
fidence bound widths and penalty weight factor on the rate of

convergence.
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