

MOLECULAR ECOLOGY

Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents

Journal:	<i>Molecular Ecology</i>
Manuscript ID	MEC-22-0728.R1
Manuscript Type:	Special Issue
Date Submitted by the Author:	n/a
Complete List of Authors:	<p>Hu, Sarah; Woods Hole Oceanographic Institution, Marine Chemistry & Geochemistry</p> <p>Smith, Amy; Woods Hole Oceanographic Institution, Marine Chemistry & Geochemistry; Bard College at Simon's Rock</p> <p>Anderson, Rika; Carleton College, Biology Department</p> <p>Sylva, Sean; Woods Hole Oceanographic Institution, Marine Chemistry & Geochemistry</p> <p>Setzer, Michaela; University of Hawai'i at Mānoa Pacific Biosciences Research Center, Kewalo Marine Laboratory; University of Hawai'i at Mānoa, Department of Oceanography</p> <p>Steadmon, Maria; University of Hawai'i at Mānoa Pacific Biosciences Research Center, Kewalo Marine Laboratory; University of Hawai'i at Mānoa, Department of Oceanography</p> <p>Frank, Kiana; University of Hawai'i at Mānoa Pacific Biosciences Research Center, Kewalo Marine Laboratory</p> <p>Chan, Eric; The University of Texas Rio Grande Valley - Edinburg Campus, School of Earth, Environmental, and Marine Sciences</p> <p>Lim, Darlene; NASA Ames Research Center</p> <p>German, Chris; Woods Hole Oceanographic Institution, Department of Geology & Geophysics</p> <p>Breier, John; The University of Texas Rio Grande Valley - Edinburg Campus, School of Earth, Environmental, and Marine Sciences</p> <p>Lang, Susan; Woods Hole Oceanographic Institution, Department of Geology & Geophysics; University of South Carolina, School of the Earth, Ocean, and Environment</p> <p>Butterfield, David; University of Washington, Joint Institute for the Study of Atmosphere and Ocean</p> <p>Fortunato, Caroline; Widener University, Department of Biology</p> <p>Seewald, Jeffrey; Woods Hole Oceanographic Institution, Marine Chemistry & Geochemistry</p> <p>Huber, Julie; Woods Hole Oceanographic Institution, Marine Chemistry & Geochemistry</p>
Keywords:	Protists, hydrothermal vent, DNA Barcoding, Microbial diversity, Microbial eukaryotes

SCHOLARONE™
Manuscripts

Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents

Sarah K. Hu^{1*}, Amy R. Smith^{1,2}, Rika E. Anderson³, Sean P. Sylva¹, Michaela Setzer^{4,5}, Maria Steadmon^{4,5}, Kiana L. Frank⁴, Eric W. Chan⁸, Darlene S. S. Lim⁶, Christopher R. German⁷, John A. Breier⁸, Susan Q. Lang^{7,9}, David A. Butterfield¹⁰, Caroline S. Fortunato¹¹, Jeffrey S. Seewald¹, & Julie A. Huber¹

¹ Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

² Bard College at Simon's Rock, Great Barrington, MA 01230, USA

³ Biology Department, Carleton College, Northfield, MN 55057, USA

⁴ Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA

⁵ Department of Oceanography, University of Hawaii at Mānoa, Honolulu, HI, 96822, USA

⁶ NASA Ames Research Center, Mountain View, CA 94035, USA

⁷ Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

⁸ School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA

⁹ School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, SC 29208, USA

¹⁰ Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA

¹¹ Department of Biology, Widener University, Chester, PA 19013 USA

*Corresponding Author, sarah.hu@whoi.edu

Running title: Hydrothermal vent microbial eukaryotes

Conflict of interest: Authors declare no conflict of interest.

Key words: deep-sea hydrothermal vent, microbial diversity, protistan diversity, microbial eukaryotes, hydrothermal vent food web

1 ABSTRACT

2 Single-celled microbial eukaryotes inhabit deep-sea hydrothermal vent environments and play
3 critical ecological roles in the vent-associated microbial food web. 18S rRNA amplicon
4 sequencing of diffuse venting fluids from four geographically- and geochemically-distinct
5 hydrothermal vent fields was applied to investigate community diversity patterns among
6 protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge,
7 Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von
8 Damm at the Mid-Cayman Rise in the Caribbean Sea. We describe species diversity patterns
9 with respect to hydrothermal vent field and sample type, identify putative vent endemic
10 microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community
11 diversity. At a semi-global scale, microbial eukaryotic communities at deep-sea vents were
12 composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles.
13 Individual vent fields supported distinct and highly diverse assemblages of protists that included
14 potentially endemic or novel vent-associated strains. These findings represent a census of deep-
15 sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the
16 hydrothermal vent environment at a local scale, ultimately influences the vent-associated
17 microbial food web and the broader deep-sea carbon cycle.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46 **1. INTRODUCTION**

47
48 Deep-sea hydrothermal vent habitats are biological hotspots in the dark ocean, where a rich food
49 web is fueled by chemosynthetic microorganisms (Huber *et al.*, 2007; Bennett *et al.*, 2013;
50 McNichol *et al.*, 2018). The composition of microbial communities at deep-sea hydrothermal
51 vents is influenced by vent fluid chemistry, temperature, prey availability, and geological setting;
52 as a result, individual sites of venting fluid within the same vent field may host distinct microbial
53 communities (Huber *et al.*, 2006; Opatkiewicz *et al.*, 2009; Akerman *et al.*, 2013; Fortunato *et*
54 *al.*, 2018). Accordingly, constraining how these parameters drive both the prokaryotic and
55 eukaryotic microbial diversity and community structure is key to understanding hydrothermal
56 vent food web ecology (Sievert and Vetriani, 2012; Bell *et al.*, 2017). Documenting microbial
57 biogeography across spatial and temporal gradients is also important for assessing how selective
58 or disruptive processes influence microbial community structure.

59

60 Unicellular microbial eukaryotes (referred to as protists) fulfill critical ecological roles in marine
61 food webs and form highly diverse community assemblages at deep-sea niche habitats, such as
62 hydrothermal vents (Edgcomb *et al.*, 2002; López-García *et al.*, 2003, 2007; Sauvadet *et al.*,
63 2010; Murdock and Juniper, 2019). Culture and microscopy-based studies have also
64 demonstrated that deep-sea protists thrive in extreme environments where they may encounter a
65 wide range of temperatures and/or pressures, as well as be exposed to high concentrations of
66 dissolved sulfide and metals, all of which can impact their life cycle (Small and Gross, 1985;
67 Atkins *et al.*, 1998, 2000; Baumgartner *et al.*, 2002; Živaljić *et al.*, 2020). Consistent with
68 bacterial and archaeal diversity associated with hydrothermal vent habitats, genetic studies have
69 found protistan assemblages within diffuse vent fluids to be more species-rich compared to the

70 surrounding deep seawater (Murdock and Juniper, 2019; Hu *et al.*, 2021), and they may form
71 distinct community assemblages at distances of only tens of centimeters (Pasulka *et al.*, 2019).
72 Along with this trend in diversity, protistan grazers (or heterotrophic predators of microbes)
73 place greater predation pressure on the vent-associated microbial population compared to the
74 surrounding deep seawater (Hu *et al.*, 2021). Protistan community diversity and distribution
75 therefore has implications for how carbon is exchanged and exported in deep-sea microbial food
76 webs (Sauvadet *et al.*, 2010).

77

78 Here, we applied amplicon tag-sequencing to address three core questions, (1) What is the
79 biogeography and distribution of the deep-sea hydrothermal vent microbial eukaryotic
80 community?, (2) Are characteristic features of protistan community structure (*i.e.*, species
81 richness, endemic vs. widely distributed) shared across or unique to separate hydrothermal vent
82 fields?, and (3) What biotic or abiotic parameters appear to influence protistan community
83 diversity at deep-sea hydrothermal vents? And do specific environmental parameters select for
84 putative vent endemic protists? Our findings shed new light on the distribution of microbial
85 eukaryotes at deep-sea hydrothermal vents globally and explore how fluid geochemistry and
86 geography influence vent-associated protistan assemblages.

87

88

89

90 **2. MATERIALS & METHODS**91 **2.1. Collection of samples for molecular biology & geochemistry**

92 Samples were derived from a total of 5 different research expeditions. Axial Seamount samples
93 were obtained across 4 cruises in 3 years: in 2013 from the RV Falkor (FK010) and RV Thomas
94 G. Thompson (TN300), in 2014 on NOAA Ship Ronald H. Brown (RB1403), and in 2015 on the
95 RV Thomas G. Thompson (TN327). Samples from the Gorda Ridge were obtained in 2019 on
96 the EV Nautilus (NA-108) and samples from the Mid-Cayman Rise were collected on the RV
97 Atlantis (AT42-22) in 2020. Descriptions of cruise methods, library preparation, and processing
98 are also available at BCO-DMO (<https://www.bco-dmo.org/project/818746>).

99

100 Samples from Axial Seamount cover a 3-year time series (2013-2015) (Table S1; Topçuoğlu *et*
101 *al.*, 2016; Fortunato *et al.*, 2018), where 2015 samples were collected months after an eruption
102 (Spietz *et al.*, 2018; Baker *et al.*, 2019). Each year, samples from several vent sites within Axial
103 Seamount were collected and in 2015, fluid from the water column plume (42 m above Anemone
104 vent) and background seawater (1500 m water depth) were also obtained (also see Fortunato *et*
105 *al.*, 2018). Using ROVs ROPOS and Jason, 3 L of diffuse hydrothermal vent fluid was pumped
106 through a 47 mm diameter GWSP (mixed cellulose esters; MCE) filter (Millipore) with a pore
107 size of 0.22 μm using the Hydrothermal Fluid and Particle Sampler (HFPS; Butterfield *et al.*,
108 2004). Plume and background seawater was collected using a 10 L Niskin bottle. All filters were
109 preserved *in situ* with RNALater (Ambion) as previously described in Akerman *et al.* (2013).
110 Collection of geochemical parameters from Axial Seamount are described in Fortunato *et al.*
111 (2018), where samples were analyzed for methane, magnesium, dissolved hydrogen gas, and

112 hydrogen sulfide using methods described in Butterfield *et al.* (2004). pH was measured *in situ*
113 using a deep-sea glass pH electrode (AMT) plumbed to the HFPS.

114

115 South from Axial Seamount are the Sea Cliff and Apollo hydrothermal vent fields (~2700 m
116 depth) along the basalt-hosted Gorda Ridge spreading center (~200 km off the coast of southern
117 Oregon). Four sites of diffuse venting fluid were targeted within the Sea Cliff and Apollo vent
118 fields, which included Venti Latte, Mt. Edwards, Candelabra, and Sir Ventsalot; samples from
119 Gorda Ridge included in this study are from Hu *et al.* (2021). Low-temperature diffuse fluid
120 (selected using a temperature probe mounted on the sampler intake) was collected by pumping
121 4.1-6.6 L of fluid through a 142 mm diameter 0.2 μ m pore size polyethersulfone (PES) filter
122 (Millipore) with the Suspended Particulate Rosette sampler (SUPR; Breier *et al.*, 2014) mounted
123 on ROV Hercules. Once shipboard, filters were stored and frozen in RNALater. Niskin bottles
124 mounted on the port side of the ROV were used to sample plume (~5 m above active venting)
125 and background seawater environments; seawater from Niskins was transferred into acid-rinsed
126 and clean cubitainers, filtered through 0.2 μ m Sterivex filters (Millipore), and preserved with
127 RNALater. In addition to samples collected meters above diffuse venting fluid at Mt. Edwards
128 and Candelabra (respective plumes), a sample was collected laterally from diffuse fluid (deemed
129 Near Vent BW), but was distinct from background seawater.

130

131 In the Western Caribbean, the Mid-Cayman Rise is an ultraslow spreading ridge that includes
132 two geologically-distinct vent fields approximately 20 km apart: Piccard (~4950 m) and Von
133 Damm (~2350 m). Vent fluids from Piccard are typically acidic and enriched in dissolved sulfide
134 and hydrogen, as fluid exiting the seafloor interacts with mafic rock. In contrast, vent fluid from

135 Von Damm is influenced by ultramafic rock, resulting in less acidic fluid with comparatively
136 less dissolved sulfide (Table 1). In total, 2 sites of low temperature diffuse venting fluid were
137 sampled at Piccard and 8 vent sites were sampled at Von Damm using the Hydrothermal Organic
138 Geochemistry sampler (HOG; Lang and Benitez-Nelson, 2021) mounted on ROV Jason.
139 Between 4-10 L of vent fluid was filtered through a 47 mm polyethersulfone (PES) filter
140 (Millipore) with a pore size of 0.2 μ m. Similar to samples from Axial Seamount, *in situ* filters
141 were preserved in RNALater at the seafloor, as described in Akerman *et al.* (2013). 12 L Niskin
142 bottles collected deep seawater and plume samples at both Von Damm and Piccard. Seawater
143 obtained via Niskin bottle was collected into acid-rinsed and clean carboys and filtered onto
144 Sterivex filters (Millipore) with a pore size of 0.2 μ m. During the research expedition, shipboard
145 Milliq-clean water was filtered onto Sterivex (similar to Niskin bottle sampling) as field controls.
146 Blank filters were also extracted alongside samples in the lab to represent lab-based negative
147 controls.

148

149 During expeditions to the Gorda Ridge (includes Apollo and Seacliff vent fields) and Mid-
150 Cayman Rise, Isobaric Gas Tight (IGT) samplers (Seewald *et al.*, 2002) were used to collect
151 representative diffuse fluid for geochemical analyses from the same locations as samples used
152 for molecular biology. IGT samples were processed immediately after ROV recovery.
153 Geochemical analyses are described in Hu *et al.* (2021). Briefly, pH_{25°C} was measured at room
154 temperature in a ship-based lab using a combination Ag/AgCl reference electrode, dissolved
155 hydrogen gas and methane were determined by gas chromatography, and 30 mL of fluid was
156 stored to collect shore-based measurements of Mg by ion chromatography.

157

158 **2.2. Molecular sample processing & sequence analysis**

159 All samples were processed identically, where RNA was extracted from approximately half of
160 each RNALater-preserved filter using a modified protocol for the Qiagen RNeasy kit (Qiagen
161 Cat No. 74104). First, the filter was separated from the RNALater and placed in a 15 mL conical
162 tube with RNase-free silica beads and 1.5 mL of lysis buffer (RLT buffer treated with β -
163 Mercaptoethanol), then each tube was vortexed (bead-beating) for 3 minutes. The remaining
164 RNALater was spun down for 15 minutes (14,000 rpm), supernatant removed, and 500 μ l of
165 lysis buffer was added and mixed to collect any material that was previously suspended in
166 RNALater. The lysis buffers were combined and separated from the filter and silica beads before
167 continuing with the rest of the column RNA extraction, which included an in-line RNase-free
168 DNase removal step (Qiagen Cat No. 79256). RNA was reverse transcribed to complementary
169 DNA (Biorad Cat No. 1708841) and the V4 hypervariable region (Stoeck *et al.*, 2007) within the
170 conserved 18S rRNA gene was amplified similar to previous work (Hu *et al.*, 2021; Ollison *et*
171 *al.*, 2021). Amplified products were multiplexed, pooled at equimolar concentrations, and
172 sequenced with MiSeq 2 x 300 bp PE kit at the Marine Biological Laboratory Bay Paul Center
173 Keck sequencing facility. Amplicons from extracted RNA (amplified cDNA) were chosen for
174 this study, as they are more likely to originate from metabolically active cells, rather than
175 inactive cellular material (Blazewicz *et al.*, 2013; Hu *et al.*, 2016).

176

177 Amplicon sequences were processed together using QIIME2 v2021.4 (Bolyen *et al.*, 2019).
178 Sequences were quality controlled and primers were removed using cutadapt (error rate: 0.1,
179 minimum overlap: 3 bps)(Martin, 2011). DADA2 (Callahan *et al.*, 2016) in QIIME2 enabled
180 paired-end reads to be truncated (260 bp forward read and 225 bp reverse read), an error rate

181 (max-ee = 2) to be estimated, and chimeras to be identified and removed (pooled method) to
182 ultimately determine Amplicon Sequence Variants (ASVs). DADA2 was executed on sets of
183 sequences from the same MiSeq run and were later merged to enable comparisons across
184 sequence runs. Resulting ASVs serve as species or strain level designations. ASVs were further
185 clustered into “Operational Taxonomic Units” (OTUs; QIIME2, cluster vsearch *de novo*), where
186 ASVs were grouped by percent base pair similarity at 99%, 97%, and 95%. Reference sequences
187 for all recovered ASVs and OTUs were assigned taxonomy using vsearch (Rognes *et al.*, 2016)
188 at 80% identity with the Protist Ribosomal database v4.14 (Guillou *et al.*, 2012; Vaulot, 2021).
189 ASVs identified as belonging to metazoan were removed from downstream analysis, as it is
190 outside the scope of this study. In addition to taxonomic identification, ASVs and OTUs were
191 placed into categories based on distribution across sample types, where the ‘resident’ population
192 included ASVs or OTUs that appeared only in diffuse vent fluids, and ‘cosmopolitan’ ASVs or
193 OTUs were found in various sample types, and not restricted to vent fluid only. Results from
194 OTU clustering served as a method to explore the impact that amplicon-defined species or strains
195 may have on ecological interpretations (Supplementary Information).
196

197 **2.3. Statistical analysis**

198 ASV tables, taxonomy assignments, and sample metadata were compiled for all downstream
199 analyses (R v4.1.0; Oksanen *et al.*, 2007; McMurdie and Holmes, 2013; Team, 2017; Wickham,
200 2017). Shipboard and laboratory negative control samples (MilliQ water) were compared to
201 experimental samples to remove putative contaminant ASVs using ‘decontam’ (Davis *et al.*,
202 2018); ASVs that were 50% or more prevalent in the negative controls, relative to samples, were
203 removed from all datasets. Amplicon sequence surveys do not necessarily equate to microbial

204 community biomass or metabolic activity (Blazewicz *et al.*, 2013; McMurdie and Holmes, 2014;
205 Gloor *et al.*, 2017), and may consequently mislead interpretations of relative sequence
206 abundance. We specifically used multiple approaches to address our questions and placed more
207 weight on the presence and absence of protistan assemblages to interpret our results. Species
208 richness was estimated using DivNet (Willis and Martin, 2022), which accounts for unobserved
209 species when estimating alpha diversity, thus providing an estimate of alpha diversity variance.

210

211 Network analysis to determine putative ASV-ASV interactions (co-occurrences) was conducted
212 using a SParse InversE Covariance Estimation for Ecological Association Inference approach
213 (SPIEC-EASI; Kurtz *et al.*, 2015). ASVs had to appear in more than 1 sample and have at least
214 100 sequences to be passed through the SPIEC-EASI analysis. SPIEC-EASI glasso method was
215 conducted with a lambda min ratio of $1e^{-2}$, nlambda = 20, and rep.num = 50. Significant ASV-
216 ASV pairs were considered when the interaction was $> |0.01|$. Significantly co-occurring ASVs
217 were evaluated by taxonomic group and ASV classification and interpreted based on the total
218 number of occurrences and inferred functional trait of involved taxa (Ramond *et al.*, 2019).

219

220 Distance-based redundancy analysis (DBRDA; Legendre and Anderson, 1999) was performed
221 on Euclidean distance matrices derived from center-log ratio transformed count data (Aitchison,
222 1986) in order to evaluate the significance of location, year, sample type, and geochemical
223 parameters. Ahead of DBRDA, ASV count tables were subsampled to the relevant number of
224 samples for each test (*e.g.*, across vent sites only, resident vs. cosmopolitan population, and some
225 taxonomic groups). Code can be found at: <https://shu251.github.io/microeuk-amplicon-survey/>.

226

227 **3. RESULTS**228 **3.1. Fluid Composition**

229 We examined microbial eukaryotic community composition, diversity, and distribution across
230 four geographically distinct deep-sea hydrothermal vent fields (Figure 1). In the North East
231 Pacific Ocean, Axial Seamount (~1520 m depth) is an active submarine volcano on the Juan de
232 Fuca Ridge. All diffuse vent fluids from Axial Seamount are hosted in basaltic rock (Topçuoğlu
233 *et al.*, 2016; Fortunato *et al.*, 2018), with temperatures ranging between 6.6°C and 53.2°C (Table
234 1). Fluids collected were slightly acidic with *in situ* pH values of 5.0-6.8 and contained up to 1
235 mmol/L in total dissolved hydrogen sulfide and less than 14 µmol/L dissolved hydrogen (Table
236 1). Samples from Marker 113 were collected over 3 years and did not reveal any clear temporal
237 trends, with the exception of higher concentrations of bacterial and archaeal cells following the
238 2015 eruption (2013-2014 average: 4.0×10^5 cells ml⁻¹; 2015: 6.0×10^6 cells ml⁻¹; Table 1).
239 Diffuse venting fluids within the Gorda Ridge ranged in temperature from 10-80°C, were
240 slightly acidic ($\text{pH}_{25^\circ\text{C}} = 5.5\text{-}6.4$), and contained concentrations of dissolved hydrogen that were
241 higher than at Axial Seamount (22-130 µmol/L; Table 1). While low-temperature diffuse venting
242 fluid was targeted for sampling at the Mid-Cayman Rise, temperature ranges within Von Damm
243 and Piccard were higher than in the NE Pacific, and even exceeded 100°C at Von Damm (range
244 at Von Damm: 21-129°C and Piccard: 19-85°C). Fluids from Von Damm contained the lowest
245 concentrations of magnesium (Table 1), indicating the fluids at this site contained a higher
246 proportion of end-member hydrothermal vent fluid when compared to the other sites. Consistent
247 with the influence of ultramafic rock, Von Damm vent fluids also had higher concentrations of
248 methane and dissolved hydrogen (Table 1).

249

250 **3.2. Distribution and composition of 18S rRNA gene sequences**

251 The 18S rRNA gene tag-sequence survey across all four vent fields recovered 3.81 million
252 sequences and 17,934 ASVs. Following corrections for contamination based on negative
253 controls, 56 ASVs were removed, comprising 0.74% of the sequences and 0.31% of the ASVs.
254 Samples with fewer than 20,000 sequences were also removed from the dataset (n = 2; Figure
255 S1). The final sequence dataset used for downstream analyses includes 3.79 million sequences
256 and 12,375 ASVs; where the mean number of sequences per sample is >88,000 (min: 25,000,
257 max: 286,000) and ASVs per sample is 670 (min: 32, max: 2,100; Figure S1).

258

259 Protistan supergroups and phyla were detected at different relative abundances among diffusely
260 venting fluids, plume water, and background seawater (Figures 2a and S2). Background samples
261 were dominated by stramenopiles, dinoflagellates, and ciliates, and the plumes were largely
262 made up of radiolaria, dinoflagellates, and ciliates. Vent fluid samples were overwhelmingly
263 composed of ciliates, then dinoflagellates (Figures 2a and S2; Table S2). Microbial eukaryotic
264 community composition clustered primarily by vent field, then by sample type (Jaccard
265 dissimilarity; [0,1]; Figure 3a). Within each vent field, samples from the plume and background
266 consistently clustered separately from diffuse vent fluid samples. Over 10,000 ASVs were
267 unique to an individual vent field (82% of ASVs and 33% of sequences; Figures 2b, 3b, and S3).
268 Only 194 ASVs were found in all samples (1.5% of ASVs and 22% of sequences; Figure 3b).

269

270 There were 330 ASVs shared between vent fluids from Axial Seamount and Gorda Ridge
271 (situated ~440 km apart; Figure 2b); shared diversity between the NE Pacific vent fields included
272 cercozoa, specifically Filosea-Sarcomonadea, *Thecofilosea*, and *Endomyxa*, and ciliates

273 (Choreotrichida, Scuticociliates, and Plagiopylea; Figure 2b). The Gorda Ridge plume sites were
274 also characterized by the highest relative abundances of radiolaria, while the background at
275 Gorda Ridge had comparatively fewer stramenopile and dinoflagellate sequences relative to
276 background seawater at Axial Seamount (Figures 2a and S2).

277

278 Of the 3,586 ASVs identified from Axial Seamount, only 177 ASVs were shared across 2013,
279 2014, and 2015 within the vent fluid; the majority of these shared ASVs were ciliates (including
280 members within the *Plagiopylea* and *Oligohymenophorea*; Figures 2b and S4b). While the same
281 protistan supergroups were represented year to year at Axial Seamount, exceptions included the
282 2015 samples from the deep seawater and Anemone plume where the community varied with
283 respect to the composition and the relative abundances of stramenopiles (Ochrophyta versus
284 Opalozoa) and Rhizaria (cercozoa vs. radiolaria; Figure S2).

285

286 Despite closer proximity to one another relative to the two NE Pacific vent fields, samples from
287 Von Damm and Piccard (~20 km apart) shared fewer ASVs (235 ASVs; Figure 2b and S3). Of
288 these shared ASVs, a high proportion of sequences were identified as ciliates (*Plagiopylea*,
289 *Spirotrichea*, *Strombiidia*, and *Leegaardiella*), radiolaria (Acantharia and RAD), cercozoa
290 (Filosea-Sarcomonadea and *Bigelowiella*), and Hacrobia (Prymnesiophyceae and
291 *Chrysochromulina*). Shared stramenopile ASVs included MOCH (-2, -5) and MAST (-7, -4C),
292 but typically distinct subclades were found at Von Damm and Piccard, while other stramenopile
293 ASVs included Chrysophyceae and Dictyochophyceae.

294

295 **3.3. Driving forces in microeukaryote community structure**

296 Microbial eukaryotic communities located at greater geographic distances corresponded to more
297 dissimilar communities (Figure 4a), while communities found at vent sites within the same vent
298 field (<10 km apart) displayed a wide range of community dissimilarity (Figure 4a). Pairwise
299 community comparisons for samples less than 10 km apart often showed the same level of
300 community dissimilarity as samples situated in different ocean regions (>10,000 km; Figure 4a).
301 Variance in community dissimilarity decreased as a factor of increasing geographic distance
302 (Figures 4a and S5a), demonstrating a heteroscedastic relationship (triangular relationship
303 (Cornelissen, 1999; Santini *et al.*, 2017). This observation was consistent when ASVs were
304 subsampled to the resident and cosmopolitan populations (Figures S5b-c). Species richness,
305 estimated by Shannon diversity via DivNet, was highest among venting fluids when compared to
306 plume and background communities (Figure 4b). This was further supported by high ASV
307 richness of individual protistan taxa within the vent samples (Figure S6a). Shannon diversity
308 estimates were highest at Boca, Marker 113, and Marker 33 vent sites (Figure S6b).

309

310 ASVs were classified based on their distribution as either ‘resident’ (ASVs detected exclusively
311 within diffusely venting fluid), which represented putative endemic species, or ‘cosmopolitan’
312 (ASVs found across vent, plume, and/or background sample types, Figure 3c). 65% of all ASVs
313 were classified as resident (8,107 ASVs), while only 17.2% of the ASVs were identified as
314 cosmopolitan (2,133 ASVs; Table S3). Further, 35% of the cosmopolitan ASVs were found
315 within a single vent field, and only 8.7% of the cosmopolitan population was detected in all four
316 vent fields. Within the resident ASVs, 60% (18% of all sequences) were also restricted to a
317 single vent field (7,325 ASVs; Figures 2b, 3b-c, and S4b-d, Table S3). Only 7 ASVs were both

318 resident to diffuse venting fluid and found at every vent site; these ASVs were taxonomically
319 identified as haptophytes (*Chrysochromulina*, Prymnesiophyceae), Stramenopiles
320 (Chrysophyceae), and a choanoflagellate.

321

322 The proportion of resident versus cosmopolitan ASVs also varied by taxonomic group (Figures
323 5a and S7). Dinoflagellate, archaeplastida, and stramenopile groups had a higher proportion of
324 ASVs with a cosmopolitan distribution (Figure 5a). Within excavata, apusozoa, and amoebozoa,
325 the majority of ASVs were recovered only within diffusely venting fluid; these groups also had
326 the fewest total number of sequences assigned to them (Figure 5a). For ASVs classified as
327 resident, there was additional population heterogeneity by individual vent site (Figure 5b). For
328 instance, *Euplotia* (ciliates) were overrepresented in Anemone, Boca, and El Guapo in 2013 at
329 Axial Seamount and in Venti Latte at Gorda Ridge, but were found at lower relative abundances
330 at all other vent fields (Figure 5b).

331

332 Additional clustering of ASVs into OTUs at 99%, 97%, and 95% similarity resulted in consistent
333 trends in distribution, proportion of cosmopolitan vs. resident ASVs or OTUs, and the percentage
334 of resident ASVs or OTUs limited to a single vent field (Table S3). Samples situated closer
335 together were also more similar to one another when ASVs were clustered further (Figure S5d-f).
336 Overall, a similar distance-decay trend was found at 99%, 97%, and 95% sequence similarity,
337 where community dissimilarity varied at sites within the same vent field (Figure S5d-f). These
338 results demonstrate that regardless of how amplicons are determined to represent species or
339 strain taxonomic levels, the ecological interpretation of diversity across vent fluid, plume water,
340 and background seawater remains consistent.

341

342 Geochemical measurements and depth appeared to primarily influence the resident protistan
343 population across all vent fields and regions (Figure S8). Among the individual vent sites only,
344 the resident protistan population was found to be influenced by depth, *in situ* microbial
345 concentration, and pH (Figure S8). The Boca vent at Axial Seamount was determined to be a
346 significant outlier using a method to estimate homogeneity of group dispersion (O'Neill and
347 Mathews, 2000). While some missing geochemical values compounded our ability to fully test
348 the significance of fluid chemistry on protistan community structure, by subsampling the
349 members of the microbial eukaryotic community based on taxonomy or distribution, some
350 parameters were found to be significant (Figure S8; $p < 0.05$).

351

352 Network analyses were conducted to address the hypothesis that protistan nutrient strategies
353 associated with predator-prey (phagotrophic, heterotrophic, or myzocytotic) or parasitic (host-
354 parasite) life-styles made up the majority of significantly co-occurring ASVs (Tables 2 and S4).
355 Ahead of Spiec Easi analysis, data was subsampled so that ASVs appeared in more than one
356 sample and had more than or equal to 100 sequences ($n = 2,575$ ASVs). Putative positive and
357 negative interactions were filtered by -0.01 and +0.01, respectively; this left over 91k putative
358 interactions (3,363 negative and 87,925 positive, Tables 2 and S4). A higher number of putative
359 interactions was found among ASVs detected within the same vent field (*e.g.*, ASVs from MCR
360 to other ASVs from the region, or among Gorda Ridge-Gorda Ridge only ASVs), as well as
361 ASVs found at all sites. Similarly, co-occurring ASVs were more likely to have positive
362 interactions and be composed of ASVs from either the resident or cosmopolitan population (*i.e.*,
363 a resident ASV significantly co-occurred with other resident ASVs). The most common ASV-

364 ASV pairs were between dinoflagellate-dinoflagellate (12% of putative interactions), ciliate-
365 ciliate (15%), or radiolaria-dinoflagellate (5.5%). For the resident-only interactions, the majority
366 of the ASVs were composed of ciliate-ciliate interactions, while dinoflagellate-dinoflagellate
367 interactions made up the majority of cosmopolitan interactions.

368

369 **4. DISCUSSION**

370 Chemosynthetic bacteria and archaea are well known to form the foundation of the hydrothermal
371 vent microbial food web (Butterfield *et al.*, 2004; Huber *et al.*, 2007; Sievert and Vetriani, 2012;
372 McNichol *et al.*, 2018). Microbial eukaryotes serve as an important source of grazing, nutrient
373 remineralization, and act as hosts to symbionts (Moreira, 2003; Pasulka *et al.*, 2019; Hu *et al.*,
374 2021). The community composition and diversity of protists has previously been studied at
375 several deep-sea hydrothermal vents (Edgcomb *et al.*, 2002; López-García *et al.*, 2007; Murdock
376 and Juniper, 2019). Here, we explored regional and semi-global trends in protistan diversity
377 across multiple vent fields to gain insight into how vent geochemistry and geographic distance
378 influence community composition and the extent of endemism among protists. Assessments of
379 microbial eukaryotic biodiversity and distribution in relation to vent field geochemistry is a
380 critical part of understanding how the vent microbial food web impacts the surrounding
381 ecosystem. We determined that individual hydrothermal vent fields display highly diverse and
382 spatially-restricted protistan assemblages, often within individual diffuse vent sites, and that
383 geology, vent fluid chemistry, and ocean region appear to influence microbial eukaryotic
384 community structure. Documenting the selective processes that drive protistan communities to
385 occupy hydrothermal vents is critical for assessing their contribution on the deep-sea microbial
386 food web and carbon budget, which ultimately impacts the resilience of these unique ecosystems.

387

388 **4.1. Protistan populations at hydrothermal vents are distinct & diverse**

389 The warm and reduced venting fluid that rapidly mixes with the surrounding seawater creates an
390 energy-rich habitat characterized by steep chemical and temperature gradients at diffuse vent
391 sites. This feature makes hydrothermal vents 'biological oases' in the deep ocean, where a rich
392 community of microorganisms, meiofauna, and macrofauna inhabit the region surrounding the
393 vent site. When broadly classified to the supergroup and phylum level, protistan community
394 composition was primarily composed of the alveolates, ciliates and dinoflagellates, and then
395 Rhizaria and stramenopiles at all vent fields and sample types (diffuse fluid, plume, and
396 background; Figures 2a and S2). Within each vent field, there was a consistent relative increase
397 in both sequences and ASVs identified as ciliates in the vent fluid samples compared to the
398 plume and background. Further, the protistan community composition was found to be similar to
399 previous amplicon-based studies set at deep-sea hydrothermal vents, including the overall
400 increase in likely heterotrophic microeukaryotes at sites of diffuse venting fluid (Edgcomb *et al.*,
401 2002; López-García *et al.*, 2007; Murdock and Juniper, 2019; Pasulka *et al.*, 2019; Hu *et al.*,
402 2021).

403

404 Regardless of oceanic region and vent field, we found microbial eukaryotic species richness to
405 be consistently higher within diffuse venting fluids ($\leq 100^{\circ}\text{C}$), compared to plume and
406 background seawater, and have limited dispersal across samples at the strain and species-level
407 designation (Figures 2-4 and S4, Table S3). Further, a high proportion of the protistan diversity
408 (number of ASVs) was unique to individual vent fields, and even to single vent sites (Figures 2-4
409 and S4, Table S3). This observation is similar to the diversity and distribution of hydrothermal

410 vent bacteria and archaea, where little overlap in microbial phylotypes or strains are found at
411 different vent sites within the same field (Huber *et al.*, 2006, 2007; Opatkiewicz *et al.*, 2009;
412 Anderson *et al.*, 2017; Fortunato *et al.*, 2018). Varying subsurface fluid plumbing, geological
413 features, water-rock reactions, and the metabolic activity of subsurface microorganisms cause
414 end member vent fluid chemistries to be substantially different, even when situated only meters
415 apart (Butterfield *et al.*, 2004; Von Damm *et al.*, 2006; McDermott *et al.*, 2018). As a result,
416 closely-related groups of bacteria and archaea are found throughout the hydrothermal vent
417 environment, while individual sites of diffusely venting fluid often host subpopulations that are
418 distinct at the species level (Huber *et al.*, 2006, 2010; Opatkiewicz *et al.*, 2009). Our findings
419 demonstrate that population heterogeneity at individual vent sites extends to microeukaryotic
420 communities, meaning individual sites of diffusely venting fluid represent distinct populations of
421 protistan species that exhibit ‘microdiversity’ relative to the broader hydrothermal vent region
422 and surrounding deep sea.

423

424 One implication of habitat heterogeneity among protistan assemblages is that the surrounding
425 deep-sea community may serve as a reservoir of protistan diversity, where some species exist at
426 low abundance, but ultimately increase in abundance within the favorable conditions presented
427 by diffuse venting fluid, such as prey or host abundances (Mars Brisbin *et al.*, 2020). This
428 supports the idea that the hydrothermal vent environment selects for particular protistan species
429 or their functional traits, and potentially highlights the role of the microbial rare biosphere has in
430 community assembly (Sogin *et al.*, 2006; Caron and Countway, 2009). The existence of
431 underexplored microbial eukaryotic biodiversity at deep-sea hydrothermal vents, including

432 potentially novel or endemic species, also underscores the need to document their biodiversity
433 for conservation efforts.

434

435 **4.2. Putative endemic protists restricted to individual vent fields**

436 Deep-sea hydrothermal vents attract and host a diverse assemblage of microbial life stemming
437 from the chemosynthetic bacteria and archaea. Microbial species found within vent fluids and
438 largely absent from the surrounding non-hydrothermal vent environment are considered vent
439 endemics. These putatively endemic populations are maintained over spatial and temporal scales
440 by subsurface fluid flow and geology (Huber *et al.*, 2010). Endemicity and habitat preference
441 among protistan species were investigated by Murdock and Juniper (2019), where network
442 analyses revealed co-occurrences between prokaryotic extremophiles and protistan species found
443 only at vent sites within the Mariana Arc. Findings indicated that endemicity among protists is
444 not necessarily a general trait. Here, we add to this work by investigating functional traits that
445 may be shared among widely-distributed vent-associated protists or potential vent endemics.

446

447 We found that over 50% of the recovered ASVs at each vent site were restricted to individual
448 vent fluid samples only (Figure 3c), and classified as resident ASVs, or ‘putative endemic’
449 species. While resident ASVs within each vent field were dominated broadly by ciliates, resident
450 ciliate ASVs were not typically shared across vent fields (Figures 2b and S4). Instead, ASVs
451 classified as resident and found at all vent fields included haptophytes (*Chrysochromulina* and
452 *Prymnesiophyceae*), stramenopiles (*Chrysophyceae*), and choanoflagellates (*Stephanocidae*).
453 Shared traits among these protistan groups include phagotrophy and a free-living lifestyle (Caron
454 *et al.*, 2012; Ramond *et al.*, 2019), demonstrating that phagotrophic modes of nutrition could be

455 considered a ‘general trait’ among vent-associated protists. Additionally, taxonomic groups
456 found primarily within the cosmopolitan population are also typically of mesopelagic and
457 bathypelagic protistan communities (Pernice *et al.*, 2016; Giner *et al.*, 2019).

458

459 Putative endemic taxa detected exclusively within vent fluids and largely absent from the
460 cosmopolitan population include excavata, apusozoa, and amoebozoa (Figure 5b; Table S2).

461 These groups likely represent protistan species with more specialized traits to enable vent
462 endemicity; in support of this hypothesis, these same groups were classified as rare and likely
463 endemics in Mariana Arc vent fluids (Murdock and Juniper, 2019). The taxonomic placement of
464 excavata, apusozoa, and amoebozoa is often debated, and these groups are considered candidates
465 for probing the evolutionary history and origin of unicellular eukaryotes. For instance, ASVs
466 identified as *Hicanonectes teleskopos* (excavata) are deep-branching relatives of diplomondas
467 (Park *et al.*, 2009), and excavata are widely known as a basal flagellate lineage. Species within
468 apusozoa and amoebozoa are often placed outside the eukaryotic supergroups, where apusozoa
469 have been documented as a potential sister to the Opisthokonta (Cavalier-Smith and Chao,
470 2010). A shared functional trait among excavata, apusozoa, and amoebozoa is that many species
471 are known to be amitochondriate, meaning they lack mitochondria, and instead have
472 hydrogeneosomes that are characteristic of anaerobic metabolisms (Minge *et al.*, 2009; Park *et*
473 *al.*, 2009). This suggests that a vent endemic trait among protists may include anaerobic
474 metabolism capability, thus allowing them to thrive at the interface of non-oxygenated
475 hydrothermal vent fluid and oxygenated seawater.

476

477 Similar to previous work, ciliates were found in all deep-sea samples, and had relatively higher
478 abundances and high species richness within vent fluid samples (Figures 2 and 5). Ciliate trophic
479 strategies range widely from parasitism to phagotrophy, and even symbiont hosts (Lynn, 2008),
480 which likely explains their presence in both the cosmopolitan and resident protistan populations
481 (Figures 2b and S7). Like the putative endemic excavata, apusozoa, and amoebozoa, some ciliate
482 species also characteristically harbor hydrogenosomes (e.g., Oligohymenophorea and
483 Plagiopylea) (Fenchel and Finlay, 1995; Lynn, 2008; Fenchel, 2013); indicating that the
484 oxygenated seawater interacting with diffuse venting fluid creates a favorable habitat for ciliates,
485 similar to an oxycline (Edgcomb and Pachiadaki, 2014). While ciliates are known to have
486 evolved the ability to thrive in sub-oxic environments multiple times, their tendency to be found
487 along oxygen gradients is not fully understood (Rotterová *et al.*, 2022). Additionally, species of
488 ciliates often form ecto- or endo-symbiotic relationships with bacteria or archaea. For instance,
489 among ciliates with hydrogenosomes, methanogenic archaea have been found as endosymbionts;
490 sulfate-reducing symbionts or methanogens benefit from intracellular hydrogen and other
491 fermentation by-products produced by the ciliate hosts (Fenchel and Finlay, 1992; Beinart *et al.*,
492 2018; Rotterová *et al.*, 2022). The widespread distribution of ciliates in the deep sea, together
493 with other accounts of deep-sea specific ciliate species signatures (Schoenle *et al.*, 2017), and
494 observed species heterogeneity by vent site (Figure 5b), suggests that ciliate species employ a
495 variety of more specialized feeding strategies, partnerships, and functional traits within vent-
496 associated food webs.

497

498 **4.3. Biotic & abiotic factors influence vent-associated microbial**
499 **eukaryotes**

500 Results of our study indicate that vent sites within the same region demonstrated a high degree of
501 variability in community dissimilarity (<10 km; Figure 4a), which may be attributed to species
502 diversity within the resident protistan population (Figures 4-5 and S5). This observed ‘triangular
503 relationship’ in other ecosystems is considered a consequence of variability in abiotic factors
504 between habitats (Cornelissen, 1999). While no single environmental parameter was found to
505 significantly shape overall microbial eukaryotic diversity, subsampling the protistan community
506 based on distribution (resident vs. cosmopolitan), taxonomic lineage, and vent field revealed
507 some parameters to have an influence on protistan community composition (Figure S8). For
508 instance, the composition of the resident protistan population found only at vent sites
509 corresponded to depth, microbial cell concentration, and pH (Figure S8). We hypothesize that the
510 subseafloor environment and chemistry of the diffuse fluid influences the composition of
511 bacteria and archaea, both of which ultimately dictate protistan biomass and activity. Additional
512 support for this hypothesis stems from previous work at the Gorda Ridge, which found evidence
513 that protistan grazing activity may be related to microbial cell concentration (Hu *et al.*, 2021). In
514 comparison to another route of microbial mortality at hydrothermal vents, virus biogeography at
515 Mid-Cayman Rise and Axial Seamount were revealed to not only be spatially restricted, but to
516 more closely correspond to microbial host distribution (Thomas *et al.*, 2021). Parameters that
517 dictate protistan distribution and diversity at deep-sea vents likely include a combination of vent
518 geochemistry and the composition of the vent bacterial and archaeal communities. Further,
519 abiotic generation of organic compounds from subsurface mixing and water-rock interactions
520 also influence microbial activity and community distribution (McDermott *et al.*, 2015, 2020).

521
522 Vent fluid geochemistry, regional geology, and subsurface fluid flow contribute to the
523 composition of the chemosynthetic bacteria and archaea at hydrothermal vents; subsequently, the
524 genetic diversity of microbial populations found in vent fluid offers insight into the fluid source
525 and subsurface environment that supports these individual microbial communities (Anderson *et*
526 *al.*, 2017; Fortunato *et al.*, 2018; Stewart *et al.*, 2019). While Von Damm and Piccard
527 hydrothermal vent fields are situated close together, protistan communities found within diffuse
528 vent fluids at each site were largely distinct (Figures 2-3, and 5). Resident ASVs identified as
529 Novel-clade 10 cercozoa were highly represented at the Piccard vent sites compared to Von
530 Damm, and inversely, ciliates belonging to the class Karyorelta were found at higher relative
531 abundances at several vents sites at Von Damm compared to Piccard. In addition to Karyorelta,
532 several other taxa were overrepresented at Shrimp Hole and X18, which represent the highest
533 pH, and lowest temperature vents sampled at Von Damm (Figure 5b, Table 1). Previous
534 metagenomic and metatranscriptomic analysis of Mid-Cayman Rise vent fluids revealed
535 microbial populations to be distinct and more diverse at Von Damm, relative to Piccard, while
536 the dominant metabolisms of the two communities were similar to one another (Anderson *et al.*,
537 2017). These trends were attributed to the more diverse carbon sources found at Von Damm
538 (Anderson *et al.*, 2017), emphasizing how intimately linked subseafloor processes are to the
539 genetic diversity of vent-associated microbial communities.

540
541 **4.4. Presumed trophic strategy among vent-associated protists**
542 Microbial eukaryotes contribute to the hydrothermal vent food web as consumers of
543 chemosynthetic microorganisms or other microbes, and therefore directly impact carbon flux to

544 the surrounding environment. Taxon-specific differences in the composition of resident and
545 cosmopolitan protistan populations provide some evidence that species distribution is also linked
546 to protistan physiology. The cosmopolitan protistan population had a similar taxonomic
547 breakdown to studies situated in mesopelagic to bathypelagic depths; the protistan communities
548 at these depths are often dominated by cercozoa, Rhizaria, and stramenopiles, especially MArine
549 STramenopiles (MAST clades) (Figure 2b; Pernice *et al.*, 2015, 2016; Giner *et al.*, 2019).
550 Members of the Rhizaria and stramenopiles are well known to inhabit every depth in the water
551 column and are typically heterotrophic. This suggests that a shared generalist trait among widely
552 distributed deep-sea protists that also thrive at hydrothermal vents may include phagotrophy.

553

554 In an effort to explore the relationships between putative trophic mode and species distribution,
555 we highlight the prevalence of predator-prey and parasite-host interactions. We targeted ASVs
556 co-occurring at significant levels (derived from network analyses) that are also hypothesized to
557 include known predators or parasites (Ramond *et al.*, 2019) (Table 2; Table S4). Many of the co-
558 occurring ASVs were derived from the same lineage, indicating that we cannot exclude the
559 possibility that the interactions reflect species responding to similar environmental parameters.
560 Phagotrophy was a prominent nutritional strategy shared among the most frequently co-
561 occurring ASVs (Table 2), and likely includes a range of phagotrophic feeding strategies. For
562 instance, dinoflagellate and ciliate phagotrophs are known to actively target and hunt preferred
563 prey; including the use of raptorial feeding (consumption of prey larger than the predator), the
564 use of chemical cues to detect prey, or employing a ‘feeding current’ to intercept and capture
565 prey (Fenchel, 1980; Verity, 1991; Table 3; Pernthaler, 2005; Leander, 2020). The other main
566 trophic strategies identified included parasitism or myzocytosis (Guillou *et al.*, 2008; Leander,

567 2020) specifically within cercozoa, Syndiniales, and some ciliates (Table 2). Parasitism likely
568 plays an important, yet understudied role, in hydrothermal vent food webs, and hosts of protistan
569 parasites include other protists, fishes, or even multicellular metazoa (Moreira, 2003; Govenar,
570 2012). Broadly, the frequency of putative predator-prey and host-parasite interactions suggests
571 that diffuse venting fluids provide an oasis of increased prey and host availability for the deep-
572 sea protistan population. Additionally, the prevalence of protistan parasites demonstrates a
573 potential linkage between microbial and macrofaunal trophic levels at submarine hydrothermal
574 vents.

575

576 **4.5. Summary & Broader implications**

577 Hydrothermal vent fields from the NE Pacific and the western Caribbean were composed of a
578 mixture of globally-distributed and regionally-specific protistan species. While most major
579 lineages of protists were detected across the diffuse venting fluid, plume, and deep seawater
580 samples, populations at the species level were distinct to a single vent field or even to an
581 individual vent site within a field. Additionally, no single parameter explained protistan
582 community structure across the vent, plume, and background environment; instead, only the
583 protistan community restricted to diffuse venting fluid appeared to be influenced by depth, cell
584 concentration, and pH.

585

586 Deep-sea hydrothermal vents are oases of microbial diversity that sustain chemosynthetic-fueled
587 deep-sea food webs. By characterizing the taxonomic composition and distribution of protistan
588 communities across geographically-separated vent fields we highlight some of the mechanisms
589 that may lead to selection, and likely speciation, of microbial eukaryotes at hydrothermal vents.

590 Understanding these sources of speciation and how protistan biodiversity is linked to the
591 hydrothermal vent ecosystem are critical for understanding how disruptive events may harm
592 these habitats (Orcutt *et al.*, 2020). Investigating shared trophic strategies of vent-associated
593 versus cosmopolitan protistan species also demonstrates how species distribution may influence
594 food web interactions and the composition of microbial prey. Deep-sea hydrothermal vents are
595 vulnerable to disruptive events that cause interruptions in vent food web mechanisms (Van
596 Audenhaege *et al.*, 2019). Thus, studies that emphasize global to local biodiversity dynamics can
597 be used to evaluate ecosystem health and provide important context for modeling food web
598 dynamics that consider different trophic strategies.

599
600
601

Data Availability

602 Raw sequence data are available through NCBI. SRA BioProject accession numbers are
603 PRJNA637089 for Gorda Ridge, PRJNA641911 for Axial Seamount, and PRJNA802868 for
604 Mid-Cayman Rise. Sequences, QIIME2 artifact files, and other data are available at Zenodo:
605 10.5281/zenodo.5959694. Processed ASV count files, taxonomy assignments, and code to
606 reproduce results, regenerate figures, and perform statistical tests are available at:
607 <https://shu251.github.io/microeuk-amplicon-survey/>.

608
609
610
611
612
613
614
615
616
617
618
619

620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635

636 **ACKNOWLEDGEMENTS**

637 We would like to thank everyone involved in the collection and processing of diffuse vent fluid,
638 including Nicole Raineault, Margrethe Serres, Karyn Rogers, Tom McCollom, and the captains
639 and crews of the EV Nautilus, RV Falkor, RV Thompson, RV Brown, as well as the pilots and
640 engineers for ROV ROPOS, ROV Jason, and ROV Hercules. Authors would also like to
641 acknowledge helpful discussion and contributions from Olivia Ahren and Margaret Mars
642 Brisbin. Work conducted at Axial Seamount was supported by the Gordon and Betty Moore
643 Foundation (Grant GBMF3297 to J.A.H), Schmidt Ocean Institute, National Oceanic and
644 Atmospheric Administration (NOAA) Pacific Marine Environmental Lab (contribution number
645 5407), the Joint Institute for Study of the Atmosphere and Oceans (NOAA Cooperative
646 Agreement NA15OAR4320063) contribution number 2022-1219, and the Cooperative
647 Institution for Climate, Ocean, and Ecosystem Studies (CICOES) contribution number 2022-
648 1219. Research from the Gorda Ridge was supported by the Ocean Exploration Trust's *Nautilus*
649 Exploration Program, Cruise NA-108, NASA Planetary Science and Technology Through
650 Analog Research (PSTAR) Program (NNH16ZDA001N-PSTAR) grant (16-PSTAR16_2-0011)
651 to D.L., NASA grant (80NSSC19K1427) to C.R.G. NOAA Office of Ocean Exploration and
652 Research Grant NA17OAR0110336, and NSF Ocean Technology & Interdisciplinary
653 Coordination (OCE-1636510 to J.A.B.). This is SUBSEA contribution number SUBSEA-2022-
654 001. Funding support for the Mid-Cayman Rise expedition was provided by NSF-OCE 1801036
655 (to S.Q.L), 1801205 to (J.S.S), NSF-OCE 1816652, and NASA Planetary Science and
656 Technology Through Analog Research (PSTAR) Program 80NSSC17K0252 (K.F. and S.Q.L.).
657 Support for sample processing and data analysis was also provided by the Charles E. Hollister
658 Endowed Fund for Support of Innovative Research at Woods Hole Oceanographic Institution
659 (WHOI). The NSF Center for Dark Energy Biosphere Investigations (C-DEBI) supported J.A.H.
660 as well as S.K.H. through a C-DEBI Postdoctoral Fellowship (OCE-0939564). Research and
661 analysis were also supported through an NSF grant (OCE-1947776) awarded to J.A.H. This is C-
662 DEBI contribution number 600.

663
664
665

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

682 REFERENCES

683 Aitchison, J. (1986) The Statistical Analysis of Compositional Data.
684 Akerman, N.H., Butterfield, D.A., and Huber, J.A. (2013) Phylogenetic diversity and functional
685 gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse
686 hydrothermal vent fluids. *Front Microbiol* **4**:
687 Anderson, R.E., Reveillaud, J., Reddington, E., Delmont, T.O., Eren, A.M., McDermott, J.M., et
688 al. (2017) Genomic variation in microbial populations inhabiting the marine subseafloor
689 at deep-sea hydrothermal vents. *Nat Commun* **8**:
690 Atkins, M., Anderson, O., and Wirsen, C. (1998) Effect of hydrostatic pressure on the growth
691 rates and encystment of flagellated protozoa isolated from a deep-sea hydrothermal vent
692 and a deep shelf region. *Mar Ecol Prog Ser* **171**: 85–95.
693 Atkins, M.S., Teske, A.P., and Anderson, O.R. (2000) A Survey of Flagellate Diversity at Four
694 Deep-Sea Hydrothermal Vents in the Eastern Pacific Ocean Using Structural and
695 Molecular Approaches. *J Eukaryot Microbiol* **47**: 400–411.
696 Baker, E.T., Walker, S.L., Chadwick, W.W., Jr, Butterfield, D.A., Buck, N.J., and Resing, J.A.
697 (2019) Posteruption enhancement of hydrothermal activity: A 33-year, multieruption time
698 series at axial seamount (Juan de fuca ridge). *Geochem Geophys Geosyst* **20**: 814–828.
699 Baumgartner, M., Stetter, K.O., and Foissner, W. (2002) Morphological, Small Subunit rRNA,
700 and Physiological Characterization of *Trimyema minutum* (Kahl, 1931), an Anaerobic
701 Ciliate from Submarine Hydrothermal Vents Growing from 28oC to 52oC. *J Eukaryot
702 Microbiol* **49**: 227–238.
703 Beinart, R.A., Rotterová, J., Čepička, I., Gast, R.J., and Edgcomb, V.P. (2018) The genome of an
704 endosymbiotic methanogen is very similar to those of its free-living relatives: Genome of
705 an intracellular archaeum. *Environ Microbiol* **20**: 2538–2551.
706 Bell, J.B., Wouds, C., and van Oevelen, D. (2017) Hydrothermal activity, functional diversity
707 and chemoautotrophy are major drivers of seafloor carbon cycling. *Sci Rep* **7**: 12025.
708 Bennett, S.A., Coleman, M., Huber, J.A., Reddington, E., Kinsey, J.C., McIntyre, C., et al.
709 (2013) Trophic regions of a hydrothermal plume dispersing away from an ultramafic-
710 hosted vent-system: Von Damm vent-site, Mid-Cayman Rise. *Geochem Geophys Geosyst*
711 **14**: 317–327.

712 Biard, T. (2022) Diversity and ecology of Radiolaria in modern oceans. *Environ Microbiol* **24**:
713 2179–2200.

714 Blazewicz, S.J., Barnard, R.L., Daly, R.A., and Firestone, M.K. (2013) Evaluating rRNA as an
715 indicator of microbial activity in environmental communities: limitations and uses. *ISME J* **7**: 2061–2068.

716 Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., et al.
717 (2019) Reproducible, interactive, scalable and extensible microbiome data science using
718 QIIME 2. *Nat Biotechnol* **37**: 852–857.

719 Breier, J.A., Sheik, C.S., Gomez-Ibanez, D., Sayre-McCord, R.T., Sanger, R., Rauch, C., et al.
720 (2014) A large volume particulate and water multi-sampler with in situ preservation for
721 microbial and biogeochemical studies. *Deep Sea Res Part I* **94**: 195–206.

722 Butterfield, D.A., Roe, K.K., Lilley, M.D., Huber, J.A., Baross, J.A., Embley, R.W., and
723 Massoth, G.J. (2004) Mixing, reaction and microbial activity in the sub-seafloor revealed
724 by temporal and spatial variation in diffuse flow vents at Axial Volcano. *The Subseafloor
725 Biosphere at Mid-Ocean Ridges* **144**: 269–289.

726 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes, S.P.
727 (2016) DADA2: High-resolution sample inference from Illumina amplicon data. *Nat
728 Methods* **13**: 581–583.

729 Canals, O., Obiol, A., Muhovic, I., Vaqué, D., and Massana, R. (2020) Ciliate diversity and
730 distribution across horizontal and vertical scales in the open ocean. *Mol Ecol* **29**: 2824–
731 2839.

732 Caron, D. and Countway, P. (2009) Hypotheses on the role of the protistan rare biosphere in a
733 changing world. *Aquat Microb Ecol* **57**: 227–238.

734 Caron, D.A., Countway, P.D., Jones, A.C., Kim, D.Y., and Schnetzer, A. (2012) Marine
735 Protistan Diversity. *Ann Rev Mar Sci* **4**: 467–493.

736 Cavalier-Smith, T. and Chao, E.E. (2010) Phylogeny and evolution of apusomonadida (protozoa:
737 apusozoa): new genera and species. *Protist* **161**: 549–576.

738 Cornelissen, J.H.C. (1999) A triangular relationship between leaf size and seed size among
739 woody species: allometry, ontogeny, ecology and taxonomy. *Oecologia* **118**: 248–255.

740 Davis, N.M., Proctor, D.M., Holmes, S.P., Relman, D.A., and Callahan, B.J. (2018) Simple
741 statistical identification and removal of contaminant sequences in marker-gene and
742 metagenomics data. *Microbiome* **6**: 226.

743 Edgcomb, V.P., Kysela, D.T., Teske, A., Gomez, A. de V., and Sogin, M.L. (2002) Benthic
744 Eukaryotic Diversity in the Guaymas Basin Hydrothermal Vent Environment. *Proc Natl
745 Acad Sci U S A* **99**: 7658–7662.

746 Edgcomb, V.P. and Pachiadaki, M. (2014) Ciliates along Oxyclines of Permanently Stratified
747 Marine Water Columns. *J Eukaryot Microbiol* **61**: 434–445.

748 Fenchel, T. (2013) Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists,
749 Springer-Verlag.

750 Fenchel, T. (1980) Suspension feeding in ciliated protozoa: Functional response and particle size
751 selection. *Microb Ecol* **6**: 1–11.

752 Fenchel, T. and Finlay, B.J. (1995) Ecology and evolution in anoxic worlds.

753 Fenchel, T. and Finlay, B.J. (1992) Production of methane and hydrogen by anaerobic ciliates
754 containing symbiotic methanogens. *Arch Microbiol* **157**: 475–480.

755 Fortunato, C.S., Larson, B., Butterfield, D.A., and Huber, J.A. (2018) Spatially distinct,
756 temporally stable microbial populations mediate biogeochemical cycling at and below the

757

758 seafloor in hydrothermal vent fluids: Microbial genomics at axial seamount. *Environ*
759 *Microbiol* **20**: 769–784.

760 Giner, C.R., Pernice, M.C., Balagué, V., Duarte, C.M., Gasol, J.M., Logares, R., and Massana,
761 R. (2019) Marked changes in diversity and relative activity of picoeukaryotes with depth
762 in the world ocean. *ISME J.*

763 Gloor, G.B., Macklaim, J.M., Pawlowsky-Glahn, V., and Egoscue, J.J. (2017) Microbiome
764 Datasets Are Compositional: And This Is Not Optional. *Front Microbiol* **8**:

765 Govenar, B. (2012) Energy transfer through food webs at hydrothermal vents: Linking the
766 lithosphere to the biosphere. *Oceanography* **25**: 246–255.

767 Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., et al. (2012) The Protist
768 Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit
769 rRNA sequences with curated taxonomy. *Nucleic Acids Res* **41**: D597–D604.

770 Guillou, L., Viprey, M., Chambouvet, A., Welsh, R.M., Kirkham, A.R., Massana, R., et al.
771 (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to
772 *Syndiniales* (*Alveolata*). *Environ Microbiol* **10**: 3349–3365.

773 Hess, S. and Suthaus, A. (2022) The Vampyrellid Amoebeae (Vampyrellida, Rhizaria). *Protist*
774 **173**: 125854.

775 Hu, S.K., Campbell, V., Connell, P., Gellene, A.G., Liu, Z., Terrado, R., and Caron, D.A. (2016)
776 Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the
777 eastern North Pacific. *FEMS Microbiol Ecol* fiw050.

778 Hu, S.K., Herrera, E.L., Smith, A.R., Pachiadaki, M.G., Edgcomb, V.P., Sylva, S.P., et al. (2021)
779 Protistan grazing impacts microbial communities and carbon cycling at deep-sea
780 hydrothermal vents. *Proc Natl Acad Sci U S A* **118**:

781 Huber, J.A., Butterfield, D.A., and Baross, J.A. (2006) Diversity and distribution of subseafloor
782 Thermococcales populations in diffuse hydrothermal vents at an active deep-sea volcano
783 in the northeast Pacific Ocean: DIVERSITY OF SUBSEAFLOOR
784 THERMOCOCCALES. *Journal of Geophysical Research: Biogeosciences* **111**:

785 Huber, J.A., Cantin, H.V., Huse, S.M., Welch, D.B.M., Sogin, M.L., and Butterfield, D.A.
786 (2010) Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the
787 Mariana Arc seamounts. *FEMS Microbiol Ecol* **73**: 538–549.

788 Huber, J.A., Mark Welch, D.B., Morrison, H.G., Huse, S.M., Neal, P.R., Butterfield, D.A., and
789 Sogin, M.L. (2007) Microbial Population Structures in the Deep Marine Biosphere.
790 *Science* **318**: 97–100.

791 Kurtz, Z.D., Müller, C.L., Miraldi, E.R., Littman, D.R., Blaser, M.J., and Bonneau, R.A. (2015)
792 Sparse and compositionally robust inference of microbial ecological networks. *PLoS*
793 *Comput Biol* **11**: e1004226.

794 Lang, S.Q. and Benitez-Nelson, B. (2021) Hydrothermal Organic Geochemistry (HOG) sampler
795 for deployment on deep-sea submersibles. *Deep Sea Res Part I* **173**: 103529.

796 Leander, B.S. (2020) Predatory protists. *Curr Biol* **30**: R510–R516.

797 Legendre, P. and Anderson, M.J. (1999) DISTANCE-BASED REDUNDANCY ANALYSIS:
798 TESTING MULTISPECIES RESPONSES IN MULTIFACTORIAL ECOLOGICAL
799 EXPERIMENTS. *Ecological Monographs* **69**: 1–24.

800 Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., et al. (2015)
801 Determinants of community structure in the global plankton interactome. *Science* **348**:
802 1262073–1262073.

803 López-García, P., Philippe, H., Gail, F., and Moreira, D. (2003) Autochthonous eukaryotic

804 diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic
805 Ridge. *Proc Natl Acad Sci U S A* **100**: 697–702.

806 López-García, P., Vereshchaka, A., and Moreira, D. (2007) Eukaryotic diversity associated with
807 carbonates and fluid?seawater interface in Lost City hydrothermal field. *Environ
808 Microbiol* **9**: 546–554.

809 Lynn, D. (2008) The Ciliated Protozoa: Characterization, Classification, and Guide to the
810 Literature, Springer Science & Business Media.

811 Mars Brisbin, M., Conover, A.E., and Mitarai, S. (2020) Influence of Regional Oceanography
812 and Hydrothermal Activity on Protist Diversity and Community Structure in the Okinawa
813 Trough. *Microb Ecol*.

814 Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads.
815 *EMBnet.journal* **17**: 10–12.

816 McDermott, J.M., Seewald, J.S., German, C.R., and Sylva, S.P. (2015) Pathways for abiotic
817 organic synthesis at submarine hydrothermal fields. *Proc Natl Acad Sci U S A* **112**: 7668–
818 7672.

819 McDermott, J.M., Sylva, S.P., Ono, S., German, C.R., and Seewald, J.S. (2020) Abiotic redox
820 reactions in hydrothermal mixing zones: Decreased energy availability for the subsurface
821 biosphere. *Proc Natl Acad Sci U S A* **117**: 20453–20461.

822 McDermott, J.M., Sylva, S.P., Ono, S., German, C.R., and Seewald, J.S. (2018) Geochemistry of
823 fluids from Earth’s deepest ridge-crest hot-springs: Piccard hydrothermal field, Mid-
824 Cayman Rise. *Geochim Cosmochim Acta* **228**: 95–118.

825 McMurdie, P.J. and Holmes, S. (2013) phyloseq: an R package for reproducible interactive
826 analysis and graphics of microbiome census data. *PLoS One* **8**: e61217.

827 McMurdie, P.J. and Holmes, S. (2014) Waste Not, Want Not: Why Rarefying Microbiome Data
828 Is Inadmissible. *PLoS Comput Biol* **10**: e1003531.

829 McNichol, J., Stryhanyuk, H., Sylva, S.P., Thomas, F., Musat, N., Seewald, J.S., and Sievert,
830 S.M. (2018) Primary productivity below the seafloor at deep-sea hot springs. *Proceedings
831 of the National Academy of Sciences* **115**: 6756–6761.

832 Minge, M.A., Silberman, J.D., Orr, R.J.S., Cavalier-Smith, T., Shalchian-Tabrizi, K., Burki, F.,
833 et al. (2009) Evolutionary position of breviate amoebae and the primary eukaryote
834 divergence. *Proceedings of the Royal Society B: Biological Sciences* **276**: 597–604.

835 Moreira, D. (2003) Are hydrothermal vents oases for parasitic protists? *Trends Parasitol* **19**:
836 556–558.

837 Murdock, S.A. and Juniper, S.K. (2019) Hydrothermal vent protistan distribution along the
838 Mariana arc suggests vent endemics may be rare and novel. *Environ Microbiol* **21**: 3796–
839 3815.

840 Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J., and Suggs,
841 M. (2007) The vegan package. *Community ecology package* **10**: 719.

842 Ollison, G.A., Hu, S.K., Mesrop, L.Y., DeLong, E.F., and Caron, D.A. (2021) Come rain or
843 shine: Depth not season shapes the active protistan community at station ALOHA in the
844 North Pacific Subtropical Gyre. *Deep Sea Res Part 1 Oceanogr Res Pap* **170**: 103494.

845 O’Neill, M.E. and Mathews, K. (2000) A Weighted Least Squares Approach to Levene’s Test of
846 Homogeneity of Variance. *Australian New Zealand Journal of Statistics* **42**: 81–100.

847 Opatkiewicz, A.D., Butterfield, D.A., and Baross, J.A. (2009) Individual hydrothermal vents at
848 Axial Seamount harbor distinct subseafloor microbial communities. *FEMS Microbiol
849 Ecol* **70**: 413–424.

850 Orcutt, B.N., Bradley, J.A., Brazelton, W.J., Estes, E.R., Goordial, J.M., Huber, J.A., et al.
851 (2020) Impacts of deep-sea mining on microbial ecosystem services. *Limnol Oceanogr*
852 **65**: 1489–1510.

853 Park, J.S., Kolisko, M., Heiss, A.A., and Simpson, A.G.B. (2009) Light microscopic
854 observations, ultrastructure, and molecular phylogeny of Hicanonectes teleskopos n. g., n.
855 sp., a deep-branching relative of diplomonads. *J Eukaryot Microbiol* **56**: 373–384.

856 Pasulka, A., Hu, S.K., Countway, P.D., Coyne, K.J., Cary, S.C., Heidelberg, K.B., and Caron,
857 D.A. (2019) SSU rRNA Gene Sequencing Survey of Benthic Microbial Eukaryotes from
858 Guaymas Basin Hydrothermal Vent. *J Eukaryot Microbiol* **66**: 12711.

859 Pernice, M.C., Forn, I., Gomes, A., Lara, E., Alonso-Sáez, L., Arrieta, J.M., et al. (2015) Global
860 abundance of planktonic heterotrophic protists in the deep ocean. *ISME J* **9**: 782–792.

861 Pernice, M.C., Giner, C.R., Logares, R., Perera-Bel, J., Acinas, S.G., Duarte, C.M., et al. (2016)
862 Large variability of bathypelagic microbial eukaryotic communities across the world's
863 oceans. *ISME J* **10**: 945–958.

864 Pernthaler, J. (2005) Predation on prokaryotes in the water column and its ecological
865 implications. *Nat Rev Microbiol* **3**: 537–546.

866 Ramond, P., Sourisseau, M., Simon, N., Romac, S., Schmitt, S., Rigaut-Jalabert, F., et al. (2019)
867 Coupling between taxonomic and functional diversity in protistan coastal communities:
868 Functional diversity of marine protists. *Environ Microbiol* **21**: 730–749.

869 Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016) VSEARCH: a versatile open
870 source tool for metagenomics. *PeerJ* **4**: e2584.

871 Rotterová, J., Edgcomb, V.P., Čepička, I., and Beinart, R. (2022) Anaerobic ciliates as a model
872 group for studying symbioses in oxygen-depleted environments. *J Eukaryot Microbiol*
873 **e12912**.

874 Ryan, W.B.F., Carbotte, S.M., Coplan, J., O'Hara, S., Melkonian, A., Arko, R., et al. (2009)
875 Global Multi-Resolution Topography (GMRT) synthesis data set. *G-cubed* **10** (3),
876 Q03014.

877 Santini, B.A., Hodgson, J.G., Thompson, K., Wilson, P.J., Band, S.R., Jones, G., et al. (2017)
878 The triangular seed mass–leaf area relationship holds for annual plants and is determined
879 by habitat productivity. *Funct Ecol* **31**: 1770–1779.

880 Sauvadet, A.-L., Gobet, A., and Guillou, L. (2010) Comparative analysis between protist
881 communities from the deep-sea pelagic ecosystem and specific deep hydrothermal
882 habitats: Protist associated with hydrothermal environments. *Environ Microbiol* **12**:
883 2946–2964.

884 Schoenle, A., Hohlfeld, M., Rosse, M., Filz, P., Wylezich, C., Nitsche, F., and Arndt, H. (2020)
885 Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and
886 surface waters, with reorganization of the family Cafeteriaceae. *Eur J Protistol* **73**:
887 125665.

888 Schoenle, A., Nitsche, F., Werner, J., and Arndt, H. (2017) Deep-sea ciliates: Recorded diversity
889 and experimental studies on pressure tolerance. *Deep Sea Res Part I* **128**: 55–66.

890 Seewald, J.S., Doherty, K.W., Hammar, T.R., and Liberatore, S.P. (2002) A new gas-tight
891 isobaric sampler for hydrothermal fluids. *Deep Sea Res Part I* **49**: 189–196.

892 Sievert, S.M. and Vetriani, C. (2012) Chemoautotrophy at deep-sea vents: past, present, and
893 future. *Oceanography* **25**: 218–233.

894 Small, E.B. and Gross, M.E. (1985) Preliminary observations of protistan organisms, especially
895 ciliates, from the 21 N hydrothermal vent site. *Bull Biol Soc Wash* **40**: 401–410.

896 Sogin, M.L., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., et al. (2006)
897 Microbial diversity in the deep sea and the underexplored “rare biosphere.”
898 *Proceedings of the National Academy of Sciences* **103**: 6.

899 Spietz, R.L., Butterfield, D.A., Buck, N.J., Larson, B.I., Chadwick, W.W., Walker, S.L., et al.
900 (2018) Deep-Sea Volcanic Eruptions Create Unique Chemical and Biological Linkages
901 Between the Subsurface Lithosphere and the Oceanic Hydrosphere. *Oceanography* **31**:
902 128–135.

903 Stewart, L.C., Algar, C.K., Fortunato, C.S., Larson, B.I., Vallino, J.J., Huber, J.A., et al. (2019)
904 Fluid geochemistry, local hydrology, and metabolic activity define methanogen
905 community size and composition in deep-sea hydrothermal vents. *ISME J* **13**: 1711–
906 1721.

907 Stoeck, T., Zuendorf, A., Breiner, H.-W., and Behnke, A. (2007) A Molecular Approach to
908 Identify Active Microbes in Environmental Eukaryote Clone Libraries. *Microb Ecol* **53**:
909 328–339.

910 Team, R.C. (2017) R: A language and environment for statistical com-puting.

911 Thomas, E., Anderson, R.E., Li, V., Rogan, L.J., and Huber, J.A. (2021) Diverse Viruses in
912 Deep-Sea Hydrothermal Vent Fluids Have Restricted Dispersal across Ocean Basins.
913 *mSystems* **6**: e0006821.

914 Topçuoğlu, B.D., Stewart, L.C., Morrison, H.G., Butterfield, D.A., Huber, J.A., and Holden, J.F.
915 (2016) Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of
916 Thermophilic Methanogens at Deep-sea Hydrothermal Vents. *Front Microbiol* **7**: 1240.

917 Van Audenhaege, L., Fariñas-Bermejo, A., Schultz, T., and Lee Van Dover, C. (2019) An
918 environmental baseline for food webs at deep-sea hydrothermal vents in Manus Basin
919 (Papua New Guinea). *Deep Sea Res Part I* **148**: 88–99.

920 Vaulot, D. (2021) pr2database/pr2database: PR2 version 4.14.0.

921 Verity, P.G. (1991) Feeding in planktonic protozoans: evidence for non-random acquisition of
922 prey. *J Protozool* **38**: 69–76.

923 Von Damm, K.L., Parker, C.M., Lilley, M.D., Clague, D.A., Zierenberg, R.A., Olson, E.J., and
924 McClain, J.S. (2006) Chemistry of vent fluids and its implications for subsurface
925 conditions at Sea Cliff hydrothermal field, Gorda Ridge: CHEMISTRY OF VENT
926 FLUIDS. *Geochem Geophys Geosyst* **7**.

927 Wickham, H. (2017) The tidyverse. *R package ver 1*: 1.

928 Willis, A.D. and Martin, B.D. (2022) Estimating diversity in networked ecological communities.
929 *Biostatistics* **23**: 207–222.

930 Živaljić, S., Schoenle, A., Scherwass, A., Hohlfeld, M., Nitsche, F., and Arndt, H. (2020)
931 Influence of hydrostatic pressure on the behaviour of three ciliate species isolated from
932 the deep-sea floor. *Mar Biol* **167**: 63.

933 [dataset] Hu, Sarah, & Huber, Julie. (2022). Diversity & distribution of microeukaryotes at deep-
934 sea hydrothermal vents. <https://doi.org/10.5281/zenodo.5959694>

935 [dataset] Hu, Sarah (2022). Diversity & distribution of microeukaryotes at deep-sea
936 hydrothermal vents. <https://github.com/shu251/microeuk-amplicon-survey>

937

938

939

940

941

942

943

944

945

946

947 **Data Accessibility Statement**

948 Raw sequence data are available through SRA BioProjects: PRJNA637089 for Gorda Ridge,

949 PRJNA641911 for Axial Seamount, and PRJNA802868 for Mid-Cayman Rise. Data files can be

950 downloaded from Zenodo: 10.5281/zenodo.5959694. GitHub repo includes all relevant code and

951 input data, <https://github.com/shu251/microeuk-amplicon-survey>. All code to reproduce analyses

952 can be found at a hosted website <https://shu251.github.io/microeuk-amplicon-survey/>.

953

954

955 **Benefit-Sharing Statement**

956 Benefits from this research culminate from the sharing of our data, results, and code necessary to

957 reproduce results.

958

959

960

961

962

963

964

965

966

967

968

969

970

971 **FIGURE & TABLE LEGENDS**

972

973 **Figure 1.** Map of all vent fields, where symbols represent each vent site at Axial Seamount (a),
974 (b) the two regions sampled at the Gorda Ridge, and (c) the Piccard and Von Damm vent fields
975 along the Mid-Cayman Rise. Figure made with GeoMapApp (www.geomapapp.org) / CC BY /
976 CC BY (Ryan *et al.*, 2009).

977

978 **Figure 2. (a)** Proportion of sequences belonging to main protistan supergroup and phyla, by
979 sample type (left to right: Background, Plume, and Vent) and hydrothermal vent field (top to
980 bottom: Axial Seamount, Gorda Ridge, Piccard, and Von Damm. ASVs with fewer than 200
981 sequences were removed. **(b)** Total number of shared (or unique) ASVs across sample type and
982 vent field. Dot matrix below the bar plot indicates the samples included in the bar plot
983 representation, where the bar plots above a single dot indicate that those ASVs were restricted to
984 that vent field and sample type. Colors represent main protistan taxonomic groups. Dashed line
985 indicates 200 ASVs were shared (y-axis); Figure S3 includes a comparison of samples with ≤ 200
986 ASVs.

987

988 **Figure 3. (a)** Community diversity clustered by Jaccard Dissimilarity, where values closer to 0
989 indicate samples are identical. **(b)** Proportion of ASVs shown by distribution among
990 hydrothermal vent sites, Axial, Gorda Ridge, Piccard, and Von Damm (where Mid-Cayman Rise
991 is abbreviated MCR and includes Piccard and/or Von Damm). **(c)** Proportion of ASVs
992 designated as vent only (resident or putative endemic), cosmopolitan (found among background,
993 plume, and diffuse vent fluid), plume only, or background only.

994

995 **Figure 4. (a)** Distance-decay plot, where data points represent pairwise comparisons of all
996 samples (Distance-decay with resident and cosmopolitan populations can be found in Figure S4),
997 and distance between the samples is represented on the x-axis with the community dissimilarity
998 (estimated by Jaccard) is represented along the y-axis. Comparison of Jaccard distance variance
999 to geographic distance is also reported in Figure S4. Note that geographic distances represent the
1000 calculated difference between latitude and longitude (Table 1), rather than oceanographic
1001 distances. **(b)** Violin plot of estimated Shannon values (derived from DivNet), by sample type (x-
1002 axis), background, plume, and vent site.

1003

1004 **Figure 5. (a)** Relative proportion of ASVs classified as resident (y-axis) versus cosmopolitan (x-
1005 axis). Bubble size is equivalent to the total number of sequences and color represents each
1006 supergroup. **(b)** Vent-only (putative endemic) taxa represented by CLR transformed data (red to
1007 blue) by vent sample (x-axis) and taxonomic class (y-axis). Sum of CLR transformed data will
1008 equal 0, where the log of the ratio between each data point at the geometric mean of the dataset is
1009 calculated.

1010

1011

1012 **Figure S1. (a)** Total number of ASVs and **(b)** sequences in each sample of the sequence survey.
1013 Samples with fewer than 20,000 sequences were removed from the dataset.

1014

1015 **Figure S2.** Relative sequence abundance for all major protistan taxonomic groups. Colors denote

1016 taxonomic group assignment, bar plots are organized by vent field, year sampled, and sample
1017 type.

1018
1019 **Figure S3.** Supplement to Figure 2b showing a higher resolution view of the total number of
1020 shared (or unique) ASVs across sample types that totaled to ≤ 200 ASVs. Dot matrix below the
1021 bar plot indicates the samples included in the bar plot representation, where the bar plots above a
1022 single dot indicate that ASVs were restricted to that single vent field and sample type. Colors
1023 represent main protistan taxonomic groups.

1024
1025 **Figure S4.** Total number of shared (or unique) ASVs at the genus level (a) or at the ASV level
1026 (b-d) for each vent field. Dot matrix below the bar plot indicates the samples included in the bar
1027 plot representation, where the bar plots above a single dot indicate that genera or ASVs were
1028 restricted to that single vent field and sample type. Colors represent main protistan taxonomic
1029 groups. Panels represent (a) ASVs grouped to the Genus level to show homology across vent
1030 fields, (b) ASVs at all the Axial Seamount samples, (c) ASVs at the Gorda Ridge, and (d) ASVs
1031 at the Mid-Cayman Rise.

1032
1033 **Figure S5.** (a) Variance in Jaccard dissimilarity by vent field and sample types (y-axis) relative
1034 to geographic distance (x-axis). Distance-decay plots with Jaccard Dissimilarity (y-axis) and
1035 distance (km; x-axis) for the (b) resident population and (c) cosmopolitan populations. (d-f)
1036 Analysis was repeated following further clustering of the ASVs into OTUs at 95%, 97%, and
1037 99% sequence similarity. Figure 4 in the main text includes all samples and ASVs in the
1038 sequence survey.

1039
1040 **Figure S6.** (a) ASV richness by individual taxonomic group. Each panel represents a taxonomic
1041 group, and is denoted by color. From left to right, each panel includes a box plot representation
1042 of the ASV richness by sample type: background, plume, and vent. (b) Estimated Shannon
1043 values with variance (y-axis with error bars) derived from DivNet (Willis and Martin, 2022), for
1044 each sample (x-axis).

1045
1046 **Figure S7.** Distribution of cosmopolitan versus resident (a) sequences and (b) total ASVs by
1047 taxonomic group (color) and vent field (x-axis).

1048
1049 **Figure S8.** Results from distance-based redundancy analysis (DBRDA) to determine if
1050 environmental factors (top, x-axis; *i.e.*, fluid chemistry, temperature, and microbial cell counts)
1051 play a significant role in shaping community dissimilarity. Analysis was conducted on subsets of
1052 the samples collected (panels from left to right) and of the ASVs recovered (rows, y-axis). By
1053 subsampling the data ahead of DBRDA, we were able to focus on different components of the
1054 deep-sea microbial eukaryotic community (*e.g.*, the resident population, NE Pacific Ocean vent
1055 fields only, or only Mid-Cayman Rise). All geochemical values used are also reported in Table 1.
1056 Color designates the p-value result, where darker colors are more significant.

1057
1058 **Table 1.** Metadata for all samples used in the statistical analysis of 18S rRNA gene amplicon
1059 survey, including year, maximum temperature ($^{\circ}\text{C}$) at time of collection, concentration of
1060 microorganisms (cells ml^{-1}), estimated percent seawater in diffuse fluids (%), pH, magnesium
1061 (Mg mmol/L or mM), dissolved hydrogen ($\text{H}_2 \mu\text{mol/L or }\mu\text{M}$), total dissolved hydrogen sulfide

1062 (H₂S mmol/L or mM), and methane (CH₄ μ mol/L or μ M). Values were taken from the most
1063 representative vent fluid measurements for each sample. Bags of vent fluid collected at depth and
1064 brought shipboard for filtering were sampled for geochemistry. For filters collected *in situ*,
1065 measurements from the most representative geochemistry sample were used. See materials and
1066 methods for more details.

1067

1068

1069 **Table 2.** Summary of most frequently co-occurring ASVs. Table S4 lists all significantly co-
1070 occurring ASVs. Significantly co-occurring ASV interactions were dominated by the main
1071 protistan lineages listed in the first column. The other columns list the most common class,
1072 genus, or species level observed, the commonly co-occurring phyla, and information on inferred
1073 interaction type. Phagotrophy (or heterotrophy) is meant to describe protistan cells capable of
1074 engulfment (either passively hunting or actively seeking out prey) of microbial prey cells, while
1075 'myzocytosis' is defined as "cellular vampirism" (Ramond *et al.*, 2019; Leander, 2020). Sources
1076 and examples of functional traits are listed as references (Moreira, 2003; Lima-Mendez *et al.*,
1077 2015; Canals *et al.*, 2020; Schoenle *et al.*, 2020; Biard, 2022; Hess and Suthaus, 2022)

1078

1079 **Table S1.** Post quality control total number of sequences and ASVs for each sample included in
1080 the 18S rRNA gene sequence survey.

1081

1082 **Table S2.** Total number of ASVs and sequences, and sequence percentages by vent field, sample
1083 type, and all data, by major protistan taxonomic groups classified.

1084

1085 **Table S3.** Total number of ASVs or OTUs and percentage of ASVs or OTUs with respect to
1086 distribution (columns) and sequence dataset (rows). Results show consistent proportions of OTU
1087 distribution when ASVs are clustered at 99%, 97%, and 95% sequence similarity.

1088

1089 **Table S4.** List of significantly co-occurring ASVs derived from the SPIEC-EASI network
1090 analysis (Kurtz *et al.*, 2015). ASV-ASV co-occurrences are differentiated by "sideA" and
1091 "sideB", where this table first lists the sideA and sideB ASV feature IDs that co-occur.

V

	Year	Temperature (°C)	Microbial concentration (cells/mL)
Axial - Vent			
Dependable	2013	50	1.70×10^5
Marker113	2013	24.8	4.60×10^5
Marker113	2014	24.3	6.80×10^5
Marker113	2015	25.4	1.50×10^6
Skadi	2013	35.6	5.65×10^5
Escargot	2014	6.6	nd
El Guapo	2013	25.7	1.68×10^5
Boca	2013	6.8	8.50×10^5
Anemone	2013	28.2	4.10×10^5
Marker33	2013	27.3	4.20×10^5
Marker33	2014	18.5	3.90×10^5
N3Area	2013	18.9	2.57×10^5
Axial - Plume			
Anemone Plume	2015	nd	nd
Axial - Background			
Deep seawater	2015	2	2.50×10^4
GordaRidge - Vent			
Mt Edwards	2019	40	5.14×10^4
Venti Latte	2019	11	1.11×10^5
Candelabra	2019	79	5.51×10^4
Sir Ventsalot	2019	72	5.30×10^4
GordaRidge - Plume			
Mt Edwards Plume	2019	1.8	nd
Candelabra Plume	2019	1.7	7.69×10^4
GordaRidge - Background			
Deep seawater	2019	1.8	3.91×10^4
Shallow seawater	2019	8.6	nd
Near vent BW	2019	1.7	5.20×10^4
VonDamm - Vent			
X-18	2020	48	1.11×10^5
Shrimp Hole	2020	21	nd

Mustard Stand	2020	108	5.67×10^4
Ravelin #2	2020	94	<i>nd</i>
Old Man Tree	2020	121.6	<i>nd</i>
Ravelin #2	2020	98.2	<i>nd</i>
Arrow Loop	2020	137	1.04×10^4
White Castle	2020	108	<i>nd</i>
Bartizan	2020	129	1.62×10^4
VonDamm - Plume			
Plume	2020	4.2	1.65×10^4
VonDamm - Background			
Deep seawater	2020	4.2	3.47×10^4
Piccard - Vent			
Shrimpcocalypse	2020	85	2.39×10^5
Lots O Shrimp	2020	19	5.39×10^4
Lots O Shrimp	2020	36	5.39×10^4
Piccard - Plume			
Plume	2020	4.5	5.14×10^4
Piccard - Background			
Deep seawater	2020	4.5	1.19×10^4

nd indicates no data available

bd indicates below detection

Only

ent fluid parameters

Percent Seawater	CH4 μmol/L (μM)	pH	Mg mmol/L (mM)	H2 μmol/L (μM)	H2S mmol/L (mM)
90%	21	6.2	48.4	0.3	0.016
96%	17	6.2	51.5	1.4	0.75
96%	39	5.8	50.0	1.0	0.57
96%	23	6.6	51.4	0.3	0.59
90%	4.5	6.2	48.7	1.0	0.087
97%	2.1	5.8	52.6	0.047	0.035
92%	2.9	5.4	49.8	0.3	0.22
98%	1.6	6.9	53.0	2.8	0.0077
89%	15	5.5	47.6	14	1.1
87%	19	5.5	47.0	1.5	0.56
91%	6.6	5.6	49.2	1.5	0.27
98%	66	5.0	53.0	0.053	0.51
100%	nd	nd	nd	nd	nd
100%	0.002	7.8	53.6	0.002	0.0
83%	10	6.0	43.6	130	1.0
97%	0.9	6.4	52.1	bd	nd
88%	24	5.5	36.5	22	nd
98%	nd	nd	52.0	nd	nd
100%	nd	nd	nd	nd	nd
100%	nd	nd	nd	nd	nd
100%	nd	7.8	53.0	nd	nd
100%	nd	nd	53.0	nd	nd
100%	nd	7.8	53.0	nd	nd
52%	1,300	7.0	28.0	nd	2.1
96%	220	7.7	51.8	5.5	nd

36%	1,800	5.6	19.4	9,800	1.8
33%	1,900	5.8	18.0	10,000	1.4
26%	2,000	5.7	13.7	12,000	1.8
33%	1,900	5.8	18.0	10,000	1.4
34%	1,900	5.7	18.1	12,000	1.7
17%	2,300	5.5	8.9	14,000	2.0
42%	1,600	5.8	22.7	9,400	1.6
100%	<i>nd</i>	<i>nd</i>	<i>nd</i>	<i>nd</i>	<i>nd</i>
100%	<i>nd</i>	<i>nd</i>	<i>nd</i>	<i>nd</i>	<i>nd</i>
82%	28	5.1	43.9	0.0	<i>nd</i>
100%	12	6.3	53.5	1.3	<i>nd</i>
95%	11	5.9	51.0	23,000	<i>nd</i>
<i>nd</i>	<i>nd</i>	<i>nd</i>	<i>nd</i>	<i>nd</i>	<i>nd</i>
100%	<i>nd</i>	<i>nd</i>	53.7	<i>nd</i>	<i>nd</i>

Only

Depth (m)	Location	
	Latitude	Longitude
1,913	45.8799	-129.8029
1,520	45.9227	-129.9882
1,518	45.9227	-129.9882
1,520	45.9227	-129.9882
1,562	45.9234	-129.9829
1,517	45.9264	-129.9791
1,502	45.9266	-129.9795
1,517	45.9277	-129.9825
1,542	45.9332	-130.0137
1,516	45.9332	-129.9822
1,514	45.9332	-129.9822
1,523	45.9437	-129.9852
1,500	45.9336	-130.0137
1,520	46.2739	-129.7955
2,707	42.7546	-126.709
2,708	42.7548	-126.7089
2,730	42.7551	-126.7096
2,732	42.7612	-126.7055
2,707	42.7547	-126.7092
2,725	42.7551	-126.7094
2,010	42.7495	-126.7103
150	42.7546	-126.743
2,745	42.755	-126.7099
2,377	18.3748	-81.7974
2,376	18.3749	-81.7974

2,374	18.3751	-81.7975
2,390	18.3751	-81.7972
2,376	18.3751	-81.7977
2,389	18.3751	-81.7972
2,309	18.3767	-81.798
2,307	18.377	-81.7981
2,307	18.7981	-81.3779
1,979	18.3776	-81.7993
2,400	18.3742	-81.7815
4,945	18.5467	-81.7178
4,967	18.5468	-81.7184
4,967	18.5468	-81.7184
4,944	18.5468	-81.7182
4,776	18.548	-81.7182

Group	Common taxa found significantly co-occurring in this study	Frequently co-occur with phyla
Cercozoa	<i>Filosa</i> - <i>Thecofilosea</i> ; <i>Ventricleftida</i> , <i>Endomyxa</i> ; <i>Vampyrellida</i> , <i>Endomyxa</i> ; <i>Endo4-lineage</i>	Ciliates, dinoflagellates, other cercozoa
Ciliates	<i>Plagiopylea</i> , <i>Nassophorea</i> ; <i>Discotrichidae</i> , <i>Phyllopharyngea</i> ; <i>Cyrtophoria</i> , <i>Scuticociliatia</i> ; <i>Philasteria</i>	Other ciliates, haptophytes, dinoflagellates, and cercozoa
Dinoflagellates	<i>Dino-Group-III, unclassified</i> <i>Dinophyceae</i> , <i>Dino-group-I (clade 5)</i>	Haptophytes, other dinoflagellates, ciliates
Haptophytes	<i>Chrysochromulina spp.</i> , <i>Prymnesiophyceae</i>	Other haptophytes, <i>Dinophyceae</i>
Opalozoa, Pseudofungi	<i>Bicoecea</i> ; <i>Anoeca</i> (<i>Anoeca_atlantica</i>), <i>MAST-3I</i> , <i>MAST1B</i>	Other stramenopiles, <i>Dinophyceae</i> , ciliates
Radiolaria	<i>Astrosphaeridae</i> ; <i>Heliosphaera</i> , <i>RAD-C, -B</i>	Dinoflagellates, haptophytes

Inferred nutritional strategy	Specialized interaction	Morphology & motility characteristics
Parasitic to other eukaryotes, or an active or passive phagotroph	Cercozoa include generalist predators, that may exclusively consume eukaryotes, predatory amoebae, or can be parasitic to fungi.	Amoeboid or elongated cell morphology, typically capable of gliding or swimming
Phagotrophy or myzocytosis. Predation by passive or active feeding	Preferred prey will be other protists, ciliates, and bacteria; includes parasitic lifestyle, and anaerobic species	Typically round or elongated cell structure and moves as swimmer or in gliding motion
Phagotrophy or myzocytosis; Passive or active ambush predator	Syndiniales are parasitic to metazoan larval stages, mollusca, other protists (especially dinoflagellates). Other unclassified Dinophyceae may be predators to other protists and bacteria	Naked, round cell shape, typically swimming motility, while parasitic species live attached to hosts
Phagotrophy, active ambush feeder	Known as a globally-distributed mixotroph; at vent environment, assumed to be primarily heterotrophic	Round, flagellated, swimming cells
Phagotrophy; active ambush feeder or cruise feeder	MAST typically bacterivores, while Bicoecea may be less specialized	Naked, round cell that moves in gliding or swimming manner
Phagotrophy; active or passive feeding	Often host to dinoflagelalte or haptophyte symbionts; pseuopodial networks to capture prey	Siliceous or strontium sulfate cell structure, round or amoeboid; planktonic

References

Hess & Suthaus 2022

Lynn, 2008; Canals et al.
2020

Moreira & Lopez-Garcia
2003; Lima-Mendez et al.
2015

Hansen and Hjorth 2002

Schoenle et al. 2020

Biard et al. 2022

For Review Only

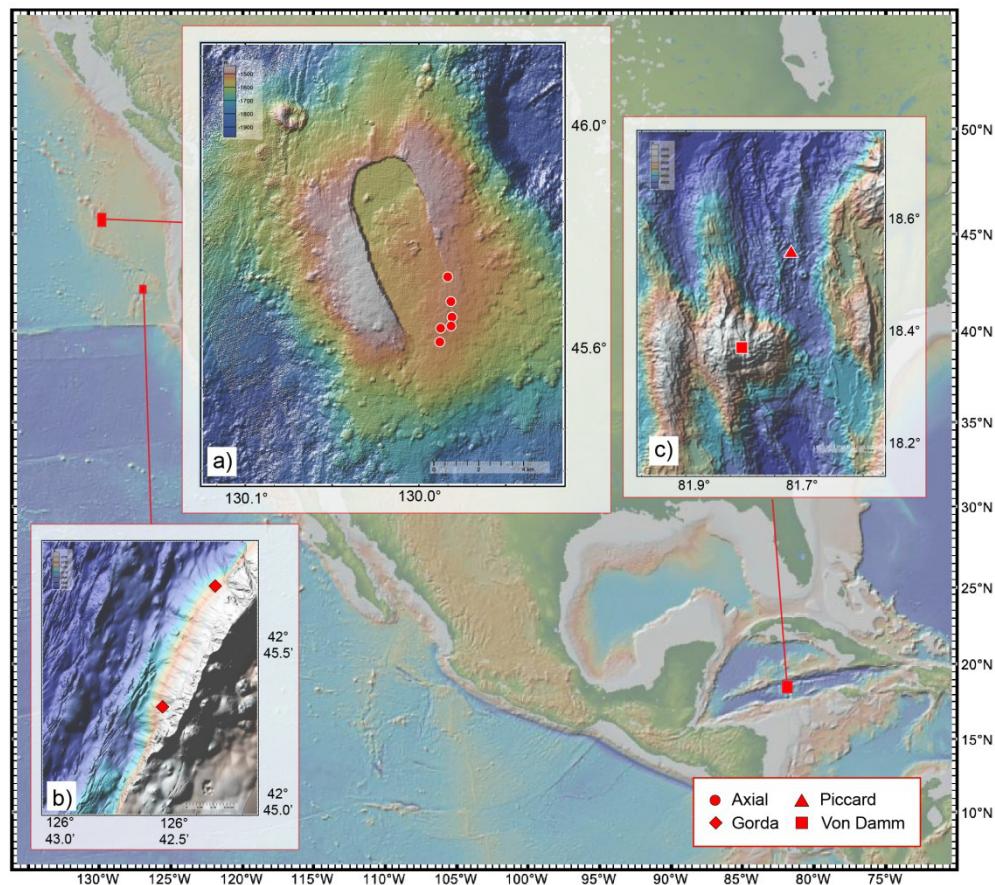


Figure 1. Map of all vent fields, where symbols represent each vent site at Axial Seamount (a), (b) the two regions sampled at the Gorda Ridge, and (c) the Piccard and Von Damm vent fields along the Mid-Cayman Rise. Figure made with GeoMapApp (www.geomapapp.org) / CC BY / CC BY (Ryan et al., 2009).

780x733mm (72 x 72 DPI)

Figure 2.

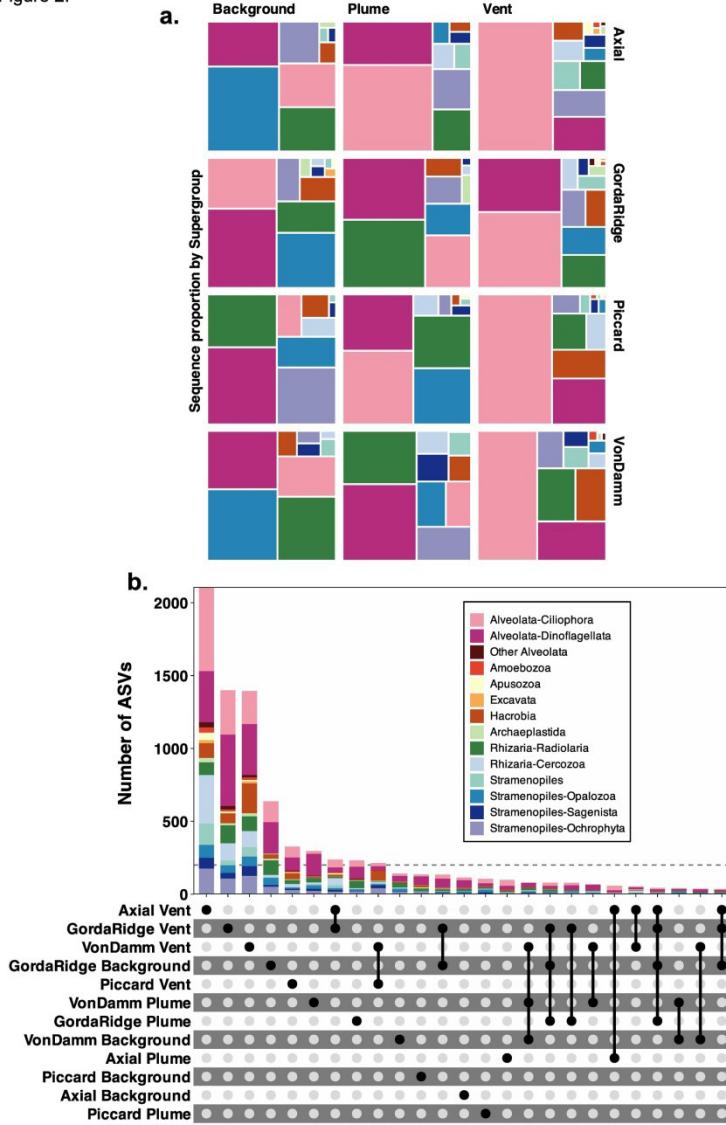


Figure 2. (a) Proportion of sequences belonging to main protistan supergroup and phyla, by sample type (left to right: Background, Plume, and Vent) and hydrothermal vent field (top to bottom: Axial Seamount, Gorda Ridge, Piccard, and Von Damm). ASVs with fewer than 200 sequences were removed. (b) Total number of shared (or unique) ASVs across sample type and vent field. Dot matrix below the bar plot indicates the samples included in the bar plot representation, where the bar plots above a single dot indicate that those ASVs were restricted to that vent field and sample type. Colors represent main protistan taxonomic groups. Dashed line indicates 200 ASVs were shared (y-axis); Figure S3 includes a comparison of samples with <200 ASVs.

215x279mm (300 x 300 DPI)

Figure 3.

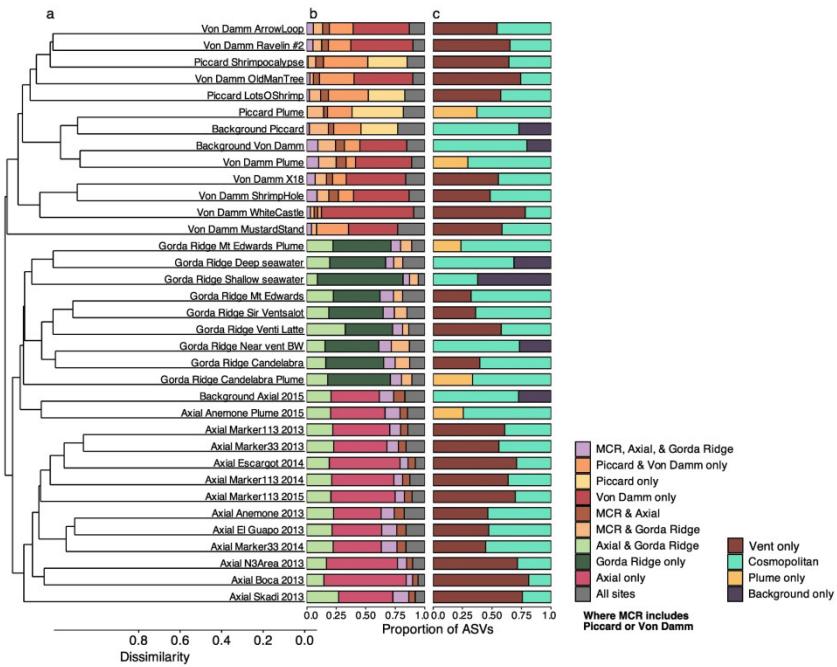


Figure 3. (a) Community diversity clustered by Jaccard Dissimilarity, where values closer to 0 indicate samples are identical. (b) Proportion of ASVs shown by distribution among hydrothermal vent sites, Axial, Gorda Ridge, Piccard, and Von Damm (where Mid-Cayman Rise is abbreviated MCR and includes Piccard and/or Von Damm). (c) Proportion of ASVs designated as vent only (resident or putative endemic), cosmopolitan (found among background, plume, and diffuse vent fluid), plume only, or background only.

215x279mm (300 x 300 DPI)

Figure 4.

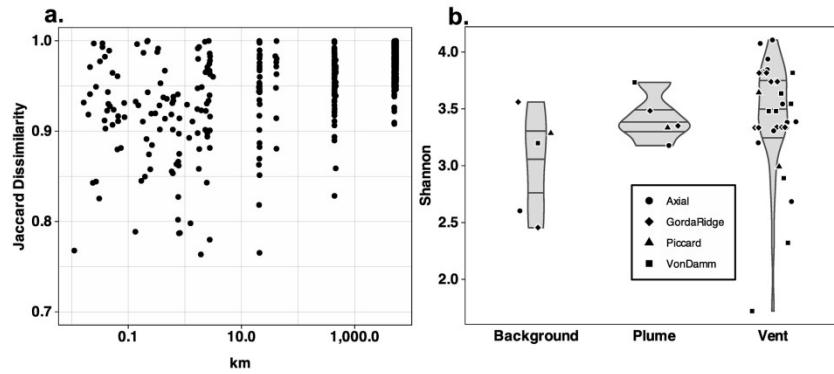


Figure 4. (a) Distance-decay plot, where data points represent pairwise comparisons of all samples (Distance-decay with resident and cosmopolitan populations can be found in Figure S4), and distance between the samples is represented on the x-axis with the community dissimilarity (estimated by Jaccard) is represented along the y-axis. Comparison of Jaccard distance variance to geographic distance is also reported in Figure S4. Note that geographic distances represent the calculated difference between latitude and longitude (Table 1), rather than oceanographic distances. (b) Violin plot of estimated Shannon values (derived from DivNet), by sample type (x-axis), background, plume, and vent site.

215x279mm (300 x 300 DPI)

Figure 5.

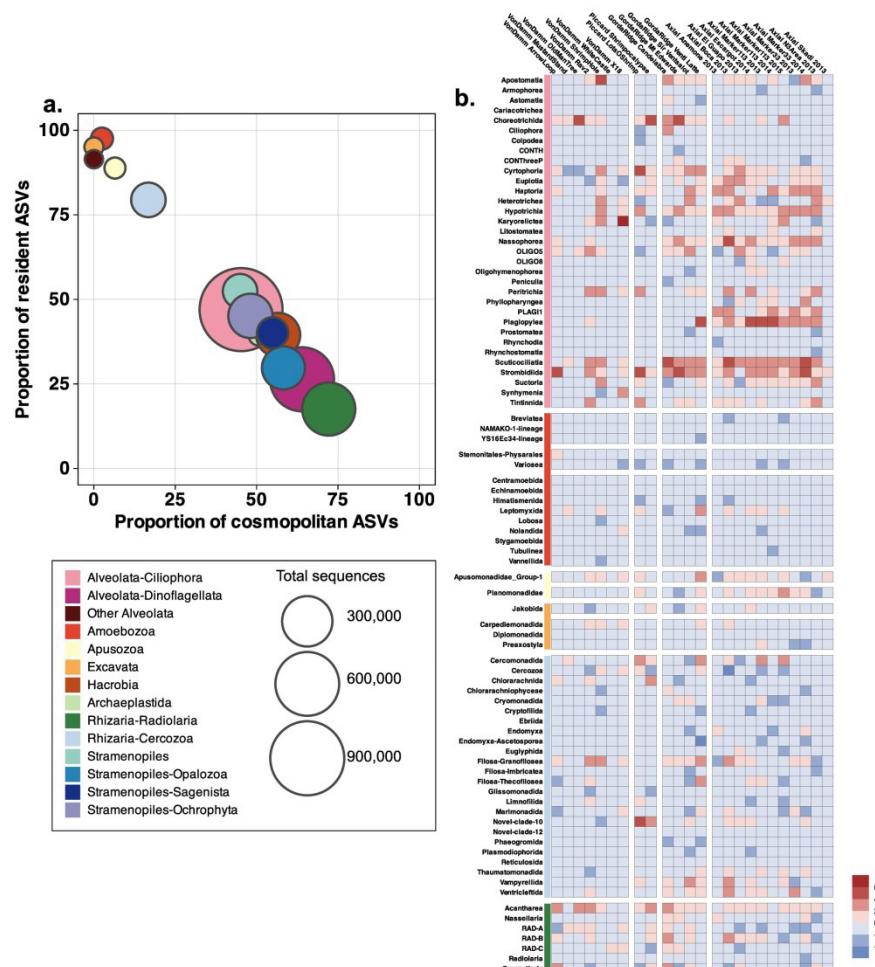


Figure 5. (a) Relative proportion of ASVs classified as resident (y-axis) versus cosmopolitan (x-axis). Bubble size is equivalent to the total number of sequences and color represents each supergroup. (b) Vent-only (putative endemic) taxa represented by CLR transformed data (red to blue) by vent sample (x-axis) and taxonomic class (y-axis). Sum of CLR transformed data will equal 0, where the log of the ratio between each data point at the geometric mean of the dataset is calculated.

215x279mm (300 x 300 DPI)