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Local invariants identify topology in metals and gapless systems
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Although topological band theory has been used to discover and classify a wide array of novel
topological phases in insulating and semi-metal systems, it is not well-suited to identifying topo-
logical phenomena in metallic or gapless systems. Here, we develop a theory of topological metals
based on the system’s spectral localizer and associated Clifford pseudospectrum, which can both
determine whether a system exhibits boundary-localized states despite the presence of degenerate
bulk bands and provide a measure of these states’ topological protection even in the absence of a
bulk band gap. We demonstrate the generality of this method across symmetry classes in two lat-
tice systems, a Chern metal and a higher-order topological metal, and prove the topology of these
systems is robust to relatively strong perturbations. The ability to define invariants for metallic
and gapless systems allows for the possibility of finding topological phenomena in a broad range of
natural, photonic, and other artificial materials that could not be previously explored.

I. INTRODUCTION

Topological band theory has enabled enormous
progress in the discovery and classification of novel states
of matter. The preponderance of these developments
have been predicted and realized in insulators [1–34] and
semi-metals [35–50], where these systems’ topological fea-
tures are easily identified due to their isolation in energy
and wavevector (E,k)-space. However, in metals and
other materials lacking a bulk band gap, any states of
topological origin are degenerate with bulk states, gen-
erally resulting in hybridization between the two sets
of states. This hybridization makes it difficult to say
whether a particular set of states remains localized to
the system’s boundaries, or retains any of the other topo-
logical properties that they would possess in an insulat-
ing system. Moreover, even if boundary-localized states
could be identified, the absence of a bulk band gap means
that traditional topological band theories would be un-
able to predict whether these states would be robust to
perturbations, or quantify the strength of that protec-
tion. Although detailed studies in particular metallic and
gapless systems have demonstrated the existence of some
topological behaviors [51–59], a general theory for pre-
dicting topological phenomena in any metallic or gapless
system has remained elusive.
Theories of topological materials predicated upon diag-

onalizing a system’s Hamiltonian to determine its topol-
ogy possess an inherent challenge when considering met-
als or other gapless materials. In general, the Hamiltoni-
ans, H , of topologically non-trivial systems do not com-
mute with position operators, X , i.e., [H,X ] 6= 0. Thus,
it is impossible to find eigenstates of both operators si-
multaneously. In insulators and semi-metals, where any
energy eigenstates of topological origin can be spectrally
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isolated, position expectation values provide a measure
of the state’s location and localization. However, in met-
als or gapless systems, any potential topological energy
eigenstate is a member of a large degenerate subspace
consisting primarily of bulk states, which renders posi-
tion expectation values meaningless without some other
discriminant between possible choices of basis within this
subspace. This argument suggests that a theory of topo-
logical metals should be pursued using real-space defini-
tions of topology that do not require diagonalizing the
Hamiltonian [60–66]. Such real-space topological theo-
ries have recently been used to identify distinct phases in
aperiodic systems, such as quasicrystals [67–69], amor-
phous structures [64, 70–76], and fractal lattices [77].

Here, we develop a general theory of topological metals
and other gapless materials defined using local invariants
derived from the system’s “spectral localizer” [78]. This
theory has three inherent features that allow it to directly
solve the difficulties facing any topological theory of gap-
less systems: First, as the spectral localizer treats the sys-
tem’s Hamiltonian on equal footing with its position op-
erators, it is able to simultaneously identify the approxi-
mate energy and position of the system’s states. Second,
in the absence of a state, the spectral localizer returns a
measure of the strength of the perturbation required to
move a state to that position and energy — in particular,
one can calculate the Clifford pseudospectrum (a set de-
fined by the spectral localizer) in the immediate vicinity
of a boundary-localized state to determine the strength
of its protection against disorder. Third, the spectral lo-
calizer is mathematically proven to be connected to the
system’s K-theory and thus can be used to define lo-
cal invariants that classify the system’s topological phase
at a given energy and position [78–80]. To demonstrate
the generality of this method, we explicitly determine
the topological character and quantify the strength of its
protection in two disparate models, a Chern metal and a
higher-order topological metal. As part of this study, we
also provide a definition of a local, real-space invariant for
higher-order topological phases. Altogether, the theory



we present here provides the groundwork for classifying
the topology of metals and other gapless systems of any
dimension and in any symmetry class [78, 81] across a
broad range of physical platforms.
The remainder of this paper is organized as follows.

First, in Sec. II we provide a brief, physically motivated
review of the spectral localizer and Clifford pseudospec-
trum, and discuss how they can be used to determine
a system’s topology and the strength of its topological
protection. In Sec. III we provide a demonstration of
how the spectral localizer can be used to identify both
the topology and associated boundary-localized states of
a metallic Chern lattice. In Sec. IV we demonstrate the
generality of this method by identifying the topology of
a higher-order topological metal, and derive a local in-
variant for classifying such systems. Finally, in Sec. V
we offer some concluding remarks.

II. REVIEW OF THE SPECTRAL LOCALIZER

From a broad perspective, the spectral localizer takes
a view of a material’s topology that is similar to that
of topological quantum chemistry [82–84]: a material is
topologically non-trivial if it cannot be continued to an
atomic limit without either closing a gap or breaking a
symmetry. But, whereas topological quantum chemistry
determines whether given material can be continued to
an atomic limit by analyzing its band representations,
the spectral localizer seeks to make the same determina-
tion by instead using the material’s real-space descrip-
tion. This real-space picture of topology is predicated
on:

Definition 1: Amaterial is in an atomic limit if and only
if its Hamiltonian, H , commutes with all of its position
operators, Xj, [H,Xj ] = 0 ∀j.

Using this definition, the question of whether a mate-
rial is topologically non-trivial becomes synonymous with
whether there is an obstruction to continuing a mate-
rial’s Hamiltonian and position operators to be commut-
ing without closing a gap or breaking a symmetry, en-
abling one to leverage developments from the study of
C∗-algebras to make this determination [78, 85] (in par-
ticular, see Fig. 1.1 from Ref. [85]). We note that this
definition of the atomic limit is consistent with previous
statements about the real-space behavior of this limit
[86].
Over the last decade, the spectral localizer has emerged

as a versatile tool for identifying whether given set of
matrices can be continued to commuting matrices [78–
80]. For a physical material in d dimensions, the spectral
localizer is

Lλ=(x1,··· ,xd,E)(X1, · · · , Xd, H) =

d
∑

j=1

κ(Xj − xjI)⊗ Γj + (H − EI)⊗ Γd+1, (1)

where I is the identity matrix and the matrices Γj form a

non-trivial Clifford representation, Γ†
j = Γj , Γ

2
j = I, and

ΓjΓl = −ΓlΓj for j 6= l. Here, κ > 0 is a scaling coeffi-
cient that ensures Xj and H have compatible units, and
λ = (x1, · · · , xd, E) ∈ R

d+1 is a choice of position and
energy where the spectral localizer is evaluated. There
are no restrictions on the choices of x = (x1, · · · , xd) and
E in λ, these quantities can be chosen to be anywhere
inside or outside of the material’s spatial and spectral ex-
tent. Also, note that the underlying theorems that prove
the utility of the spectral localizer currently assume that
the system’s operators X1, · · · , Xd, H are Hermitian, op-
erate on a finite-dimensional Hilbert space, and represent
a system with open boundaries.
Intuitively, the spectral localizer can be viewed as

a composite of the eigenvalue equations (which have
the form (M − λ)v = 0) of multiple not-necessarily-
commuting operators using a Clifford representation.
However, unlike in typical eigenvalue problems where the
eigenvalues, λ, are quantities that are solved for, the spec-
tral localizer takes λ as an input and determines whether
the system possesses a state with approximate energy E
that is approximately at x. If the spectral localizer pos-
sesses an eigenvalue that is sufficiently close to zero,

min(|σ(Lλ(X1, · · · , Xd, H))|) ≤

d
∑

j=1

‖[H,κXj]‖ (2)

where σ(Lλ) denotes the spectrum of Lλ, ‖ · ‖ is the L2

matrix norm, and it is assumed here that [Xi, Xj ] = 0,
then the physical system supports a state in the vicinity
of (x, E). If Lλ does not possess such an eigenvalue, the
system exhibits a local gap at (x, E), i.e., a region in
position-energy space that cannot support a state (see
[87, §II] for what are currently the best known estimates
on how the spectral localizer predicts state localization).
Thus, it is convenient to define the “localizer gap” as
min(|σ(Lλ)|), which, heuristically, can be viewed as a
spatially-resolved band gap.
The ability for the spectral localizer to calculate a

quantity similar to a band gap without determining the
system’s band structure plays a crucial role in using Lλ

to categorize a system’s topology. Formally, a set of ma-

trices {M
(0)
j } can be continued to some other set {M

(1)
j }

if a continuous path of matrices can be defined between

the two sets, {M
(τ)
j } for 0 ≤ τ ≤ 1. Assessing a ma-

terial’s topology via continuation is typically done for
infinite systems, and requires that every set along the

path {X
(τ)
1 , · · · , X

(τ)
d , H(τ)} must both preserve the sys-

tem’s symmetries and maintain the bulk gap (i.e., the
system’s band gap if it is periodic and infinite). This
process also assumes some locality criteria on H(τ) and

X
(τ)
j , such that two sites that are sufficiently far apart

cannot be coupled [86]. Instead, if H(τ) and X
(τ)
j repre-

sent a finite system (as is necessary to use the spectral
localizer), the concept of a bulk gap in the continuation
process needs to be replaced in someway. One option is



to impose periodic boundary conditions and insist that
H(τ) stays gapped, c.f. [86]. In the case of open boundary
conditions, a concept of a local gap is necessary, as the
system may possess boundary-localized states (of trivial
or topological origin) that would otherwise obscure the
spectrum of a system with an insulating interior.

In particular, the criteria of preserving a local gap in

{X
(τ)
1 , · · · , X

(τ)
d , H(τ)} can be guaranteed by monitoring

its localizer gap along this path—a system’s topology at
λ cannot change so long as the localizer gap at that λ

remains open. Specifically, it has been proven that a
symmetry preserving perturbation to the Hamiltonian,
δH , is unable to close the localizer gap at λ so long
as ‖δH‖ < min(|σ(Lλ)|), [78, Lemma 7.2], and a sim-
ilar statement can be made about perturbations to the
position operators, δXj. Moreover, this measure of the
strength of the topological protection inherently includes
the possibility of correlated disorder that is “designed” to
defeat the system’s topology. As such, in most systems,
the localizer gap will underestimate the strength of the
system’s topological robustness for uncorrelated disorder.
There has also been recent progress in understanding the
effects of perturbations that only approximately respect
the system’s symmetry class [88].

With these definitions in place, we can present a com-
plete picture of how the spectral localizer determines a
material’s topology. Overall, there is a constellation of
theorems that dictate how the spectral localizer can be
used to assess whether a given set of matrices can be con-
tinued to commuting matrices for systems of any physical
dimension and in any symmetry class [78–80]. In general,
there will be some property of Lλ that identifies whether
such a continuation is possible at a given λ while pre-
serving the system’s symmetries and without closing the
localizer gap at that λ; this same property also defines a
local topological invariant. If there is an obstruction to
finding a continuation to commuting operators, the non-
trivial topology at that λ is protected against perturba-
tions that do not close the localizer gap. Moreover, as the
localizer gap is a continuous (but not smooth) function of
λ, neighboring choices of λ in position-energy space pos-
sess similarly sized localizer gaps (and thus, topology).
Finally, bulk-boundary correspondence is built right into
this picture, the localizer gap associated with a topo-
logically non-trivial region of position-energy space must

close around the perimeter of the system where the topo-
logical boundary-localized states have strong support, as
far away from the finite material the spectral localizer
must exhibit trivial topology.

To provide an example for a specific class of topology,
consider 2D systems with broken time-reversal symme-
try that may possess a non-zero Chern number. For this
symmetry class, the system’s operators are H , X , and Y ,
and the system possesses non-trivial topology for some
region in position-energy space if H − EI, X − xI, and
Y −yI cannot be continued to commuting while preserv-
ing their Hermiticity. In this case, the property of Lλ

that identifies the possible obstruction is its signature,

sig(Lλ), which is the number of its positive eigenvalues
minus the number of its negative eigenvalues. In partic-
ular:

1) IfH , X , and Y commute, then sig(Lλ(X,Y,H) = 0
for any choice of λ [89, Lemma 4].

2) The signature of Lλ(X,Y,H) cannot change
through continuation ofH−EI, X−xI, and Y −yI
without closing the localizer gap at λ [90].

Thus, even if H , X , and Y do not commute, if
sig(Lλ(X,Y,H) = 0 for every choice of λ, then the sys-
tem can be continued to an atomic limit without closing
the band gap / localizer gap and thus the system (as-
suming it is sufficiently large) is topologically trivial ev-
erywhere [91]. Conversely, if there is a choice of λ for
which sig(Lλ(X,Y,H) 6= 0, then the system possesses
non-trivial topology within the localizer gap surrounding
this choice of λ.
In comparison with traditional theories of topology,

the local nature of the topology predicted by the spec-
tral localizer can seem unusual, but this is simply the
language required to describe widely appreciated prop-
erties of topological systems within a real-space picture.
Consider a two band topological insulator. Filling only
the lower band results in a system that is not Wannieriz-
able (and cannot be continued to the atomic limit), but
if both bands are filled the system becomes Wannieriz-
able again. For the spectral localizer, the first case is
represented by choosing λ for E within the band gap
(and x in the system’s bulk) and finding non-trivial local
topology, while the second case corresponds to choosing
λ with an E greater than the maximum energy of the up-
per band and finding trivial local topology. In the latter
case (E outside both bands), the process of continuing
the system’s operators to commuting will maintain the
localizer gap at that E, but will close the localizer gap
for energies between the bands. Finally, we note that the
process of continuing a system’s operators to commuting
will generally involve changes to both H and Xj.

A. The Clifford pseudospectrum

For completeness and to aid a reader in understand-
ing previous works on the spectral localizer, we provide a
brief discussion of how the spectral localizer can be used
to calculate a system’s Clifford pseudospectrum. Mathe-
matically, the localizer gap defines the system’s Clifford
ǫ-pseudospectrum,

Λǫ(X1, · · · , Xd, H) =

{λ | min(|σ(Lλ(X1, · · · , Xd, H))|) ≤ ǫ}. (3)

A system’s Clifford spectrum is given by
Λ0(X1, · · · , Xd, H), i.e., the set of λ for which the
localizer gap vanishes. Thus, a system’s Clifford
pseudospectrum is a useful tool for finding surfaces in
position-energy space with constant localizer gap.
Intuitively, a system’s Clifford pseudospectrum (re-

gardless of the system’s topology) can be viewed as



a method for constructing an approximate joint spec-
trum of non-commuting operators. In other words, if
min(|σ(Lλ(X1, · · · , Xd, H))|) is small (relative to the
norms of the commutators), the system exhibits an
approximate eigenstate that almost diagonalizes all of
the operators simultaneously with approximate eigen-
values given by λ [78, 87]. But, note that even if
λ is a member of the system’s Clifford spectrum (i.e.,
min(|σ(Lλ(X1, · · · , Xd, H))|) = 0), that does not im-
ply that there is an exact eigenstate that exactly di-
agonalizes all of the constituent operators. Finally, the
Clifford pseudospectra is not the only tool that can be
used to understand the approximate joint spectra of non-
commuting matrices, which can be tackled using both
traditional two-operator pseudospectra [92–94] (in the
present context, these could only be used for 1D lattices),
or other constructions of multi-operator pseudospectra
[87] (i.e., different ways of combining eigenvalue equa-
tions that need not use a Clifford representation). How-
ever, as the Clifford pseudospectra is computed using Lλ,
it is the only (currently known) tool for finding approx-
imate joint spectra that is also related to the system’s
topology.

B. A note on numerical computation

We conclude this brief review of the spectral local-
izer with a few comments about the numerical calcu-
lation of its properties. Although the spectral local-
izer is agnostic to the choice of basis used for its con-
stituent operators, if a material’s Hamiltonian is writ-
ten in a tight-binding basis, the position operators, Xj,
are simply diagonal matrices that index the jth co-
ordinate of each of the lattice sites (different orbitals
at the same site have the same position). Thus, in
the tight-binding basis, Lλ(X1, · · · , Xd, H), is a (usu-
ally large) sparse Hermitian matrix and the localizer
gap, min(|σ(Lλ(X1, · · · , Xd, H))|), can be efficiently cal-
culated using standard sparse eigenvalue solvers as only
a single eigenvalue is needed. The properties of the spec-
tral localizer that reveal the system’s K-theory only need
to be calculated a few times, and only once per region in
position-energy space where the localizer gap is large, as
these properties cannot change without the localizer gap
closing.
Moreover, we note that for at least some of the relevant

properties of Lλ, there are significant numerical speedups
available. For example, to find a matrix’s signature, it is
not necessary to find its full set of eigenvalues. Instead,
as Lλ(X1, · · · , Xd, H) is Hermitian, one can make use of
Sylvester’s law of inertia [95, 96], which states that

sig(Lλ) = sig(D), (4)

where Lλ = PDP † is the LDLT decomposition of the
spectral localizer. Thus, as D is diagonal (or block diag-
onal in some numerical implementations with 1-by-1 and
2-by-2 blocks), the computational cost of finding sig(Lλ)

is entirely dictated by the speed of the sparse LDLT de-
composition algorithm, which is, in general, more effi-
cient than finding the full spectrum of Lλ.

III. TOPOLOGICAL CHERN METAL

To illuminate how the spectral localizer can be used to
classify topological metals, we first consider a 2D Chern
insulator with an added intervening band that is degen-
erate with the Chern insulator’s chiral edge states. A
minimal tight-binding model for this system can be con-
structed from a Haldane lattice coupled to a single-band
triangular lattice whose vertices are located in the cen-
ter of each honeycomb [51, 55], and whose Hamiltonian
is schematically illustrated in Fig. 1a. The Haldane lat-
tice is parameterized by the nearest neighbor coupling,
t1, next-nearest neighbor couplings with amplitude and
phase tC and φ, and the on-site sublattice energy dif-
ference 2m. The triangular lattice has nearest neighbor
coupling t2 and on-site energym2. The coupling strength
between the two lattices is t3. In the absence of coupling
between the two lattices, t3 = 0, the Haldane model ex-
hibits topological and trivial insulating phases separated
by semi-metal phases and protected by the Chern num-
ber, C, see Fig. 1b, while the triangular lattice exhibits
a single band centered around E = m2. When the cou-
pling between the two lattices is turned on, |t3| > 0, the
intervening band from the triangular lattice prohibits the
unique identification of chiral edge states within its ex-
tent, as the chiral edge states will generally hybridize
with the degenerate states of the interstitial triangular
lattice.
Previous numerical studies have shown that this met-

allized Haldane model exhibits unusual transport prop-
erties that are robust against disorder, even for choices
of the Fermi energy that are within the range of the mid-
dle band across the entire Brillouin zone (e.g., E = 0 in
Fig. 1c) [51, 55]. However, for choices of the Fermi en-
ergy within the middle band, the states responsible for
these transport properties cannot be uniquely identified
using conventional analysis methods, as any boundary-
localized states are degenerate with the bulk states of the
triangular lattice. For example, the local density of states
(LDOS) at E = 0 cannot distinguish between topological
(Fig. 1d) and trivial (Fig. 1h) metals as the contributions
from the degenerate bulk in the system’s LDOS outweigh
the contributions of any topological boundary-localized
phenomena. Moreover, the absence of a bulk band gap
at E = 0 not only poses problems for defining an invari-
ant for this system using band theory, but also inhibits
the use of other real-space definitions of topology such
as topological markers [61] as a system’s ground-state
projection operators are only exponentially localized in
gapped systems [97–99].
Here, we use the spectral localizer to show that

boundary-localized resonances exist in the metallized
Haldane model, even for energies within the extent of the



FIG. 1. (a) Schematic of the tight-binding model for a
Haldane lattice, green and orange circles, coupled to a triv-
ial lattice, blue triangles. Some couplings are only shown
in a portion of the system for clarity. (b) Haldane model
phase diagram, with the topological (red) and trivial (blue)
systems considered indicated. (c-f) Simulations of a metal-
lized Haldane lattice, with m/t1 = 0, tC/t1 = 0.5, φ = π/2,
m2/t1 = −0.35, t2/t1 = 0.2 and t3/t1 = 0.3. (c) Ribbon band
structure with two zig-zag edges. Chiral edge states can be
identified outside of the intervening band. ∆E is the bulk
gap between the top and bottom bands. (d) Local density
of states at E = 0. Each lattice site is represented as a 2D
Gaussian with radial width r0 = 0.5a. (e) 2D localizer gap,
min(|σ(Lλ(X,Y,H))|)/∆E at λ = (x, y,E = 0) with κ = 1.
Overlay shows the local Chern number, CL(x, y, 0) = 1 (red)
or = 0 (clear). (f) Localizer spectrum along the green line in
(e). The eigenvalue which yields a change in topology is high-
lighted in magenta. (g-j) Same as (c-f), except for a trivial
metal, with m/tC = 4

√
3.

middle band, quantify the topological protection of these
boundary-localized phenomena, and identify a topologi-
cal invariant that classifies this behavior. For a 2D sys-
tem, the spectral localizer can be explicitly written as

Lλ=(x,y,E)(X,Y,H) =
(

H − EI κ(X − xI)− iκ(Y − yI)
κ(X − xI) + iκ(Y − yI) −(H − EI)

)

.

(5)

As the spectral localizer directly incorporates informa-
tion about the system’s spatial and spectral properties on
equal footing, it is able to identify the approximate pres-
ence (or absence) of a state at a given position and energy
regardless of other degenerate states elsewhere in the sys-
tem. Thus, the localizer gap, min(|σ(Lλ(X,Y,H))|), im-
mediately reveals the difference between the topological
and trivial phases of the metallized Haldane model. In
its topological phase (Fig. 1e), the presence of the chi-
ral edge states causes the localizer gap to close around
the entire perimeter of the system regardless of whether
the boundary-localized states hybridize with the bulk
states of the interstitial triangular lattice. This behav-
ior is qualitatively distinct from the metallized Haldane
model’s trivial phase (Fig. 1i), where the lack of any
boundary-localized states means that the localizer gap
remains open around the system’s boundary. Moreover,
the sizeable localizer gap just inside the boundary closing
of the topological system indicates that these boundary-
localized states (or resonances) are robust against disor-
der despite the absence of a bulk band gap. Since the
localizer gap is not, in this case, a local manifestation of
any sort of a bulk band gap, it is a mathematical mys-
tery why it occurs, related to the discovery in [50] of how
the spectral localizer can exhibit larger gaps than the
underlying system in semi-metals.
The topological invariant at any λ = (x, y, E) with

non-zero localizer gap for 2D systems in symmetry class
A is given by

CL(x, y, E) = 1
2 sig

(

L(x,y,E)(X,Y,H)
)

∈ Z, (6)

Thus, this formulation of the local Chern number is nec-
essarily an integer, even for finite systems. Calculating
this invariant for the metallized Haldane model in Figs.
1c-f proves it is topological (i.e., X−xI, Y − yI, H−EI
cannot be continued to be commuting for some λ), as
it exhibits a non-trivial local Chern number in its bulk
even for energies residing within the extent of the middle
band. Furthermore, this non-trivial bulk topology can
be viewed as forcing the localizer gap to close around
the Chern metal’s entire edge, as the local Chern num-
ber must be trivial far away from the system and, thus,
the localizer gap along any path connecting the system’s
interior and exterior must close for one of the localizer’s
eigenvalues to switch signs, see Figs. 1f,j.
As the spectral localizer yields a set of local, real-space

definitions for finding boundary-localized states and de-
termining topological invariants, its entire mathematical



FIG. 2. 2D localizer gap, min(|σ(Lλ(X,Y,H))|)/∆E at λ =
(x, y,E = 0) with κ = 1, for a metallized Haldane lattice
(same as Fig. 1) with added on-site disorder with strength
W/∆E = 0.89 (a) andW/∆E = 1.77 (b). The colored overlay
shows the local Chern number, sig(Lλ(X,Y,H))/2 = 1 (red)
or = 0 (clear). Here, ∆E is the gap between the first and
third bands of the system, see Fig. 1c.

machinery is immediately applicable in the presence of
disorder, without any alteration. Thus, we can show that
the topology of the metallized Haldane lattice is robust
against perturbations that do not close the gap between
the system’s first and third bands, ∆E in Fig. 1c, i.e.,
those bands which originate from the insulating Haldane
lattice. To demonstrate this, we add on-site disorder to
the system with strength W , such that each vertex has
an independent, uniformly distributed random on-site en-
ergy in the range [−W/2,W/2]. For W < ∆E, the topo-
logical character of the system remains unchanged, and
the entire bulk still possesses a non-trivial local Chern
number (Fig. 2a shows one disorder realization). As the
strength of the disorder is further increased, W > ∆E,
the system begins to revert to a trivial phase (Fig. 2b).
Nevertheless, even at this strength of disorder, regions
within the system can still be in a topological phase, and
these topological islands can be identified using the local
Chern number, Eq. (6).

IV. HIGHER-ORDER TOPOLOGICAL METAL

To demonstrate the generality of using the spectral
localizer to identify topological metals in any symme-
try class, we show the existence of robust higher-order
topological metallic phases with in-band corner-localized
states and find the associated local topological invariant.
Moreover, one may argue that in the metallized Haldane
model, it is possible to continue the system to a Haldane
insulator with an intervening decoupled flat band from
the interstitial triangular lattice, enabling the topology
of the Haldane insulator to perhaps be inferred from tra-
ditional methods. Instead, in this section, we consider a
system where the intervening metallic bands are intrinsic
to the underlying lattice.
Here, we consider a 2D chiral and C4v symmetric lat-

tice with four sites per unit cell, whose tight-binding
model is schematically shown in Fig. 3a, and in which
v and w are the intra- and inter-unit cell couplings, re-
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FIG. 3. (a) Schematic of the tight-binding model for a higher-
order topological metal with intra-unit cell couplings v, and
inter-unit cell couplings w. (b) Bulk band structure with
w/v = 3. ∆E/v = 2 is the bulk gap between the bottom
and middle bands. (c) Local density of states at E = 0. Each
lattice site is represented as a 2D Gaussian with radial width
r0 = 0.5a. (d) 2D localizer gap, min(|σ(Lλ(X,Y,H))|)/∆E
at λ = (x, y, E = 0) with κ = 0.1.

spectively. When a magnetic flux is uniformly threaded
through this system, it becomes an insulator at E = 0,
and when the system is in its topological phase, w > v,
zero-energy corner-localized states appear [28–31]. With-
out this flux, the middle two bulk bands of this system
are degenerate and centered at E = 0, Fig. 3b. Previous
studies of this flux-less system with w > v have shown
that so long as C4v (and chiral) symmetry are preserved,
corner-localized states exist that are prohibited from hy-
bridizing with the degenerate bulk states [57, 58], and
are associated with a non-trivial fractional corner charge
invariant [59]. However, these arguments do not hold in
the absence of C4v symmetry, nor do they readily gen-
eralize to other gapless systems suspected of exhibiting
higher-order topological behaviors.

We first use the 2D spectral localizer, Eq. (5), to see
that the topological states must remain approximately lo-
calized to the corners until any added disorder is strong
enough to close the gap between the system’s bottom and
middle bands (or, equivalently, the gap between its mid-
dle and top bands), information which is not available
in the system’s local density of states, Figs. 3c,d. How-
ever, as the metallic system in Fig. 3a is in symmetry
class AIII, the 2D spectral localizer is not connected to a
non-trivial topological invariant [81, 86, 100]. Neverthe-
less, strong topological invariants in 1D protect 0D edge
states, and the 0D corner states of higher-order topolog-
ical phases are, in the absence of crystalline symmetries,
boundary obstructed, rather than bulk obstructed [29].



Thus, it seems reasonable to try to treat this system as if
it were 1D and borrow the mathematics of the 1D class
AIII invariant [78, §4.1] by projecting the lattice into a
lower dimension.
To isolate a corner of the system in the reduced di-

mension, we use the diagonal position operator D =
(X + Y )/2. As a Gedankenexperiment, we are tilting
the system and looking in from a corner, and this choice
of diagonal position successfully isolates two of the cor-
ners. By symmetry, similar behavior will be assured at
the remaining two corners. The 1D spectral localizer can
be explicitly written as

Lλ=(d,E)(D,H) =
(

0 κ(D − dI)− i(H − EI)
κ(D − dI) + i(H − EI) 0

)

,

(7)

which allows for the local topological index (assuming
non-zero localizer gap) along the diagonal coordinate d =
(x+ y)/2 to be defined as

νL (d, 0) =
1
2 sig

[

(

0 I
)

L(d,0)(D,H)

(

Π
0

)]

= 1
2 sig [(κ(D − dI) + iH)Π] ∈ Z, (8)

where Π is the system’s chiral operator, ΠHΠ = −H
(and ΠDΠ = D) [78, 79]. Note, νL is only well-defined for
E = 0, which is a mathematical consequence of the fact
that the topological states that these chiral-symmetric
systems exhibit (if they exist) are guaranteed to be at
zero energy. For a true 1D system, νL is a local version of
the 1D winding number, while for higher-order topolog-
ical phases in higher dimensional systems we conjecture
that it is a local version of the corresponding multipole
chiral number [101] and is related to the infinite-volume
invariants in Ref. [102]. In all cases, as νL depends on a
matrix’s signature, it is guaranteed to be an integer, and
it is identifying whether D and H can be continued to be
commuting while preserving both their Hermiticity and
chiral symmetry (and local localizer gap).
Calculating Eq. (8) along the diagonal of the metallic

system in Fig. 3a reveals its higher-order topology: the
system acquires a non-trivial invariant after the localizer
gap first closes at a corner of the system, indicating the
presence of a corner-localized state (cyan curves in Fig.
4). Moreover, the nearby localizer gap prevents this state
from moving into the system’s bulk for disorder strengths
W < 0.5∆E. (∆E is the bulk band gap between the
top or bottom band and the middle bands.) Thus, even
though the corner-localized states will hybridize with the
bulk for any strength of disorder, the system’s spectral
localizer identifies that these states must maintain sup-
port on the system’s corners until the disorder is strong
enough to close the localizer gap. We can explicitly con-
firm this topological protection by adding disorder to the
system which breaks all crystalline symmetries and time-
reversal symmetry, where we numerically observe the en-
semble averaged localizer gap to remain open and the
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FIG. 4. (a) 1D localizer gap, min(|σ(Lλ(D,H))|)/∆E, for a
disordered higher-order topological metal projected along the
diagonal position λ = ((x+ y)/2, 0), with κ = 2. Added dis-
order has strength W/∆E = [0, 0.5, 1, 1.5, 2], increasing from
cyan to magenta. Solid lines show the average of an ensemble
of 100 different disorder realizations, while filled regions show
the average ±1 standard deviation. Data is offset vertically
for clarity, each horizontal gray line corresponds to a change
in ∆E = 1, and in the bulk of the system (x + y)/2 > 2 the
ensemble average of the localizer gap is nearly zero for each
strength of disorder. (b) Similar to (a) for the local topologi-
cal invariant νL given by Eq. (8).

topological index to remain pinned to νL = 1 with little
variance even for W = 1.5∆E, see Fig. 4. This provides
numerical evidence for the notion that for uncorrelated
disorder the localizer gap is usually an underestimate of
the strength of the topological protection in a system.
Note that the traces of νL in Fig. 4b are ensemble av-
erages, and thus will generally deviate from having an
integer value, but each constituent curve in the average
is always an integer for any choice of d.

V. DISCUSSION

In conclusion, we have developed a general theory for
assessing a metallic or gapless system’s topology using
its spectral localizer, even in the presence of disorder.
This theory is able to both demonstrate the existence
of boundary-localized modes despite a degenerate back-
ground continuum, and yields a measure of the strength
of these systems’ topological protection. To our knowl-
edge, other methods of defining a local or global index
all rely on some notion of a gap in the bulk spectrum,
perhaps a mobility gap, and are not designed to work
in a gapless setting. Indeed, the localizer index was ini-
tially designed to work in the presence of a bulk gap,
since a bulk gap causes a localizer gap [78–80]. Nev-
ertheless, we have found that useful localizer gaps can
still appear even in the absence of a bulk gap, due to
the spatial separation between degenerate states that can
be revealed using pseudospectral methods. Although we
have only explicitly demonstrated this theory for Chern
and higher-order topological metals, this theory should
extend without difficulty to all symmetry classes and for
systems in any dimension, as the necessary local invari-
ants based on the spectral localizer have already been



derived [78–80], enabling the discovery of novel topolog-
ical phases of matter in natural and artificial metals and
other gapless materials.
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order topological insulators in amorphous solids,
Phys. Rev. Research 2, 012067 (2020).

[77] Z. Yang, E. Lustig, Y. Lumer, and M. Segev, Pho-
tonic Floquet topological insulators in a fractal lattice,
Light: Science & Applications 9, 128 (2020).

[78] T. A. Loring, K-theory and pseudospectra for topologi-
cal insulators, Annals of Physics 356, 383 (2015).

[79] T. A. Loring and H. Schulz-Baldes, The
spectral localizer for even index pairings,
J. Noncommut. Geom. 14, 1 (2020).

[80] T. A. Loring and H. Schulz-Baldes, Finite
volume calculation of K-theory invariants,
New York J. Math. 23, 1111 (2017).

[81] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Lud-
wig, Topological insulators and superconductors: ten-
fold way and dimensional hierarchy, New Journal of
Physics 12, 065010 (2010).

[82] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory,
Z. Wang, C. Felser, M. I. Aroyo, and B. A.
Bernevig, Topological quantum chemistry,
Nature 547, 298 (2017).

[83] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space

groups, Nat. Commun. 8, 50 (2017).
[84] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G.

Vergniory, C. Felser, M. I. Aroyo, and B. A.
Bernevig, Building blocks of topological quan-
tum chemistry: Elementary band representations,
Phys. Rev. B 97, 035139 (2018).

[85] M. B. Hastings and T. A. Loring, Topological insula-
tors and c∗-algebras: Theory and numerical practice,
Ann. Phys. July 2011 Special Issue, 326, 1699 (2011).

[86] A. Kitaev, Periodic table for topo-
logical insulators and superconductors,
AIP Conference Proceedings 1134, 22 (2009).

[87] A. Cerjan, T. A. Loring, and F. Vides, Quadratic
pseudospectrum for identifying localized states,
arXiv:2204.10450 [cond-mat, physics:math-ph, physics:physics, phys

[88] N. Doll and H. Schulz-Baldes, Approximate
symmetries and conservation laws in topo-
logical insulators and associated Z-invariants,
Ann. Physics 419, 168238, 25 (2020).

[89] M.-D. Choi, Almost Commuting Matri-
ces Need not be Nearly Commuting,
Proc. Am. Math. Soc. 102, 529 (1988).

[90] T. Kato, Perturbation Theory for Linear Operators, 2nd
ed. (Springer, Berlin, 2013).

[91] T. Loring, Lifting solutions to perturbing problems in
C*-algebras (American Mathematical Society, Provi-
dence R.I., 1997).

[92] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A.
Driscoll, Hydrodynamic Stability Without Eigenvalues,
Science 261, 578 (1993).

[93] L. N. Trefethen, Pseudospectra of Linear Operators,
SIAM Rev. 39, 383 (1997).

[94] L. N. Trefethen and M. Embree,
Spectra and Pseudospectra (Princeton University
Press, 2005).

[95] J. Sylvester, XIX. A demonstration of the theo-
rem that every homogeneous quadratic polynomial
is reducible by real orthogonal substitutions to
the form of a sum of positive and negative squares,
The London, Edinburgh, and Dublin Philosophical Magazine and Jo

[96] N. J. Higham, Sylvester’s influence on applied mathe-
matics, Mathematics Today 50, 202 (2014).

[97] W. Kohn, Density Functional and Density Matrix
Method Scaling Linearly with the Number of Atoms,
Phys. Rev. Lett. 76, 3168 (1996).

[98] R. Resta, Kohn’s theory of the insulat-
ing state: A quantum-chemistry viewpoint,
J. Chem. Phys. 124, 104104 (2006).

[99] R. Resta, The insulating state of matter: a geometrical
theory, Eur. Phys. J. B 79, 121 (2011).

[100] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W.
Ludwig, Classification of topological insulators
and superconductors in three spatial dimensions,
Phys. Rev. B 78, 195125 (2008).

[101] W. A. Benalcazar and A. Cerjan, Chiral-Symmetric
Higher-Order Topological Phases of Matter,
Phys. Rev. Lett. 128, 127601 (2022).

[102] S. Hayashi, Classification of topological invariants re-
lated to corner states, Letters in Mathematical Physics
111, 1 (2021).


