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Abstract

Many real-world design problems involve optimization of expensive black-box

functions. Bayesian optimization (BO) is a promising approach for solving such

challenging problems using probabilistic surrogate models to systematically trade-

off between exploitation and exploration of the design space. Although BO is

often applied to unconstrained problems, it has recently been extended to the

constrained setting. Current constrained BO methods, however, cannot identify

solutions that are robust to unavoidable uncertainties. In this article, we propose a

robust constrained BO method, constrained adversarially robust Bayesian optimi-

zation (CARBO), that addresses this challenge by jointly modeling the effect of the

design variables and uncertainties on the unknown functions. Using exact penalty

functions, we establish a bound on the number of CARBO iterations required to

find a near-global robust solution and provide a rigorous proof of convergence.

The advantages of CARBO are demonstrated on two case studies including a non-

convex benchmark problem and a realistic bubble column reactor design problem.

K E YWORD S
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1 | INTRODUCTION

Uncertainty is inevitably present in real-world problems due to noisy

and incomplete datasets, unknown parameters, environmental distur-

bances (such as product demand and prices), and implementation

errors. Therefore, so-called “optimal” solutions found by solving some

underlying nominal optimization problem, which neglects these many

sources of uncertainty can often be suboptimal, or even worse, infea-

sible.1,2 Local and global sensitivity-based methods3–5 are often used

to study the impact of any critical uncertainties on specific designs;

however, such methods focus on robustness analysis amongst a small,

finite set of designs, meaning they are unable to systematically syn-

thesize new designs with improved robustness directly. There has

been a significant amount of work on so-called “optimization under

uncertainty,” as summarized in several review articles.6–9 Two main

classes of methods for optimization under uncertainty are stochastic

and robust optimization. Stochastic optimization10,11 models the

uncertainty in the form of probability distributions, which must be

either estimated from data or selected according to expert opinion/

prior knowledge. An important challenge with this approach, however,

is that the true distribution of the uncertainties is rarely known in

practice, which limits its applicability. Robust optimization,12–15 on the

other hand, is an alternative strategy that adopts a “min–max”
approach by defining the robust optimal design as the one with the

best worst-case performance subject to worst-case constraint satis-

faction. There has been a significant amount of work on the
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development of robust optimization theory and algorithms for both

convex and non-convex problems. In fact, it is worth noting that

robust optimization can be interpreted as a special category of gener-

alized semi-infinite programs (GSIP),16 which are optimization prob-

lems involving a finite number of decision variables subject to a

potentially infinite number of constraints in which the feasible set of

parameters may depend on the decision variables. Whenever the fea-

sible parameter set is independent of the decision variables, then the

problem falls into the category of a standard semi-infinite program

(SIP) for which we refer interested readers to Refs. [17-21] Within the

framework of robust optimization, uncertainty sets described by con-

vex inequality constraints can be efficiently handled, as discussed in,

for example, Refs. [22–24]. Several methods have also been devel-

oped for SIPs defined in terms of general non-convex functions

including cutting-plane algorithms,25–27 interval methods,28 and inte-

rior point techniques29 to name a few.

Although solving (G)SIPs with both explicit and implicit function

representations has been an active area of research for more than

three decades, the methods summarized above all require the struc-

ture of the objective and constraint functions to be known and

exploited within the algorithm. However, obtaining equation-oriented

models whose structure can be exploited by these methods for each

and every component of a complex system is frequently not possible.

For example, in addition to having many types of challenging nonline-

arities, engineering design problems often require the use of expensive

computer simulations or experiments, implying that the functional

relationship between the design variables and uncertain parameters

and the objective and constraints are unknown (often referred to as

“simulation-based” or “black-box” models). Some examples include

the choice of laboratory experiments in material and drug design,30

calibration of expensive simulators to experimental data,5 airfoil shape

design,31,32 hyperparameter tuning in machine learning algorithms,33

and automated design of advanced multivariable control

structures34–36 to name a few. Due to lack of known structure in

these cases, one must resort to so-called derivative-free optimization

(DFO) methods,37 which only require the black-box functions to be

queried at specific input values such that these methods can be very

generally applied.

One of the first methods developed for robust optimization of

unconstrained simulation-based problems was presented in Ref. [1],

which was extended to constrained problems in Ref. [2]. These

methods are analogous to local search techniques (e.g., gradient

descent), as they iteratively take steps along descent directions that

preserve robust feasibility. They also require one to determine the set

of possible worst-case uncertainty values at each iteration, which

requires one to repeatedly solve the lower-level maximization prob-

lem. In Refs. [1,2] this lower-level problem is practically solved using

multiple gradient ascents from different starting designs to improve

efficiency. Therefore, under this assumption,1,2 are not DFO methods

since one must be able to extract gradient information from the simu-

lator, which limits their applicability. A natural extension of these

methods would be to replace the gradient ascent method with some

DFO method, which can be broadly categorized as either stochastic

or deterministic. Stochastic DFO methods, such as genetic algorithm38

or particle swarm optimization,39 utilize random numbers within the

search process and are known to require a large number of function

evaluations, which prevents them from being applied to expensive

black-box functions. Deterministic DFO methods, on the other hand,

are often motivated by optimization of expensive functions and, in

particular, model-based DFO methods, which construct a surrogate

model of the unknown functions to guide the search process, have

become very popular in recent years. Model-based DFO methods

mainly differ by their choice of scale (e.g., local versus global

approximation) and type of function approximation technique

(e.g., polynomial, neural network, or radial basis function models). The

Bayesian optimization (BO) framework40–43 is a global model-based

DFO method that takes advantage of probabilistic data-driven surro-

gate models, and has been found to empirically perform well on a vari-

ety of problems in many different disciplines. BO methods typically

rely on Gaussian process (GP) models since they are non-parametric

(i.e., can represent virtually any function given enough data) and

directly quantify uncertainty in future predictions in the form of prob-

ability distributions.44 By combining these uncertain predictions from

the GP model with an expected utility (or acquisition function), BO

can systematically address the exploration–exploitation tradeoff in a

way that boosts data efficiency relative to many purely deterministic

surrogate-based DFO methods (see, e.g., Refs. [45–48]).

Even though BO has been successfully applied to many different

nominal optimization problems, it has proved difficult to extend BO to

the robust optimization setting due to the min–max problem struc-

ture, which involves two competing optimization stages. For example,

the fact that one would have to execute multiple BO runs at each iter-

ation of Refs. [1,2] would likely prevent this hybrid approach from

working on expensive functions. As opposed to using established BO

methods for lower-level maximization sub-problems, there has also

been work on extending BO to work directly on robust min–max opti-

mization problems. The MiMaReK algorithm49 is one of the earliest

attempts to develop a robust BO strategy, which uses a two-level

expected improvement acquisition function. The main disadvantage

of MiMaReK is that a set of uncertainty samples are sequentially con-

structed such that it requires a growing number of expensive function

evaluations at each iteration. The probabilistically robust BO (PRBO)

approach50 is an alternative to MiMaReK that selects the minimum

number of uncertainty samples required to a priori provide a probabi-

listic robustness certificate at each iteration. However, both

MiMaReK and PRBO may require a large number of function evalua-

tions at every iteration, which still limits their applicability. The adver-

sarially robust BO (ARBO) method51,52 attempts to overcome this

limitation by simultaneously modeling the effect of the design variables

and uncertainties on the objective function. ARBO only requires a sin-

gle expensive function evaluation at every iteration, which can poten-

tially result in a drastic reduction in the number of evaluations needed

to achieve convergence. Furthermore, ARBO can provide a bound on

the number of iterations needed to achieve convergence by exploiting

recent theory developed for the lower and upper confidence bounds

of the GP model. Although powerful, ARBO does not directly handle
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expensive-to-evaluate worst-case constraints, which are important in

a wide-variety of safety-critical applications in engineering and

beyond.

In this article, we propose a novel constrained extension of

ARBO, referred to as constrained adversarially robust Bayesian opti-

mization (CARBO), that is well-suited to constrained robust min-max

optimization problems whose objective and/or constraint functions

are defined in terms of noisy expensive black-box functions. Con-

straints are rigorously incorporated in CARBO by extending our

recent work on the construction of convergent constrained BO algo-

rithms using exact penalty functions in Ref. [53] to the min–max opti-

mization setting. CARBO executes two steps in alternating fashion at

each iteration: (i) select the design value that minimizes a lower confi-

dence bound on a penalized version of the original robust problem

(which we show can be interpreted as a probabilistic relaxation of the

original problem that contains the true unknown feasible region with

high probability) and (ii) select the uncertainty values that maximize

the upper confidence bound of the unknown objective and constraint

functions at the fixed design found in the previous step. In addition to

providing detailed descriptions of the practical implementation

aspects of CARBO, another key contribution of this article is a com-

prehensive theoretical analysis of CARBO's convergence properties.

To prove convergence to a robust global optimum, we introduce the

notion of penalty-based robust-regret, which measures the difference

in the quality of recommended point by CARBO and the unknown

robust global solution. By establishing that the cumulative penalty-

based robust-regret is a sublinear function of the number of CARBO

iterations under certain relatively mild assumptions, we can prove that

there must exist a finite iteration such that the recommended point is

arbitrarily close to the constrained robust global optimum. Since this

bound decays to zero with an increasing number of CARBO itera-

tions, we can immediately infer that CARBO is an asymptotically

consistent and convergent algorithm. To the best of our knowledge,

CARBO is the first method with guaranteed convergence proper-

ties that is applicable to constrained robust optimization problems

involving noisy expensive black-box functions. In fact, the only

other method we are aware of that is applicable to this class of

problems was proposed in Ref. [54]. An important challenge with

this method is that there are several internal parameters whose

selection is not discussed, making it difficult to implement and com-

pare against. Furthermore, Ref. [54] only selects uncertainty sample

points based on the predicted worst-case constraint value, which

may lead to a loss in worst-case performance, as demonstrated by

our theoretical results.

The remainder of this article is organized as follows. In Section 2,

we formulate the constrained robust optimization problem of interest

and summarize all relevant assumptions on the objective and con-

straint functions. In Section 3, the GP modeling approach and the pro-

posed CARBO algorithm are presented. The key theoretical

convergence results for CARBO are presented in Section 4, while sev-

eral practical implementation details are summarized in Section 5. The

main advantages of CARBO are demonstrated on two case studies in

Section 6, which includes a non-convex benchmark problem and a

realistic engineering design problem defined in terms of an expensive

bubble column reactor simulator for industrial waste gas recovery.

Lastly, we conclude the article and discuss some interesting directions

for future work in Section 7.

2 | PROBLEM FORMULATION

In this work, we are interested in solving the following constrained

robust black-box optimization problem

min
θ � Θ

max
w �W θð Þ

f θ,wð Þ, ð1aÞ

s:t: gi θ,wð Þ≤0, 8w�W θð Þ, 8i� 1,…,mf g, ð1bÞ

where θ�Rp1 denotes the set of decision (or design) variables that

must reside in a set Θ�Rp1 , w�Rp2 denotes the set of uncertainties

(or external disturbances) that are restricted to a set W θð Þ�Rp2 that

can depend on θ, and f :Rp1 �Rp2 !R and gi :R
p1 �Rp2 !R are

unknown black-box objective and constraint functions, respectively,

for all i¼1,…,m. The objective function (1a) can be interpreted as a

sequential two-player game, with minθmaxw reflecting the assumed

order of the game, meaning the design θ must be selected first while

the adversary w is able to adapt to any given choice of θ. The con-

straints (1b), on the other hand, may represent critical safety and/or

performance requirements and must be satisfied for any feasible

uncertainty realization. Such constraints are often referred to as

“worst-case” constraints, as (1b) can be equivalently stated as

maxw �W θð Þgi θ,wð Þ≤0 for all i¼1,…,m. It is important to note that, in

general, different values of w produce the worst-case objective and

constraint functions, which will be an important factor in the deriva-

tion of our algorithm in Sections 3 and 4. We are interested in finding

globally optimal solutions to problem (1a and 1b), which falls under

the class of generalized semi-infinite programming (GSIP) problems. A

comprehensive review on GSIPs is provided in Ref. [16] while further

details on state-of-the-art numerical methods for GSIPs can be found

in, for example, Refs. [9,18,21]. The proper selection of an algorithm

for solving (2) depends on the underlying characteristics of the func-

tions F ¼ f, g1,…, gmf g and the constraint sets Θ and W θð Þ. Currently,
two main classes of numerical methods exist for GSIPs: discretization-

and local reduction-based methods. A key implicit assumption in these

methods is that the functions F are known (and often differentiable),

which is not the case in this work, as summarized in the following

assumption:

Assumption 1.

1. The feasible sets Θ and W θð Þ are known and compact for all θ�Θ.

2. The worst-case uncertainty values w ?
v θð Þ� argmaxW θð Þv θ,wð Þ for all

functions v�F are unknown, so they cannot be determined/

estimated from prior knowledge.

3 of 20 KUDVA ET AL.
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3. The objective f θ,wð Þ and constraint functions gi θ,wð Þf gmi¼1 are fully

black-box in nature, meaning no closed-form expression or special

structure (e.g., convexity) is known.

4. The set of functions F are expensive to evaluate and only

provide zeroth order information, that is, we cannot obtain informa-

tion about the derivatives of the function output with respect to the

inputs.

5. The observations of v θ,wð Þ for all v�F are corrupted by noise. That

is, yv ¼ v θ,wð Þþεv where εv �N 0, σ2ε,v
� �

.

6. The set of functions in F are independent such that they must be que-

ried separately.

Characteristics 1–3 imply that (2) can be used to represent a

wide-variety of problems since we do not require any prior struc-

tural knowledge of the objective or constraint functions. Character-

istic 4 is a key assumption in this work since it prevents the

application of any currently available robust optimization methods

that either exploit derivative information and/or require a large

number of function evaluations (which implicitly assume cheap

objective and constraint functions are readily available). In addition,

characteristic 5 further increases the complexity of the problem

since we do not assume access to highly accurate function evalua-

tions, which may not be available in practice. Even though we

assume the effective noise term is additive and normally distrib-

uted, our proposed algorithm can learn the parameters of this dis-

tribution as data is collected, which is discussed in more detail in

Section 5. Lastly, characteristic 6 is a minor assumption that we

make to study the limited information case and can be easily

relaxed (see Remark 2). It is worth noting that, if Assumption 1 was

replaced with standard assumptions from the GSIP literature, then

we could directly apply established numerical methods recently

summarized in Ref. [9]. However, to the best of our knowledge, no

such method exists for functions satisfying Assumption 1, which is

the main contribution of this work.

The most direct way to solve (1a and 1b) is to define an equiva-

lent constrained black-box optimization problem

min
θ � Θ

F θð Þ, s:t: Gi θð Þ≤0, 8i� 1,…,mf g, ð2Þ

where F θð Þ¼ maxW θð Þf θ,wð Þ and Gi θð Þ¼ maxW θð Þgi θ,wð Þ. However,

this requires one to solve a set of lower-level optimization problems

at every iteration of the upper-level minimization algorithm. Such an

approach is not applicable to expensive functions since one may

spend the majority of the available evaluation budget on a single

(potentially poor) choice of θ. Since we are considering a very chal-

lenging class of problems, as highlighted by Assumption 1, we make

two additional assumptions to ensure that we can make progress on

solving these problems:

Assumption 2. The unknown functions v�F are suffi-

ciently smooth enough so that they can be modeled as

GPs, which are formally defined in Section 3.

Assumption 3. At least one global solution θ ? to (2)

exists and the Mangasarian–Fromovitz Constraint Qualifi-

cation (MFCQ) for the upper-level problem (3) holds at

every global solution θ ? .

Assumption 2 is a standard one considered in the Bayesian para-

digm. Assumption 3, which is based on results established in Ref. [55]

is used to provide some theoretical convergence properties of the

proposed algorithm and is fairly weak since the MFCQ conditions only

need to hold at global minimizers. Note that similar constraint qualifi-

cation assumptions are routinely made in the GSIP literature to estab-

lish convergence properties, as discussed in, for example, Ref. [56].

Instead of approaching (1a and 1b) by applying established black-box

optimization methods to the nested formulation (2), we look to refor-

mulate (1a and 1b) as a so-called bandit feedback problem. In particu-

lar, we would like to develop a sequential learning (or bandit)

algorithm that selects a batch of samples

θv,t,wv,tð Þ�Θ�W θv,tð Þf gv � F at which the objective and constraint

functions should be queried at each iteration t¼1, 2,… (where “itera-
tion” refers to the total evaluation period of the objective and con-

straints) and subsequently recommends a best point θrt that ideally

converges to a global solution θrt ! θ ? with high probability. The

authors of this work recently proposed an approach based on Ref.

[51], termed adversarially robust Bayesian optimization (ARBO),52 that

provides such a convergence guarantee in the absence of constraints.

The theoretical analysis of ARBO is based on the instantaneous

robust-regret at iteration t, which is defined as follows

rwt ¼ max
w �W θtð Þ

f θt,wð Þ� max
w �W θ ?ð Þ

f θ ? ,wð Þ, ð3Þ

where θ ? denotes any global solution to (1a and 1b). An algorithm

that minimizes the cumulative robust-regret Rw
T ¼PT

t¼1r
w
t defined

over T iterations will ensure that we learn θ ? as quickly as possible. It

is not possible to minimize Rw
T directly since it is defined in terms of

the unknown optimal solution θ ? . Instead, ARBO ensures that the no

robust-regret property is satisfied, that is, limT!∞R
w
T =T¼0. In the

absence of constraints, the no robust-regret property ensures conver-

gence, which we can see by analyzing the simple robust-regret

SwT ¼ min
t � 1,…, Tf g

rwt ¼ min
t � 1,…, Tf g

max
w �W θtð Þ

f θt,wð Þ� max
w �W θ ?ð Þ

f θ ?ð ,wÞ
� �

: ð4Þ

Since rwt ≥0 must be non-negative if θt �Θ (trivial to guarantee

since Θ is known) and no black-box constraints are present (m¼0),

and the minimum of a sequence must be less than the average, that is,

0≤ SwT ≤ 1
TR

w
T , the no robust-regret property directly implies that

SwT !0 can only happen when one of the sampled points belongs to

the set of global solutions. This analysis breaks down in the presence

of black-box constraints (m>0) since the lower bound on SwT may not

hold. In particular, we may have rwt <0 for certain choices of θt �Θ

that result in violation of the black-box constraints. Therefore, the

goal of this article is to develop an extension of ARBO that is

KUDVA ET AL. 4 of 20
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applicable to constrained problems of the form (1a and 1b). We give a

detailed description of the proposed algorithm in the next section.

We then propose a new definition of robust-regret for constrained

problems and demonstrate how this can be used to establish

robust-regret bounds that lead to rigorous convergence guarantees in

Section 4.

3 | CONSTRAINED ADVERSARIALLY
ROBUST BAYESIAN OPTIMIZATION

In this section, we first summarize the GP regression methodology,

which is used to construct probabilistic surrogate models for the

unknown objective and constraint functions. We then present the

proposed CARBO algorithm, followed by a discussion on how to

reduce the number of samples needed at each CARBO iteration using

constraint aggregation methods.

3.1 | Gaussian process regression

Let x¼ θΤ ,wΤ
� �Τ

denote the concatenated vector of design variables

and uncertainties that are restricted to the space X ¼Θ�W Θð Þ�Rp

where p¼ p1þp2. Since we treat all of the black-box objective and

constraint functions in a similar fashion, we focus the presentation in

this section on a scalar function v :Rp !R for any v�F . For simplicity

of notation, we also interchangeably denote v θ,wð Þ as v xð Þ through-

out the article for all v�F . In accordance with Assumption 2, we can-

not make any parametric assumption about v due to lack of

knowledge about its underlying structure and must instead model v as

a sample of a GP, which is a commonly used class of models in non-

parametric Bayesian inference. As discussed in detail in Ref. [44] GPs

can be interpreted as an infinite collection of random variables for

which any finite subset has a joint Gaussian distribution, meaning they

generalize the notion of multivariate distributions over vector spaces

to probability distributions over the space of functions. It should be

noted that, in the absence of Assumption 2, any of the functions

v�F could be arbitrarily discontinuous at every input x�X in the

worst-case. Therefore, by leveraging GP models, we are in essence

encoding that some level of smoothness implicitly holds in these func-

tions without making rigid parametric assumptions.

We let v xð Þ�GP μv xð Þ, kv x, x0ð Þð Þ denote a GP that is uniquely

specified by its mean function μv xð Þ and covariance (or kernel) func-

tion kv x, x0ð Þ, which are defined as follows

μv xð Þ¼ Ev v xð Þf g, ð5aÞ

kv x, x0ð Þ ¼ Ev v xð Þ�μv xð Þð Þ v x0ð Þ�μv x0ð Þð Þf g: ð5bÞ

The properties of the fitted functions v are derived from the

choice of kv . The proposed CARBO algorithm is applicable to GPs

with any covariance function including stationary and non-stationary

kernels. The theoretical results established in Section 4, however,

focus on covariance functions from the Mateŕn class,44 defined as

follows

kv x, x0;ν,Ψð Þ¼ ζ2
21�ν

Γ νð Þ
ffiffiffiffiffi
2ν

p
r x, x0ð Þ

	 

Bν

ffiffiffiffiffi
2ν

p
r x, x0ð Þ

	 

, ð6Þ

where r x, x0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�x0ð ÞL�2 x�x0ð Þ

q
is the scaled Euclidean distance,

L¼diag l1,…, lpð Þ is a diagonal scaling matrix composed of length-scale

parameters l1,…, lp >0, ν is a parameter that dictates smoothness (i.e.,

the corresponding function is ┌ν=2�1┐ times differentiable), ζ2 is a

scaling factor for the output variance, Γ and Bν are the Gamma and

modified Bessel functions, respectively, and Ψ¼ l1,…, lp, ζf g are the

hyperparameters of the kernel for a fixed value of ν. Training a GP

model corresponds to calibrating Ψ, σε,vf g to the available data. For

now, we assume the kernel hyperparameters are known and discuss

the training procedure further in Section 5. It should be noted that

learning the length-scale parameters l1,…, lp is directly related to fea-

ture selection since the ith dimension x½ �i is unimportant (i.e., does not

contribute to the output predictions) whenever li !∞.

In addition to being non-parametric models, GPs have simple ana-

lytic expressions for the mean and covariance of the posterior distri-

bution when conditioned on (possibly noisy) function observations.

Let us assume that we have access to t noisy observations at known

input points, which are represented by the following matrices

Xv,t ¼ xv,1, xv,2,…, xv,t½ �Τ �Rt�p, ð7aÞ

yv,t ¼ yv,1, yv,2,…, yv,t
� �Τ �Rt�1, ð7bÞ

where yv,i ¼ v xv,ið Þþεv,i and εv,i �N 0, σ2ε,v
� �

is i.i.d. Gaussian noise for

all i¼1,…, t. As shown in section 2 of Ref. [44], the posterior distribu-

tion v xð Þ jXt, yv,t �GP μv,t xð Þ, kv,t x, x0ð Þ� �
of the function v xð Þ remains a

GP with the following expressions for the posterior mean μv,t xð Þ,
covariance kv,t x, x0ð Þ, and variance σ2v,t xð Þ

μv,t xð Þ¼ μv xð ÞþkΤv,t xð Þ Kv,tþσ2ε,vIt
� ��1

yv,t�μv xð Þ� �
, ð8aÞ

kv,t x, x
0ð Þ¼ kv x, x

0
	 


�kΤv,t xð Þ Kv,tþσ2ε,vIt
� ��1

kv,t x
0ð Þ, ð8bÞ

σ2v,t xð Þ¼ kv,t x, xð Þ, ð8cÞ

where kv,t xð Þ¼ kv Xt, xð Þ�Rt�1 is the vector of covariance values

between the test point x and the observed data points Xt,

Kv,t ¼ kv Xt,Xtð Þ�Rt�t is the covariance matrix between the observed

data points, and It is the t� t identity matrix. A key advantage of the

posterior GP expressions shown in (8a)–(8c) is that they quantify the

degree of uncertainty in the predictions such that they can straight-

forwardly be used to generate confidence bounds for v θ,wð Þ at any

desired test input x¼ θ,wð Þ�Θ�W θð Þ. In particular, given an explo-

ration parameter βtþ1, the upper and lower confidence bounds on v

are defined as follows
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UCBv,t θ,wð Þ¼ μv,t θ,wð Þþβ1=2tþ1σv,t θ,wð Þ, ð9aÞ

LCBv,t θ,wð Þ¼ μv,t θ,wð Þ�β1=2tþ1σv,t θ,wð Þ, ð9bÞ

which can be readily computed from the GP posterior expressions in

(8a)–(8c). It turns out that both the upper and lower confidence

bounds provide important information that can be exploited by

CARBO, as discussed next.

3.2 | Overview of the CARBO algorithm

Given the posterior GP surrogate models for all unknown functions

v�F from (8a)–(8c), we can come up with several different strategies

for sequentially selecting sample points xv,tf gv � F given previous data

Xv,t�1, yv,t�1

� �
v � F . For example, we could attempt to spend our eval-

uation budget on learning globally accurate representations of the

functions v �F as quickly as possible. We can interpret this goal as a

Bayesian experimental design (ED) problem,57 which suggests that we

select samples that maximize the predicted variance of each unknown

function, that is,

xv,t � argmax
x � X

σ2v,t�1 xð Þ, 8v�F : ð10Þ

This approach is good at exploring the functions v�F ; however,

even in the unconstrained case, it is not particularly well-suited to the

optimization task since we only care about identifying values of

x¼ θ,wf g that minimize the worst-case value of f θ,wð Þ. This issue is

only exacerbated in the constrained case considered here since we

have more functions that must be explored, which implies an even

larger number of expensive function evaluations are needed to glob-

ally model every v�F . A natural alternative to the explorative Bayes-

ian ED approach is to select a single xt by solving the following min-

max optimization problem

min
θ � Θ

max
w �W θð Þ

μf,t�1 θ,wð Þ s:t: μgi ,t�1 θ,wð Þ≤0, 8w�W θð Þ, 8i� 1,…,mf g,

ð11Þ

ALGORITHM 1 CARBO: A sequential learning algorithm for constrained robust black-box optimization problems

Input: The set of the design variables Θ and uncertainties W θð Þ for all θ�Θ; GP priors μv , kvf gv �ℱ; exploration parameters βtf gt≥1; con-
straint penalty weight factor ρ; and total number of iterations T.

1: for t¼1 to T do

2: Solve the following min–max optimization problem for θt

θt � argmin
θ � Θ

max
w �W θð Þ

LCBf,t�1 θ,wð Þþρ
Xm
i¼1

max
w �W θð Þ

LCBgi ,t�1 θ,wð Þ
� �þ !

, ð12Þ

where hþ xð Þ¼ h xð Þð Þþ ¼ max h xð Þ, 0f g denotes the positive part of a function h xð Þ.
3: Set θv,t ¼ θt for all v�F .

4: for every unknown function v in the set F do

5: Solve the following maximization problem for wv,t

wv,t � argmax
w �W θtð Þ

UCBv,t�1 θv,t,wð Þ: ð13Þ

6: Evaluate the unknown function v at θv,t,wv,tf g, i.e., collect data yv,t ¼ v θv,t,wv,tð Þþεv,t.

7: Update the GP posterior mean μv,t, variance σ2v,t, and confidence bounds LCBv,t and UCBv,t according to (8a)–(8c) and (9a

and 9b) with the newest available data.

8: end for

9: end for

10: Return the recommended design point θrT ¼ θt ? that corresponds to the sampled point with the smallest penalized upper confi-

dence bound, defined as follows

t ? � argmin
t � 1,…, Tf g

max
w �W θtð Þ

UCBf,t�1 θt,wð Þþρ
Xm
i¼1

max
w �W θtð Þ

UCBgi ,t�1 θt,wð Þ
� �þ !

: ð14Þ
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which is derived by substituting the mean representation of the pos-

terior objective and constraint functions into (1a and 1b). This type of

mean-based search rule is known to be greedy in the sense that it can

easily get stuck in shallow local solutions. Another major challenge

with such an approach is the inaccuracies in the mean constraint func-

tions can cutoff exploration in a large portion of the feasible region,

especially in the early iterations when limited data is available. In other

words, mean-based search strategies tends to over-exploit the cur-

rently available data. This over-exploitation is not a big issue when

data is abundant and/or cheap to collect, but is a major limitation in

the context of expensive function evaluations considered in Assump-

tion 1. Furthermore, in the robust optimization case, (11) does not

incentivize improved learning of the feasible region because the

uncertainty values are selected based on the predicted worst-case

objective function.

Motivated by the GP-LCB algorithm58 that has been shown to

work well in the nominal unconstrained case, we look to develop a

strategy that takes advantage of the confidence bounds defined in

(9a and 9b) to address the exploration-exploitation tradeoff. For suffi-

ciently large choices of βtþ1, these confidence bounds can be used to

guarantee that the true unknown function is contained within these

bounds with high probability, which is discussed in Section 4. The pro-

posed CARBO algorithm, which relies on the confidence bounds (9a

and 9b), is summarized below in Algorithm 1.

The suggested θt is the one that leads to the minimum robust

penalized lower confidence bound, as shown in (12). Note that we

specifically penalize the constraints using a non-smooth penalty func-

tion, which will be needed to establish the theoretical convergence

results in the next section. To better interpret (12), let us recast it as

the following equivalent constrained min–max problem

min
θ � Θ, εi ≥0

max
w �W θð Þ

μf,t�1 θ,wð Þ�β1=2t σf,t�1 θ,wð Þþρ
Xm
i¼1

εi, ð15aÞ

s:t: max
w �W θð Þ

μgi ,t�1 θ,wð Þ�β1=2t σgi ,t�1 θð ,wÞ
	 


≤ εi, 8i� 1,…,mf g,

ð15bÞ

where εi denote slack variables that represent the degree of robust

constraint violation for the ith constraint. We delay a discussion on

how to practically solve (15a) until Section 5 and, for now, assume

that we can identify a global solution. From (15a), we see that Algo-

rithm 1 simplifies to the standard GP-LCB algorithm whenever there

is no uncertainty (i.e., W θð Þ¼ wf g is a singleton containing only a

nominal value) and there are no constraints (m¼0). However, the

inclusion of uncertainty and constraints do fundamentally change

the behavior of the method. We see that the constraints (15b) can be

interpreted as a “relaxation” of θ :Gi θð Þ≤0, 8i¼1,…,mf g that should

contain the true feasible domain with high probability (as long as

βtf gt≥1 are appropriately chosen). To handle uncertainty, once we

have selected θt, we also need to select feasible a set of uncertainty

values wv,tf gv � F . This is accomplished by solving (13), which corre-

sponds to selecting the uncertainty value that maximizes the upper

confidence bound for each unknown function. CARBO is thus based

on two distinct principles that alternate within each step of the algo-

rithm: (i) make optimistic selections under uncertainty for the design

θt that is shared for all v�F and (ii) make pessimistic selections under

uncertainty for the anticipated worst-case values of wv,tf gv � F that

can differ between the unknown objective and constraint functions.

The first concept is similar to traditional BO algorithms, while the second

is unique to constrained robust BO algorithms that must mitigate the

effect of a potential adversary simultaneously on multiple functions. We

also see that CARBO reduces to the ARBO algorithm from Ref. [52]

whenever m¼0, which only requires one evaluation at each iteration

because only the objective function is considered to be unknown.

Once the outer for loop is completed in Algorithm 1, a final

recommended point is selected out the sequence θ1,…, θTf g using the

rule shown in (14). It should be noted that many different recommen-

dation procedures are possible (e.g., simply returning the final point

θrT ¼ θT ); however, we select one that minimizes a pessimistic bound

on a penalized variation of the robust-regret from (3), which is based

on the theoretical results established in the next section. In addition,

the key parameters of the algorithm, mainly βtf gt ≥1 and ρ, have been

left unspecified. We also analyze their impact on the convergence

properties of CARBO next.

Remark 1. In CARBO, mþ1 function evaluations are

needed at each iteration, which scales with the number

of constraints considered in the original problem (1a and

1b). Thus, it can be valuable to aggregate constraints to

limit these evaluations. The simplest constraint aggrega-

tion approach is the maximum constraint method, which

replaces (1b) with a single constraint

max g1 θ,wð Þ,…, gm θ,wð Þf g≤0, 8w�W θð Þ: ð16Þ

An important challenge with this approach is that

the resulting constraint may not satisfy the smoothness

requirement of Assumption 2. A better alternative is to

rely on the Kreisselmeier–Steinhauser (KS) function to

aggregate the constraints into the following smooth

composite function

KS g1 θ,wð Þ,…, gm θ,wð Þð Þ¼1
λ
ln
Xm
i¼1

eλgi θ,wð Þ
" #

≤0, 8w�W θð Þ, ð17Þ

where λ> 0 is a weight factor that ensures the KS function converges to

the max operator as λ!∞. Not only does the KS function provide the

desired smoothness properties, but also it can be shown to be an overesti-

mate of the original constraints gi θ,wð Þ≤0,59 so that it can still be used

to establish robust feasibility guarantees in our context. Therefore, by repla-

cing (1b) with (17), CARBO only requires two samples at each iteration,

which is completely independent of m. It is worth noting that the computa-

tional cost of each CARBO iteration is also reduced when applying KS

aggregation since only two GP models are included in the sub-prob-

lems (12) and (13). The main downside to this KS simplification is that
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less information is provided to these sub-problem such that constraint

predictions may not be as accurately represented at each iteration.

Remark 2. In the description of CARBO provided in

Algorithm 1, we have focused on the case that the func-

tions v�F must be independently evaluated, as noted

in characteristic 6 of Assumption 1. There are certain

cases where the evaluation of the objective and con-

straints is coupled such that, when we query one of the

functions, we can cheaply obtain data for some or all of

the other functions of interest. One such example is

when the functions f, g1,…, gmf g are defined in terms of

a vector of outputs from a complex simulator that must

be evaluated simultaneously. Since the case considered

here is a special case of this more general setting, all of

the results proved in this article still hold. Furthermore,

we can easily incorporate this information into the GP

models by augmenting the datasets (7a and 7b) with

any additional measurements, which can be expected to

practically improve the rate of convergence.

4 | THEORETICAL CONVERGENCE
GUARANTEES FOR CARBO

The focus of this section is on theoretical analysis of the proposed

CARBO algorithm discussed in Section 3. First, we provide an overview

of exact penalty functions for constrained nonlinear programs of the

form (2), which is needed to formulate our modified definition of regret.

Then, we use established results on GP confidence bounds to determine

an upper bound on our proposed regret quantity. Finally, we show how

this newly derived upper regret-like bound is sufficient to establish con-

vergence of CARBO to the constrained global minimax solution.

4.1 | Proposed definition of exact penalty-based
robust-regret

As discussed previously, the original robust problem (1a and 1b) can

be represented by (2) where F θð Þ and Gi θð Þ are defined in terms of the

lower-level optimization problems. Let us consider a related optimiza-

tion problem of the form

min
θ � Θ

P θ;ρð Þ¼ F θð Þþρ
Xm
i¼1

Gþ
i θð Þ, ð18Þ

where ρ≥0 is a non-negative constant and P θ;ρð Þ denotes the non-

differentiable penalty function. The key “exactness” property for P �ð Þ
that is relevant to this work is summarized in the following theorem.

Theorem 1. (Exact Penalty Function55) Let Assumption

3 hold. Then, there exists a finite threshold value ρ such

that, for any ρ� ρ,∞½ Þ, every global solution to (2) is a

global solution of (18) and vice versa.

It is important to note that exact penalty property summarized in

Theorem 1 does not hold for all choices of penalty functions. As an

example, it is common to formulate the Lagrangian function (by linearly

penalizing constraints) and then apply duality theory to transform the

original problem into a dual problem that yields a lower bound on the

optimal objective function of the original (or primal) problem according

to the weak duality theorem. Unless certain strong convexity conditions

hold, however, there will exist a duality gap between the primal and dual

solutions, meaning we cannot directly use the dual problem to solve the

original primal problem. As discussed in Ref. [60] we can interpret the

solution to (18) as an extended dual function that ensures zero duality

gap (i.e., strong duality holds), which is a critical property for potentially

highly non-convex problems because it provides us with a path forward

to solving the original problem (2) (equivalent to (1a and 1b)) by solving

simpler problems of the form (18).

Let G θð Þ¼ G1 θð Þ,…,Gm θð Þ½ �Τ denote a concatenated vector of the

upper-level constraints. Using the exact penalty function concept in

(18), we define the instantaneous penalty-based robust-regret at any

iteration t as follows

rwEP,t ρð Þ¼ F θtð Þþρ kGþ θtð Þk1�F θ ?ð Þ,

¼ max
w �W θtð Þ

f θt,wð Þþρ
Xm
i¼1

max
w �W θtð Þ

gi θt,wð Þ
� �þ

� max
w �W θ ?ð Þ

f θ ? ,wð Þ,

¼ rwt þρ
Xm
i¼1

max
w �W θtð Þ

gi θt,wð Þ
� �þ

:

ð19Þ

Note that the term ρ kGþ θ ?ð Þk1 ¼0 by Assumption 3, that is, at

least one global solution exists to the original constrained problem (1a

and 1b). The second and third lines in (19) show that there is a clear

relationship between the original robust-regret rwt and the penalized

version rwEP,t ρð Þ, with the additional term having important implications

on convergence, as shown in detail in the subsequent sections.

Remark 3. The exact penalty function proposed in (18)

can be categorized as an L1 penalty function and is one

of most recommended ones for (G)SIPs.56 Other exact

penalty functions have been proposed for this class of

problems including modified L1 penalty functions61 and

L∞ penalty functions.62 In principle, these other penalty

functions can be used within the proposed CARBO

algorithm, though it is not clear what their effect would

be on the underlying numerics or rate of convergence.

We believe better understanding the impact on the

choice of penalty function used by CARBO would be an

interesting direction for future work.

4.2 | Upper bound on cumulative penalty-based
robust-regret

CARBO, presented in Algorithm 1, requires one to select the explora-

tion parameters βtf gt ≥1 that directly specify the width of the
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confidence intervals as seen in (9a and 9b). To see the importance of

these values, note that (15a and 15b) reduces to the mean-based

search method (11) when βt ¼0 (and εi ¼0), which results in variance

information being completely ignored. We first extend a result from

Ref. [58] for one GP to multiple GPs. For simplicity, we summarize this

result for the case of a finite set X ¼Θ�W Θð Þ first and discuss the

extension to compact sets in Section 5.

Lemma 1. (GP Confidence Bounds) Let v xð Þ�
GP μ xð Þ, k x, x0ð Þð Þ be a sample of a GP for which noisy

observations of the form (7a and 7b) are available for all

v�F . In addition, let βt ¼2log mþ1ð ÞjXjt2π2= 6αð Þ� �
for

a specified failure probability α� 0, 1ð Þ and discrete set

j X j <∞. Then, the following simultaneous bounds on the

objective and constraint functions

v xð Þ� LCBt�1 xð Þ, UCBt�1 xð Þ½ �, 8x�X , 8t≥1, 8v�F , ð20Þ

hold with probability 1�α (over the set of GP posteriors at every itera-

tion t).

Proof. The result [58, lemma 5.1] proves (20) holds for

a single function v, that is, j F j¼1. To extend this result,

we replace α with a smaller value α= j F j. We then apply

the union bound (aka Boole's inequality) as follows

P [
v � F

v xð Þ =2 LCBt�1 xð ÞUCBt�1 xð Þ½ �, 8x�X8t≥1

 �
≤
X
v � F

P v xð Þ =2 LCBt�1 xð ÞUCBt�1 xð Þ½ �, 8x�X8t≥1f g:

The right-hand side above can be reduced toP
v � F

α
jF j ¼ α such that the stated claim holds

since j F j¼mþ1.

We also need the following bound that can be derived from the prop-

erties of the positive part operator.

Lemma 2. (Positive Part Difference) The inequality

aþ �bþ ≤ a�bð Þþ holds for any real constants a, b�R.

Proof. There are four cases to consider: (i) a, b<0, (ii)

a<0 and b≥ 0, (iii) a≥0, b<0, and (iv) a, b≥0. For case

(i), the left-hand side is 0 while the right-hand side must

be ≥0 by definition. For case (ii), the left-hand side is

�b≤0 while the right-hand side is 0. For case (iii), the

left-hand side is a while the right-hand side is

aþ j b j > a. For case (iv), the left-hand side is a�b while

the right-hand side must always be ≥ a�b.

Let us now convert the GP confidence bounds in Lemma 1 to a

bound on our proposed regret measure rwEP,t in (19) that depends only

on constants and the GP posterior variance.

Lemma 3. (Instantaneous Penalty-based Robust-Regret

Upper Bound) Let t≥1 be fixed, the query points

θv,t,wv,tf gv � F be selected according to CARBO (Algo-

rithm 1), and Assumptions 2 and 3 hold. Then, if

LCBv,t�1 xð Þ≤ v xð Þ≤UCBv,t�1 xð Þ holds for all x�X and

v�F , the instantaneous penalty-based robust-regret in

(19) satisfies the following bound

rwEP,t ρð Þ≤2β1=2t

X
v � F

ρvσv,t�1 θv,t,wv,tð Þ, ð21Þ

where ρv ¼1 for v¼ f and ρv ¼ ρ for all v�F ∖ f.

Proof. First, we need to establish a pessimistic estimate

of rwEP,t ρð Þ, which we define as follows

rwEP,t ρð Þ¼ max
w �W θtð Þ

UCBf,t�1 θt,wð Þþρ
Xm
i¼1

max
w �W θtð Þ

UCBgi ,t�1 θt,wð Þ
� �þ

� max
w �W θ ?ð Þ

f θ ? ,wð Þ:

We clearly see that rwEP,t ρð Þ≤ rwEP,t ρð Þ given the upper bound assump-

tion on all v�F . Now let us use our previous definitions and results

to establish the following sequence of inequalities

where first line follows from the definition of wv,t in (13); the second

line follows from θ ? �Θ being feasible and satisfying worst-case con-

straints by Assumption 3; the third line follows from the lower bound

rwEP,t ρð Þ ¼ UCBf,t�1 θt,wf,tð Þþρ
Xm
i¼1

UCBgi ,t�1 θt,wgi ,t
� �� �þ� max

w �W θ ?ð Þ
f θ ? ,wð Þ,

¼ UCBf,t�1 θt,wf,tð Þþρ
Xm
i¼1

UCBgi ,t�1 θt,wgi ,t
� �� �þ�min

θ � Θ
max

w �W θð Þ
f θ,wð Þþρ

Xm
i¼1

max
w �W θð Þ

gi θ,wð Þ
� �þ" #

,

≤ UCBf,t�1 θt,wf,tð Þþρ
Xm
i¼1

UCBgi ,t�1 θt,wgi ,t
� �� �þ�min

θ � Θ
max

w �W θð Þ
LCBf,t�1 θ,wð Þþρ

Xm
i¼1

max
w �W θð Þ

LCBgi ,t�1 θ,wð Þ
� �þ" #

,

¼ UCBf,t�1 θt,wf,tð Þþρ
Xm
i¼1

UCBgi ,t�1 θt,wgi ,t
� �� �þ� max

w �W θtð Þ
LCBf,t�1 θt,wð Þ�ρ

Xm
i¼1

max
w �W θtð Þ

LCBgi ,t�1 θt,wð Þ
� �þ

,

≤ UCBf,t�1 θt,wf,tð Þ�LCBf,t�1 θt,wf,tð Þþρ
Xm
i¼1

UCBgi ,t�1 θt,wgi ,t
� �� �þ � LCBgi ,t�1 θt,wgi ,t

� �� �þh i
,
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on all v �F ; the fourth line follows from the definition of θt in (12);

and the fifth line follows from the fact that

maxw �W θtð ÞLCBv,t�1 θt,wð Þ≥ LCBv,t�1 θt,wv,tð Þ for any feasible choice

of wv,t �W θtð Þ.
Now that we have bounded a pessimistic estimate

of rwEP,t ρð Þ in terms of the upper and lower confidence

bounds on the unknown functions v�F , we can use the

definitions in (9a and 9b) to further simplify this

expression:

rwEP,t ρð Þ ≤ UCBf,t�1 θt,wf,tð Þ�LCBf,t�1 θt,wf,tð Þþρ
Xm
i¼1

UCBgi ,t�1 θt,wgi ,t
� ��

� LCBgi ,t�1 θt,wgi ,t
� �Þþ,

¼ 2β1=2t σf,t�1 θt,wf,tð Þþρ
Xm
i¼1

2β1=2t σgi ,t�1 θt,wgi ,t
� �

,

where the first line follows from Lemma 2 and the second line follows

from (9a and 9b). The stated result follows by noticing θv,t ¼ θt for all

v�F (Line 3 of Algorithm 1) and simple rearrangement of the last

inequality.

Our final step is to convert the bound on instantaneous

penalty-based robust-regret into a cumulative one, so that we

are able to analyze the behavior of CARBO for more than just a sin-

gle iteration. Before presenting this main result, we define the

maximum information gain (MIG), which is a fundamental quantity in

Bayesian ED that provides a measure of informativeness of any

finite set of sampling points A�X . We will state our cumulative

penalty-based robust-regret bound directly in terms of MIG.

Definition 1. (Maximum Information Gain) Let A�X
denote any subset of sampling points from X . The maxi-

mum information gain (MIG) for any unknown function

v�F under the t noisy measurements from (7a and 7b)

is defined as

γv,t ¼ max
A�X :jAj¼t

1
2
logdet Itþσ�2Kv,A

� �
, ð22Þ

where Kv,A ¼ kv x, x0ð Þ½ �x,x0 � A is the positive definite covariance matrix

between the points A. Note the term inside of the max in (22) is often

referred to as the Shannon Mutual Information between v and the

observations at points x�A.

Theorem 2. (Cumulative Penalty-based Robust-Regret

Upper Bound) Let α� 0, 1ð Þ denote the failure probabil-

ity, βt ¼2log mþ1ð ÞjXjt2π2= 6αð Þ� �
, and Assumption 2

hold. Running CARBO (Algorithm 1), we obtain the fol-

lowing bound on the cumulative penalty-based robust-

regret for all ρ≥0

P Rw
EP,T ρð Þ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TβTΨT ρð Þ

p
, 8T ≥ 1

n o
≥1�α, ð23Þ

where Rw
EP,T ρð Þ¼PT

t¼1r
w
EP,t ρð Þ denotes the cumulative penalty-based

robust-regret and

ΨT ρð Þ¼
X
v � F

X
q � F

ρvρq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffieγv,Teγq,Tq
, ð24Þ

is an aggregated MIG factor with eγv,T ¼ 8log 1þσ�2
ε,v

� �� �
γv,T denoting

the scaled MIG for v�F after T CARBO iterations.

Proof. Combining Lemmas 1 and 3, we see that the fol-

lowing event

rwEP,t ρð Þ� �2
≤4βt

X
v � F

X
q � F

ρvρqσv,t�1 θv,tð ,wv,tÞσq,t�1 θq,t,wq,tÞ, 8t≥1ð g,
(

holds with probability ≥1�α. Since βt is non-decreasing with t, we

know that the sum over T steps must satisfy

XT
t¼1

rwEP,t ρð Þ� �2
≤4βT

X
v � F

X
q � F

XT
t¼1

ρvρqσv,t�1 θv,t,wv,tð Þσq,t�1 θq,t,wq,tð Þ,

≤ 4βT
X
v � F

X
q � F

ρvρq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
σ2v,t�1 θv,t,wv,tð Þ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

t¼1
σ2q,t�1 θq,t,wq,tð Þ

r
,

where the second line follows from the Cauchy–Schwarz inequality.

To further simplify the innermost terms, we need to rely on the fol-

lowing established result from [Ref. [58], lemma 5.4]

XT
t¼1

σ2v,t�1 θv,t,wv,tð Þ≤ 2

log 1þσ�2
ε,v

� �γv,T ¼eγv,T4 , 8v�F ,

which upper bounds the sum of posterior variances of sampled points

in terms of the scaled MIG. Substituting this result into the inequality

above results in

XT
t¼1

rwEP,t ρð Þ� �2
≤ βT

X
v � F

X
q � F

ρvρq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffieγv,Teγq,Tq
¼ βTΨT ρð Þ,

where we have substituted the definition of ΨT ρð Þ provided in (31).

Finally, the stated result follows from the fact that

Rw
EP,T ρð Þ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
PT

t¼1 rwEP,t ρð Þ
	 
2r

by the Cauchy–Schwarz inequality.

To explicitly determine the growth rate of Rw
EP,T ρð Þ with respect to

the total number of iterations T, we need to establish bounds on

ΨT ρð Þ defined in (24). This can be done by exploiting bounds on the

MIG γv,T for all v�F , which have been previously identified for com-

mon kernel choices. For example, the squared exponential (SE) kernel,

which can be derived from (6) when ν!∞, results in a MIG that sat-

isfies γv,T ¼O logTð Þpþ1
	 


. Substituting this expression into (24), we

see that ΨT ρð Þ¼O logTð Þpþ1
	 


since all terms in the summation have

the same order and ρvf gv � F are constants. Finally, substituting this

order of magnitude result into (23), we can find that

KUDVA ET AL. 10 of 20
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Rw
EP,T ρð Þ¼O ?

ffiffiffi
T

p
log Tð Þð Þpþ1

2

	 

, ð25Þ

where O ? is a variant of the traditional order of magnitude O notation

that hides dimension-independent log factors. Similar results can be

obtained for other kernel choices, implying Rw
EP,T ρð Þ grows sublinearly

with respect to T for any ρ≥0 with high probability for a sufficiently

small choice of α. This sublinear property of Rw
EP,T ρð Þ is crucial for

establishing global convergence of CARBO, which we show next.

4.3 | Establishing convergence to a constrained
robust global minimum

To establish convergence of CARBO to θ ? , we need to analyze the

effect of the pessimistic recommendation procedure proposed in (14).

We now summarize our main result, which shows under what condi-

tions θrT ρð Þ converges to a global solution of the original problem (1a

and 1b).

Theorem 3. (Convergence of CARBO) Let Assumptions

1–3 hold and ρ be the threshold value such that P θ;ρð Þ
in (25) is an exact penalty function for any ρ≥ ρ, which

must exist according to Theorem 1. Furthermore, let

θ1,…, θTf g be the sequence of points generated by

CARBO (Algorithm 1) where βtf gt ≥1 is chosen to satisfy

the conditions of Theorem 2. Then, the recommended

point θrT ρð Þ defined in (14) must satisfy the following

P lim
T!∞

θrT ρð Þ¼ θ ?


 �
≥1�α, 8ρ� ρ,∞½ Þ, ð26Þ

where “=” implies in the set of global solutions.

Proof. Let us first define the simple penalty-based

robust-regret as SwEP,T ρð Þ¼ min t � 1,…,Tf grwEP,t ρð Þ, which is

similar to (4) but also incorporates the constraint penalty

term. Since rwEP,t ρð Þ≤ rwEP,t ρð Þ as shown in the proof of

Lemma 3, we can immediately infer that

SwEP,T ρð Þ≤ min t � 1,…,Tf gr
w
EP,t ρð Þ¼ rwEP,t ? ρð Þ where the index

t ? is defined according the recommendation procedure

in (14) that is equivalent to t ? � argmint � 1,…,Tf gr
w
EP,t ρð Þ. A

direct consequence of the exact penalty function prop-

erty is that SwEP,T ρð Þ≥0 for all T ≥1 since

F θð Þþρ kGþ θð Þk1 ≥ F θ ?ð Þ for all θ�Θ as long as ρ≥ ρ. In

addition, we note that the cumulative penalty-based

robust-regret bound in (23) also holds for the pessimis-

tic version R
w
EP,T ρð Þ¼PT

t¼1r
w
EP,t ρð Þ, as the proofs rely on

the bound established for rwEP,t ρð Þ. Since the minimum of

a sequence of points must be less than or equal to the

average of those points, we can establish the following

lower and upper bounds on SwEP,T ρð Þ:

0≤ SwEP,T ρð Þ≤ rwEP,t ? ρð Þ≤ 1
T
R
w
EP,T ρð Þ, 8ρ� ρ,∞½ Þ:

Because R
w
EP,T ρð Þ is sublinear in T, as illustrated in,

for example, (25), we must have that R
w
EP,T ρð Þ=T!0 as

T!∞ with probability ≥1�α. Since both the lower

and upper bound on SwEP,T ρð Þ converge to 0, we must

have SwEP,T ρð Þ!0 when the above inequalities holds,

which only occurs when θrT ρð Þ! θ ? . This immediately

implies (26) must hold.

Theorem 3 provides a set of conditions that must be satisfied for

CARBO to converge. There are two main practical implications of this

result. First, the exploration constants βtf gt≥1 and the penalty weight

ρ have important impacts on CARBO's convergence. In particular, if

we would like a high probability of convergence, then we must corre-

spondingly select larger values for the exploration constants, which

may result in worse short-term performance. Furthermore, if we

select ρ to be too small, then we are biased toward sampling and

recommending infeasible points, implying conservative estimates for ρ

should be preferred in practice. The second key insight is that the rec-

ommendation procedure plays an important role in the convergence

result. We are unable to use the original regret definition since we

cannot find the index t ? that minimizes the sequence

rwEP,1 ρð Þ,…, rwEP,T ρð Þ
n o

since robust-regret is defined in terms of a max

operator applied to the unknown functions. By using the pessimistic

version of penalty-based robust-regret, we have enough information

to identify t ? that minimizes the sequence rwEP,1 ρð Þ,…, rwEP,T ρð Þ� �
since

these terms are fully defined in terms of the known GP upper confi-

dence bounds. In the next section, we discuss several important prac-

tical implementation issues including how to numerically implement

Algorithm 1 and how to verify the assumptions required to prove The-

orems 2 and 3.

Remark 4. It is interesting to note that the recommen-

dation procedure summarized in (14) uses confidence

bounds computed from different sets of data. A poten-

tially more robust approach is to replace UCBv,t�1 with a

common bound UCBv,T for all v�F so that the selection

is based on the most recently available dataset. One can

show that the Theorem 3 will still hold for this rule, as

long as one intersects the set of confidence bounds at

each iteration t�1,…, Tf g so that they are monotoni-

cally shrinking.

5 | PRACTICAL CONSIDERATIONS AND
IMPLEMENTATION DETAILS

In Section 4, we analyzed the theoretical convergence of CARBO

under certain assumptions. Although these results provide various

insights and serve as a useful guide for understanding performance,
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our practical implementation differs in certain aspects that are elabo-

rated on in detail in this section.

5.1 | Choice of exploration constant βt

Lemmas 1 and 3 and Theorems 2 and 3 are presented for discrete

spaces X ; however, many real-world problems are modeled with con-

tinuous spaces. In Ref. [58] a discretization technique was developed

to generalize the bounds on the GP-LCB algorithm to compact and

convex sets by enlarging the exploration constant βt. This technique

can be applied when the covariance functions kv x, x0ð Þ ensure the fol-

lowing high probability bounds on the derivatives of the propagated

GP sample paths for f hold for some constants a, b> 0

P sup
x � X

∂f
∂ x½ �i

> L


 �
≤ ae� L=bð Þ2 , 8i¼1,…, p: ð27Þ

Whenever this condition holds, we can generalize Theorems 2 and 3

to compact and convex sets of the form X � 0, r½ �p by replacing βt with

the following larger value

βt ¼2log
2 mþ1ð Þt2π2

3α

� �
þ2p log t2pbr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 4pa=αð Þ

p	 

: ð28Þ

Note that it has been shown that these values of βt are often conser-

vative in practice such that a more aggressive strategy is usually pre-

ferred. We set βt ¼4 in our numerical experiments in Section 6 for

simplicity, though alternative methods could easily be used.

5.2 | Data-dependent GP prior

Our previous results in Sections 3 and 4 assume that the hyperpara-

meters Ψ, σε,vf g of the GP prior for all v�F are known. However, this

is often not true in practice, so that we must rely on some hyperpara-

meter estimation scheme to train the GP models. In this work, we

focus on the maximum likelihood estimation (MLE) framework, which

determines Ψ ?
t , σ

?
ε,v,t

� �
at every iteration t by maximizing the log-like-

lihood function

Ψ ?
t , σ

?
ε,v,t

� �
� argmin

Ψ, σ2ε,v
Lv,t Ψ, σε,vð Þ¼ log p yv,tjXv,t,Ψ, σε,v

� �� �
: ð29Þ

According to the GP prior, the measured data vector yv,t must follow a

multivariate Gaussian distribution, that is,

yv,t �N 0,Σv,t Ψ, σε,vð Þð Þ, Σv,t Ψ, σε,vð Þ½ �ij ¼ kv xi , xjjΨ
� �þσ2ε,vδij, 8i, j� 1,…, tf g,

ð30Þ

where δij denotes the Dirac delta function that is 1 when i¼ j and 0

otherwise. We can then derive the following analytic expression for

the log-likelihood function

Lv,t Ψ, σε,vð Þ¼�yΤv,tΣ
�1
v,t Ψ, σε,vð Þyv,t�

1
2
log det Σv,t Ψ, σε,vð Þð Þð Þ� p

2
log 2πð Þ:

ð31Þ

Since (31) is a differentiable function, the GP training optimization

problem (29) is a nonlinear program that can be efficiently solved to

local optimality using state-of-the-art methods such as IPOPT.63 To

avoid getting stuck in shallow local minima, we first use the global

solver DIRECT64 to find a good initial condition to provide to IPOPT

(i.e., the best solution found with DIRECT under its default settings is

used to initialize IPOPT).

Note that re-training the set of GP models for all v�F at each

iteration of CARBO can be somewhat expensive depending on the

size of the optimization problem (29), the number of data points, and

the number of constraints. A simple way to reduce this cost is to only

periodically update the hyperparameters (e.g., every 5 iterations).

Although this may slightly reduce performance, it is a strategy that

has been successfully employed in the Bayesian optimization litera-

ture on a variety of different problems. Another advantage of (periodi-

cally) updating the GP prior hyperparameters as new data is obtained

is that one can monitor the estimated values to see if they converge

as the number of iterations increase, which will occur whenever

Assumption 2 is satisfied.

5.3 | Verification of upper-level MFCQ conditions

The proofs of Theorems 2 and 3 invoked the constraint qualifica-

tion condition in Assumption 3, which we cannot easily verify holds

a priori since the functions v�F are fully black-box in nature. A rea-

sonable alternative is to instead check if Assumption 3 holds after the

CARBO algorithm is terminated. Under Assumption 2, the posterior

mean function in (8a)–(8c) should provide a reasonably accurate rep-

resentation of the true unknown functions, meaning we can verify

Assumption 3 for the learned GP models for every v�F . To run this

verification procedure, one would need to identify the set of global

solutions to the mean-based approximation to (2) (using, e.g., a

combination of a multistart procedure with some established

numerical method for GSIPs) and check if the MFCQ conditions

hold at each of these points. Since the posterior GP mean functions

are differentiable and cheap to evaluate, this procedure should

require significantly less computational cost than running the com-

plete CARBO algorithm.

5.4 | Choice of penalty weight factor ρ

As shown in Theorem 3, we can achieve convergence for any value of

ρ≥ ρ. Since the functions v�F are unknown, we cannot exactly deter-

mine ρ before running CARBO and must instead rely on conservative

estimates. Assuming the functions v�F have been reasonably well-

scaled, the easiest approach is to select a large value for ρ (e.g., a value

on the order to 103�105). We set ρ¼103 in our simulation results. It
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should be noted that large ρ values may make the min–max optimiza-

tion problem (2) harder to solve numerically. An alternative approach

would be to take advantage of the strong duality result established

for (18), that is, maxρ≥0minθ � ΘP θ;ρð Þ¼ F θ ?ð Þ by replacing P θ;ρð Þ
with its upper confidence bound UCBP,t�1 θ;ρð Þ that can be expressed

in terms of (9a and 9b). One can practically solve this trilevel optimiza-

tion problem by solving the inner min–max optimization problem for

an increasing set of ρ values. A conservative estimate of ρ then corre-

sponds to the ρ such that minθ � ΘUCBP,t�1 θ;ρð Þ converges to a nearly

constant value. Similarly to the hyperparameter training procedure

described in Section 5.2, one can update the estimate of ρ periodically

to reduce the computational cost of repeatedly solving the min–max

optimization problems.

5.5 | Initialization procedure

Since the MLE-based training procedure described in the previous

section can be unreliable when we have a very small amount of data,

we follow the recommendations from Ref. [65] by initializing CARBO

with Ninit points selected uniformly at random. This procedure is

meant to overcome limitations in the first few iterations whenever we

have an uninformative prior for each v, which is often the case in

practice. This procedure can easily be modified or replaced when

additional information is available.

5.6 | Constrained min–max optimization of the
CARBO acquisition function

The theoretical analysis in Section 4 assumes we can exactly

optimize the acquisition functions defined in terms of the lower

and upper confidence bounds in (12) and (13), respectively. The

maximization problem (13) resembles a standard sub-problem that

arises in BO (or GP-LCB to be specific) such that the same proce-

dures can be exploited to practically solve this finite nonlinear

program (NLP). In particular, we rely on a combination of

derivative-free global search with a local gradient-based solver

(IPOPT) to refine the solution. The min–max optimization prob-

lem (12), which can be equivalently formulated as the constrained

problem (15a and 15b), is a much more challenging problem to

solve. We could treat (15a and 15b) as a robust black-box optimi-

zation problem with constraints and apply the method developed

in Ref. [2] since the GP mean and variance evaluations are cheap

compared with the original unknown functions. However, this

method will produce a limited convergence rate in practice since

it does not exploit available derivative information from the pos-

terior GP mean and variance equations. Instead, we recognize

that (15a and 15b) can be formulated as a generalized semi-

infinite program (GSIP),66 that is, a mathematical program with a

finite number of decision variables subject to an infinite number

of constraints the index set of which is dependent on the deci-

sion variables, as follows

min
θ � Θ, εi ≥0, z

z,

s:t: μf,t�1 θ,wð Þ�β1=2t σf,t�1 θ,wð Þþρ
Xm

i¼1
εi� z≤0, 8w�W θð Þ,

μgi ,t�1 θ,wð Þ�β1=2t σgi ,t�1 θ,wð Þ�εi ≤0, 8i� 1,…,mf g, 8w�W θð Þ:
ð32Þ

Whenever W¼W θð Þ is independent of θ, which is a common case in

practice, the GSIP reduces to a standard semi-infinite program (SIP)

for which efficient algorithms have been developed. A particularly

simple and efficient approach for SIPs with non-convex lower-level

problems, such as (32), is described in Ref. [26] which we use in our

numerical experiments in Section 6. This approach obtains an upper

bound by restricting the right-hand side of the constraints above, that

is, replacing ≤0 with a negative value that changes in the algorithm.

To be able to evaluate this upper bound using a finite NLP, the infinite

set W is replaced by a finite set WUBD �W. The set WUBD is sequen-

tially populated in a way that guarantees convergence under relatively

mild assumptions. A converging lower bound is also obtained in a sim-

ilar fashion using successively tighter discretization following the prin-

ciple of Ref. [25]. Therefore, in addition to exploiting derivative

information, we can get a certificate of optimality for any user speci-

fied tolerance value, as long as we use global NLP solvers to solve

some of the sub-problems.

5.7 | Multipoint recommendation procedures

There is a natural tradeoff between performance and constraint satis-

faction in many real-world engineering problems, which can be com-

plicated even further when dealing with the effect of uncertainties.

Therefore, as commonly done in the multiobjective optimization

literature,67 it can be useful to recommend a set of viable solutions

instead of a single value as done in (14). To this end, as opposed to

just taking the minimum of the sequence, one may rank the results

according to the metric defined by the objective function in (14). In

addition to looking at this aggregated metric, however, one can also

look at the individual pessimistic estimates of the worst-case objec-

tive and constraint values. We have found that CARBO often gener-

ates natural clusters of points, with some clusters clearly producing

poor worst-case objective and constraint values that can be elimi-

nated from further consideration. Out of the remaining points, there

may be some that provide a similar value to the minimum of the

aggregated penalty-based metric by improving the worst-case objec-

tive at the cost of small amount of (predicted) worst-case constraint

violation. Since the metric in (14) is merely an estimate, we recom-

mend allocating some additional budget to improve upon the worst-

case estimates for the objective and any nearly active constraint by

running a standard BO procedure for these functions at “good” fixed

θt values. The definition of “good” and the allowable evaluation bud-

get will be problem-dependent; however, a good rule-of-thumb is to

prefer points whose worst-case upper confidence bound for the con-

straints is not too close to 0 whenever robust constraint satisfaction

is essential.
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5.8 | Modified search method to locate robustly
feasible points

Whenever robust constraint satisfaction is a critical requirement and

we have a limited evaluation budget, it may be preferable to initially

ignore the objective function by setting f θ,wð Þ≈0. Although CARBO

is still applicable in this case, it turns out that the min–max optimiza-

tion problem (12) does not preferentially select between different

values of θ whose lower confidence bound robustly satisfies con-

straints. Therefore, it can be advantageous to replace (12) with the

following alternative in such cases:

θt � argmax
θ � Θ

Ym
i¼1

P max
w �W θð Þ

gi θ,wð Þ≤ 0

 �

, ð33Þ

which directly maximizes the probability of robust constraint satisfac-

tion. Note that the evaluation of the probability operator in (33) is

very difficult since the maximum of a GP is no longer a GP. Thus, in

practice, it is likely preferred to reformulate the probability evaluation

in terms of an expectation over a standard normal Zi �N 0, 1ð Þ using
the reparametrization trick68 as follows

P max
w �W θð Þ

gi θ,wð Þ≤0

 �

¼Zi
1∞0� max

w �W θð Þ
μgi ,t�1 θ,wð Þþσgi ,t�1 θ,wð ÞZi

	 
� �
 �
,

ð34Þ

where Zi
�f g denotes the expectation with respect to random vari-

able Zi. One can then directly estimate this expected value for any

θ�Θ using Monte Carlo (MC) integration. A hybrid method that ini-

tially uses (33) to find at least one robustly feasible θt value (with high

probability) and then switches to (12) for improved objective perfor-

mance would be an interesting approach to study further in future work.

6 | CASE STUDIES

In this section, we demonstrate the performance of CARBO on two

problems. The first case study is a benchmark problem for robust

optimization with constraints. Since we know the global solution to

this problem, we can straightforwardly compute the simple penalty-

based robust-regret measure at every iteration in order to test the

convergence claim made in Theorem 3. For our second case study,

we consider a challenging robust design problem for a bubble col-

umn reactor that converts industrial waste to valuable liquid fuels

using cellular fermentation. Since this bubble column problem is

defined in terms of an expensive high-fidelity simulator, we do not

have exact knowledge of the true solution. Therefore, instead of

analyzing penalty-based robust-regret, we demonstrate CARBO's

ability to identify a set of robust design parameters that result in

good worst-case performance and constraint satisfaction.

6.1 | Benchmark problem

We first consider a problem from Ref. [2] that is defined in terms of a

polynomial objective function with polynomial constraint functions of

the form

fpoly θð Þ¼2θ61�12:2θ51þ21:2θ41�6:4θ31�4:7θ21þ6:2θ1
þθ62�11θ52þ43:3θ42�74:8θ32þ56:9θ22�10θ2
�4:1θ1θ2�0:1θ22θ

2
1þ0:4θ22θ1þ0:4θ21θ2,

ð35aÞ

gpoly,1 θð Þ¼ θ1�1:5ð Þ4þ θ2�1:5ð Þ4�10:125, ð35bÞ

gpoly,2 θð Þ¼� 2:5�θ1ð Þ3� θ2þ1:5ð Þ3þ15:75: ð35cÞ

The feasible set for the design variables is θ¼ θ1, θ2½ �Τ
�Θ¼ �1, 4½ �2 �R2. To define a problem of the form (1a and 1b), we

incorporate the effective of implementation errors (additive uncer-

tainty) as follows

f θ,wð Þ¼ fpoly θþwð Þ, ð36aÞ

g1 θ,wð Þ¼ gpoly,1 θþwð Þ, ð36bÞ

–1 0 1 2 3 4

1

–1

0

1

2

3
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2

C
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B

F IGURE 1 Contour plot of the nominal objective fpoly (black)
and constraint gpoly,1 (blue) and gpoly,2 (red) functions for the
benchmark problem. The points A, B, and C indicate three
different design choices with the corresponding boxes showing
the range of uncertainty. Point A is infeasible, Point B is feasible
but results in large worst-case objective values, and Point C is the
robust optimal solution.
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g2 θ,wð Þ¼ gpoly,2 θþwð Þ, ð36cÞ

where the set of possible uncertainty values is given by

W¼ �0:5, 0:5½ �2 �R2. A contour plot of the nominal objective and

constraint functions in (35a)–(35c) is shown in Figure 1. We have

labeled three points A, B, and C to illustrate how uncertainty plays an

important role in this problem. In particular, point A is feasible for the

nominal set of constraints but becomes infeasible once uncertainty is

considered in (36a)–(36c). Point B, on the other hand, remains feasible

under perturbations but a relatively large worst-case objective value

(that is close to a local minima for this problem). Point C is the global

robust solution to this problem, as it clearly results in robust con-

straint satisfaction as well as a low worst-case objective value (since

the function is relatively flat in this region).

Our goal is to identify the constrained robust optimal solution

(Point C) in as few iterations as possible using only zeroth-order infor-

mation from (36a)–(36c). In accordance with Theorem 3, we use the

simple penalty-based robust-regret SwEP,T ρð Þ¼ min t � 1,…,Tf grwEP,t ρð Þ as

our metric. As discussed in Section 5.5, we initially select Ninit ¼5

points uniformly at random before running CARBO (Algorithm 1).

Since SwEP,T ρð Þ is a function of the randomly selected initial points,

SwEP,T ρð Þ is a random variable. We thus repeat CARBO Nrepeat ¼5 times

to obtain a sample average estimate for the expected simple penalty-

based robust-regret

 SwEP,T ρð Þ� �
≈

1
Nrepeat

XNrepeat

i¼1

Sw, ið ÞEP,T ρð Þ, ð37Þ

where Sw, ið ÞEP,T ρð Þ denotes the simple penalty-based robust-regret for the

ith CARBO run. Because this estimate is constructed from a finite

number of samples, we also report confidence intervals estimated as

1.96 times the sample-based standard deviation divided by the num-

ber of replicates (based on the standard error formula).

As noted previously, CARBO is one of the first algorithms devel-

oped for the challenging class of problems considered in this work

such that we have limited options to compare against. Thus, we select

two baseline algorithms: (i) random search and (ii) the max-variance

method, which are commonly used in the black-box optimization liter-

ature. Random search selects the sampled point θt,wtð Þ by drawing

samples uniformly at random from the set Θ�W. The max-variance

methods selects the sampled point according to (10). The simple

penalty-based robust-regret plots for CARBO, random search, and

max-variance are shown in Figure 2. We clearly see that CARBO con-

verges at a much faster rate than random search and max-variance.

We also see that, on average, the value of SwEP,T ρð Þ drops more than an

order of magnitude within the first 10 iterations and drops another

order of magnitude within the next 10 iterations, which highlights the

quick progress toward the global robust solution. We also plot the set

of recommended points using (14) at three different set of total itera-

tions T¼5, 33, 39 for CARBO, random search, and max-variance in

Figure 3 for additional insights. We see that the recommended points

are relatively spread out in the early iterations (left, T¼5), but get

progressively closer to the true robust global solution (black star) in

the later iterations (right, T¼33 and bottom, T¼39). Random search

and max-variance, on the other hand, consistently lead to recom-

mended points that are far away from the true solution since neither

method can navigate the exploration–exploitation tradeoff. This is a

key limitation, especially when a significant portion of Θ leads to viola-

tion of the robust constraints.

6.2 | Design of a bubble column fermentation
reactor for waste gas recovery

Gas fermentation has emerged a promising route for converting

industrial waste gases and synthesis gas into renewable liquid fuels

and chemicals using specially developed bacteria. Clostridium auto-

ethaogenum, which is an acetogenic anaerobic bacterium, has the

potential to be effective at fermenting carbon monoxide into ethanol

and acetate through the Wood–Ljungdahi pathway; however, the

yield of ethanol in the wild-type strain is known to be low for ethanol

compared with acetate.69 An improved strain of C. autoethaogenum

that provides an increased biofuel yield has been developed by

researchers at LanzaTech.70 However, the majority of studies on this

system have been done at the bench-scale using continuously stirred

tank reactors (CSTRs), which are not feasible for large-scale produc-

tion. Bubble column technology, on the other hand, are able to pro-

vide good heat and mass transfer efficiencies at low operating cost

due to mixing from established gas sparging configurations. Bubble

columns are more challenging to optimize due to spatial variation

throughout the column, which can lead to significantly different

growth environments as a function of column position. In Ref. [71] a

detailed spatiotemporal metabolic model was developed that
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F IGURE 2 Simple penalty-based robust-regret SwEP,T ρð Þ with
ρ¼103 for CARBO (red), random search (blue), and max-variance
(yellow) on the benchmark problem. The runs are repeated five times
from different random initial conditions and the estimated average
SwEP,T ρð Þ with corresponding confidence intervals are shown as
error bars.
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involves two key components: (i) a set multiphase convection–

dispersion equations that govern transport of carbon monoxide,

secreted byproducts, and biomass and (ii) a genome-scale reconstruc-

tion of C. autoethaogenum metabolism using the flux balance analysis

method. A schematic of the overall process is shown below in

Figure 4. The focus of Ref. [71] was on the validation of this spatio-

temporal model using experimental data. To the best of our knowl-

edge, no systematic optimization studies have been performed on this

model due to its computational complexity and the presence of uncer-

tainty, making it a great candidate problem for CARBO, which is able

to address both of these challenges.

We developed our optimization model based on recommenda-

tions from Ref. [71]; interested readers are referred to this publication

for a complete description of the model. We focus on two decision

variables, mainly the superficial gas velocity ug and the liquid phase

–1 0 1 2 3 4

1

–1

0

1

2

3

4

2

–1 0 1 2 3 4

1

–1

0

1

2

3

4

2

–1 0 1 2 3 4

1

–1

0

1

2

3

4

2

F IGURE 3 Recommended points based on the sequence of θtf gTt¼1 values generated by CARBO (red), random search (blue), and max-
variance (yellow) for the 5 runs used to generate Figure 2 for T¼5 (left), T¼33 (right), and T¼39 (bottom). The black star denotes the true
unknown constrained robust global minimum. The black, green, and magenta contour lines correspond to the worst-case objective, constraint
1, and constraint 2 functions, respectively.

F IGURE 4 Schematic of the bubble column reactor for
fermenting carbon monoxide into ethanol and acetate considered in
Ref. [71].

TABLE 1 Minimum and maximum values for the considered
design variables and uncertain variables in the bubble column reactor
case study

Variable Minimum Maximum Units

ug 9.84 14.76 m/h

ul �190.2 �126.9 m/h

TR 307.15 313.15 Kelvin

kLaCO 518 528 1/h
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velocity ul, and two key uncertain parameters, mainly the reactor tem-

perature TR and the gas–liquid mass transfer coefficient for carbon

monoxide kLaCO. The considered ranges and units for these variables

are summarized in Table 1. We define θ and w in terms of scaled ver-

sions of these variables, that is,

θ1 ¼ ug�ug,min

ug,max �ug,min
, θ2 ¼ ul�ul,min

ul,max �ul,min
,

w1 ¼ TR�TR,min

TR,max �TR,min
, w2 ¼ kLaCO�kLaCO,min

kLaCO,max �kLaCO,min
:

The objective is to maximize the production of ethanol while

ensuring constraints on the selectivity (of ethanol vs. acetate produc-

tion) and the time-to-steady-state (TSS) are satisfied. Consequently,

we can state this problem in the form of the original problem (1a and

1b) as follows

min
θ � Θ

max
w �W

f θ,wð Þ≔ �CE θ,wð Þþ15g=L
15g=L

,

s:t: g1 θ,wð Þ≔ TSS θ,wð Þ�825h
825h

≤ 0, 8w�W,

g2 θ,wð Þ≔ 1:515g ethanol=g acetate�SE=A θ,wð Þ
1:515g ethanol=g acetate

≤0, 8w�W,

ð38Þ

where CE , TSS, and SE=A denote the ethanol concentration, time-to-

steady-state, and steady-state selectivity, respectively, which can be

computed by evaluating the aforementioned model at any

θ,wð Þ�Θ�W. Note that we have appropriately scaled the objective

and constraint functions to simplify the presentation of the results.

We used the high-fidelity simulator code available online (http://

www.ecs.umass.edu/che/henson_group/downloads.html) to perform

the evaluations needed by CARBO.

Due to the complexity of the simulation-based model considered

here, we do not have a priori knowledge of the exact robust global

solution such that we cannot verify the theoretical convergence

results (as we were able to do for the benchmark problem). We

instead only conduct a single CARBO run, assuming a fixed number of

iterations can be run, which is likely how CARBO would be applied to

a real-world problem. In line with Section 5.5, we select the first

Ninit ¼10 samples uniformly at random and the remaining evaluations

using CARBO with T¼90. As discussed in Section 5.7, we use a

multi-point recommendation procedure that ranks points θt based on

the following metric:

max
w �W θtð Þ

UCBf,T θt,wð Þ
� �

þρ max
w �W θtð Þ

UCBg1,T θt,wð Þ
� �þ

þρ max
w �W θtð Þ

UCBg2,T θt,wð Þ
� �þ

: ð39Þ

The top 10 design values, ranked according to (39) from smallest

to highest, are shown in Table 2. We see that the pessimistic estimate

of the worst-case constraint violation is less than 0 for all 10 of these

designs, such that the second two terms in (39) are 0. The first three

designs indicate a tradeoff between worst-case performance and con-

straint satisfaction within the neighborhood of 0:85≤ θ1 ≤0:95 and

θ2 ¼1. To validate this prediction, we perform additional testing on

these three design values. In particular, we apply Monte Carlo

(MC) sampling by running the high-fidelity simulator for 200 randomly

sampled w�W values for each of these fixed designs. Furthermore,

to highlight the importance of considering uncertainty during the opti-

mization process, we also apply the same MC sampling procedure to

the nominal design estimated by solving the following optimization

problem

θnominal � argmin
θ � Θ

f θ,wnominalð Þ s:t: g1 θ,wnominalð Þ≤0, g2 θ,wnominalð Þ≤0,

ð40Þ

where wnominal ¼ 0:5, 0:5½ �Τ is the nominal uncertainty value. The

results of the MC sampling validation procedure are shown in

Figure 5. From these results, we clearly see that the top three ranked

designs perform much better than the nominal solution with respect

to constraint satisfaction. As expected, this improved constraint satis-

faction capability comes at the cost of performance (i.e., steady-state

TABLE 2 Top 10 design values sampled by CARBO for the bubble column reactor case study

Iteration # Worst-case objective �10 �2 Worst-case constraint 1�10�3 Worst-case constraint 2�10�3 Design 1 (θ1) Design 2 (θ2)

61 7:805 �2:316 �9:892 0.936 1

36 8:062 �3:946 �9:956 0.901 1

90 8:514 �4:911 �10:060 0.841 1

73 8:776 �6:994 �10:141 0.806 1

78 8:896 �7:425 �10:165 0.790 1

77 9:481 �9:131 �10:277 0.714 1

9 9:543 �6:307 �5:075 0.714 0

75 9:617 �9:557 �10:299 0.697 1

46 9:913 �7:708 �5:059 0.667 0

84 9:923 �10:106 �10:348 0.658 1

Note: The worst-case objective and constraint values correspond to the individual terms in (39).

17 of 20 KUDVA ET AL.

 15475905, 2022, 12, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.17857 by O

hio State U
niversity O

hio Sta, W
iley O

nline Library on [02/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://www.ecs.umass.edu/che/henson_group/downloads.html
http://www.ecs.umass.edu/che/henson_group/downloads.html


ethanol concentration), though average performance only drops

around 5%. In addition, we see that constraint violation probability

drops from around 2% to 0.5% to 0% for design ranks 1, 2, and

3, respectively, which exactly matches the predictions made in

Table 2.

7 | CONCLUSIONS AND FUTURE WORK

This article presents a new algorithm, referred to as CARBO, for solv-

ing robust optimization problems with constraints in a derivative-free

fashion wherein the underlying functions are defined in terms of noisy

and expensive high-fidelity simulations and/or experiments. CARBO

uses probabilistic surrogate models to jointly describe the effect of

the design variables and uncertainties on the black-box objective and

constraint functions. In particular, GP models are used because they

allow for simple analytic expressions for the posterior mean and vari-

ance (given available data in the form of function evaluations at

known points) that can be used to construct upper and lower confi-

dence bounds for the unknown objective and constraint functions. At

each iteration, CARBO follows two steps to decide the next batch of

sample points: (i) select the design value that minimizes the lower con-

fidence bound for a penalized version of the original robust problem

and (ii) select the set of uncertainty values that maximize the upper

confidence bound of the unknown objective and constraint functions

at the fixed design value from the previous step. These alternating

optimistic and pessimistic steps are repeated at every iteration until

some maximum allowed evaluation budget is exhausted. As a final

step, CARBO employs a novel recommendation procedure to recom-

mend a point out of the set of sampled points that is likely the closest

to the true global solution of the original robust problem. Using the

concept of exact penalty functions, we theoretically prove that CARBO

converges to the global solution with high probability under certain

assumptions by establishing rigorous bounds on a penalized version of

cumulative robust-regret (which is a commonly used metric for how

close a set of sampled points are to the true solution). We also discuss

several important practical implementation details and extensions of

CARBO. To demonstrate its effectiveness, we apply CARBO to two

simulation case studies including a non-convex benchmark problem

and a realistic engineering design problem related to industrial waste

gas recovery using microbial fermentation. Our results highlight that

CARBO can consistently identify near-global robust solutions that

F IGURE 5 Histograms of the worst-case objective and constraint values obtained from 200 Monte Carlo samples of the high-fidelity
simulator for the top three ranked designs from Table 2 (first three rows) and the nominal design from (40) (fourth row). The shaded red region in
the middle and right columns indicates the infeasible constraint regions.
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ensure worst-case constraint satisfaction using on the order of tens to

hundreds of function evaluations, which is considerably less than

alternative methods. Our future work will mainly focus on incorporat-

ing more complex non-Gaussian noise models, extending CARBO to

work for multiobjective problems, and studying the effect of the con-

fidence bound widths and penalty weight factor on the rate of

convergence.
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19. Goberna MÁ, L�opez MA. Semi-Infinite Programming: Recent Advances.

Kluwer Academic Publishers; 2001.

20. Bhattacharjee B, Lemonidis P, Green WH Jr, Barton PI. Global solu-

tion of semi-infinite programs. Math Program. 2005;103(2):283-307.

21. Stein O. How to solve a semi-infinite optimization problem. Eur J Oper

Res. 2012;223(2):312-320.
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