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Abstract— Individuals who suffer from paralysis as a result
of a spinal cord injury list restoration of arm and hand
function as a top priority. FES helps restore movement using
the user’s own muscles, but does not produce accurate and
repeatable movements necessary for many functional tasks.
Robots can assist users in achieving accurate and repeatable
movements, but often require bulky hardware to generate the
necessary torques. We propose sharing torque requirements
between a robot and FES to reduce robot torque output
compared to a robot acting alone, yet maintain high accuracy.
Cooperative PD and model predictive control algorithms were
designed to share the control between these two torque sources.
Corresponding PD and MPC algorithms that do not use FES
were also designed. The control algorithms were tested with 10
able-bodied subjects. Torque and position tracking accuracy
were compared when the system was commanded to follow a
functional elbow flexion/extension trajectory. The robot torque
required to achieve these movements was reduced for the shared
control cases compared to the algorithms acting without FES.
We observed a reduction in position accuracy with the MPC
shared controller compared to the PD shared controller, while
the MPC shared controller resulted in greater reductions in
torque requirements. Both of these shared algorithms showed
improvements over existing options, and can be used on any
given trajectory, allowing for better transferability to functional
tasks.

I. INTRODUCTION

Restoration of arm and hand function is a top priority
among people with tetraplegia due to cervical spinal cord
injuries (SCI) [1]. With scarce rehabilitation and assistive
technology options, these individuals are largely dependent
on full-time caregivers for feeding, grooming, and many
other activities of daily living.

Functional electrical stimulation (FES) is a promising as-
sistive technology to restore arm and hand function because
it activates a person’s own paralyzed muscles, resulting in
very low energy consumption and high embodiment of an
FES system. However, FES cannot produce sufficient torques
to enable whole-arm reaching movements in people with
tetraplegia, as many muscles are unresponsive to FES [2],
[3]. Further, multi-joint motions are notoriously hard to
control with FES even with the most advanced systems [4].
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Augmenting FES with an assistive robot offers additional
torque to support whole arm reaching while also offering
improved movement accuracy, but this comes at the expense
of increased bulkiness and decreased wearability of the
combined FES-robotic system. An optimal combination of
FES and an assistive robot would maximize the contribution
of FES to minimize size and power requirements of the robot.

Previous work has explored using FES in combination
with robotic devices, but to date, these approaches have not
truly combined and coordinated the actuation strategies for
upper limb movements [5]. Instead, each of the actuation
types has been used to achieve separate functions. Robotic
devices have been used to lock degrees of freedom [6], [7] or
as gravity compensation [8] enabling the muscles to relax and
preventing fatigue. Other work used robotic support devices
to actuate one set of degrees of freedom, while FES was
used to actuate another set [4], [9], [10]. Typically the robot
controls motions that need precision, such as elbow flexion
and extension, while FES is used for coarse movements,
such as grasping. For motions with coupled degrees of
freedom, such as shoulder, elbow, and wrist movements,
these strategies pit FES against a robot-imposed locked-joint,
gravity, or single-joint motion constraint, essentially wasting
the free actuation from FES and transferring it to the robot. In
lower limbs, more advanced cooperative control algorithms
have been explored, largely enabled by the repetitive motion
of gait [11], [12], [13]. Goal-directed reaching movements
with the upper limb are much more diverse than gait and are
not periodic in nature.

A truly shared control approach for hybrid FES and
robotic control of upper limb reaching movements is needed
to realize general movement assistance rather than specific
movement profiles. Successful integration requires that each
system is aware of the expected contributions of the other
during coordinated tasks. Recent work is starting to move
in this direction, with model-based algorithms being used
to power FES in combination with gravity compensation
from a robot [14]. In this paper, we demonstrate shared
control of elbow flexion and extension movements with FES
and exoskeleton assistance acting in coordination to follow
a desired trajectory. Further, we show that a model-based
controller for the exoskeleton, which has knowledge of the
expected contributions of FES, requires significantly less
robot torque than a standard PD control algorithm, with
minimal loss in trajectory following accuracy.
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II. METHODS

We developed two shared control algorithms, one based on
proportional-derivative control and one using model predic-
tive control, to achieve a functional elbow flexion movement
using a combination of FES and a rigid exoskeleton robot.
Data were gathered from ten able bodied participants with
the right arm following a functional elbow flexion trajectory.

A. Control Strategies

1) Proportional Derivative Control: We implemented a
proportional derivative (PD) controller for torque due to the
exoskeleton, and a proportional controller for torque due to
FES. The FES control was limited to a proportional con-
troller because the physiological time-delay due to FES can
cause oscillatory motion if derivative action is implemented.
The PD control law is shown in (1) and (2),

Texo = Kp,e:ro(e - ed) - Kd,exoe (1)
Tfes = Kp,fes(g - 9d) (2)

where 04 is the desired position and K, s.s describes how
much torque effort can be provided due to Tf.,. In this
controller, K, fos is also inherently limited due to the
physiological delay between when FES is commanded, and
when torque is output [15].

The gains K, ;o and K, .;, were empirically chosen
to effectively track functional trajectories for a human-
exoskeleton combined system while avoiding oscillatory
motion. The value of K, y.; was determined in pilot testing
to ensure that the control does not result in oscillations, but
still provides some assistive torque. For the version of the
control strategy that does not include FES, 7.5 = 0.

2) Model Predictive Control: A model predictive control
(MPC) algorithm was used to share the torque between
the exoskeleton and the FES. To use MPC, we first need
to describe the dynamic model. The system of interest in
this formulation is the combined system of the exoskeleton
and the participant’s arm, which can be seen in Fig. 1. For
this model, we assume that the masses and inertias of the
exoskeleton and the arm can be combined into one lumped
model, and that they move together as a rigid body.

The state variables for this control problem are the position
and velocity of the elbow flexion extension joint, defined as
9 and 6, respectively. 6 is measurable from an encoder on
the motor, and a filtered estimate for 0 is provided from the
data acquisition device. The inputs to the system include the
torque provided to the elbow flexion extension joint of the
exoskeleton, T..,, and the torque due to FES, 7y.s, which
includes torque from the biceps and the triceps. The dynamic
system is then defined as follows,

Tfes + Tezo = JH + Fk tanh(lO&)
+ Fof + mglsin(0 + .q) (3)

where J is the inertia of the combined exoskeleton-arm
system, m is the mass of the combined system, F} is the
kinetic friction, F, is viscous friction, [ is the distance to
the center of mass of the combined system, and 0, is
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Fig. 1. The MAHI Open Exo shown with a participant in the reference
position (elbow joint at a right angle, & = 0). The equilibrium position, f¢g,
is where the user’s arm naturally rests when there is no torque provided.
All joints except the elbow flexion/extension joint are controlled to hold a
neutral position for the duration of the experimental protocol.

the equilibrium position of the combined system. For this
experiment, the friction in the arm was considered to be
negligible compared to the friction in the exoskeleton, which
was characterized in previous work [16].

The inertia J is calculated according to the positioning
of subject-specific adjustable parameters, and includes an
estimated inertia of the arm. The inertia of the arm is
calculated as if it were a cylinder with the radius based on
the participant’s measured forearm circumference and a mass
of 2 kg, which was empirically found to provide suitable
tracking for most participants. The term mgl was replaced
by a single term, M, and M and 0., were determined for
each subject by performing a nonlinear curve fit of (4) by
using the steady state torques required to keep the arm and
exoskeleton in several positions throughout the workspace.

Tezo = M sin(6 + beq) )

The formulation of the MPC problem was defined with the
following state, x, output, y, and input, u. Because the data
acquisition device provides both the position and a filtered
estimate of the velocity, C' is the identity matrix.

@ =[q,q" )
c=1I, (6)
y=Cz (7N
U= [Tewo, Tfes)” (3)

In the model predictive control problem, discrete timesteps,
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1 are spaced out at an interval of 7. A linearized version of
the dynamics about an operating time, k, can be calculated
at time ¢ > k using the state at time k, xj, and input at time
k, uy, using the following equations.

ot
A=—
or ©)
ot
B == 10
0 (10)
:.Ci = A|x:zkmz+B|z:zkuz +$‘$:wk,u:uk (1])

In the MPC formulation, the current state and input are
provided, and a cost function is minimized to provide an
optimal input over the prediction horizon, N. The cost
function weights several parameters that are important to this
control problem, including the state error, y; —r; where r; is
the desired state at time ¢, the integral of position error, e;,
the magnitude of the torques, u;, and the change in torques,
Au; = u; —u;—1. This resulting cost function evaluated at
time step ¢ is shown below,

Ji = (yi — )" Qyi — 1i) + €] Pe;

+ul Ryyu; + Aul RAw; (12)

where Q € R2*2, P ¢ R'™¥! R,, € R?*2 and R € R?*x?
are positive definite and diagonal weighting matrices.

The cost on state error encourages the system to follow
the desired trajectory. The cost on the integral of position
error places more emphasis on accurate trajectory following
if it has been inaccurate for a significant amount of time.
The integral term is defined as

ei = Xej—1 + Ts(yi — i) (13)

where 0 < A < 1, is a forgetting factor that places more
emphasis on recent errors [17].

In (12), the cost of the two torque inputs of u is determined
using R,,, allowing FES torque to be preferred by setting
Rm,emo >> Rm,fes in (14)

Rm _ |:Rme:vo (14)

0

0 Rm, fes:|
The cost due to the change in torque, Awu, due to the
exoskeleton and FES, is determined using R. This parameter
is used to encourage the FES, which has a significant time
delay, to provide gross torque in a specific direction, while
the exoskeleton, which has a very small time delay, can
fine tune the motions quickly. This is achieved by setting
Repo << Ryes in (15).

R — |:R€.'CO O :|

0" Ry (15)

To ensure a fair comparison in torque outputs, it was neces-
sary to achieve similar position accuracy in the case where
FES was used and the case where FES was not used. To
accomplish this, in the control case with FES, the weights
of R,, were modified in real-time to prefer the exoskeleton
if the position diverged too far from the desired trajectory.
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The cost function defined in (12) is minimized as follows,
N-1

argmin J = Z Jiti
u(-) i=1

SUbjeCt to R(Qk)triceps < Tfes < R(ek)biCEP57

(16)

Uktit1 = Ui + TsTpti

where R(0k)triceps and R(0k)piceps are the minimum and
maximum torque available from the triceps and biceps,
respectively, given the current configuration, 6y, as in (17).

A multiple shooting optimal control problem was created
to minimize (16) using the C++ based optimal control
framework, CasADi [18]. A compiled version of the control
problem was loaded at runtime, and solved using the non-
linear solver, IPOPT [19]. When the optimal control input
was found, the result, u(-), was used as control inputs to the
exoskeleton and FES until another optimization step finished.

For the version of this controller that does not use FES,
Ry _cx0 = 0, which prefers to use all torque from the robot.

3) FES command: For either control case, once the de-
sired torque was calculated, the desired muscle activations,
a € R%2X1, were calculated from the following equation,

R(Gk)a = Tfes (17)

where 6, corresponds to the position of the upper-limb,
R(0;) € RY*2 corresponds to the learned mapping between
the max torque output of each joint and the position of the
upper-limb [20], and « consists of terms that all lie between
0 and 1.

Because in the general case there are more FES control
inputs than movable degrees of freedom, there can be several
solutions to this problem. To find a realtime solution, we use
a quasi-newton algorithm to minimize a cost function, Jy,
that we specify as follows [20].

Jtes = c10® + ca||[R(Op ) — Tres||* + ca K (18)
2
K= Z ki (19)
i=1
Ozlz a; <0
k=<0 0<a; <1 (20)
(1 — Oéi)Q a; > 1

In this case, the first term of the cost function penalizes
the use of higher amounts of activation, the second term
penalizes incorrectly provided torque, and the third term
penalizes unusable activations, with ¢y, c2, and c3 indicating
weightings on each of these terms, respectively.

B. Participants

Ten able-bodied subjects (6 male, 4 female, average age
24) participated in the experiment and provided informed
consent. The participants did not have physical or cognitive
impairments that could have interfered with the study. Most
of them had little to no experience with electrodes placed on
their muscles. The study was approved by the institutional
review boards at Rice University (IRB #FY2017-461) and
Cleveland State University (IRB #30213-SCH-HS).
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C. Experimental Protocol

The MAHI Open Exo (MOE) was used as the upper-
limb exoskeleton in these experiments [16]. The participant
was seated in a chair and asked to place their right arm
in MOE. The height, forearm length, and counterweight of
the exoskeleton were adjusted to ensure that the arm began
in a neutral resting position, setting 6., to approximately
—40°, and aligning the remaining joints of the arm to the
exoskeletons degrees of freedom (DOF), as shown in Fig. 1.

Once the exoskeleton was adjusted, the transdermic elec-
trical stimulation system [21] electrodes (2 inch square)
could be placed on the participant to deliver FES to the
biceps and triceps. To determine the most effective placement
of the electrodes, a motor point pen (Compex) was used to
find the muscle motor points. This process involved placing
one surface electrode over the reference point while using
the motor point pen to probe the surface area of the target
muscle, one muscle group at a time. After the motor point
was found using the motor point pen, a surface electrode was
placed on the identified location. Once the electrodes were
placed, the participant’s arm was fitted into the exoskeleton
as shown in Fig. 1, and straps were placed around the users
hand, forearm, and shoulder to limit compensatory motions
during stimulation.

1) Recruitment Curve Calibration: Stimulation ampli-
tudes were chosen for each participant based on comfort level
for expected ranges of pulsewidths (PWs). The recruitment
curve calibration was then used to determine the required
stimulation PW to achieve a desired level of muscle activa-
tion. The participant’s minimum PW value that provided a
measurable torque, as well as the maximum value that was
comfortable were recorded. Recruitment curves were then
found using the deconvolved ramp method [22].

2) Gaussian Process Regression (GPR) Calibration: As
FES stimulates a muscle, the configuration of the arm
impacts the possible torque output. To model this mapping,
a Gaussian Process Regression (GPR) model was created to
identify the torque output at maximum stimulation (o = 1),
given the configuration, 6, as in [20].

To record these data, the combined exoskeleton and arm
system was moved to eight elbow positions equally spaced
between -65° and +20°, three times each. At each position,
the exoskeleton remained stationary while the biceps and
triceps were independently stimulated at their maximum
PW. The torque required for the exoskeleton to maintain its
position was recorded.

3) Study: A series of 20 trials was performed where the
combined exoskeleton and arm system followed a trajectory
based on a functional task of individuals moving a cup to
various locations [23]. There were 5 trials for each of the
4 conditions; PD without FES, PD with FES, MPC without
FES, MPC with FES. The trials were randomized to avoid
bias in the results. After 10 trials, the participant was allowed
to rest for several minutes to limit fatigue in the biceps
and triceps. The participants were asked to remain relaxed
throughout the study.

978-1-6654-8829-7/22/$31.00 ©2022 IEEE

D. Data Analysis

Means of squared torques for each control case were
calculated for each participant as an average across the five
trials for that case. RMS position error with respect to the
desired trajectory was also calculated for each individual
participant for each condition.

To understand how these novel control algorithms compare
to a standard PD control without FES, the mean of squared
torques were normalized to that of PD control without
FES. This is useful because the baseline power required to
move the combined human-exoskeleton system varied from
participant to participant because of the differing arm sizes
between participants.

To determine if there was a difference between the non-
normalized required power output across the four different
control conditions, a repeated measures analysis of variance
(ANOVA) was used with the dependent variable of non-
normalized mean of squared torques, and within-subject
independent variables of control algorithm (PD or MPC)
and FES (with or without). The ANOVA was followed by
pairwise t-tests with Bonferroni corrections, which results at
a statistically significant p < 0.0125. Another repeated mea-
sures ANOVA, followed by pairwise t-tests with Bonferroni
corrections, was used to determine if there was a difference
between the same cases for RMS position error.

III. RESULTS

We compared the performance in tracking a functional
elbow flexion extension trajectory with two controllers, PD
and MPC, each in cases with and without FES assistance.
Two primary outcome measures are used in the comparison.
The mean of squared torques serves as a measure of electrical
power consumption of the motor, which is related to the
amount of on-board power that a user might need in a
wearable assistive device. The RMS position error serves
as a representation of trajectory following accuracy of the
controller during completion of a functional task.

There was a decrease in mean of squared torque in both
MPC and PD control cases when FES was used compared
to when FES was not used. As shown in Table I, in the PD
case, the mean of squared torque was decreased by 0.596
Nm? (p = 0.007%), and in the MPC case, the mean of squared
torque was decreased by 1.019 Nm? (p = <0.001*). When
comparing just the cases with FES, we find that the MPC
case has a significantly smaller mean of squared torques
(» = 0.006%). The torques used throughout the functional
trajectory, averaged across participants, can be visualized in
each of these cases in the bottom row of Fig. 2.

Normalizing the mean of squared torques to the case of PD
control without FES, we see that participants saw an average
of 32.1% reduction in mean of squared torque in the MPC
with FES case whereas the subjects saw an average of 19.6%
reduction of torque in the PD with FES case. These results
are shown in Fig. 3, with =+ 1 standard error of mean (SEM)
shown as error bars. In this graph, the PD without FES case
is provided as a reference, but is necessarily 1.0 in all cases
because it is the value normalized against.
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TABLE I
SUMMARY OF RESULTS FOR MEAN OF SQUARED TORQUE AND RMS ERROR, AVERAGED ACROSS SUBJECTS, WITH SEM SHOWN IN PARENTHESIS.

DIFFERENCES BETWEEN THE MEANS AND P-VALUES FOR PAIRED T-TESTS ARE ALSO SHOWN. *p < .0125 DUE TO BONFERONNI CORRECTION.

Metric Control without FES with FES diff p-value
Mean Squared PD 2.710 (0.476) 2.114 (0.362) —0.596 0.007*
Torque (Nm?2) MPC 2.803 (0.459) 1.784 (0.298) —1.019 < 0.001*
RMS Error PD 1.108 (0.066) 1.004 (0.054) —0.104 0.006*
(Degrees) MPC 1.561 (0.255) 2.487 (0.322) +0.926 0.006*
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Fig. 2. Plots of position (top) and torque (bottom) averaged between subjects over the functional movement trajectory. The position plots show the mean

in solid colors with 4 1 standard deviation shaded around the trajectory.

Normalized Mean
of Square Elbow Torques

PD w/o FES PDw/FES MPCw/o FES MPCw/FES

w
T
I

RMS Error [Deg]
N N

PD w/ FES

MPC w/o FES MPC w/ FES

PD w/o FES

Fig. 3. The top graph shows a bar chart showing the mean of squared
elbow torques for each control case, normalized within subjects to the PD
without FES case, with SEM shown on error bars. The bottom graph shows
a bar chart of RMS error when tracking the desired trajectory for each of
the control cases with SEM shown on error bars.

Quantifying accuracy, in the PD case, the RMS error was
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decreased by 0.104 degrees (p = 0.006%) in the case with
FES compared to the case without FES, and in the MPC
case, the RMS error was increased by 0.926 degrees (p =
0.006%) in the case with FES compared to the case without
FES. Comparing just the cases with FES, the MPC controller
also has a higher RMS error compared to the PD controller
(p = 0.002%). These mean RMS error values are shown in
the bottom of Fig. 3 with & 1 SEM shown on the error bars.
The mean timeseries of elbow position is shown in the top
row of Fig. 2, along with shading showing 4+ 1 standard
deviation. The desired trajectory is also shown for reference.

IV. DISCUSSION

Two algorithms were presented which can be used to
provide movement assistance given an input tracking goal.
Because these algorithms work on any provided trajectory,
rather than one specifically programmed motion, they can be
applied to many functional scenarios, as long as a desired
trajectory or endpoint can be provided. This is a significant
advancement over many FES systems used for functional
tasks that require task-specific construction of stimulation
profiles by a therapist.

In completing the functional movement, both control im-
plementations with FES saw a statistically significant reduc-
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tion in mean of squared torques required by the exoskeleton
to perform the movement compared to the version of those
algorithms without FES. This means that less power would
be consumed for the same motion profile, which could
translate to more portable systems with smaller battery packs
in future wearable exoskeleton designs.

Only comparing controllers that use FES, the MPC case
had a larger reduction of normalized mean of squared torques
compared to the PD case (32.1% compared to 19.6%), as can
be see in the top of Fig. 3, showing that it could lead to more
savings in power consumption. As mentioned in Section II-
A, the PD with FES controller is largely limited by the
physiological time delay inherent when using FES, meaning
that there is a limited benefit that can be gained before
resulting in oscillatory behavior. These results incentivize
the use of model-based control algorithms for combining
FES with robots where we can use knowledge of both
sets of torque inputs to provide greater reductions in power
consumption.

The MPC case with FES did show a statistically significant
worse accuracy compared to the PD case with FES, with
RMS errors of 1.00 and 2.49 degrees respectively. This is
expected because our model of FES adds another level of
uncertainty to the control method. Even with this increase,
the mean RMS error was only 2.49 degrees, or 4.15% of the
workspace, which is acceptable for many functional tasks. As
can be seen in the position graphs in Fig. 2, the trajectories
in all control conditions follow the desired trajectory very
closely, with most of the large errors occurring at the
extremes of the workspace.

V. CONCLUSION

Two novel control algorithms were developed to share the
torque load between FES and a robotic exoskeleton. Both
control algorithms showed a reduction in power consumption
compared to the robot alone case. The accuracy of the
combined human-arm system was decreased in cases with
MPC, but is still relatively accurate compared to what FES
alone can achieve. Further, these algorithms can be applied
to general movement scenarios, rather than tuning control
performance for specific movements.
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