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Biological puncture systems use a diversity of morphological tools (stingers,
teeth, spines etc.) to penetrate target tissues for a variety of functions (prey
capture, defence, reproduction). These systems are united by a set of under-
lying physical rules which dictate their mechanics. While previous studies
have illustrated form–function relationships in individual systems, these
underlying rules have not been formalized. We present a mathematical
model for biological puncture events based on energy balance that allows
for the derivation of analytical scaling relations between energy expenditure
and shape, size and material response. The model identifies three necessary
energy contributions during puncture: fracture creation, elastic deformation
of the material and overcoming friction during penetration. The theoretical
predictions are verified using finite-element analyses and experimental
tests. Comparison between different scaling relationships leads to a ratio
of released fracture energy and deformation energy contributions acting as
a measure of puncture efficiency for a system that incorporates both tool
shape and material response. The model represents a framework for explor-
ing the diversity of biological puncture systems in a rigorous fashion and
allows future work to examine how fundamental physical laws influence
the evolution of these systems.
1. Introduction
Biological organisms use a variety of morphological elements, including teeth
[1–5], claws [3,6], spines [7–9] and stingers [10,11], to puncture a wide range
of target materials or tissues [12]. Puncture is defined here as the use of a
morphological tool to initiate fracture in a material, followed by the tool pene-
trating the material and propagating the fracture [12]. This biological puncture
is used for several functions including prey capture [2,8,13], defence [7,8] and
reproduction [14]. While extremely diverse in materials, scale and functions
[3,12,15], biological puncture systems are united by the underlying mechanics
of puncture, which should lead to certain shared fundamental morphological
and mechanical similarities [12,15]. For example, most organic puncture tools
exhibit a tapered shape that diminishes in cross-sectional size towards a fixed
tip radius. Furthermore, all puncture incorporates fracture initiation and
propagation—an energy-driven, material-dependent failure process. While
these commonalities have been identified previously, there have been few
attempts to formalize how variables such as shape or size quantitatively
influence biological puncture performance using mathematical modelling or
scaling [3]. Here, we present an idealized mathematical model for biological
puncture events based on energy expenditure that allows for both analytical
solutions of energy components and derived scaling relationships between
energetics and puncture performance. This analytical model highlights the com-
monalities across puncture systems; shedding light on the physics underlying
biological puncture and providing a promising avenue for understanding how
biomechanical principles influence evolutionary convergence.

Biological puncture is a complex interplay between various mechanical pro-
cesses. A successful puncture event depends on puncture tool morphology,
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target material properties, and the governing contact mech-
anics and dynamics. One predominant factor that connects
all of these is the energy associated with puncture. As
suggested by previous studies on puncture energetics
[5,12], the energy flow/balance between the puncturing
organism and its target may be a crucial principle for deter-
mining biological puncture performance. One could
hypothesize that evolution would favour puncturing organ-
isms that maximize energy transformation into creating
fracture while minimizing energy lost to material defor-
mation and penetration resistance from friction. Such
natural demand for higher energy efficiency should signifi-
cantly influence puncture tool shape depending on the
target material properties. A sharper tool requires less frac-
ture energy to puncture due to a higher stress/strain
energy density concentration [12,16] and produces less
material deformation because of its smaller volume to accom-
modate [12,17]. This sort of relationship between morphology
and required energy/force in puncture has been reported in
many biological systems such as viper fangs [4], cactus
spines [7], mammalian canine teeth [1,18] and medical
needle insertion [19,20]. However, these findings from the lit-
erature regarding puncture energetics lack generalization. A
knowledge gap remains between puncture tool shape and
material characterization and how their effects quantitatively
impact puncture energy response. For this reason, we aim to
establish a theoretical framework formalizing the idea of
energy balance in puncture into a mathematical model,
allowing for the energetics of specific puncture systems to
be biomechanically contextualized.

Since the early work by Stevenson & Maleck [21], there
have been a limited number of theoretical investigations
and modelling attempts on puncture mechanics in soft
solids and bio-tissues [16,20,22–26]. These studies often
focus on specific puncture cases where damage is produced
by either a flat punch or a cylindrical-like tool [16,20,22,26]
and are mostly related to medical needle injection [20,22,23]
and material characterization [16,24,25]. However, biological
puncture tools such as teeth [1], fangs [4] and stingers [15]
often resemble tapered, conical shapes, at least at their tips.
In this manuscript, we explore a general biomechanical punc-
ture scenario where a conical puncture tool dynamically
impacts and generates fracture in a hyperelastic soft material
using mathematical tools including continuum mechanics
and fracture mechanics.

In addition to creating a quantitative baseline for puncture
energetics, this model should also provide insights into the
scaling of biological puncture. Little in organismal biology
makes sense without the context of scale [27], and it has been
shown that characteristic length scales of a puncture system
can play a critical role in determining the amount of energy
necessary for puncture [3,4,12,15,17,19,20,22,23,25,28]. Further-
more, characteristic length scales identified in engineered
systems are reflected in biology, including puncture tool dimen-
sions related to sharpness [4,19,23,25], the overall size of an
organism [3,12], and contact area or volume associated with
puncture as functions of depth of puncture [15,17,20,22,28]. It
is not fully understood how mechanical energy flow between
puncture tool and target is influenced by these length scales.
The model presented here will provide a theoretical approach
to identify physical length scales underlying the mechanical
processes involved in puncture and quantify scaling relation-
ships between length scale and puncture energy.
This manuscript begins with a systematic, mathematical
description of the kinematics and fracture mechanics under-
lying biological puncture focusing on penetration after the
initial fracture for reasons discussed below. Analytical sol-
utions for three energy components associated with
puncture (stored strain energy, frictional work and work to
fracture), as well as their corresponding scaling relationships
with depth of puncture (our characteristic length scale) are
established through theoretical modelling. Numerical and
experimental verification are carried out via finite-element
(FE) simulations and dynamic puncture tests to quantitatively
verify the proposed puncture damage morphology and
scaling relationships. Finally, we discuss the potential appli-
cations of the theory in developing an energy ratio as a
new performance metric for biological puncture as well as
further implications for better understanding the effect of fric-
tion on puncture biomechanics and generalization of scaling
in biological puncture systems.
2. Theory
In this section, we introduce and model kinematics and
mechanical processes underlying puncture and identify
required energy components contributing to frictional dissi-
pation, fracture and elastic deformation. We use this model
to derive scaling relations between quantities governing the
energetics of puncture and necessary physical length scales
for failure in the context of solid mechanics and fracture
mechanics in highly deformable tissues and soft materials,
while making reasonable assumptions within the scope of
biological reality.

2.1. Kinematics of impact-induced puncture
To describe the energy balance involved in dynamic punc-
ture, we consider a scenario as illustrated in figure 1:
puncture fracture occurs when a sharp, hard projectile
having a mass, m0, and an initial velocity, v0, impacts and
penetrates a soft stationary target material having a mass,
m1. Note that this model focuses on the penetration of the
tool into the target, namely, the propagation of the fracture
post fracture initiation. While the force/energy required to
initiate fracture at the start of puncture will be of vital impor-
tance to biological puncture systems, we focus on the
penetration phase here for two reasons: (i) our primary inter-
ests in this model are the energy balance and the scaling
relationships between puncture energies and shape, size
and material response, making the self-similar penetration
phase the focus; (ii) it is challenging to predict the exact
onset of fracture without knowing additional information
about the material properties and fracture process [29]. We
are taking a cue from the Griffith equation for fracture mech-
anics [30,31] which assumes a crack already exists and
determines how scale and energy relate to expanding the
crack. Future theoretical and experimental work will hope-
fully be able to incorporate variation in tip geometry and
fracture initiation into this framework.

In nature, the relative motion of the puncturing organism
and its target often depends on their interactions and relative
masses. Therefore, to simplify the problem, we make the
following initial assumptions to describe general boundary
conditions that could be extended to realistic biological
puncture scenarios:



onset of impact(a) (b) maximum damage

d
m0, v0 m0, v1

m1, v = 0 m1, v1

puncture

Figure 1. Schematics of dynamic puncture. (a) The states (masses (m) and
speeds (v)) of the projectile and the target material at the onset of impact
(m1≫ m0). The target material is initially stationary (v = 0). (b) The projec-
tile and the target material reach the same speed (v1≈ 0) at the maximum
depth of puncture.
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(i) Both the projectile and target material are free of con-
straints from the surrounding environment.

(ii) No post-contact separation between the projectile and
target material occurs until the maximum depth of
puncture is reached.

(iii) Friction between the target material and the ground is
negligible compared with the puncture force.

The conservation of momentum requires

m0v0 ¼ ðm0 þm1Þv1, ð2:1Þ

where v1 is the final velocity of either the target material or
puncture tool when the depth of puncture reaches its maxi-
mum, d (figure 1). The loss of kinetic energy during
puncture fracture process is

DEk ¼ Ek,0 � Ek,1

¼ 1
2
m0v20 �

1
2
ðm0 þm1Þv21: ð2:2Þ

Substituting equation (2.1) yields

DEk ¼ m1

m0 þm1
� 1
2
m0v20 ; KEk,0, ð2:3Þ

where Ek,0 and Ek,1 are total kinetic energies of the system
before and after puncture damage. When m1≫m0, the prefac-
tor K =m1/(m0 +m1)→ 1, and ΔEk≈ Ek,0. In this particular
case, where the target mass is far larger than that of the punc-
ture tool, all initial kinetic energy is converted into other
forms at the maximum depth of puncture. This limit is ener-
getically equivalent and may be applied to a puncture event
where the target is completely fixed and its movement
restrained.

While in general, ΔEk < Ek,0, it should be pointed out that
other forms of constraints may exist in realistic puncture sys-
tems. For example, in the presence of an external load applied
on the target material, the conservation of momentum
(equation (2.1)) may no longer hold due to the associated
work done. In this case, the loss of kinetic energy due to
puncture, ΔEk, can be estimated through the expression
ΔEk = Ek,0− Ek,1 +Uw, where Ek,0 and Ek,1 are experimentally
measurable through speed and mass characterization, and
Uw can be determined via the work done by the applied
load to change the system’s kinetic energy. Moreover, we
note that with a predetermined ΔEk value, the local puncture
energy conversion is largely dependent on the properties of
the projectile and the target material as we elaborate in the
puncture theory in the following sections. This process is
unlikely to be affected by applied constraints for the case
we are interested in where the material substrate is extremely
large, and the boundary effect and the effect of constraint-
induced internal fields are negligible.

This lost kinetic energy, ΔEk, becomes the source of energy
for propagating puncture in the target material. Specifically, it
is converted into three energy contributions

DEk ¼ W þ DUel þWf , ð2:4Þ
where W is the total released fracture energy in forms of frac-
ture surface energy and bulk dissipative energy [32]; ΔUel is
the change of stored strain energy in the target material
due to elastic deformation; and Wf is the work done due to
interfacial friction between the projectile and the target
material. These three energy components represent three
different energy criteria required to propagate biological
puncture: creating the actual cut or opening in the target
tissue, deforming the tissue and pushing it out of the way
during insertion of the tooth/spine/stinger, and overcoming
friction between said tooth/spine/stinger and the surround-
ing tissue it is sliding past. Particularly, complex biological
substrate materials often exhibit other internal resistance to
puncture such as viscoelasticity induced bulk energy dissipa-
tion. However, as we point out above and further discuss in
§2.2.3, this energy contribution is generally considered as
part of the total released fracture energy, W. Quantification
of the bulk dissipation arising from nonlinear viscoelasticity
and other rate-dependent effects in soft polymers and bio-
logical materials is beyond the scope of this study. For the
following discussion, we select ideal, simplified model
materials with low viscoelastic and other rate-dependent
effects, where the bulk energy dissipation can be neglected.

In light of established theoretical [16,23,24,33] and exper-
imental [5,7,17,19,34] models for soft fracture incorporating
contact mechanics, we solve the energy balance equation of
puncture (equation (2.4)) and establish scaling relations for
each energy component in the following sections. The theor-
etical predictions reveal the significant roles played by both
morphology and material mechanical response in determin-
ing the governing puncture energetics.
2.2. Scaling relations for energy components
2.2.1. Description of ductile puncture failure
To quantify scaling relations between the three components
of ΔEk (equation (2.4)) and necessary physical length scales
associated with puncture, we consider an ideal puncture
configuration: a conical-shaped puncture tool, with cusp
angle 2θ, penetrates the surface of a soft, highly deformable
target material by a depth of puncture, d (as illustrated in
figure 2). The target material is subjected to a finite elastic
indentation due to the reaction force. The depth of indenta-
tion, de, is measured from the unconstrained surface to the
first point of contact (figure 2). To estimate the effects of
tool geometries and material response on puncture energy
components, we make the following key assumptions:

— The puncture tool is sharp and has a radius of curvature,
rtip, at the tip that satisfies rtip≪ d.

— The overall size/length scale of the target material
satisfies ℓ≫ d≫ rtip (i.e. a half-space).

— The puncture tool can be treated as rigid compared with
the stiffness and deformablity of the target material.



R0

d

deO

θ

r

y

rtip f

d

e

Figure 2. Schematics of puncture tool configuration and associated material
deformation at the maximum depth of puncture, d. The reaction force in y-
direction causes an elastic indentation of depth de. Subfigure: The local
material response for ductile puncture failure transitions from a linear elastic
regime to nonlinear, fracture-relevant regimes as the puncture tool tip is
approached. The characteristic length scales associated with the local failure
process at the puncture tool tip are highlighted in different colours: elasto-
fracture length, ℓe (dark blue); dissipative length, ℓd (light blue); damage
zone size, ℓf (orange).
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— For soft, biological systems, it is reasonable to describe
the constitutive response of the target material using
hyperelasticity.

— To demonstrate the full physical picture of puncture ener-
getics, as a starting point, we assume an ideal model
material having the neo-Hookean constitutive response
with low viscoelastic and rate-dependent effects. Under
such simplification, the bulk dissipative energy contri-
bution is neglected.
Similar to conventional far-field failure and other failure
mechanisms involving contact mechanics (e.g. cutting) in
soft materials [32,33], near-tip stress/strain concentration is
expected in puncture. To better understand and account for
the energy contributions directly from the local failure pro-
cess caused by a sharp puncture tool tip in our selected
material model above, here we limit our scope to discuss
the fracture-relevant physical length scales near the puncture
tool tip. The material response during puncture transitions
from a purely elastic regime to nonlinearity-dominated
regimes incorporating large-deformation, fracture-related dis-
sipation, and eventually local failure process as the puncture
tool tip is approached. The onsets of these critical transitions
can be approximated using standard characteristic length
scales for soft fracture [31–33], as illustrated in figure 2:
(i) large-deformation zone size, ℓe, at which length scale
the material transitions from linear elasticity to non-
linear elasticity;

(ii) dissipation zone size, ℓd, at which the macroscopic
mechanical field is transferred to failure process and
irreversible dissipation sets in (note there is no general
one-to-one correspondence between ℓd and the length
scale associated with the bulk dissipation because the
former defines a localized process while the latter
depends on the global mechanical field [32]);
(iii) damage zone size, ℓf, marking the onset of the local
failure process (e.g. chain breakage) in the vicinity of
the crack tip.

These characteristic regions are necessary to sustain the failure
propagation caused by the puncture tool tip. The relative mag-
nitude of their length scales are determined by the material
properties and the type of failure that occurs [32]. We argue
based on contact-driven failure mechanisms [33] that in
highly deformable, soft materials subjected to a puncture tool
whose tip radius is sufficiently small (i.e. rtip & ‘f ), puncture
fracture can be characterized by soft, ductile failure behaviours
that incorporate small-scale-yield-like conditions similar to
those found in cutting fracture [33]. The effects of nonlinearity
near the crack tip are minimized, and the characteristic length
scales largely overlap (i.e. rtip & ‘f & ‘d & ‘e). Evidence for
the above hypothesis from cutting failure and further discussion
of the fracture-relevant characteristic length scales are provided
in the electronic supplementary material. Briefly, to establish
simple scaling relationships based on equation (2.4), we
implement a puncture tool with an extremely small tip radius
below the critical length scale for fracture. The following
assumptions stem from the resultant small-scale-yield-like
condition:

— The local dissipative contribution at the puncture tool tip
to the total failure energy W is negligible.

— The large deformation zone associated with the failure
caused by the puncture tool tip is extremely small, and
its contribution to ΔUel is minor compared with that
from the material displaced to accommodate the puncture
cone body farther away from the puncture tool tip.

Now we use this framework to derive the scaling relations of
the three energy components in our model: friction, fracture
and deformation.

2.2.2. Frictional work
The friction forces that resist fracture propagation during
puncture are assumed to increase linearly with the instan-
taneous contact area from zero to a maximum value at d.
Thus, the work done to overcome this friction has a form

Wf ¼
ðd
0
AðyÞf cos udy, ð2:5Þ

where A(y) is the contact area between the cone and material
when penetration reaches a depth y (0≤ y≤ d), and f is the
average friction force per unit contact area. A(y) can be
expressed in terms of θ

AðyÞ ¼ py2
sin u
cos2 u

: ð2:6Þ

Substituting equation (2.6) into equation (2.5) gives

Wf ¼ p

3
tan ufd3: ð2:7Þ

The implicit assumption in equation (2.7) is that f is approxi-
mately a constant interfacial property, e.g. at a relatively large
depth of puncture, d. Support for this assumption is dis-
cussed in §4.2. Equation (2.7) implies that Wf scales with
the volume of the material that has been displaced by the
puncture tool, i.e.

Wf � d3: ð2:8Þ



a0a0

(a) (b)

�Uel, 0
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Moreover, it appears, based on equation (2.7), that for the
same d, a smaller 2θ value leads to less frictional contribution.
This speculation agrees with findings in biological puncture
with a slender tool [15].
dθ

rtip

y
dy

dy

(c) (d) (e)

a(y)
R(y)

pr ��0 pr ��pr (r, y)

pr

py
p

dy

Figure 3. Puncture fracture surface morphology. (a) View of the residual
superficial crack having size a0 on the impact surface of the material.
(b) The planar crack from (a) becomes inflated into a circular hole of the
same radial size under an elastic energy expenditure, ΔUel,0. (c) Cross-
sectional view of the fracture surface (either in the initial undeformed con-
figuration (a) or the opened state (b)). The dotted red rectangle illustrates the
infinitesimal slice of the cavity referenced in (d ) and (e). (d,e) Further elastic
radial expansion of the opened cavity within an infinitesimal slice, dy, can be
approximated to planar deformation of a circular hole from radius a( y) to
R( y) under an inflating pressure pr applied on the cavity wall.
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2.2.3. Released fracture energy
To estimate the energy required to create new fracture sur-
faces W, we must first describe the morphology of the
damage caused by a conical puncture tool. The conical punc-
ture problem starts with axisymmetric elastic indentation.
However, such axial symmetry is not necessarily retained
during the following initiation and propagation of the frac-
ture. Although the formation of multiple crack fronts across
the tool-material interface is possible in an idealized, homo-
geneous material or at extremely high strain rates [35], we
hypothesize that in our selected model materials (i.e. neo-
Hookean-like soft polymers), within our range of puncture
rates of interest (less than 100 m s−1), a symmetric breaking
effect caused by the imperfections and defects in the material
or on the puncture tool is more likely to occur during punc-
ture testing. This ultimately leads to a preferred fracture plane
and the formation of a planar triangular crack (in the unde-
formed state, as illustrated in figure 3a,c). A superficial
crack having a size 2a0 remaining where the tool first enters
the material (figure 3a). Evidence for such damage mor-
phology is provided in §3.1 through experimental
visualization.

In general, W can be approximated by integrating the
critical strain energy release rate Gc over the area of the pro-
posed fracture surface Afrac, where Gc can be expressed as, for
a planar crack [31,32],

Gc ¼ Gþ Gd, ð2:9Þ
where G is the mode-I material toughness/minimal fracture
energy and Gd is the bulk dissipative contribution. The esti-
mation of Gc using experimentally measurable apparent
fracture energy is largely testing condition dependent. For
simplicity, here we invoke the ideal model material assump-
tion and the small-scale-yield-like condition (§2.2.1) and
assume low bulk dissipative contribution, Gd. Therefore,
Gc � G, and

W �
ð
Afrac

GdA ¼ tan u0Gd2, ð2:10Þ

where θ0 denotes the half taper angle of the residual fracture
surface (figure 3c).

Additionally, to complete the physical picture, we make
the following morphological assumption based on exper-
imentally evident material responses: the relative size of the
planar crack satisfies

rtip � a0 , R0, ð2:11Þ
where R0 is the radial size of the puncture tool at a distance d
from the tip (figure 2). The above condition is the result of a
two-step fracture growth process in conical puncture in a
highly deformable, hyperelastic material: the initial mode-I
fracture occurring at the tip having a length scale, rtip, fol-
lowed by the inflation and further expansion of the fracture
to a radius R(y) to accommodate the radial size of the cone
at y. Note, because rtip is extremely small, the expansion of
the puncture cavity in the radial direction is governed by a
combination of elastic deformation and mode-I fracture
propagation on the preferred fracture plane. Consequently,
when the puncture tool is removed, only the reversible elastic
deformation recovers and the irreversible damage having
radial size a(y) = a0− tanθ0y remains at y, resulting in a tri-
angular undeformed crack. It was experimentally reported
[28,36] that the residual damage size is significantly smaller
than the size necessary to accommodate the puncture tool
in a highly stretchable, neo-Hookean-like silicone rubber
throughout the puncture depth, which supports a(y) <R(y)
and thus the second part of condition (2.11). However, a
larger magnitude of a(y) than R(y) was observed in a more
brittle silicone rubber [28,36], presumably due to lateral
cracking and branching. These observations necessitate the
implementation of a material model associated with ductile
failure (e.g. the neo-Hookean model) to restrict the growth
of the planar crack to be no larger than the radial tool size.
Further investigation on the elastic expansion contributing
to ΔUel is carried out in §2.2.4.

Equation (2.10) implies that W scales with d2, or equiva-
lently, surface area. The ramifications of this scaling relation
have been noted in a review on biological puncture systems
[12]. It was noted that smaller biological puncture systems
tend to have faster puncture speeds [6,37,38], and it was
suggested that this was partly due to the kinetic energy avail-
able for puncture (which scales with mass/volume) reducing
faster with body size than the energy required to create
damage (which scales with surface area). Higher speeds are
necessary to compensate for the discrepancy and maintain
the puncture performance across scales.
2.2.4. Stored elastic energy
The elastic contribution to ΔEk, ΔUel, represents energy used
to deform the material. It can be approximated as the super-
position of two components:

(i) the elastic deformation due to indentation (i.e. de);



Table 1. Energy comparison between three-dimensional puncture damage simulations and theoretical predictions at different tool cusp angles.

2θ [°] dnom [mm] 2θ0 [°] W
md3

(FE) W
md3

(theory) DUel
md3 (FE)

DUel
md3

(theory)* DUel,0
md3

W
DEk

(FE) W
DEk

(theory)

30 4.7 11.0 2.6 × 10−2 2.0 × 10−2 0.10 0.09 9.0 × 10−3 0.202 0.184

40 4.7 14.7 4.0 × 10−2 2.7 × 10−2 0.19 0.18 1.6 × 10−2 0.175 0.133

50 4.5 18.0 5.8 × 10−2 3.5 × 10−2 0.32 0.32 2.4 × 10−2 0.153 0.098

60 4.3 23.0 8.7 × 10−2 4.7 × 10−2 0.50 0.50 4.0 × 10−2 0.147 0.085

* ΔUel includes the contribution of ΔUel,0.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220559

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 O

ct
ob

er
 2

02
2 
(ii) the opening and further elastic expansion of the unde-
formed puncture fracture surface to accommodate the
puncture tool size.

The first component is expected to be minor compared with
the magnitude of the second for a very soft material or a
sharp puncture tool with a small cusp angle producing a
small indentation force. We show this in §3.2.1 via FE simu-
lations. Therefore, to determine the scaling relation for ΔUel,
we focus on the effect of the second component.

To derive a closed-form expression for ΔUel, we assume
that the elastic expansion of the undeformed puncture frac-
ture surface to the size of the puncture tool can be
reproduced by a two-step process: (i) the planar triangular
crack is opened into a conical cavity having the same
radial size under an initial pressure or surface traction, p0;
and (ii) an additional changing inflating pressure, p, is
then applied axisymmetrically and perpendicularly on the
circular cavity wall (figure 3) such that no bending of
the wall surface occurs, and the taper angle increases from
2θ0 to 2θ.

We denote the elastic energy required for the first step as
ΔUel,0 (figure 3). To estimate the magnitude of ΔUel,0, we
adopt an approach similar to the one proposed by Shergold
and Fleck for a cylindrical punch [22,26]. We introduce a
dimensionless function f(a/R) to describe the normalized
elastic energy associated with a symmetric problem where a
planar crack having length 2a in an elastic substrate is
wedge opened by a rigid circle having radius R under
plane strain (electronic supplementary material, figure S3).
Therefore, ΔUel,0 can be expressed as

DUel,0 ¼
ðd
0
maðyÞ2f ð1Þdy ¼ 1

3
tan2 u0mf ð1Þd3

; k0m d3, ð2:12Þ

where the prefactor k0 is dimensionless. We determine the
explicit value of f (1) to be f (1)≈ 2.91 using a two-dimensional
symmetric FE method as detailed in electronic supplemen-
tary material, S4.4. This allows us to calculate the
normalized ΔUel,0 values, i.e. ΔUel,0/(μd

3) for different
measured θ0 values (table 1) from the three-dimensional FE
simulations as introduced in §3. Following a theoretical
assumption proposed by Gent and Wang [39,40] that a
small planar circular crack can be inflated into a spherical
void of the same radius under a negligibly small initial
pressure, we argue that p0 is also negligible in an extremely
soft and stretchable material exhibiting ductile failure
response where tanθ0 ≪ tanθ. That is, the radial size of the
undeformed crack is significantly smaller than that of the
fully deformed cavity to accommodate the puncture tool. In
this case, ΔUel,0 is minor compared with the total elastic
energy ΔUel to fully expand the cavity. In fact, this hypothesis
is well supported by the relative magnitude of calculated
ΔUel,0/(μd

3) values as listed in table 1, which is on average
one order of magnitude smaller than that of the normalized
ΔUel values (either from FE simulations or theoretical predic-
tions) within our range of measurements and tested
parameters. Further discussion on the applicable range and
limitation of the above hypothesis is provided in §3.2.1.

To quantify the elastic deformation for the second
step, we consider an equilibrium intermediate configura-
tion during the expansion. At any arbitrary point having
coordinates (r, y) (where r is the radial coordinate) on
the cavity wall, we separate the axisymmetric inflating
pressure/surface traction p(r, y) into radial, pr(r, y), and
vertical, py(r, y), components (figure 3) to calculate their
energy contributions, denoted as ΔUel,r and ΔUel,y,
respectively.

Consider a horizontal slice having an infinitesimal thick-
ness, dy, at y (figure 3c). The effect of pr(r, y) within the
slice can be approximated to the axisymmetric elastic expan-
sion of a planar circular hole in an infinite material matrix
from a radius a(y) to R(y) under plane strain conditions
(figure 3d,e). Therefore, the radial energy contribution ΔUel,r

can be calculated by integrating the elastic work done per
unit thickness over d [22]

DUel,r �
ðd
0

ðRðyÞ
aðyÞ

prðr, yÞ2prdrdy: ð2:13Þ

Thus, finding ΔUel,r is equivalent to determining pr(r, y)
at equilibrium given the initial conditions pr = 0 at r = a(y).
A detailed derivation for pr is provided in the electronic sup-
plementary material. Eventually, we may obtain pr as a
function of a(y) and r in an incompressible neo-Hookean
solid, normalized by the shear modulus, μ

prðr, yÞ
m

¼ � 1
2

r
aðyÞ

� ��2

þ ln
r

aðyÞ
� �

þ 1
2
: ð2:14Þ

Substituting equation (2.14) and the expressions for a(y)
and R(y) = (d− y)tanθ into equation (2.13), we may obtain
ΔUel,r as

DUel,r ¼ 1
3
pm( tan2 u� tan2 u0) ln

tan u
tan u0

� �
d3

; krmd3, ð2:15Þ

where the prefactor kr = ΔUel,r/(μd
3) is a dimensionless func-

tion of θ and θ0.
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To calculate the vertical energy contribution, ΔUel,y, we
relate py(r, y) to pr(r, y) geometrically

pyðr, yÞ ¼ prðr, yÞ r
d� y

: ð2:16Þ

Similar to the axisymmetric deformation described by
equations (2.13), ΔUel,y takes the following integral form:

DUel,y ¼
ðR0

0
2pr

ðy1
y0
pyðr, yÞdydr, ð2:17Þ

where y0 and y1 denote y coordinates on the undeformed and
fully deformed surfaces at r, respectively. Substituting
equations (2.14) and (2.16) into equation (2.17), we can find
a closed-form expression for ΔUel,y

DUel,y ¼ kymd3, ð2:18Þ

where

ky ¼ p

�
8
27

tan3 u0 þ 1
27

tan3 u� 1
3
tan2 u0 tan u

þ 2
9
tan3 u ln

tan u
tan u0

� ��
,

ð2:19Þ

is a dimensionless prefactor.
Ultimately, ΔUel can be obtained through the super-

position

DUel ¼ DUel,0 þ DUel,r þ DUel,y

¼ (k0 þ kr þ ky)md3

� (kr þ ky)md3: ð2:20Þ

We note that while normally a superposition principle of
energy as a nonlinear function of displacement/strain com-
ponents may introduce inaccuracy in a hyperelastic model,
our calculations above are not subjected to such a systematic
error, as we demonstrate through the comparison between
theoretical predictions and FE simulation results in table 1
and figure 5. Because the contribution from ΔUel,0 is minor,
and equations (2.13) and (2.17) are integrals having the
same limits (which describe the boundaries of the unde-
formed and fully expanded cavities, respectively), the
superposition of ΔUel,r and ΔUel,y is equivalently the sum-
mation of their integrands. Such a summation is a linear
operation and is essentially the Cartesian components of
the work done associated with an infinitesimal cavity
growth, i.e. F · ds = Fx dsx + Fy dsy = (2πr pr dy) dx + (2πr
py dx) dy, where the integral of the infinitesimal work
done, F · ds, in the same integral space determines the
stored elastic energy. A similar superposition principle
adopted in the literature [22] further supports the above
argument, which determines the elastic energy contribution
to puncture associated with a cylindrical punch.

Equation (2.20) is beneficial in that it provides a closed-
form, analytical approximation for ΔUel in ductile soft
materials. It implies a scaling relation

DUel � d3: ð2:21Þ
Apparently, ΔUel scales with d similarly to Wf (equations (2.7)
and (2.8)), but differently from W (equation (2.10)). This dis-
crepancy in the scaling relations for the energy terms is
anticipated—as d increases, because ΔUel and Wf scale at a
faster rate than W, at some point the energy expenditure to
overcome the resistance from friction and deformation will
become significantly larger than the energy required to frac-
ture. Consequently, the total released fracture energy and
the associated damage is limited for a finite external energy
investment such as ΔEk. Such speculation agrees with the
results of previous experimental work on both arrows and
viper fangs [5,17], which showed that the depth of puncture
achieved was directly related to the kinetic energy available.
After a certain depth is reached, overcoming friction/
deformation requirements costs too much energy to sustain
propagating puncture. Our theory supports this interpretation.

To summarize, we may combine the scaling relations of
Wf, W and ΔUel (i.e. equations (2.7), (2.10) and (2.20)) and
re-write the total required energy for puncture, ΔEk, (i.e.
equation (2.4)) as a function of the depth of puncture, d, in
a more general, non-dimensionalized form

DEk

m‘3c
¼ kfrac

d
‘c

� �2

þ ke
d
‘c

� �3

þ kf
f
m

� �
d
‘c

� �3

, ð2:22Þ

where DEk=ðm‘3c Þ and d/ℓc are the dimensionless energy of
puncture and depth of puncture, respectively; the prefactor
of each component is a dimensionless function of θ and θ0,
i.e. kfrac = tanθ0, ke = k0 + kr + ky and kf = (π/3)tanθ within our
framework; and ‘c ¼ G=m is a material characteristic length
scale as we elaborate in §4.1. We argue based on the theory
presented in electronic supplementary material, S1, that the
general form of equation (2.22) always holds regardless of
the choices of hyperelastic constitutive models, because
their strain energy density functions take similar Taylor
series forms [41]. While there is no simple-form analytical
solution of d/ℓc from the cubic equation (equation (2.22)), a
numerical solution is possible given specific puncture test
conditions and material properties.

Overall, the above-derived scaling relations provide closed-
form solutions to the governing energy balance equation for
puncture (equation (2.4)). They allowus to quantitatively evalu-
ate the relative magnitude of the required energy for puncture
in terms of tool geometries andmaterial properties. Particularly,
the ratio between the fracture energy contribution and the total
required puncture energy, W/ΔEk, contains key information
about puncture tool versus material interactions. We discuss
its further implications and potential applications as a perform-
ance metric for biological puncture efficiency in §4.1.
3. Visualization and verification
3.1. Visualization of puncture fracture
Understanding the morphology of the damage in a punc-
ture system is important as it directly reflects the failure
response of the tested material and provides a basis for
quantifying the puncture performance. However, despite
the abundance of previous studies on experimental and
numerical puncture mechanics in soft polymers and bioma-
terials [5,16,17,19,21,23,26,28,36,42–44], only a handful of
literature has explored the morphology of a post-puncture
fracture surface following the removal of the tool; and
the focus was mostly on the puncture failure caused by
cylindrical or similar shaped tools. There is no guarantee
that the conical-shaped puncture system ubiquitous in
living organisms will exhibit similar failure responses.
Therefore, it is necessary to visualize the damage produced
by a sharp conical punch in comparison with the tool shape
to verify the key morphological assumption underlying our



dnom

2a0

(a)

(c)

(b)

(d)

Figure 4. Visualization of puncture damage morphology. (a) Illustration of a
three-dimensional FE assembly for puncture, which consists of a rigid conical
surface representing a puncture tool (2θ = 30°) and a cylindrical target
material model. An ‘encastre’ boundary condition is applied on the bottom
and side surfaces of the model. (b) Morphology of simulated puncture frac-
ture surfaces (blue region) in the target material substrate (orange region) at
a controlled depth of puncture. The subfigures from left to right correspond
to puncture tool cusp angles, 2θ = [30°, 40°, 50°, 60°], respectively. (c)
High-speed images (10 000 fps) captured during a dynamic puncture test.
The three-dimensional-printed projectile (2θ = 30°) impacts and penetrates
into the transparent target material sample until reaching the maximum
depth of puncture (bottom frame). The interval between adjacent frames
shown here is 15 frames. Orange scale bar: 2 cm (d ). Microscopic images
of the puncture fracture produced from a dynamic puncture test in (c).
Left: side view of the undeformed fracture surface. Right: view showing
the superficial crack on the impact surface. (A reflection of the LED ring
light can be seen from the image.) The nominal depth of puncture (dnom)
and the superficial crack length (2a0) are measured from the fracture surface
as labelled in the corresponding subfigures. Scale bars: black: 1 mm; white:
500 μm.
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energy theory of puncture in §2.2.3. In this section, we
examine the morphology of the puncture fracture surface
in neo-Hookean solids using both FE simulations and
experimental methods.

The three-dimensional FE simulations for puncture
implement a critical strain energy density (CSED) failure
criterion to numerically simulate and visualize the finite
damage associated with a conical puncture geometry pene-
trating an incompressible neo-Hookean material model
(figure 4a) (see electronic supplementary material, S4.1 for
technical details). The element deletion occurs to produce
damage when the elemental strain energy density becomes
comparable to the elastic modulus, which corresponds to a
limiting tensile stretch, λ∼ 3, based on the neo-Hookean
constitutive model [45,46]. It should be pointed out that
due to the absence of defects and inhomogeneities in the
implemented material model, the three-dimensional FE simu-
lations produce nearly axisymmetric, conical-shaped fracture,
and as such the released fracture energy is associated with the
strain energy and volume of the ‘damaged’ elements. Despite
the discrepancy in the apparent undeformed fracture mor-
phology compared with our proposed model of a planar
crack, we argue that such a numerical idealization does not
systematically affect the evaluation of the damage size, or
the magnitude of W or ΔUel under the conditions we tested.
Our assumed ductile failure response gives rise to an
undeformed crack size smaller than the radial size of the
puncture tool (i.e. condition (2.11)), which implies that the
crack will become fully inflated into a conical cavity to
accommodate the tool shape during fracture propagation,
leaving a negligible gap at the tool–material interface. Conse-
quently, for an infinitesimal radial crack growth da within a
planar slice dy having a fully expanded circular cavity of
radius R(y) (i.e. the configuration illustrated by figure 3e),
the stored strain energy within a ring-shaped volume
described by 2πR(y) da dy will be released because the
material within this region can no longer bear the load in
the circumferential direction. This released fracture energy
is the same regardless of the number of crack fronts in the
radial direction. (The proposed puncture model corresponds
to two fronts while the finite-element analysis (FEA) corre-
sponds to multiple crack fronts.) Ultimately, this leads to
consistent estimations of the released strain energy, the unde-
formed crack size, and the stored elastic energy between the
proposed model and the axisymmetric FE approach under
the same prescribed puncture conditions and material prop-
erties (as verified in the following discussion). The
difference between the two cases is in their definitions of
the strain energy release rate which depend on their unique
created fracture surface areas (e.g. the necessity to implement
the mode-I toughness in the case of a planar crack). Further
support can be found from a similar interpretation proposed
for the irreversible growth of a spherical void [47].

Figure 4b shows the morphology of the simulated
residual fracture surfaces in an undeformed configuration
(blue region) as produced by four conical-shaped rigid
punches having different cusp angles (2θ = [30°, 40°, 50°,
60°]). As anticipated, the simulated fracture surfaces exhibit
an approximately conical shape but have a significantly smal-
ler taper angle than the corresponding shape necessary to
accommodate the puncture cone. This behaviour agrees
with the ductile failure response experimentally evident for
a stretchable, neo-Hookean-like soft rubber [28].

In table 1, the nominal maximum puncture depth (dnom,
ESI) and the taper angle of the fracture surface (2θ0) are
measured from the undeformed FE configuration and listed
for each applied cusp angle (2θ = [30°, 40°, 50°, 60°]). The
magnitude of dnom is kept relatively constant via a controlled
displacement (≈5 mm). The normalized work to fracture, W/
(μd3), is computed from the three-dimensional FE simulations
by integrating the released elemental energies across the
material body. The result for each θ and θ0 pair is compared
with the corresponding theoretical scaling relation, normal-
ized as

W
md3

� tan u0
G

m

� �
1
d

� �
: ð3:1Þ

It is assumed that the ratio between the material tough-
ness and the shear modulus satisfies G=m � 1mm, based on
the previous mechanical characterization results [33] of our
selected neo-Hookean-like model elastomer for the dynamic
puncture testing introduced later (i.e. Solaris silicone elasto-
mer, 1 : 1 weight mixing ratio, Smooth-on, Inc. (electronic
supplementary material, S3) where the mode-I fracture
energy G � 130 Jm�2 can be estimated from cutting tests to
minimize additional dissipative effects; and the shear mod-
ulus μ≈ 0.13 MPa was measured from uniaxial tension tests
[33]). These values correspond to the stretchability of the
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Figure 5. Comparison between FE results and theoretical predictions for the
effects of puncture angles on the stored elastic strain energy. The approxi-
mate solution for the normalized total strain energy (ΔUel/(μd

3)≈ kr + ky,
solid lines) is plotted for each of the four different half cusp angle values
of the puncture tool (θ = 15°, light blue; θ = 20°, orange; θ = 25°, dark
blue; θ = 30°, yellow). For each θ value, four different pre-notch half
angle θ0 values (θ0 = θ− [10°, 7.5°, 5°, 2.5°]) are simulated using
two-dimensional axisymmetric pre-notched FE tests (open squares). The
strain energy results extracted from three-dimensional FE tests for puncture
damage are also included (open pentagrams).
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model elastomer (i.e. Solaris 1 : 1 mixing ratio, λ∼ 3) [33] that
we implement for the CSED failure criterion in the FEA. We
note from table 1 that the FE results and theoretical predic-
tions for W/(μd3) find an order-of-magnitude agreement for
all four cusp angles. The discrepancies in magnitude may
be attributed to the estimation of G and the finite resolution
of FEA. We also extract the normalized stored elastic
energy ΔUel/μd

3 at the maximum puncture depth given the
applied FE puncture conditions. The results are provided in
table 1 and figure 5 and discussed in §3.2.1 in comparison
to the strain energy verification results obtained from two-
dimensional pre-notched FE tests and the corresponding
theoretical predictions (equation (2.20)).

Experimental validation for puncture damage mor-
phology is carried out using a customized compressed air
cannon (Ballistic Loading and Structural Testing Lab, NC
State University). The primary goals of the dynamic puncture
testing are to: (i) validate the baseline assumption of a planar
triangular crack in the undeformed configuration and (ii)
verify our hypothesis in §2.2.3 that for a stretchable soft
material exhibiting ductile failure response, the size of the
undeformed fracture caused by puncture is significantly
smaller than the size necessary to accommodate the puncture
tool. During a puncture test, a three-dimensional printed con-
ical projectile is launched towards a target material sample
(Solaris silicone elastomer, 1 : 1 mixing ratio, electronic sup-
plementary material, S3) at a controlled speed to produce
puncture fracture (figure 4c). Further technical details of the
dynamic puncture testing method are described in electronic
supplementary material, S3. The speed at the onset of impact
is determined from high speed photography (figure 4c) and
post image processing to be approximately 9.8 m s−1.
Figure 4d shows microscopic images of a planar triangular
fracture surface (side view) and its superficial seam crack
(top view) created by a 30° puncture tool. The images were
taken after the tool was removed from the material and the
crack surface closed. The size of the superficial crack and
the nominal maximum depth of puncture are estimated to
be 2a0≈ 1.7 mm, and dnom ≈ 8.9mm, respectively, averaged
between the measurements from both microscopic image
processing and manual probing. These dimensions give an
estimation for the half taper angle of the residual fracture sur-
face: θ0 ≈ 5.6°. This result coincides with the θ0 value (θ0 ≈ 5.5°)
measured from the corresponding three-dimensional FE
simulation (i.e. 2θ = 30°), which implements the failure prop-
erties of the tested Solaris silicone elastomer. Particularly, we
note that the estimated taper angle is significantly smaller
than the cusp angle of the puncture cone, which well
agrees with our proposed ductile puncture failure behaviour
(§2.2.3). This fracture response is expected and can be attrib-
uted to the neo-Hookean constitutive behaviours of the
selected target material, which has been demonstrated
through mechanical characterization up to a strain of
approximately 100% [33].

Finally, future puncture experiments are necessary to
include systematic characterization of the puncture energies
to verify the theoretical predictions as well as the FEA results
for the relationship between energy, or force and depth of
puncture given prescribed material properties and testing
conditions. While quasi-static puncture characterization (e.g.
[1,4,8,48]) and puncture experiments on cylindrical and simi-
lar shaped tools (e.g. [3,19,22,25,28,36]) have been performed
previously, there still lacks sufficient data from dynamic
puncture testing to verify our puncture model; complications
may arise from various aspects including but not limited to:

— It is difficult to directly measure the force–displacement
response during a dynamic puncture test without modi-
fying the existing test system and redesigning the
projectile structure.

— Experimental characterization of the individual puncture
energy components (ΔUel,W andWf ) requires decoupling
from the total loss of kinetic energy/external work done,
ΔEk. This is not possible without a knowledge of the
force–displacement response or the full stress/strain
field near the puncture damage.

— The interfacial frictional properties are largely unknown
under biological, dynamic puncture environments (§4.2).

Addressing these complications will facilitate the develop-
ment of novel mechanical characterization methods
incorporated into the existing experimental puncture system.

3.2. Finite-element verification for stored strain energy
This section presents the simulated results for ΔUel obtained
from two-dimensional axisymmetric pre-notched FE models
having an incompressible neo-Hookean constitutive response
(see electronic supplementary material, S4.2 for technical
details). Both the effect of puncture angles (θ and θ’) on
ΔUel and the scaling relation for ΔUel are quantitatively
investigated. The numerical results are compared with corre-
sponding theoretical predictions across a wide range of test
conditions to verify the proposed mathematical model
in §2.2.4.

3.2.1. Puncture angle effects
Figure 5 shows the simulated ΔUel values (normalized by μ
and d) (open squares) for different selected θ and θ0 puncture
angle combinations obtained from two-dimensional
axisymmetric pre-notched FEA (electronic supplementary
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for the pre-notch representing the fracture surface, respectively. The theory
for modulus normalized strain energy (equation (2.20), solid line) predicts
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on the theoretical master curve on a log-log scale.
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material, S4.2). The FE results are directly compared with
non-dimensionalized theoretical predictions for total elastic
contributions, i.e. ΔUel/(μd

3)≈ kr + ky (solid lines, equation
(2.20), note the contribution from ΔUel,0 is neglected to
directly compare with the two-dimensional axisymmetric
simulations). The close agreement between the simulations
and the theory in magnitude across wide angle ranges
(figure 5; electronic supplementary material, S4.2) verifies the
dimensionless prefactor, kr + ky, which depends on θ and θ0

(equations (2.15) and (2.19)). This quantitative match also
suggests that the elastic contribution from indentation (i.e.
that associated with de (figure 2)) is negligible. As figure 5 indi-
cates, ΔUel decreases rapidly with increasing θ0 or decreasing θ.
Such observation is consistent with the anticipated puncture
response for a sharp, slender tool versus a wide tool (§2.2.4).

However, it should be noted that as θ0 approaches θ, the
assumption of ductile failure response becomes no longer accu-
rate. In this case, the axisymmetric elastic energy contribution
(i.e. ΔUel,r + ΔUel,y) vanishes and the contribution from ΔUel,0

needs to be taken into account to evaluate the elastic strain
energy associated with a planar triangular undeformed crack.
In electronic supplementary material, S4.5, we calculate
and plot the theoretical relative magnitude of ΔUel,0, i.e.
ΔUel,0/ΔUel = k0/(k0 + kr + ky) as a function of the ratio, tanθ/
tanθ0 for four different θ values (coloured solid lines,
2θ= [30°, 40°, 50°, 60°]). It is found that the contribution of
ΔUel,0 becomes significant (i.e. DUel,0=DUel * 0:1) when on
average tanθ/tanθ0 < 2.7. For comparison, the average ratio cal-
culated from our three-dimensional FE measurements (table 1)
is tanθ/tanθ0 ≈ 2.85 ± 0.07. Moreover, the observation from elec-
tronic supplementary material, figure S4 that all theoretical
curves collapse to nearly a single master curve and the similar
values of the ratio tanθ/tanθ0 from the three-dimensional FEA
at different θ values have two interesting implications: (i) the
relative magnitude of ΔUel,0 is governed by tanθ/tanθ0, i.e.
the radial size of the fully deformed crack relative to that of
the undeformed crack; and (ii) tanθ/tanθ0 appears to be a
material constant independent of puncture tool geometry (θ).
We speculate that it is related to the stretchability of the
target material. Overall, these findings provide evidence for
and quantitatively define the physical constraint of our hypoth-
esis in §2.2.4—the energy contribution of ΔUel,0 is minor only in
highly stretchable and tough soft materials exhibiting a small
undeformed crack size.

In table 1 and figure 5, we also include the ΔUel/(μd
3)

values corresponding to the four different cusp angles
(2θ = [30°, 40°, 50°, 60°]) and their measured θ0 values
(table 1), computed from three-dimensional FE simulations
for puncture damage (§3.1). The combined results from
both two-dimensional axisymmetric and three-dimensional
FE simulations together cover a large range (over a decade)
of possible θ0 values for each selected θ value (0 < θ0 < θ).
However, we emphasize that in soft, highly deformable elas-
tomers exhibiting ductile failure behaviours (e.g. Solaris 1 : 1
mixing ratio) and our three-dimensional FEA using the neo-
Hookean material model, the measured θ0 values are found
to be at the lower end of the spectrum (e.g. figure 5) presum-
ably due to the high stretchability of the materials. A close
match between the FE results and the theoretical predictions
for ΔUel/(μd

3) (from either the full form (table 1) or the
approximation (figure 5)) is evident. This in combination
with the discussion above verifies: (i) the strain energy
theory in §2.2.4 and the minor contribution from ΔUel,0 for
our selected model materials and test conditions; and (ii)
the trend that ΔUel increases with increasing cusp angle θ.
Particularly, it seems that the change of 2θ0 as 2θ increases
has a minor effect on the trend of ΔUel in a neo-Hookean
solid, judging by the relative magnitude in table 1.
3.2.2. Scaling relation verification for stored strain energy
Figure 6 is a log-log plot comparing the scaling relations
between ΔUel/(μ) and d as predicted by equation (2.20) (solid
line) and numerically simulated through the two-dimensional
axisymmetric FE method (θ = 15° and θ0 = 10°, electronic sup-
plementary material, S4.2) (open squares). We emphasize that
no data fitting is implemented in figure 6. Regardless, the FE
data points collapse on the theoretical scaling curve corre-
sponding to ΔUel/(μ)≈ (kr + ky) d

3. The satisfactory agreement
between the prediction and the FE results in both magnitude
and slope quantitatively supports the proposed scaling relation
in §2.2.4 (i.e. ΔUel∼ d3, equation (2.21)).

Overall, the FE and experimental visualization provides
strong evidence for the proposed condition (2.11) that the punc-
ture damage has a size significantly smaller than that necessary
to accommodate the tool in a highly deformable, neo-Hookean
material exhibiting ductile failure response. Moreover, the
dynamic puncture experiments verify our baseline morphologi-
cal assumption of a planar triangular crack in the undeformed
configuration. The close match between the numerical esti-
mations and the theoretical predictions in table 1 and figure 5
quantitatively supports our puncture energetic model (§2). The
visualization and verification presented here lay the foundation
for implementing the puncture energy theory to help in charac-
terizing biological puncture systems. However, it is important to
recognize that biological puncture systems associated with
brittle failure response, such as egg shell puncture [49] and chit-
inous beetle shell puncture [50], are not uncommon. Brittle crack
extension and branching may markedly change the damage
morphology [28,36,42] and, consequently, increase the damage
size and the contribution to the released fracture energy relative
to the stored strain energy—an avenue for future research.
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4. Discussion
The above quantitative verification supports the puncture
energy theory as a theoretical framework to contextualize
puncture systems in living organisms. As demonstrated in
§2, both a close-form expression and the corresponding scal-
ing relation are provided for each energy component
associated with puncture (Wf, W and ΔUel). These exact sol-
utions enable a practical, quantitative approach for
estimating the magnitudes of energy contributions in biologi-
cal puncture systems. Particularly, the verified energy
components for damage creation and elastic deformation
(i.e. W and ΔUel) consist of quantities that are experimentally
measurable through mechanical characterization of biomater-
ials including puncture failure tests (θ, θ0 and d), uniaxial
tensile tests (μ), and tearing fracture tests (G) [31,33,51]. In
the following sections, we use this model as a springboard
for exploring and discussing potential biomechanical appli-
cations and biological implications including puncture
performance in terms of energy efficiency (§4.1), the complex-
ity of puncture systems (§4.2) and overall scaling in puncture
systems (§4.3).
559
4.1. Energy ratio as a puncture performance metric
Although puncture mechanisms have been identified in
numerous biological systems [12], it is challenging to identify
a general performance metric that can quantify puncture effi-
ciency across biological systems for comparative studies. An
effective performance metric should both serve as a math-
ematical tool to evaluate the relative performance of
puncture systems [4] and provide a quantitative trait for
use in ecomechanical models [52], studies of evolutionary
convergence [10,12] and morphological diversity [1,53].
However, the interplay between puncture tool morphology,
biomaterial properties and fracture mechanics significantly
complicates the characterization of puncture biomechanics.

Previous performance metrics used in studies on bio-
logical puncture have included functional ‘sharpness’
[1,4,9,12,18,54], puncture force [1,3,8,9,18,19,48] or energy
associated with puncture [2–4,7,8,12,21,28,48,55] to character-
ize the effectiveness of biological puncture systems. These
approaches often focus on only one aspect of the puncture
system. For example, many studies define ‘sharpness’ index
[4,18,34] or an equivalent quantity [1] that accurately
describes the geometric factors (e.g. radius of curvature and
tip included angle) controlling the shape of a puncture/
cutting tool. However, the relationship between these mor-
phological measures and actual puncture performance are
not clear [1,4,18,19,34,56]. Further complications arise when
material response is introduced. There is no guarantee that
a ‘sharp’ puncture tool for one biological material will
retain its functional ‘sharpness’ for a different material, as
puncture response changes with material properties [28,57].
Therefore, functional ‘sharpness’ can only be regarded as a
relative metric restricted to a specific puncture environment.

Other performance metrics extract force/energy measure-
ments directly from puncture tests [1–5,8,11,17,48,49,58].
These measures do not contain explicit information about
either puncture tool shapes or material properties. Therefore,
they are only meaningful for single-variable, controlled com-
parative studies. Theoretically, it is possible to find two
puncture systems with similar force responses but completely
different energetic compositions (e.g. W versus ΔUel) by
adjusting materials or morphologies (e.g. [3]), making per-
formance evaluation difficult.

To address these complications and limitations of conven-
tional metrics, we propose a quantity based on our energy
theory—the ratio between the fracture work and the total
required energy for puncture at a puncture depth d, i.e. W/
ΔEk—as a performance metric for puncture efficiency. It
takes a general form, based on equation (2.22),

W
DEk

¼ 1þ ke
kfrac

þ kf
kfrac

f
m

� �� �
d
‘c

� �� ��1

: ð4:1Þ

The magnitude of the ratio W/ΔEk ranges from 0 to 1. A
larger magnitude indicates that a higher proportion of
energy is contributed to fracture propagation relative to the
total energy investment. By definition, such a puncture
system corresponds to higher energy efficiency and is more
beneficial for the puncturing organism. An ideal puncture
system should require a minimal amount of deformation
and dissipation (including the work to overcome friction) to
sustain the failure propagation. As demonstrated by equation
(4.1), the ratio W/ΔEk quantitatively relates several important
factors that influence puncture performance: (i) puncture tool
geometries (θ); (ii) material failure response (G and θ0); (iii)
material elastic properties (μ); (iv) frictional effect (f ); and
(v) depth of puncture (d). Based on equation (4.1), a higher
efficiency coefficient can be achieved with any combination
of the following:

— a relatively large characteristic length scale, ℓc;
— a relatively small depth of puncture, d;
— a relatively small ratio f/μ.

In table 1, we show the efficiency coefficient W/ΔEk for four
different cusp angles (2θ = [30°, 40°, 50°, 60°]) obtained from
three-dimensional puncture simulations (electronic sup-
plementary material, S4.1), in comparison with the
corresponding theoretical predictions from equation (4.1). In
FEA, we assume a negligible frictional contribution and
f/μ≈ 0 to explore the effect of variations in puncture tool geo-
metries on the upper limit of the efficiency coefficient given
the same material properties and depth of puncture d.
Within our range of measurements, both the simulation
results and the theoretical predictions indicate decreasing
puncture efficiency as 2θ increases. This trend can be ident-
ified by evaluating the governing prefactor in equation (4.1)
when f = 0 (i.e. ke/kfrac = (k0 + kr + ky)/kfrac) as a function of θ
and θ0 (electronic supplementary material, figure S5). For
cusp angles ranging from 2θ = 30° to 2θ = 60° at similar
dnom, the increment in ΔUel outpaces in relative magnitude
the increment of W due to the enlarged 2θ0 value. This behav-
iour may stem from both the failure response of a neo-
Hookean solid (which controls the magnitude of 2θ0) and
the different scaling orders between ΔUel and W. The impor-
tance of 2θ to tool shape has been demonstrated
experimentally in numerous biological systems including
mammal teeth [1,50], arthropod elements [3] and snake
fangs [4]. While those studies illustrated experimental effects,
we can now place them into the context of this framework
and our metric.

To better understand the effect of material response on
puncture efficiency, it is necessary to discuss the fracture-
relevant characteristic length scale, ‘c � G=m. The ratio
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between fracture toughness and stiffness has beenwidely used
in experimental and theoretical fracture mechanics. Broadly, it
defines a physical length scale which, when compared with
the failure or sample size (e.g. d), predicts critical conditions
necessary for failure and failure transitions. Examples of this
include the modulus normalized pressure of puncture
initiation for soft rubbers and skins [28]; the fragmentation cri-
terion for food–tooth interactions [59]; or the transition to a
nonlinear, fracture-relevant regime as the crack tip is
approached during tearing failure (ℓc∼ ℓe, electronic sup-
plementary material) [32,33]. It is anticipated from equation
(4.1) that when d≫ ℓc, the puncture efficiency coefficient W/
ΔEk→ 0, and therefore, elastic contribution (ΔUel) and fric-
tional dissipation (Wf ) dominate over fracture contribution
(W). Consequently, the propagation of puncture fracture is lim-
ited because of the extremely large resistance. We note this is a
limit relatively easy to achieve for dynamic puncture in neo-
Hookean-like soft polymers where ℓc∼ 0.1−1 mm is typical
and ductile failure response prevails [32,33].

In summary, the integration of the effects of puncture tool
geometries, material elasticity, frictional dissipation and fail-
ure response in the puncture efficiency coefficient (W/ΔEk)
offers a quantitative approach to multi-variable, comparative
analysis of puncture performance. However, it should be
noted that in complex soft polymers and biomaterials, the
determination of fracture energy is highly material and fail-
ure condition dependent [32]. According to equation (2.9),
only when additional bulk dissipative effects (i.e. that relate
to Gd) such as viscoelasticity and the Mullins effect [32] are
minimized can the measured strain energy release rate (i.e.
Gc) be a reasonable estimation for the material toughness G.
Moreover, the strength of the puncture tool, e.g. the resistance
to fracture, buckling [15] and wear and attrition [54], may
also be a significant factor to affect the efficiency and the
limitation of puncture—an interesting future direction to
explore.
4.2. Effect of friction on puncture biomechanics
In the above verification and discussion, we neglect the effect
of frictional work on puncture energetics. One reason is that
frictional work, Wf, associated with conical puncture is
relatively independent compared with the other two
components. It is determined solely by puncture tool mor-
phology (e.g. θ) and the depth of puncture (d), independent
of either material stiffness or fracture response based on
equation (2.7). It is reasonable to speculate that in a scenario
where a slender tool punctures a stiff/tough material with
relatively high G and μ values, Wf will be minor compared
with W and ΔUel. Therefore, our previous conclusions hold
regardless of Wf. Even where Wf is not negligible in magni-
tude, it is unlikely to alter the damage morphology or the
trend of the efficiency coefficient W/ΔEk (equation (4.1))
given predetermined puncture tool morphology, material
properties and depth of puncture. However, as d increases,
eventually Wf will exceed W as Wf scales with d by an
order higher than W (Wf∼ d3 versus W∼ d2). This suggests
that friction energy may be significant for biological puncture
systems requiring large depth of puncture, such as feeding
[60] or burrowing to deposit eggs [14], and may become
less important for systems designed for, e.g. gripping [6] or
self-defence [7].
The above argument necessitates an estimation of fric-
tional work as a substantial part of energy dissipation in
the case of deep biological puncture (relative to the puncture
tool length). Complications arise for quantification of Wf in
determination of the friction force per unit area, f, as an inter-
facial parameter (equation (2.7)). Alternatively, f can be
expressed as f = ηpapp [15,26], where papp is the average inter-
facial pressure between the puncture tool and the material,
and η is the friction coefficient. It can be shown from the gen-
eral form of the puncture energy presented by equation (2.22)
that regardless of the constitutive model implemented, papp
can be generally expressed as, normalized by the shear mod-
ulus, μ,

papp ¼ @DEk

@d
� 1
mAproj

¼ Aþ B
‘c
d
, ð4:2Þ

where Aproj = πtan 2θd2 is the projection area of the puncture
cone at d; and A and B are dimensionless functions of θ and
material failure properties. Therefore, for a large d value
where d≫ ℓc, papp ≈A is approximately a constant and as
such f is approximately a constant for the same puncture
tool and target material. Nevertheless, in biological puncture
systems, internal mechanical processes such as muscular con-
tractions [15] and poroelasticity driven by tissue fluid
transportation [61] can increase the magnitude of papp by
an order of 10 kPa [15] or higher depending on the local
deformation. Further uncertainty emerges when estimating
the friction coefficient η. Experimental work has shown that
η is highly sensitive to surface roughness, and such depen-
dence is governed by a ‘true’ contact area at a microscale
[62]. In biological tissues, contact mechanics can be even
more complicated when the effects of surface adhesion
[26,63], hierarchical structures [63], ornamentation
[7,9,11,48] or lubrication [57] are introduced. Organic punc-
ture tools such as mosquito proboscis [11], stingray barbs
[9], parasitic wasp ovipositor [14], porcupine quill [48] and
cactus spine [7] often exhibit morphological ornamentations
or microstructured serrations. Experimental work has
shown that these microstructures may reduce friction associ-
ated with puncture by minimizing contact area [7,11,48].
Characterization of the friction contribution in biological
puncture systems requires examining the specific contact con-
ditions and material properties. Our theoretical framework
allows extra variables to be included in future applications
with emphasis on puncture tool morphology and contact
area to better understand the effect of friction on biological
functions and puncture efficiency.
4.3. On the scaling of biological puncture
A growing body of literature exists investigating scaling in
biological puncture systems [3,15,18,53,54,64–66]. Puncture
tools used by organisms across a wide range of taxa often
show a high degree of morphological convergence despite
their drastic differences in sizes [12,15]. A fundamental yet
challenging question remains in understanding the mechan-
ism underlying this convergence: What is a proper length
scale to establish general scaling relationships with character-
istics of puncture (such as tool sharpness and energetics)?
Many previous studies [3,53,54,66] explored the scaling
between puncture tool sharpness and body length/mass.
However, there is no consensus for generalization or a univer-
sal governing scaling law across different taxa. While this
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complication can partially arise from the effect of wear and
attrition [54] on tool morphology, a more core reason may
be that whole body scale is not directly linked to, and thus
does not reflect, the interactions between puncture tool and
target material.

Canine tooth morphology in mammals, for example, exhi-
bits a strong correlation with diet [53]. Thus, it is not
surprising that the canine teeth of a clouded leopard (Neofelis
nebulosa) and an ocelot (Leopardus pardalis) exhibit similar
‘sharpness’ [1] indices despite significant difference in body
length/mass. In an extreme case, small insectivorous micro-
chiropterans have some of the sharpest canine teeth among
mammals [18,67]. However, the correspondence between
their tooth sharpness and body mass fails to fit the scaling
trend for medium–large mammals [54]. In this case, the sharp-
ness is probablya result of a combination of tooth development
[54], tooth strength and dietary requirements [67].

On a broader scale, there is difficulty inherent in compar-
ing scales because the tool itself may be at very different
scales in relation to the organism using them. How does
one compare the canine tooth of a tiger, which is probably
no more than 1% of its overall body length, with the oviposi-
tor of a wasp, which can reach up to 50% of its body length?
In each case, different muscles actuate the tool, which prob-
ably have their own scaling relationships with both body
size and tool size.

Ultimately, what determines the performance of puncture
is the failure response (e.g. energy required for puncture)
governed by both puncture tool morphology and target
material properties. Therefore, a fundamental scaling
relationship should theoretically exist between a proper punc-
ture performance metric and a length scale associated with
puncture failure. In our puncture energy theory (§2), such
scaling can be established between the depth of puncture d
and each of the energy components included in our model
(W, Wf and ΔUel), including a performance coefficient (W/
ΔEk, equation (4.1)). These correspondences can provide a
biomechanical baseline for general scaling relationships of
puncture in living organisms. Future applications may
include investigation of the cause of the morphological con-
vergence in puncture tools and exploration of the scaling
with muscle size—muscles and tendons physically support-
ing the puncture tool act functionally like a spring [6,68];
thus, their length scales may be related to the force or
energy necessary for puncture failure via a generalized
Hooke’s Law [69]. Broadly, our model enables expansion
with scaling laws in biological puncture systems through
generalization of the effects of puncture tool morphology
and material properties on the energetics.
5. Conclusion
We have presented a baseline theoretical framework for
puncture energetics that offers a timely analytical approach
to biomechanically contextualize and systematically charac-
terize biological puncture systems across a wide range of
scales and taxa. While open questions remain regarding
assumptions made in this study, the model presented creates
multiple avenues for future inquiry. Examples of such future
work could involve exploring the effects of variation in bio-
material properties such as brittleness, toughness and
deformability in our hyperelastic material model; and how
they affect puncture failure response. For instance, how
does puncture efficiency vary across materials such as skins
[28], muscle and fat [57]. While the neo-Hookean constitutive
model we used in this work is beneficial for quantification for
its simplicity, it does not well represent some of the large-
strain nonlinear behaviours of complex biological composites
and tissues. Fortunately, our current general model has math-
ematically enabled the future incorporation of more complex,
nonlinear material response such as strain-stiffening via a
more general constitutive model (see electronic supplemen-
tary material, S1). Other major factors to be explored in
future work include dynamic effects arising from rate-
dependent material responses including viscoelasticity and
strain-rate hardening [70] at higher impact speeds; and the
effect of large puncture tool tip radii exceeding the minimum
length scale for failure (i.e. rtip > ℓf ). The former may intro-
duce significant bulk dissipation to total fracture energy
(equation (2.9), §2.2.3), while the latter may break the
small-scale-yield-like condition and significantly increase
the required elastic contribution for puncture due to the
enlarged deformation (ℓe) near the tip. A FE-assisted
approach similar to those implemented for cutting [33] may
be necessary to quantify the elasticity associated with finite
tip radii.

We hope that this analytical model can help to focus
future work on biological puncture systems by offering
both specific parameters for measurement/analysis as
well as a general framework for comparing highly disparate
systems on a level playing field.
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