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ABSTRACT

Single-celled microbial eukaryotes inhabit deep-sea hydrothermal vent environments and play
critical ecological roles in the vent-associated microbial food web. 18S rRNA amplicon
sequencing of diffuse venting fluids from four geographically- and geochemically-distinct
hydrothermal vent fields was applied to investigate community diversity patterns among
protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge,
Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von
Damm at the Mid-Cayman Rise in the Caribbean Sea. We describe species diversity patterns
with respect to hydrothermal vent field and sample type, identify putative vent endemic
microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community
diversity. At a semi-global scale, microbial eukaryotic communities at deep-sea vents were
composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles.
Individual vent fields supported distinct and highly diverse assemblages of protists that included
potentially endemic or novel vent-associated strains. These findings represent a census of deep-
sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the
hydrothermal vent environment at a local scale, ultimately influences the vent-associated
microbial food web and the broader deep-sea carbon cycle.
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1.  INTRODUCTION

Deep-sea hydrothermal vent habitats are biological hotspots in the dark ocean, where a rich food
web is fueled by chemosynthetic microorganisms (Huber et al., 2007; Bennett ef al., 2013;
McNichol ef al., 2018). The composition of microbial communities at deep-sea hydrothermal
vents is influenced by vent fluid chemistry, temperature, prey availability, and geological setting;
as a result, individual sites of venting fluid within the same vent field may host distinct microbial
communities (Huber et al., 2006; Opatkiewicz et al., 2009; Akerman et al., 2013; Fortunato et
al., 2018). Accordingly, constraining how these parameters drive both the prokaryotic and
eukaryotic microbial diversity and community structure is key to understanding hydrothermal
vent food web ecology (Sievert and Vetriani, 2012; Bell ef al., 2017). Documenting microbial
biogeography across spatial and temporal gradients is also important for assessing how selective

or disruptive processes influence microbial community structure.

Unicellular microbial eukaryotes (referred to as protists) fulfill critical ecological roles in marine
food webs and form highly diverse community assemblages at deep-sea niche habitats, such as
hydrothermal vents (Edgcomb et al., 2002; Lopez-Garcia et al., 2003, 2007; Sauvadet et al.,
2010; Murdock and Juniper, 2019). Culture and microscopy-based studies have also
demonstrated that deep-sea protists thrive in extreme environments where they may encounter a
wide range of temperatures and/or pressures, as well as be exposed to high concentrations of
dissolved sulfide and metals, all of which can impact their life cycle (Small and Gross, 1985;
Atkins et al., 1998, 2000; Baumgartner et al., 2002; Zivaljié et al., 2020). Consistent with
bacterial and archaeal diversity associated with hydrothermal vent habitats, genetic studies have

found protistan assemblages within diffuse vent fluids to be more species-rich compared to the
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surrounding deep seawater (Murdock and Juniper, 2019; Hu ef al., 2021), and they may form
distinct community assemblages at distances of only tens of centimeters (Pasulka et al., 2019).
Along with this trend in diversity, protistan grazers (or heterotrophic predators of microbes)
place greater predation pressure on the vent-associated microbial population compared to the
surrounding deep seawater (Hu ef al., 2021). Protistan community diversity and distribution
therefore has implications for how carbon is exchanged and exported in deep-sea microbial food

webs (Sauvadet et al., 2010).

Here, we applied amplicon tag-sequencing to address three core questions, (1) What is the
biogeography and distribution of the deep-sea hydrothermal vent microbial eukaryotic
community?, (2) Are characteristic features of protistan community structure (i.e., species
richness, endemic vs. widely distributed) shared across or unique to separate hydrothermal vent
fields?, and (3) What biotic or abiotic parameters appear to influence protistan community
diversity at deep-sea hydrothermal vents? And do specific environmental parameters select for
putative vent endemic protists? Our findings shed new light on the distribution of microbial
eukaryotes at deep-sea hydrothermal vents globally and explore how fluid geochemistry and

geography influence vent-associated protistan assemblages.
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2. MATERIALS & METHODS
21. Collection of samples for molecular biology & geochemistry

Samples were derived from a total of 5 different research expeditions. Axial Seamount samples
were obtained across 4 cruises in 3 years: in 2013 from the RV Falkor (FK010) and RV Thomas
G. Thompson (TN300), in 2014 on NOAA Ship Ronald H. Brown (RB1403), and in 2015 on the
RV Thomas G. Thompson (TN327). Samples from the Gorda Ridge were obtained in 2019 on
the EV Nautilus (NA-108) and samples from the Mid-Cayman Rise were collected on the RV
Atlantis (AT42-22) in 2020. Descriptions of cruise methods, library preparation, and processing

are also available at BCO-DMO (https://www.bco-dmo.org/project/818746).

Samples from Axial Seamount cover a 3-year time series (2013-2015) (Table S1; Topcuoglu et
al., 2016; Fortunato et al., 2018), where 2015 samples were collected months after an eruption
(Spietz et al., 2018; Baker et al., 2019). Each year, samples from several vent sites within Axial
Seamount were collected and in 2015, fluid from the water column plume (42 m above Anemone
vent) and background seawater (1500 m water depth) were also obtained (also see Fortunato et
al., 2018). Using ROVs ROPOS and Jason, 3 L of diffuse hydrothermal vent fluid was pumped
through a 47 mm diameter GWSP (mixed cellulose esters; MCE) filter (Millipore) with a pore
size of 0.22 um using the Hydrothermal Fluid and Particle Sampler (HFPS; Butterfield ef al.,
2004). Plume and background seawater was collected using a 10 L Niskin bottle. All filters were
preserved in situ with RNALater (Ambion) as previously described in Akerman et al. (2013).
Collection of geochemical parameters from Axial Seamount are described in Fortunato et al.

(2018), where samples were analyzed for methane, magnesium, dissolved hydrogen gas, and


https://www.bco-dmo.org/project/818746
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hydrogen sulfide using methods described in Butterfield ez al. (2004). pH was measured in situ

using a deep-sea glass pH electrode (AMT) plumbed to the HFPS.

South from Axial Seamount are the Sea Cliff and Apollo hydrothermal vent fields (~2700 m
depth) along the basalt-hosted Gorda Ridge spreading center (~200 km off the coast of southern
Oregon). Four sites of diffuse venting fluid were targeted within the Sea Cliff and Apollo vent
fields, which included Venti Latte, Mt. Edwards, Candelabra, and Sir Ventsalot; samples from
Gorda Ridge included in this study are from Hu et al. (2021). Low-temperature diffuse fluid
(selected using a temperature probe mounted on the sampler intake) was collected by pumping
4.1-6.6 L of fluid through a 142 mm diameter 0.2 um pore size polyethersulfone (PES) filter
(Millipore) with the Suspended Particulate Rosette sampler (SUPR; Breier ef al., 2014) mounted
on ROV Hercules. Once shipboard, filters were stored and frozen in RNALater. Niskin bottles
mounted on the port side of the ROV were used to sample plume (~5 m above active venting)
and background seawater environments; seawater from Niskins was transferred into acid-rinsed
and clean cubitainers, filtered through 0.2 pm Sterivex filters (Millipore), and preserved with
RNALater. In addition to samples collected meters above diffuse venting fluid at Mt. Edwards
and Candelabra (respective plumes), a sample was collected laterally from diffuse fluid (deemed

Near Vent BW), but was distinct from background seawater.

In the Western Caribbean, the Mid-Cayman Rise is an ultraslow spreading ridge that includes
two geologically-distinct vent fields approximately 20 km apart: Piccard (~4950 m) and Von
Damm (~2350 m). Vent fluids from Piccard are typically acidic and enriched in dissolved sulfide

and hydrogen, as fluid exiting the seafloor interacts with mafic rock. In contrast, vent fluid from
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Von Damm is influenced by ultramafic rock, resulting in less acidic fluid with comparatively
less dissolved sulfide (Table 1). In total, 2 sites of low temperature diffuse venting fluid were
sampled at Piccard and 8 vent sites were sampled at Von Damm using the Hydrothermal Organic
Geochemistry sampler (HOG; Lang and Benitez-Nelson, 2021) mounted on ROV Jason.
Between 4-10 L of vent fluid was filtered through a 47 mm polyethersulfone (PES) filter
(Millipore) with a pore size of 0.2 um. Similar to samples from Axial Seamount, in situ filters
were preserved in RNALater at the seafloor, as described in Akerman et al. (2013). 12 L Niskin
bottles collected deep seawater and plume samples at both Von Damm and Piccard. Seawater
obtained via Niskin bottle was collected into acid-rinsed and clean carboys and filtered onto
Sterivex filters (Millipore) with a pore size of 0.2 um. During the research expedition, shipboard
Millig-clean water was filtered onto Sterivex (similar to Niskin bottle sampling) as field controls.
Blank filters were also extracted alongside samples in the lab to represent lab-based negative

controls.

During expeditions to the Gorda Ridge (includes Apollo and Seacliff vent fields) and Mid-
Cayman Rise, Isobaric Gas Tight (IGT) samplers (Seewald et al., 2002) were used to collect
representative diffuse fluid for geochemical analyses from the same locations as samples used
for molecular biology. IGT samples were processed immediately after ROV recovery.
Geochemical analyses are described in Hu et al. (2021). Briefly, pH2sec was measured at room
temperature in a ship-based lab using a combination Ag/AgCl reference electrode, dissolved
hydrogen gas and methane were determined by gas chromatography, and 30 mL of fluid was

stored to collect shore-based measurements of Mg by ion chromatography.
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2.2. Molecular sample processing & sequence analysis
All samples were processed identically, where RNA was extracted from approximately half of
each RNALater-preserved filter using a modified protocol for the Qiagen RNeasy kit (Qiagen
Cat No. 74104). First, the filter was separated from the RNALater and placed in a 15 mL conical
tube with RNase-free silica beads and 1.5 mL of lysis buffer (RLT buffer treated with 8-
Mercaptoethanol), then each tube was vortexed (bead-beating) for 3 minutes. The remaining
RNALater was spun down for 15 minutes (14,000 rpm), supernatant removed, and 500 pl of
lysis buffer was added and mixed to collect any material that was previously suspended in
RNALater. The lysis buffers were combined and separated from the filter and silica beads before
continuing with the rest of the column RNA extraction, which included an in-line RNAse-free
DNAse removal step (Qiagen Cat No. 79256 ). RNA was reverse transcribed to complementary
DNA (Biorad Cat No. 1708841) and the V4 hypervariable region (Stoeck et al., 2007) within the
conserved 18S rRNA gene was amplified similar to previous work (Hu ef al., 2021; Ollison et
al.,2021). Amplified products were multiplexed, pooled at equimolar concentrations, and
sequenced with MiSeq 2 x 300 bp PE kit at the Marine Biological Laboratory Bay Paul Center
Keck sequencing facility. Amplicons from extracted RNA (amplified cDNA) were chosen for
this study, as they are more likely to originate from metabolically active cells, rather than

inactive cellular material (Blazewicz ef al., 2013; Hu et al., 2016).

Amplicon sequences were processed together using QIIME2 v2021.4 (Bolyen et al., 2019).
Sequences were quality controlled and primers were removed using cutadapt (error rate: 0.1,
minimum overlap: 3 bps)(Martin, 2011). DADA?2 (Callahan ef al., 2016) in QIIME2 enabled

paired-end reads to be truncated (260 bp forward read and 225 bp reverse read), an error rate
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(max-ee = 2) to be estimated, and chimeras to be identified and removed (pooled method) to
ultimately determine Amplicon Sequence Variants (ASVs). DADA2 was executed on sets of
sequences from the same MiSeq run and were later merged to enable comparisons across
sequence runs. Resulting ASVs serve as species or strain level designations. ASVs were further
clustered into “Operational Taxonomic Units” (OTUs; QIIME2, cluster vsearch de novo), where
ASVs were grouped by percent base pair similarity at 99%, 97%, and 95%. Reference sequences
for all recovered ASVs and OTUs were assigned taxonomy using vsearch (Rognes et al., 2016)
at 80% identity with the Protist Ribosomal database v4.14 (Guillou et al., 2012; Vaulot, 2021).
ASVs identified as belonging to metazoan were removed from downstream analysis, as it is
outside the scope of this study. In addition to taxonomic identification, ASVs and OTUs were
placed into categories based on distribution across sample types, where the ‘resident’ population
included ASVs or OTUs that appeared only in diffuse vent fluids, and ‘cosmopolitan’ ASVs or
OTUs were found in various sample types, and not restricted to vent fluid only. Results from
OTU clustering served as a method to explore the impact that amplicon-defined species or strains

may have on ecological interpretations (Supplementary Information).

2.3. Statistical analysis
ASYV tables, taxonomy assignments, and sample metadata were compiled for all downstream
analyses (R v4.1.0; Oksanen et al., 2007; McMurdie and Holmes, 2013; Team, 2017; Wickham,
2017). Shipboard and laboratory negative control samples (MilliQ water) were compared to
experimental samples to remove putative contaminant ASVs using ‘decontam’ (Davis ef al.,
2018); ASVs that were 50% or more prevalent in the negative controls, relative to samples, were

removed from all datasets. Amplicon sequence surveys do not necessarily equate to microbial

Page 9 of 951
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community biomass or metabolic activity (Blazewicz et al., 2013; McMurdie and Holmes, 2014;
Gloor et al., 2017), and may consequently mislead interpretations of relative sequence
abundance. We specifically used multiple approaches to address our questions and placed more
weight on the presence and absence of protistan assemblages to interpret our results. Species
richness was estimated using DivNet (Willis and Martin, 2022), which accounts for unobserved

species when estimating alpha diversity, thus providing an estimate of alpha diversity variance.

Network analysis to determine putative ASV-ASV interactions (co-occurrences) was conducted
using a SParse InversE Covariance Estimation for Ecological Association Inference approach
(SPIEC-EASI; Kurtz ef al., 2015). ASVs had to appear in more than 1 sample and have at least
100 sequences to be passed through the SPIEC-EASI analysis. SPIEC-EASI glasso method was
conducted with a lambda min ratio of 1e2, nlambda = 20, and rep.num = 50. Significant ASV-
ASYV pairs were considered when the interaction was > |0.01|. Significantly co-occurring ASVs
were evaluated by taxonomic group and ASV classification and interpreted based on the total

number of occurrences and inferred functional trait of involved taxa (Ramond et al., 2019).

Distance-based redundancy analysis (DBRDA; Legendre and Anderson, 1999) was performed
on Euclidean distance matrices derived from center-log ratio transformed count data (Aitchison,
1986) in order to evaluate the significance of location, year, sample type, and geochemical
parameters. Ahead of DBRDA, ASV count tables were subsampled to the relevant number of
samples for each test (e.g., across vent sites only, resident vs. cosmopolitan population, and some

taxonomic groups). Code can be found at: https://shu251.github.io/microeuk-amplicon-survey/.

10
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3. RESULTS
3.1.  Fluid Composition

We examined microbial eukaryotic community composition, diversity, and distribution across
four geographically distinct deep-sea hydrothermal vent fields (Figure 1). In the North East
Pacific Ocean, Axial Seamount (~1520 m depth) is an active submarine volcano on the Juan de
Fuca Ridge. All diffuse vent fluids from Axial Seamount are hosted in basaltic rock (Topguoglu
et al., 2016; Fortunato et al., 2018), with temperatures ranging between 6.6°C and 53.2°C (Table
1). Fluids collected were slightly acidic with in situ pH values of 5.0-6.8 and contained up to 1
mmol/L in total dissolved hydrogen sulfide and less than 14 umol/L dissolved hydrogen (Table
1). Samples from Marker 113 were collected over 3 years and did not reveal any clear temporal
trends, with the exception of higher concentrations of bacterial and archaeal cells following the
2015 eruption (2013-2014 average: 4.0 x 103 cells ml!; 2015: 6.0 x 10° cells ml!; Table 1).
Diffuse venting fluids within the Gorda Ridge ranged in temperature from 10-80°C, were
slightly acidic (pHasec = 5.5-6.4), and contained concentrations of dissolved hydrogen that were
higher than at Axial Seamount (22-130 pmol/L; Table 1). While low-temperature diffuse venting
fluid was targeted for sampling at the Mid-Cayman Rise, temperature ranges within Von Damm
and Piccard were higher than in the NE Pacific, and even exceeded 100°C at Von Damm (range
at Von Damm: 21-129°C and Piccard: 19-85°C). Fluids from Von Damm contained the lowest
concentrations of magnesium (Table 1), indicating the fluids at this site contained a higher
proportion of end-member hydrothermal vent fluid when compared to the other sites. Consistent
with the influence of ultramafic rock, Von Damm vent fluids also had higher concentrations of

methane and dissolved hydrogen (Table 1).

11
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3.2. Distribution and composition of 18S rRNA gene sequences
The 18S rRNA gene tag-sequence survey across all four vent fields recovered 3.81 million
sequences and 17,934 ASVs. Following corrections for contamination based on negative
controls, 56 ASVs were removed, comprising 0.74% of the sequences and 0.31% of the ASVs.
Samples with fewer than 20,000 sequences were also removed from the dataset (n = 2; Figure
S1). The final sequence dataset used for downstream analyses includes 3.79 million sequences
and 12,375 ASVs; where the mean number of sequences per sample is >88,000 (min: 25,000,

max: 286,000) and ASVs per sample is 670 (min: 32, max: 2,100; Figure S1).

Protistan supergroups and phyla were detected at different relative abundances among diffusely
venting fluids, plume water, and background seawater (Figures 2a and S2). Background samples
were dominated by stramenopiles, dinoflagellates, and ciliates, and the plumes were largely
made up of radiolaria, dinoflagellates, and ciliates. Vent fluid samples were overwhelmingly
composed of ciliates, then dinoflagellates (Figures 2a and S2; Table S2). Microbial eukaryotic
community composition clustered primarily by vent field, then by sample type (Jaccard
dissimilarity; [0,1]; Figure 3a). Within each vent field, samples from the plume and background
consistently clustered separately from diffuse vent fluid samples. Over 10,000 ASVs were
unique to an individual vent field (82% of ASVs and 33% of sequences; Figures 2b, 3b, and S3).

Only 194 ASVs were found in all samples (1.5% of ASVs and 22% of sequences; Figure 3b).

There were 330 ASVs shared between vent fluids from Axial Seamount and Gorda Ridge

(situated ~440 km apart; Figure 2b); shared diversity between the NE Pacific vent fields included

cercozoa, specifically Filosea-Sarcomonadea, Thecofilosea, and Endomyxa, and ciliates

12
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(Choreotrichida, Scuticociliates, and Plagiopylea; Figure 2b). The Gorda Ridge plume sites were
also characterized by the highest relative abundances of radiolaria, while the background at
Gorda Ridge had comparatively fewer stramenopile and dinoflagellate sequences relative to

background seawater at Axial Seamount (Figures 2a and S2).

Of the 3,586 ASVs identified from Axial Seamount, only 177 ASVs were shared across 2013,
2014, and 2015 within the vent fluid; the majority of these shared ASVs were ciliates (including
members within the Plagiopylea and Oligohymenophorea; Figures 2b and S4b). While the same
protistan supergroups were represented year to year at Axial Seamount, exceptions included the
2015 samples from the deep seawater and Anemone plume where the community varied with
respect to the composition and the relative abundances of stramenopiles (Ochrophyta versus

Opalozoa) and Rhizaria (cercozoa vs. radiolaria; Figure S2).

Despite closer proximity to one another relative to the two NE Pacific vent fields, samples from
Von Damm and Piccard (~20 km apart) shared fewer ASVs (235 ASVs; Figure 2b and S3). Of
these shared ASVs, a high proportion of sequences were identified as ciliates (Plagiopylea,
Spirotrichea, Strombiidia, and Leegaardiella), radiolaria (Acantharia and RAD), cercozoa
(Filosea-Sarcomonadea and Bigelowiella), and Hacrobia (Prymnesiophyceae and
Chrysochromulina) . Shared stramenopile ASVs included MOCH (-2, -5) and MAST (-7, -4C),
but typically distinct subclades were found at Von Damm and Piccard, while other stramenopile

ASVs included Chrysophyceae and Dictyochophyceae.

13
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3.3. Driving forces in microeukaryote community structure
Microbial eukaryotic communities located at greater geographic distances corresponded to more
dissimilar communities (Figure 4a), while communities found at vent sites within the same vent
field (<10 km apart) displayed a wide range of community dissimilarity (Figure 4a). Pairwise
community comparisons for samples less than 10 km apart often showed the same level of
community dissimilarity as samples situated in different ocean regions (>10,000 km; Figure 4a).
Variance in community dissimilarity decreased as a factor of increasing geographic distance
(Figures 4a and S5a), demonstrating a heteroscedastic relationship (triangular relationship
(Cornelissen, 1999; Santini et al., 2017). This observation was consistent when ASVs were
subsampled to the resident and cosmopolitan populations (Figures S5b-c). Species richness,
estimated by Shannon diversity via DivNet, was highest among venting fluids when compared to
plume and background communities (Figure 4b). This was further supported by high ASV
richness of individual protistan taxa within the vent samples (Figure S6a). Shannon diversity

estimates were highest at Boca, Marker 113, and Marker 33 vent sites (Figure S6b).

ASVs were classified based on their distribution as either ‘resident’ (ASVs detected exclusively
within diffusely venting fluid), which represented putative endemic species, or ‘cosmopolitan’
(ASVs found across vent, plume, and/or background sample types, Figure 3c). 65% of all ASVs
were classified as resident (8,107 ASVs), while only 17.2% of the ASVs were identified as
cosmopolitan (2,133 ASVs; Table S3). Further, 35% of the cosmopolitan ASVs were found
within a single vent field, and only 8.7% of the cosmopolitan population was detected in all four
vent fields. Within the resident ASVs, 60% (18% of all sequences) were also restricted to a

single vent field (7,325 ASVs; Figures 2b, 3b-c, and S4b-d, Table S3). Only 7 ASVs were both

14
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resident to diffuse venting fluid and found at every vent site; these ASVs were taxonomically
identified as haptophytes (Chrysochromulina, Prymnesiophyceae), Stramenopiles

(Chrysophyceae), and a choanoflagellate.

The proportion of resident versus cosmopolitan ASVs also varied by taxonomic group (Figures
S5a and S7). Dinoflagellate, archaeplastida, and stramenopile groups had a higher proportion of
ASVs with a cosmopolitan distribution (Figure 5a). Within excavata, apusozoa, and amoebozoa,
the majority of ASVs were recovered only within diffusely venting fluid; these groups also had
the fewest total number of sequences assigned to them (Figure 5a). For ASVs classified as
resident, there was additional population heterogeneity by individual vent site (Figure 5b). For
instance, Euplotia (ciliates) were overrepresented in Anemone, Boca, and El Guapo in 2013 at
Axial Seamount and in Venti Latte at Gorda Ridge, but were found at lower relative abundances

at all other vent fields (Figure 5b).

Additional clustering of ASVs into OTUs at 99%, 97%, and 95% similarity resulted in consistent
trends in distribution, proportion of cosmopolitan vs. resident ASVs or OTUs, and the percentage
of resident ASVs or OTUs limited to a single vent field (Table S3). Samples situated closer
together were also more similar to one another when ASVs were clustered further (Figure S5d-f).
Overall, a similar distance-decay trend was found at 99%, 97%, and 95% sequence similarity,
where community dissimilarity varied at sites within the same vent field (Figure S5d-f). These
results demonstrate that regardless of how amplicons are determined to represent species or
strain taxonomic levels, the ecological interpretation of diversity across vent fluid, plume water,

and background seawater remains consistent.
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Geochemical measurements and depth appeared to primarily influence the resident protistan
population across all vent fields and regions (Figure S8). Among the individual vent sites only,
the resident protistan population was found to be influenced by depth, in situ microbial
concentration, and pH (Figure S8). The Boca vent at Axial Seamount was determined to be a
significant outlier using a method to estimate homogeneity of group dispersion (O’Neill and
Mathews, 2000). While some missing geochemical values compounded our ability to fully test
the significance of fluid chemistry on protistan community structure, by subsampling the
members of the microbial eukaryotic community based on taxonomy or distribution, some

parameters were found to be significant (Figure S8; p < 0.05).

Network analyses were conducted to address the hypothesis that protistan nutrient strategies
associated with predator-prey (phagotrophic, heterotrophic, or myzocytotic) or parasitic (host-
parasite) life-styles made up the majority of significantly co-occurring ASVs (Tables 2 and S4).
Ahead of Spiec Easi analysis, data was subsampled so that ASVs appeared in more than one
sample and had more than or equal to 100 sequences (n =2,575 ASVs). Putative positive and
negative interactions were filtered by -0.01 and +0.01, respectively; this left over 91k putative
interactions (3,363 negative and 87,925 positive, Tables 2 and S4). A higher number of putative
interactions was found among ASVs detected within the same vent field (e.g., ASVs from MCR
to other ASVs from the region, or among Gorda Ridge-Gorda Ridge only ASVs), as well as
ASVs found at all sites. Similarly, co-occurring ASVs were more likely to have positive
interactions and be composed of ASVs from either the resident or cosmopolitan population (i.e.,

a resident ASV significantly co-occurred with other resident ASVs). The most common ASV-
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ASV pairs were between dinoflagellate-dinoflagellate (12% of putative interactions), ciliate-
ciliate (15%), or radiolaria-dinoflagellate (5.5%). For the resident-only interactions, the majority
of the ASVs were composed of ciliate-ciliate interactions, while dinoflagellate-dinoflagellate

interactions made up the majority of cosmopolitan interactions.

4. DISCUSSION
Chemosynthetic bacteria and archaea are well known to form the foundation of the hydrothermal
vent microbial food web (Butterfield ez al., 2004; Huber et al., 2007, Sievert and Vetriani, 2012;
McNichol et al., 2018). Microbial eukaryotes serve as an important source of grazing, nutrient
remineralization, and act as hosts to symbionts (Moreira, 2003; Pasulka et al., 2019; Hu et al.,
2021). The community composition and diversity of protists has previously been studied at
several deep-sea hydrothermal vents (Edgcomb et al., 2002; Lopez-Garcia et al., 2007; Murdock
and Juniper, 2019). Here, we explored regional and semi-global trends in protistan diversity
across multiple vent fields to gain insight into how vent geochemistry and geographic distance
influence community composition and the extent of endemicity among protists. Assessments of
microbial eukaryotic biodiversity and distribution in relation to vent field geochemistry is a
critical part of understanding how the vent microbial food web impacts the surrounding
ecosystem. We determined that individual hydrothermal vent fields display highly diverse and
spatially-restricted protistan assemblages, often within individual diffuse vent sites, and that
geology, vent fluid chemistry, and ocean region appear to influence microbial eukaryotic
community structure. Documenting the selective processes that drive protistan communities to
occupy hydrothermal vents is critical for assessing their contribution on the deep-sea microbial

food web and carbon budget, which ultimately impacts the resilience of these unique ecosystems.
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4.1. Protistan populations at hydrothermal vents are distinct & diverse
The warm and reduced venting fluid that rapidly mixes with the surrounding seawater creates an
energy-rich habitat characterized by steep chemical and temperature gradients at diffuse vent
sites. This feature makes hydrothermal vents ‘biological oases’ in the deep ocean, where a rich
community of microorganisms, meiofauna, and macrofauna inhabit the region surrounding the
vent site. When broadly classified to the supergroup and phylum level, protistan community
composition was primarily composed of the alveolates, ciliates and dinoflagellates, and then
Rhizaria and stramenopiles at all vent fields and sample types (diffuse fluid, plume, and
background; Figures 2a and S2). Within each vent field, there was a consistent relative increase
in both sequences and ASVs identified as ciliates in the vent fluid samples compared to the
plume and background. Further, the protistan community composition was found to be similar to
previous amplicon-based studies set at deep-sea hydrothermal vents, including the overall
increase in likely heterotrophic microeukaryotes at sites of diffuse venting fluid (Edgcomb et al.,
2002; Lopez-Garcia et al., 2007; Murdock and Juniper, 2019; Pasulka et al., 2019; Hu et al.,

2021).

Regardless of oceanic region and vent field, we found microbial eukaryotic species richness to
be consistently higher within diffuse venting fluids (<100°C), compared to plume and
background seawater, and have limited dispersal across samples at the strain and species-level
designation (Figures 2-4 and S4, Table S3). Further, a high proportion of the protistan diversity
(number of ASVs) was unique to individual vent fields, and even to single vent sites (Figures 2-4

and S4, Table S3). This observation is similar to the diversity and distribution of hydrothermal
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vent bacteria and archaea, where little overlap in microbial phylotypes or strains are found at
different vent sites within the same field (Huber et al., 2006, 2007; Opatkiewicz et al., 2009;
Anderson ef al., 2017; Fortunato et al., 2018). Varying subsurface fluid plumbing, geological
features, water-rock reactions, and the metabolic activity of subsurface microorganisms cause
end member vent fluid chemistries to be substantially different, even when situated only meters
apart (Butterfield ef al., 2004; Von Damm et al., 2006; McDermott ef al., 2018). As a result,
closely-related groups of bacteria and archaea are found throughout the hydrothermal vent
environment, while individual sites of diffusely venting fluid often host subpopulations that are
distinct at the species level (Huber et al., 2006, 2010; Opatkiewicz et al., 2009). Our findings
demonstrate that population heterogeneity at individual vent sites extends to microeukaryotic
communities, meaning individual sites of diffusely venting fluid represent distinct populations of
protistan species that exhibit ‘microdiversity’ relative to the broader hydrothermal vent region

and surrounding deep sea.

One implication of habitat heterogeneity among protistan assemblages is that the surrounding
deep-sea community may serve as a reservoir of protistan diversity, where some species exist at
low abundance, but ultimately increase in abundance within the favorable conditions presented
by diffuse venting fluid, such as prey or host abundances (Mars Brisbin et al., 2020). This
supports the idea that the hydrothermal vent environment selects for particular protistan species
or their functional traits, and potentially highlights the role of the microbial rare biosphere has in
community assembly (Sogin et al., 2006; Caron and Countway, 2009). The existence of

underexplored microbial eukaryotic biodiversity at deep-sea hydrothermal vents, including
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potentially novel or endemic species, also underscores the need to document their biodiversity

for conservation efforts.

4.2. Putative endemic protists restricted to individual vent fields
Deep-sea hydrothermal vents attract and host a diverse assemblage of microbial life stemming
from the chemosynthetic bacteria and archaea. Microbial species found within vent fluids and
largely absent from the surrounding non-hydrothermal vent environment are considered vent
endemics. These putatively endemic populations are maintained over spatial and temporal scales
by subsurface fluid flow and geology (Huber et al., 2010). Endemicity and habitat preference
among protistan species were investigated by Murdock and Juniper (2019), where network
analyses revealed co-occurrences between prokaryotic extremophiles and protistan species found
only at vent sites within the Mariana Arc. Findings indicated that endemicity among protists is
not necessarily a general trait. Here, we add to this work by investigating functional traits that

may be shared among widely-distributed vent-associated protists or potential vent endemics.

We found that over 50% of the recovered ASVs at each vent site were restricted to individual
vent fluid samples only (Figure 3c), and classified as resident ASVs, or ‘putative endemic’
species. While resident ASVs within each vent field were dominated broadly by ciliates, resident
ciliate ASVs were not typically shared across vent fields (Figures 2b and S4). Instead, ASVs
classified as resident and found at all vent fields included haptophytes (Chrysochromulina and
Prymnesiophyceae), stramenopiles (Chrysophyceae), and choanoflagellates (Stephanocidae).
Shared traits among these protistan groups include phagotrophy and a free-living lifestyle (Caron

et al.,2012; Ramond et al., 2019), demonstrating that phagotrophic modes of nutrition could be
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considered a ‘general trait’ among vent-associated protists. Additionally, taxonomic groups
found primarily within the cosmopolitan population are also typically of mesopelagic and

bathypelagic protistan communities (Pernice ef al., 2016; Giner et al., 2019).

Putative endemic taxa detected exclusively within vent fluids and largely absent from the
cosmopolitan population include excavata, apusozoa, and amoebozoa (Figure 5b; Table S2).
These groups likely represent protistan species with more specialized traits to enable vent
endemicity; in support of this hypothesis, these same groups were classified as rare and likely
endemics in Mariana Arc vent fluids (Murdock and Juniper, 2019). The taxonomic placement of
excavata, apusozoa, and amoebozoa is often debated, and these groups are considered candidates
for probing the evolutionary history and origin of unicellular eukaryotes. For instance, ASVs
identified as Hicanonectes teleskopos (excavata) are deep-branching relatives of diplomondas
(Park et al., 2009), and excavata are widely known as a basal flagellate lineage. Species within
apusozoa and amoebozoa are often placed outside the eukaryotic supergroups, where apusozoa
have been documented as a potential sister to the Opisthokonta (Cavalier-Smith and Chao,
2010). A shared functional trait among excavata, apusozoa, and amoebozoa is that many species
are known to be amitochondriate, meaning they lack mitochondria, and instead have
hydrogeneosomes that are characteristic of anaerobic metabolisms (Minge et al., 2009; Park et
al., 2009). This suggests that a vent endemic trait among protists may include anaerobic
metabolism capability, thus allowing them to thrive at the interface of non-oxygenated

hydrothermal vent fluid and oxygenated seawater.
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Similar to previous work, ciliates were found in all deep-sea samples, and had relatively higher
abundances and high species richness within vent fluid samples (Figures 2 and 5). Ciliate trophic
strategies range widely from parasitism to phagotrophy, and even symbiont hosts (Lynn, 2008),
which likely explains their presence in both the cosmopolitan and resident protistan populations
(Figures 2b and S7). Like the putative endemic excavata, apusozoa, and amoebozoa, some ciliate
species also characteristically harbor hydrogenosomes (e.g., Oligohymenophorea and
Plagiopylea) (Fenchel and Finlay, 1995; Lynn, 2008; Fenchel, 2013); indicating that the
oxygenated seawater interacting with diffuse venting fluid creates a favorable habitat for ciliates,
similar to an oxycline (Edgcomb and Pachiadaki, 2014). While ciliates are known to have
evolved the ability to thrive in sub-oxic environments multiple times, their tendency to be found
along oxygen gradients is not fully understood (Rotterova et al., 2022). Additionally, species of
ciliates often form ecto- or endo-symbiotic relationships with bacteria or archaea. For instance,
among ciliates with hydrogenosomes, methanogenic archaea have been found as endosymbionts;
sulfate-reducing symbionts or methanogens benefit from intracellular hydrogen and other
fermentation by-products produced by the ciliate hosts (Fenchel and Finlay, 1992; Beinart et al.,
2018; Rotterova et al., 2022). The widespread distribution of ciliates in the deep sea, together
with other accounts of deep-sea specific ciliate species signatures (Schoenle ef al., 2017), and
observed species heterogeneity by vent site (Figure 5b), suggests that ciliate species employ a
variety of more specialized feeding strategies, partnerships, and functional traits within vent-

associated food webs.
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4.3. Biotic & abiotic factors influence vent-associated microbial
eukaryotes

Results of our study indicate that vent sites within the same region demonstrated a high degree of
variability in community dissimilarly (<10 km; Figure 4a), which may be attributed to species
diversity within the resident protistan population (Figures 4-5 and S5). This observed ‘triangular
relationship’ in other ecosystems is considered a consequence of variability in abiotic factors
between habitats (Cornelissen, 1999). While no single environmental parameter was found to
significantly shape overall microbial eukaryotic diversity, subsampling the protistan community
based on distribution (resident vs. cosmopolitan), taxonomic lineage, and vent field revealed
some parameters to have an influence on protistan community composition (Figure S8). For
instance, the composition of the resident protistan population found only at vent sites
corresponded to depth, microbial cell concentration, and pH (Figure S8). We hypothesize that the
subseafloor environment and chemistry of the diffuse fluid influences the composition of
bacteria and archaea, both of which ultimately dictate protistan biomass and activity. Additional
support for this hypothesis stems from previous work at the Gorda Ridge, which found evidence
that protistan grazing activity may be related to microbial cell concentration (Hu et al., 2021). In
comparison to another route of microbial mortality at hydrothermal vents, virus biogeography at
Mid-Cayman Rise and Axial Seamount were revealed to not only be spatially restricted, but to
more closely correspond to microbial host distribution (Thomas ef al., 2021). Parameters that
dictate protistan distribution and diversity at deep-sea vents likely include a combination of vent
geochemistry and the composition of the vent bacterial and archaeal communities. Further,
abiotic generation of organic compounds from subsurface mixing and water-rock interactions

also influence microbial activity and community distribution (McDermott ef al., 2015, 2020).
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Vent fluid geochemistry, regional geology, and subsurface fluid flow contribute to the
composition of the chemosynthetic bacteria and archaea at hydrothermal vents; subsequently, the
genetic diversity of microbial populations found in vent fluid offers insight into the fluid source
and subsurface environment that supports these individual microbial communities (Anderson et
al.,2017; Fortunato et al., 2018; Stewart et al., 2019). While Von Damm and Piccard
hydrothermal vent fields are situated close together, protistan communities found within diffuse
vent fluids at each site were largely distinct (Figures 2-3, and 5). Resident ASVs identified as
Novel-clade 10 cercozoa were highly represented at the Piccard vent sites compared to Von
Damm, and inversely, ciliates belonging to the class Karyoreltica were found at higher relative
abundances at several vents sites at Von Damm compared to Piccard. In addition to Karyoreltica,
several other taxa were overrepresented at Shrimp Hole and X18, which represent the highest
pH, and lowest temperature vents sampled at Von Damm (Figure 5b, Table 1). Previous
metagenomic and metatranscriptomic analysis of Mid-Cayman Rise vent fluids revealed
microbial populations to be distinct and more diverse at Von Damm, relative to Piccard, while
the dominant metabolisms of the two communities were similar to one another (Anderson et al.,
2017). These trends were attributed to the more diverse carbon sources found at Von Damm
(Anderson et al., 2017), emphasizing how intimately linked subseafloor processes are to the

genetic diversity of vent-associated microbial communities.

44. Presumed trophic strategy among vent-associated protists

Microbial eukaryotes contribute to the hydrothermal vent food web as consumers of

chemosynthetic microorganisms or other microbes, and therefore directly impact carbon flux to
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the surrounding environment. Taxon-specific differences in the composition of resident and
cosmopolitan protistan populations provide some evidence that species distribution is also linked
to protistan physiology. The cosmopolitan protistan population had a similar taxonomic
breakdown to studies situated in mesopelagic to bathypelagic depths; the protistan communities
at these depths are often dominated by cercozoa, Rhizaria, and stramenopiles, especially MArine
STramenopiles (MAST clades) (Figure 2b; Pernice et al., 2015, 2016; Giner et al., 2019).
Members of the Rhizaria and stramenopiles are well known to inhabit every depth in the water
column and are typically heterotrophic. This suggests that a shared generalist trait among widely

distributed deep-sea protists that also thrive at hydrothermal vents may include phagotrophy.

In an effort to explore the relationships between putative trophic mode and species distribution,
we highlight the prevalence of predator-prey and parasite-host interactions. We targeted ASVs
co-occurring at significant levels (derived from network analyses) that are also hypothesized to
include known predators or parasites (Ramond et al., 2019) (Table 2; Table S4). Many of the co-
occurring ASVs were derived from the same lineage, indicating that we cannot exclude the
possibility that the interactions reflect species responding to similar environmental parameters.
Phagotrophy was a prominent nutritional strategy shared among the most frequently co-
occurring ASVs (Table 2), and likely includes a range of phagotrophic feeding strategies. For
instance, dinoflagellate and ciliate phagotrophs are known to actively target and hunt preferred
prey; including the use of raptorial feeding (consumption of prey larger than the predator), the
use of chemical cues to detect prey, or employing a ‘feeding current’ to intercept and capture
prey (Fenchel, 1980; Verity, 1991; Table 3; Pernthaler, 2005; Leander, 2020). The other main

trophic strategies identified included parasitism or myzocytosis (Guillou et al., 2008; Leander,
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567  2020) specifically within cercozoa, Syndiniales, and some ciliates (Table 2). Parasitism likely
568  plays an important, yet understudied role, in hydrothermal vent food webs, and hosts of protistan
569  parasites include other protists, fishes, or even multicellular metazoa (Moreira, 2003; Govenar,
570  2012). Broadly, the frequency of putative predator-prey and host-parasite interactions suggests
571  that diffuse venting fluids provide an oasis of increased prey and host availability for the deep-
572  sea protistan population. Additionally, the prevalence of protistan parasites demonstrates a

573  potential linkage between microbial and macrofaunal trophic levels at submarine hydrothermal
574  vents.

575

576 4.5. Summary & Broader implications

577  Hydrothermal vent fields from the NE Pacific and the western Caribbean were composed of a
578  mixture of globally-distributed and regionally-specific protistan species. While most major
579  lineages of protists were detected across the diffuse venting fluid, plume, and deep seawater
580  samples, populations at the species level were distinct to a single vent field or even to an

581 individual vent site within a field. Additionally, no single parameter explained protistan

582  community structure across the vent, plume, and background environment; instead, only the
583  protistan community restricted to diffuse venting fluid appeared to be influenced by depth, cell
584  concentration, and pH.

585

586  Deep-sea hydrothermal vents are oases of microbial diversity that sustain chemosynthetic-fueled
587  deep-sea food webs. By characterizing the taxonomic composition and distribution of protistan
588  communities across geographically-separated vent fields we highlight some of the mechanisms

589  that may lead to selection, and likely speciation, of microbial eukaryotes at hydrothermal vents.
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Understanding these sources of speciation and how protistan biodiversity is linked to the
hydrothermal vent ecosystem are critical for understanding how disruptive events may harm
these habitats (Orcutt et al., 2020). Investigating shared trophic strategies of vent-associated
versus cosmopolitan protistan species also demonstrates how species distribution may influence
food web interactions and the composition of microbial prey. Deep-sea hydrothermal vents are
vulnerable to disruptive events that cause interruptions in vent food web mechanisms (Van
Audenhaege et al., 2019). Thus, studies that emphasize global to local biodiversity dynamics can
be used to evaluate ecosystem health and provide important context for modeling food web

dynamics that consider different trophic strategies.

Data Availability

Raw sequence data are available through NCBI. SRA BioProject accession numbers are
PRINA637089 for Gorda Ridge, PRINA641911 for Axial Seamount, and PRINA802868 for
Mid-Cayman Rise. Sequences, QIIME?2 artifact files, and other data are available at Zenodo:
10.5281/zenodo.5959694. Processed ASV count files, taxonomy assignments, and code to
reproduce results, regenerate figures, and perform statistical tests are available at:

https://shu251.github.io/microeuk-amplicon-survey/.
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FIGURE & TABLE LEGENDS

Figure 1. Map of all vent fields, where symbols represent each vent site at Axial Seamount (a),
(b) the two regions sampled at the Gorda Ridge, and (c) the Piccard and Von Damm vent fields
along the Mid-Cayman Rise. Figure made with GeoMapApp (www.geomapapp.org) / CC BY /
CC BY (Ryan et al., 2009).

Figure 2. (a) Proportion of sequences belonging to main protistan supergroup and phyla, by
sample type (left to right: Background, Plume, and Vent) and hydrothermal vent field (top to
bottom: Axial Seamount, Gorda Ridge, Piccard, and Von Damm. ASVs with fewer than 200
sequences were removed. (b) Total number of shared (or unique) ASVs across sample type and
vent field. Dot matrix below the bar plot indicates the samples included in the bar plot
representation, where the bar plots above a single dot indicate that those ASVs were restricted to
that vent field and sample type. Colors represent main protistan taxonomic groups. Dashed line
indicates 200 ASVs were shared (y-axis); Figure S3 includes a comparison of samples with <200
ASVs.

Figure 3. (a) Community diversity clustered by Jaccard Dissimilarity, where values closer to 0
indicate samples are identical. (b) Proportion of ASVs shown by distribution among
hydrothermal vent sites, Axial, Gorda Ridge, Piccard, and Von Damm (where Mid-Cayman Rise
is abbreviated MCR and includes Piccard and/or Von Damm). (¢) Proportion of ASVs
designated as vent only (resident or putative endemic), cosmopolitan (found among background,
plume, and diffuse vent fluid), plume only, or background only.

Figure 4. (a) Distance-decay plot, where data points represent pairwise comparisons of all
samples (Distance-decay with resident and cosmopolitan populations can be found in Figure S4),
and distance between the samples is represented on the x-axis with the community dissimilarity
(estimated by Jaccard) is represented along the y-axis. Comparison of Jaccard distance variance
to geographic distance is also reported in Figure S4. Note that geographic distances represent the
calculated difference between latitude and longitude (Table 1), rather than oceanographic
distances. (b) Violin plot of estimated Shannon values (derived from DivNet), by sample type (x-
axis), background, plume, and vent site.

Figure 5. (a) Relative proportion of ASVs classified as resident (y-axis) versus cosmopolitan (x-
axis). Bubble size is equivalent to the total number of sequences and color represents each
supergroup. (b) Vent-only (putative endemic) taxa represented by CLR transformed data (red to
blue) by vent sample (x-axis) and taxonomic class (y-axis). Sum of CLR transformed data will
equal 0, where the log of the ratio between each data point at the geometric mean of the dataset is
calculated.

Figure S1. (a) Total number of ASVs and (b) sequences in each sample of the sequence survey.
Samples with fewer than 20,000 sequences were removed from the dataset.

Figure S2. Relative sequence abundance for all major protistan taxonomic groups. Colors denote
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taxonomic group assignment, bar plots are organized by vent field, year sampled, and sample
type.

Figure S3. Supplement to Figure 2b showing a higher resolution view of the total number of
shared (or unique) ASVs across sample types that totaled to <200 ASVs. Dot matrix below the
bar plot indicates the samples included in the bar plot representation, where the bar plots above a
single dot indicate that ASV's were restricted to that single vent field and sample type. Colors
represent main protistan taxonomic groups.

Figure S4. Total number of shared (or unique) ASVs at the genus level (a) or at the ASV level
(b-d) for each vent field. Dot matrix below the bar plot indicates the samples included in the bar
plot representation, where the bar plots above a single dot indicate that genera or ASVs were
restricted to that single vent field and sample type. Colors represent main protistan taxonomic
groups. Panels represent (a) ASVs grouped to the Genus level to show homology across vent
fields, (b) ASVs at all the Axial Seamount samples, (¢) ASVs at the Gorda Ridge, and (d) ASVs
at the Mid-Cayman Rise.

Figure S5. (a) Variance in Jaccard dissimilarity by vent field and sample types (y-axis) relative
to geographic distance (x-axis). Distance-decay plots with Jaccard Dissimilarity (y-axis) and
distance (km; x-axis) for the (b) resident population and (¢) cosmopolitan populations. (d-f)
Analysis was repeated following further clustering of the ASVs into OTUs at 95%, 97%, and
99% sequence similarity. Figure 4 in the main text includes all samples and ASVs in the
sequence survey.

Figure S6. (a) ASV richness by individual taxonomic group. Each panel represents a taxonomic
group, and is denoted by color. From left to right, each panel includes a box plot representation
of the ASV richness by sample type: background, plume, and vent. (b) Estimated Shannon
values with variance (y-axis with error bars) derived from DivNet (Willis and Martin, 2022), for
each sample (x-axis).

Figure S7. Distribution of cosmopolitan versus resident (a) sequences and (b) total ASVs by
taxonomic group (color) and vent field (x-axis).

Figure S8. Results from distance-based redundancy analysis (DBRDA) to determine if
environmental factors (top, x-axis; i.e., fluid chemistry, temperature, and microbial cell counts)
play a significant role in shaping community dissimilarity. Analysis was conducted on subsets of
the samples collected (panels from left to right) and of the ASVs recovered (rows, y-axis). By
subsampling the data ahead of DBRDA, we were able to focus on different components of the
deep-sea microbial eukaryotic community (e.g., the resident population, NE Pacific Ocean vent
fields only, or only Mid-Cayman Rise). All geochemical values used are also reported in Table 1.
Color designates the p-value result, where darker colors are more significant.

Table 1. Metadata for all samples used in the statistical analysis of 18S rRNA gene amplicon
survey, including year, maximum temperature (°C) at time of collection, concentration of
microorganisms (cells ml!), estimated percent seawater in diffuse fluids (%), pH, magnesium
(Mg mmol/L or mM), dissolved hydrogen (H> umol/L or uM), total dissolved hydrogen sulfide
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(H2S mmol/L or mM), and methane (CH4 pmol/L or uM). Values were taken from the most
representative vent fluid measurements for each sample. Bags of vent fluid collected at depth and
brought shipboard for filtering were sampled for geochemistry. For filters collected in situ,
measurements from the most representative geochemistry sample were used. See materials and
methods for more details.

Table 2. Summary of most frequently co-occurring ASVs. Table S4 lists all significantly co-
occurring ASVs. Significantly co-occurring ASV interactions were dominated by the main
protistan lineages listed in the first column. The other columns list the most common class,
genus, or species level observed, the commonly co-occurring phyla, and information on inferred
interaction type. Phagotrophy (or heterotrophy) is meant to describe protistan cells capable of
engulfment (either passively hunting or actively seeking out prey) of microbial prey cells, while
‘myzocytosis’ is defined as "cellular vampirism" (Ramond et al., 2019; Leander, 2020). Sources
and examples of functional traits are listed as references (Moreira, 2003; Lima-Mendez et al.,
2015; Canals et al., 2020; Schoenle et al., 2020, Biard, 2022; Hess and Suthaus, 2022)

Table S1. Post quality control total number of sequences and ASVs for each sample included in
the 18S rRNA gene sequence survey.

Table S2. Total number of ASVs and sequences, and sequence percentages by vent field, sample
type, and all data, by major protistan taxonomic groups classified.

Table S3. Total number of ASVs or OTUs and percentage of ASVs or OTUs with respect to
distribution (columns) and sequence dataset (rows). Results show consistent proportions of OTU
distribution when ASVs are clustered at 99%, 97%, and 95% sequence similarity.

1089 Table S4. List of significantly co-occurring ASVs derived from the SPIEC-EASI network
1090 analysis (Kurtz ef al., 2015). ASV-ASV co-occurrences are differentiated by “sideA” and

1091

“sideB”, where this table first lists the sideA and sideB ASV feature IDs that co-occur.
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\/
Microbial
Temperatur | concentration
Year e (°C) (cells/mL)
Axial - Vent
Dependable| 2013 50 1.70 x 10¢
Marker113| 2013 24.8 4.60 x 105
Marker113| 2014 24.3 6.80 x 10°
Marker113| 2015 25.4 1.50 % 108
Skadi| 2013 35.6 5.65 x 10°
Escargot| 2014 6.6 nd
El Guapo| 2013 25.7 1.68 x 10°
Boca| 2013 6.8 8.50 x 105
Anemone| 2013 28.2 4.10 x 10°
Marker33| 2013 27.3 4.20 x 105
Marker33| 2014 18.5 3.90 x 10°
N3Area| 2013 18.9 2.57 x 10°
Axial - Plume
Anemone Plume| 2015 nd nd
Axial - Background
Deep seawater] 2015 2 2.50 x 10
GordaRidge - Vent
Mt Edwards| 2019 40 5.14 x 10¢
Venti Latte] 2019 11 1.11 x 105
Candelabra| 2019 79 5.51 x 10+
Sir Ventsalot| 2019 72 5.30 x 10¢
GordaRidge - Plume
Mt Edwards Plume| 2019 1.8 nd
Candelabra Plume| 2019 1.7 7.69 x 10¢
GordaRidge - Background
Deep seawater] 2019 1.8 3.91 x 10
Shallow seawater| 2019 8.6 nd
Near vent BW| 2019 1.7 5.20 x 10¢
VonDamm - Vent
X-18| 2020 48 1.11 x 105
Shrimp Hole| 2020 21 nd
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Mustard Stand| 2020 108 5.67 x 10
Ravelin #2| 2020 94 nd
Old Man Tree| 2020 121.6 nd
Ravelin #2| 2020 98.2 nd
Arrow Loop| 2020 137 1.04 x 10¢
White Castle| 2020 108 nd
Bartizan| 2020 129 1.62 x 10¢
VonDamm - Plume
Plume| 2020 4.2 1.65 x 10
VonDamm - Background
Deep seawater] 2020 4.2 3.47 x 10¢
Piccard - Vent
Shrimpocalypse| 2020 85 2.39 x 10¢
Lots O Shrimp| 2020 19 5.39 x 10
Lots O Shrimp| 2020 36 5.39 x 10¢
Piccard - Plume
Plume| 2020 4.5 5.14 x 10¢
Piccard - Background
Deep seawater| 2020 4.5 1.19 x 10¢

nd indicates no data available
bd indicates below detection
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ent fluid parameters

CH4 Mg H2 H2S
Percent | pmol/L mmol/L | pmol/L | mmol/L
Seawater (uM) pH (mM) (uM) (mM)
90% 21 6.2 48.4 0.3 0.016
96% 17 6.2 515 1.4 0.75
96% 39 5.8 50.0 1.0 0.57
96% 23 6.6 514 0.3 0.59
90% 4.5 6.2 48.7 1.0 0.087
97% 2.1 58 52.6 0.047 0.035
92% 2.9 54 49.8 0.3 0.22
98% 1.6 6.9 53.0 2.8 0.0077
89% 15 55 47.6 14 1.1
87% 19 55 47.0 1.5 0.56
91% 6.6 5.6 49.2 1.5 0.27
98% 66 50 53.0 0.053 0.51
100% nd nd nd nd nd
100% 0.002 7.8 53.6 0.002 0.0
83% 10 6.0 43.6 130 1.0
97% 0.9 6.4 521 bd nd
88% 24 55 36.5 22 nd
98% nd nd 52.0 nd nd
100% nd nd nd nd nd
100% nd nd nd nd nd
100% nd 7.8 53.0 nd nd
100% nd nd 53.0 nd nd
100% nd 7.8 53.0 nd nd
52% 1,300 7.0 28.0 nd 2.1
96% 220 7.7 51.8 55 nd
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36% 1,800 5.6 194 9,800 1.8
33% 1,900 5.8 18.0 10,000 1.4
26% 2,000 57 13.7 12,000 1.8
33% 1,900 5.8 18.0 10,000 1.4
34% 1,900 57 18.1 12,000 1.7
17% 2,300 55 8.9 14,000 2.0
42% 1,600 58 22.7 9,400 1.6
100% nd nd nd nd nd
100% nd nd nd nd nd
82% 28 5.1 43.9 0.0 nd
100% 12 6.3 53.5 1.3 nd
95% 11 59 51.0 23,000 nd

nd nd nd nd nd nd
100% nd nd 53.7 nd nd
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Depth (m) | Latitude Longitude
1,913 45.8799 -129.8029
1,520 45.9227 -129.9882
1,518 45.9227 -129.9882
1,520 45.9227 -129.9882
1,562 45.9234 -129.9829
1,517 45.9264 -129.9791
1,502 45.9266 -129.9795
1,517 45.9277 -129.9825
1,542 45.9332 -130.0137
1,516 45.9332 -129.9822
1,514 45.9332 -129.9822
1,523 45.9437 -129.9852
1,500 45.9336 -130.0137
1,520 46.2739 -129.7955
2,707 42.7546 -126.709
2,708 42.7548 -126.7089
2,730 42.7551 -126.7096
2,732 42.7612 -126.7055
2,707 42.7547 -126.7092
2,725 42.7551 -126.7094
2,010 42.7495 -126.7103

150 42.7546 -126.743
2,745 42.755 -126.7099
2,377 18.3748 -81.7974
2,376 18.3749 -81.7974
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2,374 18.3751 -81.7975
2,390 18.3751 -81.7972
2,376 18.3751 -81.7977
2,389 18.3751 -81.7972
2,309 18.3767 -81.798
2,307 18.377 -81.7981
2,307 18.7981 -81.3779
1,979 18.3776 -81.7993
2,400 18.3742 -81.7815
4,945 18.5467 -81.7178
4,967 18.5468 -81.7184
4,967 18.5468 -81.7184
4,944 18.5468 -81.7182
4,776 18.548 -81.7182
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Common taxa found
significantly co-ocurring in

Frequently co-occur with

Phyllopharyngea; Cyrtophoria,
Scuticociliatia, Philasteria

Group this study phyla
Filosa-
Thecofilosea; Ventricleftida, Ciliates, dinoflagellates, other
Cercozoa .
Endomyxa,;Vampyrellida, cerocozoa
Endomyxa; Endo4-lineage
Plagiopylea,
Ciliates Nassophorea;Discotrichidae, Other ciliates, haptophytes,

dinoflagellates, and cerocozoa

Dinoflagellates

Dino-Group-Ill, unclassified
Dinophyceae, Dino-group-I (clade 5)

Haptophytes, other dinoflagelaltes,
ciliates

Haptophytes

Chrysochromulina spp.,
Prymnesiophyceae

Other haptophytes, Dinophyceae

Opalozoa,
Pseudofungi

Bicoecea; Anoeca
(Anoeca_atlantica), MAST-3I,
MAST1B

Other stramenopiles, Dinophyceae,
ciliates

Radiolaria

Astrosphaeridae;Heliosphaera, RAD-
C, -B

Dinoflagellates, haptophytes




Molecular Ecology

Page 86 of 951

Inferred nutritional strategy

Specialized interaction

Morphology & motility
characteristics

Parasitic to other eukaryotes, or an
active or passive phagotroph

Cercozoa include generalist predators, that
may exclusively consume eukaryotes,
predatory amoebae, or can be parasitic to
fungi.

Amoeboid or elongated cell
morphology, typically
capable of gliding or
swimming

Phagotrophy or myzocytosis.
Predation by passive or active
feeding

Preferred prey will be other protists, ciliates,
and bacteria; includes parasitic lifestyle, and
anaerobic species

Typically round or elongated
cell structure and moves as
swimmer or in gliding motion

Phagotrophy or myzocytosis;
Passive or active ambush predator

Syndiniales are parasitic to metazoan larval
stages, mollusca, other protists (especially
dinoflagellates). Other uncalssified
Dinophyceae may be are predators to other
protists and bacteria

Naked, round cell shape,
typically swimming motility,
while parasitic species live
attached to hosts

Phagotrophy, active ambush feeder

Known as a globally-distributed mixotroph;
at vent environment, assumed to be
primarily heterotrophic

Round, flagellated,
swimming cells

Phagotrophy; active ambush feeder
or cruise feeder

MAST typically bacterivors, while Bicoecea
may be less specialized

Naked, round cell that
moves in gliding or
swimming manner

Phagotrophy; active or passive
feeding

Often host to dinoflagelalte or haptophyte
symbionts; pseuopodial networks to capture

prey

Silliceous or strontium
sulfate cell structure, round
or amoeboid; planktonic
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Figure 1. Map of all vent fields, where symbols represent each vent site at Axial Seamount (a), (b) the two
regions sampled at the Gorda Ridge, and (c) the Piccard and Von Damm vent fields along the Mid-Cayman
Rise. Figure made with GeoMapApp (www.geomapapp.org) / CC BY / CC BY (Ryan et al., 2009).
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Figure 2.
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Figure 2. (a) Proportion of sequences belonging to main protistan supergroup and phyla, by sample type
(left to right: Background, Plume, and Vent) and hydrothermal vent field (top to bottom: Axial Seamount,
Gorda Ridge, Piccard, and Von Damm. ASVs with fewer than 200 sequences were removed. (b) Total
number of shared (or unique) ASVs across sample type and vent field. Dot matrix below the bar plot
indicates the samples included in the bar plot representation, where the bar plots above a single dot indicate
that those ASVs were restricted to that vent field and sample type. Colors represent main protistan
taxonomic groups. Dashed line indicates 200 ASVs were shared (y-axis); Figure S3 includes a comparison of
samples with <200 ASVs.
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Figure 3.
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Figure 3. (a) Community diversity clustered by Jaccard Dissimilarity, where values closer to 0 indicate
samples are identical. (b) Proportion of ASVs shown by distribution among hydrothermal vent sites, Axial,
Gorda Ridge, Piccard, and Von Damm (where Mid-Cayman Rise is abbreviated MCR and includes Piccard

and/or Von Damm). (c) Proportion of ASVs designated as vent only (resident or putative endemic),
cosmopolitan (found among background, plume, and diffuse vent fluid), plume only, or background only.
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Figure 4.
a b
1.0 Ty .® - e -)®
SO0 h ‘0 ;
.~ L] -. - i : E :’:“
L po | '
%‘ . .h_l: .‘-o-.- oy .. : s : l-".:_
509 . LY . i " “ o
B o 3 e s . c . b
§ e e H . g 30 L
T . . . o c% ® Al .
.
§ 0.8 . LY 25 B # GordaRidge
3 b L} . A Piccard
* = VonDamm
20
0.7
01 10.0 1,000.0 Background Plume Vent

Figure 4. (a) Distance-decay plot, where data points represent pairwise comparisons of all samples
(Distance-decay with resident and cosmopolitan populations can be found in Figure S4), and distance
between the samples is represented on the x-axis with the community dissimilarity (estimated by Jaccard) is
represented along the y-axis. Comparison of Jaccard distance variance to geographic distance is also
reported in Figure S4. Note that geographic distances represent the calculated difference between latitude
and longitude (Table 1), rather than oceanographic distances. (b) Violin plot of estimated Shannon values
(derived from DivNet), by sample type (x-axis), background, plume, and vent site.
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Figure 5.
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Figure 5. (a) Relative proportion of ASVs classified as resident (y-axis) versus cosmopolitan (x-axis). Bubble
size is equivalent to the total number of sequences and color represents each supergroup. (b) Vent-only
(putative endemic) taxa represented by CLR transformed data (red to blue) by vent sample (x-axis) and

taxonomic class (y-axis). Sum of CLR transformed data will equal 0, where the log of the ratio between each

data point at the geometric mean of the dataset is calculated.
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