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Abstract. The Clifford spectrum is an elegant way to define the joint spectrum of several Hermitian
operators. Examples as small as a triple of 2-by-2 matrices can have Clifford spectrum a two-dimensional
manifold. To date, there are very few noncommuting examples where the Clifford spectrum has been
computed.

Our main goal is the generation of various of noncommuting examples of three or four Hermitan matrices

where we can calculate the Clifford spectrum. In some cases our results are rigorous, perhaps involving
assistance from a computer algebra package. In other cases we rely on computer estimation to plot the

spectrum. We make a few conjectures, for example regarding the possible spaces that can appear as Clifford
spectra.

1. Introduction

The Clifford spectrum is one way extend the concept of joint spectrum of commuting matrices to work
for noncommuting operators. We are only interested in Hermitian matrices as in the back of our minds we
envision applications to quantum physics and string theory. Given (X1, . . . , Xd), where the Xj are all n-by-n
Hermitian matrices, we define a Dirac-type operator

L(X1, . . . , Xd) =
∑

Xj ⊗ γj

where the γj are d matrices that satisfy the Clifford relations

(1.1)

γ∗
j = γj (∀j)

γ2
j = I (∀j)

γjγk = −γkγj (j ̸= k)

.

We can use L(X1, . . . , Xd) to determine only if 0 is in the Clifford spectrum. To find the full spectrum, we
shift the matrices by scalars, and define

Lλ(X1, . . . , Xd) = L(X1 − λ1, . . . , Xd − λd)

=
∑

(Xj − λj)⊗ γj .

Due to many clashes of terminology between mathematics and physics, it seems now prudent, as discussed
in [8], to call Lλ the spectral localizer of the d-tuple (X1, . . . , Xd).

Definition 1.1. The Clifford spectrum of d-tuple (X1, . . . , Xd) of Hermitian matrices is the set of λ in R
d

such that Lλ(X1, . . . , Xd) is singular. This is denoted Λ(X1, . . . , Xd).

Remark 1.2. This definition works for Hermitian operators, even when unbounded. We will focus on the
matrix case, except in a few comments and examples.

It was Kisil [7] who noticed that the Clifford spectrum equals the Taylor spectrum in the case where the
Xj all commute with each other. In the case of finite matrices, a singular localizer at λ implies there is a
joint eivenvector with eigenvalues the components of λ, and this is exactly what any form of joint spectrum
should mean for commuting finite matrices. We will see a more general result in §2, where it is shown that for
almost commuting matrices we can associate to points in the Clifford spectrum vectors with small variation
with respect to each Xj . In the noncommuting case, the Clifford spectrum can be an infinite, bounded set.
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In string theory, the Clifford spectrum is used, but tends to be called the “emergent geometry” [2], or the
“set of probe points” [13] etc. In that context, the Clifford spectrum is thought of as the set of locations
where a fermionic probe of a D brane can lead to low energy resonance.

For some calculations, we will look at the square of the localizer. It is important to note that the square
of this Dirac-type matrix is not exactly the corresponding Laplace-type matrix. Indeed, one can calculate
[10] that

(1.2) (Lλ(X1, . . . , Xd))
2
=

d∑

j=1

(Xj − λj)
2 ⊗ I +

∑

j<k

[Xj , Xk]⊗ γjγk.

Why not use directly a Laplace-type operator to define a spectrum? This will be correct in the commuting
case.

Definition 1.3. The Laplace spectrum of Hermitian d-tuple (X1, . . . , Xd) is the set of λ in R
d such that

d∑

j=1

(Xj − λj)
2

is singular.

The Laplace spectrum is used in string theory [13]. We will see it has a flaw that keeps it out of general
use. In some cases, when the commutators are small, one might be able to prove that the Laplace spectrum
is a decent approximation of the Clifford spectrum.

An issue with the Clifford spectrum is that it is very hard to work examples by hand. Looking hard at the
math and string theory literature, we find a only a handful of explicit examples where the Clifford spectrum is
known. Indeed, Schneiderbauer and Steinacker [13], and also Sykora [14], use a computer algebra package for
many fuzzy geometry calculations. We are taking on a similar challenge, using a computer algebra package
to find more examples.

We will often use a generalized characteristic polynomial to calculate the Clifford spectrum of vari-
ous examples. The generalized characteristic polynomial probably first appeared in work by Berenstein,
Dzienkowski and Lashof-Regas [3].

Definition 1.4. The characteristic polynomial of the d-tuple (X1, . . . , Xd) is the polynomial, in real variables
λ1 . . . , λd,

λ 7→ det(Lλ(X1, . . . , Xd))

which we denote char(X1, . . . , Xd).

The equation char(X1, . . . , Xd) = 0 determines the Clifford spectrum. This can become a polynomial
with many monomials in many variable even in rather modest examples. Hence the need, in many cases for
assistance from a computer.

Some of the complexity from increasing d, the number of matrices, comes from the fact that the γj get
bigger. It is best to use an irreducible representation of (1.1), which means that each γ is g-by-g for

g = 2⌊d/2⌋

as one can see from [12], for example. The wrong value for g was used in [10, §1] and so the estimates there
were not correct as stated. See Section 2.

Section 2 discusses the variance of joint approximate eigenvalues. Section 3 discusses the cases of one or
two matrices (or operators) where the Clifford spectrum agrees with the ordinary single-operator spectrum.
Section 4 looks at the case of three matrices, where the Clifford spectrum can be a surface. This is where
we have the most examples, as surfaces in three space are easy to display. Section 5 looks as the case of
four matrices, where the calculations and visualization become harder. Section 6 looks are variations on the
localizer and index (forms of K-theory) that assist with plotting and proving the stability of the Clifford
spectrum. We briefly discuss some conjectures in Section 7 that are based on our exploration of examples.
Many of the examples in Section 4 and the discussion of the archetypal polynomial are from the thesis of
DeBonis [5].

We will use mathematical notation throughout. Most importantly, Hermitian matrices are those for which
X∗ = X, and so conjugate transpose is indicated by X∗. In several places we will focus on unit vectors,
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so have in mind states of a quantum system. Since the word state means something different in operator
algebras, for this we stick the the neutral terminology.

The convention we prefer for identifying a tensor product of matrices with a larger matrix is the one such
that

A⊗
(
a b
c d

)
=

(
aA bA
cA dA

)

and this is opposite of the convention used by the KroneckerProduct operation in Mathematica.

2. Bounds on variance

Suppose v is a unit vector and X is a Hermitian matrix. Two important quantities when considering
quantum measurement are the expection value of X with respect to v

E(X)v = ⟨Xv,v⟩
and the variance of X with respect to v

Var(X)v = ⟨X2v,v⟩ − ⟨Xv,v⟩2.
For any scalar λ we have 〈

(X − λ)2v,v
〉
=
〈
X2v,v

〉
− 2λ ⟨Xv,v⟩+ λ2

and

⟨(X − λ)v,v⟩2 = ⟨Xv,v⟩2 − 2λ ⟨Xv,v⟩+ λ2

so we see that

(2.1) Var(X − λ)v = Var(X)v.

On the other hand,

(2.2) E(X − λ)v = E(X)v − λ.

If Var(X)v = 0 then v is an eigenvector for X for eigenvalue E(X)v.
When attempting joint measurement, for observables X1, . . . , Xd, one confronts often the impossibility of

finding any unit vector v that is simultaneously an eigenvector for all the observables. There are many lower
bounds on the variances that make this more precise, such as the Robertson–Schrödinger relation bounding
the product of the variance of two observables. A more recent example of such a lower bound, due to Chen
and Fei [4], gives lower bounds on the sum of d variances.

We look here at upper bounds on the sum of variances. Specifically, we will derive an estimate on how
small we can make the variances for if we choose certain unit vectors that are related to points in the Clifford
spectrum.

Lemma 2.1. Suppose X1, . . . , Xd are Hermitian, n-by-n matrices and λ is in Λ(X1, . . . , Xd). Then there

is a unit vector w in R
n such that

∑〈
(Xj − λj)

2
w,w

〉
≤ g

∑

j<k

∥[Xj , Xk]∥

for g = 2⌊d/2⌋.

Proof. Since shifting the Xj by λj has no effect on the commutators, we can reduce to the case of λ = 0.
Assume then that 0 is in the Clifford spectrum of X1, . . . , Xd. Then there is a vector z in R

gn such that

(2.3) L0(X1, · · · , Xn)z = 0.

One might be tempted to diagonalize L0(X1, · · · , Xd) so that z can be written down as a column vector
with only one single non-zero entry. This, however, would not be the best move: if we change coordinate
system, then X1 ⊗ γ1 + · · ·+Xn ⊗ γd would no longer be written in a block form and, therefore, we would
no longer be able to isolate Xj and use some of its properties. Therefore, we refrain from diagonalizing and
write z as

(2.4) z =



z1
...
zg



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where zk ∈ R
n for all k ∈ {1, · · · , g}. From (2.3) we obtain (L0(X1, · · · , Xn))

2
z = 0. Now (1.2) tells us

∑

j

(X2
j ⊗ Ig)z = −

∑

j<k

([Xj , Xk]⊗ (γjγk))z

and therefore ∥∥∥∥∥∥

∑

j

X2
j zr

∥∥∥∥∥∥
≤
∑

j<k

∥[Xj , Xk]∥

for every r. Now we select r in such a way that it maximizes ∥zr∥ and set

w =
1

∥zr∥
zr.

Thus,

1 = ∥z∥2 =

g∑

j=1

∥zj∥2 ≤ g∥zr∥2

and, therefore, ∥zr∥ ≥ 1/
√
g. We can now perform the following calculation:

∑〈
X2

jw,w
〉
=
〈∑

X2
jw,w

〉

≤ g
〈∑

X2
j zr, zr

〉

≤ g
∑

j<k

∥[Xj , Xk]∥.

□

Theorem 2.2. Suppose X1, . . . , Xd are Hermitian, n-by-n matrices and λ is in Λ(X1, . . . , Xd). Then there

is a unit vector w in R
n such that

d∑

j=1

Var(Xj)w + |E(Xj)w − λj |2 ≤ g
∑

j<k

∥[Xj , Xk]∥

for g = 2⌊d/2⌋.

Proof. By (2.1) and (2.2) we can again assume, without loss of generality, that λ = 0. By Lemma 2.1 there
exists a unit vector w such that ∑〈

X2
jw,w

〉
≤ g

∑

j<k

∥[Xj , Xk]∥ .

For any Hermitian matrix X and unit vector v we have
〈
X2v,v

〉
= Var(X)v + (E(X)v)

2

so in this special case we have
∑(

Var(Xj)w + (E(Xj)w)
2
)
≤ g

∑

j<k

∥[Xj , Xk]∥ .

□

For larger matrices, it will be difficult to determine the exact location of the Clifford spectrum. A
more practical approach is to find λ that are in the (Clifford) ϵ-pseudospectrum of X1, . . . , Xd, denoted
Λϵ(X1, . . . , Xd) as defined in [10]. By definition, λ is in Λϵ(X1, . . . , Xd) whenever

(2.5) ∥(Lλ(X1, · · · , Xn)
−1∥−1 ≤ ϵ.

In this paper, we will not use the function

λ 7→ ∥(Lλ(X1, · · · , Xn)
−1∥−1

to estimate the Clifford spectrum. Notice, however, that (2.5) is equivalent to the existence of a unit vector
z such that

(2.6) Lλ(X1, · · · , Xn)z ≤ ϵ.
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This can be proven easily if one considers a unitary diagonalization of the localizer, which is itself Hermitian.
It is rather easy to compute a unit vector that satisfies (2.6) and such vectors can in interesting, as we

now show.

Lemma 2.3. Suppose X1, . . . , Xd are Hermitian, n-by-n matrices and there is a vector z in R
gn such that

(2.6) holds for some ϵ ≥ 0. Then there is a unit vector w in R
n such that

∑〈
(Xj − λj)

2
w,w

〉
≤ ϵ2 + g

∑

j<k

∥[Xj , Xk]∥

for g = 2⌊d/2⌋.

Proof. The proof proceeds essentially the same as the proof of Lemma 2.1. The first difference is we find
that ∥∥∥∥∥∥

∑

j

X2
j zr

∥∥∥∥∥∥
≤ ϵ2 +

∑

j<k

∥[Xj , Xk]∥

for every r, again with the zr the g components of z.
□

The following now follows from Lemma 2.3 by the same argument as above. Notice that the method to
produce w from v is to just select the component of w that is largest and normalize it.

Theorem 2.4. Suppose X1, . . . , Xd are Hermitian, n-by-n matrices and there is a vector z in R
gn such that

(2.6) holds for some ϵ ≥ 0. Then there is a unit vector w in R
n such that

d∑

j=1

Var(Xj)w + |E(Xj)w − λj |2 ≤ ϵ+ g
∑

j<k

∥[Xj , Xk]∥

for g = 2⌊d/2⌋.

3. One or two Hermitian matrices

For one or two Hemitian matrices, the concept of Clifford spectrum overlaps with the usual concept of
spectrum of a matrix.

In the case of a single matrix X, we can take as Clifford representation

(3.1) γ1 = 1

which means the localizer is just

Lλ = X − λ

with λ a real variable. Since all the eigenvalues of X are real, this makes no real difference and so the new
characteristic polynomial det(Lλ) is the usual characteristic polynomial. Thus Λ(X) is just the ordinary
spectrum of X.

The case of two Hermitian matrices (X,Y ) also deviates only in technical ways from an ordinary spec-
trum. We will see right away that it is essentially the spectrum of X + iY . We can take here for Clifford
representation

(3.2) γ1 =

[
0 1
1 0

]
, γ2 =

[
0 −i
i 0

]
.

The localizer then becomes

L(r,s)(X,Y ) =

[
0 ((X − r) + i(Y − s))

∗

((X − r) + i(Y − s)) 0

]

and so

det
(
L(r,s)(X,Y )

)
= |det ((X + iY )− (r + is))|2 .

If we use a complex variable z = r + is on the right that becomes the square of the absolute value of the
usual characteristic polynomial of X + iY . Therefore

(3.3) (r, s) ∈ Λ(X,Y ) ⇐⇒ r + is ∈ σ(X + iY ).
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Example 3.1. Consider the two matrices

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
.

Then

X + iY =

[
0 2
0 0

]

which has spectrum {0}. Thus the Clifford spectrum of (X,Y ) is just the set {(0, 0)}. On the other hand,
the Laplace spectrum is the zero set of

det

([
−r 1
1 −r

]2
+

[
−s −i
i −s

]2)
= det

[
2 + r2 + s2 −2r + 2is
−2r − 2is 2 + r2 + s2

]

= 4 + r4 + 2r2s2 + s4.

The Laplace spectrum is the empty set in this simple example. For this reason, we focus only on the Clifford
spectrum [7].

Proposition 3.2. For two Hermitian matrices of size n, the Clifford spectrum is a finite set, with between

1 and n points as elements.

Proof. This follows easily by the equivalence of the Clifford spectrum of two Hermitian matrices with the
ordinary spectrum of a single matrix. □

Proposition 3.3. For d commuting Hermitian matrices of size n, the Clifford spectrum is a finite set, with

between 1 and n points as elements.

Proof. Now we use the equivalence of the Clifford spectrum of commuting Hermitian matrices with the
ordinary joint spectrum. The appropriate version of the spectral theorem tells us the joint spectrum is a
nonempty finite set of at most n points. □

The argument leading to the equivalence (3.3) is valid for Hermitian operators as well. One example is
worth examining.

Example 3.4. Let P and Q be the classical position and momentum operators on L2(R), so

Qf(x) = xf(x), Pf(x) = −if ′(x).

We will see that joint Clifford spectrum Λ(P,Q) is all of R1. This is because of its relation with the spectrum
of P + iQ. Looking more closely, let us look for eigenvectors, so f with

(Q+ iP )f = (r + is)f.

(If we look at the whole localizer, we need to solve
[

0 (Q− r)− i (P − s)
(Q− r) + i (P − s) 0

] [
g
f

]
=

[
0
0

]

which is essentially the same.) This translates to

f ′(x) = (α− x) f(x)

where α = r + is. Then

f(x) = e−
1

2
(x−r)2+isx.

is a (non-normalized) square-integrable solution to this differential equation for α = r+ is. Such a Gaussian
is well known to have limited deviation in position and momentum, so the spectral localizer method captures
what we would expect in this example.

The previous example is in some sense the limit as n → ∞ of an example we consider in Section 5. There
the four Hermitian matrices are the Hermitian and anti-Hermitian parts of the usual clock and shift unitary
matrices.
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What physicsts call the clock and shift, mathematicians often call Voiculescu’s unitaries. We want U to
be the cyclic shift and V to be a diagonal unitary with eigenvalues winding around the unit circle, specifically
as as follows. For each n ≥ 2 we define these two n-by-n unitary matrices as

(3.4) Un =




0 1
1 0

. . .
. . .

1 0
1 0




and

(3.5) V =




e2πi/n

e4πi/n

. . .

e2πi(n−1)/n

1



.

Now arguing heuristically, and from a physics perspective, suppose that space is compactified. Suppose
space has diameter is L, and further suppose that it is discretized, with lattice spacing ϵ. If k is the row
number, k ∈ {1, · · · , n}, we have

k =
x

ϵ
, n =

L

ϵ
Therefore,

Uk,k−1 ≈ 1− ϵ
∂

∂x
= 1− iϵp

and

Vkk = e2πik/n = ex/L ≈ 1 +
x

L
.

This implies that joint spectrum of U and V would roughly correspond to the joint spectrum of p and x,
if we will be looking for the eigenvalues that are very large rather than very small. If the size of U and V
gets larger and larger, the number of eigenvalues would increase as well, which intuitively explains why in
the limit we will get a continuous spectrum.

4. Three Hermitian matrices

In the case of three matrices, there is a range of interesting examples for which we can plot their Clifford
spectra using computer algebra package. We use the the Pauli Spin matrices for the Clifford representation
so that,

(4.1) γ1 =

[
0 1
1 0

]
, γ2 =

[
0 −i
i 0

]
, γ3 =

[
1 0
0 −1

]
.

The localizer now becomes,

L(x,y,z)(A,B,C) =

[
(C − zI) (A− xI)− i(B − yI)

(A− xI) + i(B − yI) −(C − zI)

]
.

Example 4.1. The first example with Clifford spectrum a surface was due to by Kisil [7], and we repeat
that here. The Pauli Spin matrices themselves are the three Hermitian matrices we consider. The following
can be computed by hand, but using symbolic algebra is preferred. We find

char (σx, σy, σz) = (x2 + y2 + z2 − 1)(x2 + y2 + z2 + 3)

and that here the Clifford spectrum is the unit sphere.

Example 4.2. A slight modification of the previous example leads to the Clifford spectrum being a surface
but not a manifold. We simply rescale some of the Pauli Spin matrices and consider 1

2σx, σy and 1
2σz. The

characteristic polynomial is now

char
(
1
2σx, σy,

1
2σz

)
= (x2 + y2 + z2)2 + 2z2 + 2x2 − y2.
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Figure 4.1. The Clifford spectrum of the three scaled Pauli Spin Λ
(
1
2σx, σy,

1
2σz

)
as ex-

plained in Example 4.2. The index at a point inside either lobe is 1. As always, for points
on the outside the index is 0. See the supplemental files Lemniscate.* for the calculations.

Since (x2 + y2)2 + 2x2 − y2 = 0 describes a lemniscate of Bernoulli, the surface here is a rotated lemniscate
as illustrated by Figure 4.1.

Mathematica and other computer algebra programs can produce accurate and compelling pictures of the
Clifford spectrum in many examples, but there are limitations. Some rather simple examples can lead to
the plot being incomplete, as we will demonstrate. We are asking a computer to verify that a certain set
is infinite, which is too big of a request. At least two methods are available to verify the results of some
examples. The first is to factor the characteristic polynomial and identify the zero-sets of the factors. The
second is to employ the information we get from the K-theory indices associated to almost commuting
matrices [10]. These generally must be zero when the Clifford spectrum is a finite set, so calculating a single
index can tell us that that a certain spectrum is an infinite set.

The index we start with is the most basic of those introduced in [10]. It is defined in terms of the
signature. For an invertible Hermitian matrix, the signature is the the number of positive eigenvalues, minus
the number of negative eigenvalues, of that matrix.

Definition 4.3. The index at λ for an ordered triple of non-commuting Hermitian matrices X1, X2, X3 is
defined only when λ is not in Λ(X1, X2, X3), and is given by

Indλ(X1, X2, X3) =
1

2
Sig (Lλ(X1, X2, X3)) .

The index at the origin is 1 for the Pauli spin matrices, as in Example 4.1. Inside either lobe of the lem-
niscate example this index is also 1. These facts can be calculated by hand, or one can see the supplemental
files PauliSpinTwoSphere.* and Lemniscate.* for the calculations.

Consider a path λt in R
3 with fixed X1, X2, X3, and assume that

Indλt0
(X1, X2, X3) ̸= Indλt1

(X1, X2, X3).

Since the localizer is Hermitian, the only way for this change to occur is if the localizer becomes singular
at some intermediate t. Thus any path between two points with differing index must cross the Clifford
spectrum.

It is easy to prove that if λ is larger than ∥L0(X1, X2, X3)∥ then the index at λ equals zero. Thus proving
that the index to be nonzero at a single point shown that the Clifford spectrum separates that point from
infinity. This proves that in that instance the Clifford spectrum is not a finite set.



SURFACES AND HYPERSURFACES AS THE JOINT SPECTRUM OF MATRICES 9

Figure 4.2. The Clifford spectrum of the matrices from Example 4.4. The values of t,
starting at the top-left, 1

2 , t =
2
3 . . . , t =

5
6 , t = 1. See supplemental files FSscaled5Croped.*

as well as the video file C5scale cmprsd.avi that shows the Clifford spectrum at many more
points on the path.

Already with 2-by-2 matrices, we start to see interesting topology emerge. Moving up to 5-by-5 and 6-by-6
and taking paths of Hermitian matrices, we see the suggestions of interesting patterns. Here we present some
of what we found. We encourage the reader to use our Mathematica supplemental files, or the SageMath
code listing in [14], as a basis to explore more examples.

Example 4.4. Berenstein, Dzienkowski, and Lashof-Regas [2, 3] looked at the matrices generating a fuzzy
sphere. We consider here similar matrices,

A =




2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2



, B =




0 1
4 0 0 0

1
4 0 1

4 0 0
0 1

4 0 1
4 0

0 0 1
4 0 1

4
0 0 0 1

4 0



, C =




0 − i
4 0 0 0

i
4 0 − i

4 0 0
0 i

4 0 − i
4 0

0 0 i
4 0 − i

4
0 0 0 i

4 0



.

By rescaling one of these matrices, we were able to see a higher iteration of the lemniscate surface. Specifically
we looked along the path (tA,B,C). We show in Figure 4.2 the Clifford spectrum at some points along this
path.

Example 4.5. This example is similar to one in [3], illustrating a transition in the Clifford spectrum between
a torus and a sphere. As we want a torus, it is not surprising we start with the clock V = Vn and shift
U = Un unitaries from (3.4) and (3.5). In Section 5 we will consider Clifford spectrum of four Hermitian
matrices and see again a torus. Here we want three matrices, so inspired by the usual parameterization of a
torus embedded in three-space we define

A = 1
2

(
R+ r

2U
∗ + r

2U
)
V ∗ + 1

2V
(
R+ r

2U
∗ + r

2U
)

B = i
2

(
R+ r

2U
∗ + r

2U
)
V ∗ − i

2V
(
R+ r

2U
∗ + r

2U
)

C = ri
2 U

∗ − ri
2 U.



10 PATRICK H. DEBONIS, TERRY A. LORING, AND ROMAN SVERDLOV

Figure 4.3. The Clifford spectrum of of Example 4.5 for R = 0.9 and from top-left, r = 4
10 ,

r = 6
10 , r = 7

10 , and r = 1. The Clfford spectrum for more values of r can be seen
in the supplementary file F5scale cmprsd.*, and the code to create these plots is in the
supplementary file FSscaled5Croped.avi.

We compute this specifically with n = 5, outer radius R = 0.9 and variable inner radius r. For four values
of r lead to the Clifford spectrum shown in Figure 4.3.
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Figure 4.4. A two-holed torus, and a deformation of that, arising as the Clifford spectrum
of the three matrices in Example 4.6. Starting at the top-right, the values of r used are
r = 1

2 , r = 2
3 , r = 5

6 , r = 1. The Clfford spectrum for more values of r can be seen in
the supplementary file lowering genus cmprsd.avi, and the code to create these plots is
in the supplementary files two holes.*. The index calculation in shown in supplementary
files two holes 6 index.*.

Example 4.6. Taking a hint from [14] we consider

X =




4
5

1
2

1
2

1
2 0 1

2
1
2

8
5

r
2

1
2

1
2

r
2

4
5

1
2

1
2

12
5

1
2

1
2

1
2

8
5



, Y =




0 − i
2 − i

2
i
2 0 − i

2
i
2 0 − ir

2 − i
2

i
2

ir
2 0 − i

2
i
2 0 − i

2
i
2

i
2 0




Z =




0
13
10

13
10

13
5

13
5

39
10



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which, for r = 1 is the smallest triples of matrices Sykora found that had Clifford spectrum a two-holed
torus. We computed numerically that index is for r = 1 at (2, 0, 0.25) inside the two-holed torus to confirm
we actually have a surface and not a cloud of points. The plots of the Clifford spectrum for several values
of r are shown in Figure 4.4.

5. Four Hermitian matrices

We need to make a choice of γ1, . . . , γ4, and warn the reader that these are related to but not equal to the
Dirac matrices. The Dirac matrices square sometimes to 1 and sometimes to −1. Here we need the relations
(1.1) which dictate that the matrices are all Hermitian and square to 1. Moreover, we have no use for a γ0
as we just want a linearly independent set. We use the Pauli spin matrices for convenience, but there is no
connection here with the spin of a particle.

Our choice here is as follows.

(5.1)

γ1 = σx ⊗ (−σy) =




0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0


 , γ2 = σy ⊗ (−σy) =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0




γ3 = σz ⊗ (−σy) =




0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0


 , γ4 = I2 ⊗ (σx) =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




The advantage these have is each γj is block off-diagonal. We can thus define the reduced localizer

(5.2) L̃λ(X1, X2, X3, X4) =

4∑

k=1

(Xk − λk)⊗ γ̃k

in terms of the upper-right blocks of the γj . Thus

γ̃1 = iσx, γ̃2 = iσy, γ̃3 = iσz, γ̃4 = I2.

With this notation, the localizer becomes

L̃λ(X1, X2, X3, X4) =

[
0 L̃λ(X1, X2, X3, X4)

(L̃λ(X1, X2, X3, X4))
∗ 0

]

and the characteristic polynomial can be computed via the formula

charλ(X1, X2, X3, X4) =
∣∣∣det

(
L̃λ(X1, X2, X3, X4)

)∣∣∣
2

Thus we have what we call the reduced characteristic polynomial

det
(
L̃λ(X1, X2, X3, X4)

)

and we can compute the Clifford spectrum by setting that to zero. In computer calculations, especially, we
use (w, x, y, z) in place of (λ1, λ2, λ3, λ4).

We will present three examples, with Clifford spectrum zero-dimensional, two-dimensional, and three-
dimensional. The case of two-dimensional Clifford spectrum in four-space is the most difficult, as such a
spectrum will not separate a point from infinity. This means there will be no possible K-theory argument,
and we are stuck with examining a complicated characteristic polynomial. The significance of the reduced
characteristic polynomial is that cuts down by half the degree of the polynomial we must study.

To get a torus in four space, we are able to use the Hermitian and anti-Hermitian parts of the clock
and shift unitaries. These are all symmetric matices, unchanged under the transpose (–)T) except the anti-
Hermitian part of the shift, which is anti-symmetric. The following lemma helps simplify things using that
symmetry.

Lemma 5.1. Suppose that X1, X2, X3, X4 are Hermitian matrices, that X1, X3 and X4 are symmetric and

X2 is anti-symmetric. Then

det
(
L̃(λ1,−λ2,λ3,λ4)(X1, X2, X3, X4)

)
= det

(
L̃(λ1,λ2,λ3,λ4)(X1, X2, X3, X4)

)
.
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n Imaginary part of reduced characteristic polynomial

3
(
w2 + x2 − y2 − z2

) (
3
2

√
3
)

4
(
w2 + x2 − y2 − z2

) (
4w2 + 4x2 + 4y2 + 4z2 + 8

)

5
(
w2 + x2 − y2 − z2

)(
5
2

√
1
2

(
65 + 29

√
5
)
+ [· · · ] + 5

2

√
1
2

(
5 +

√
5
)
z4
)

6
(
w2 + x2 − y2 − z2

) (
3
2

√
3
(
w2 + x2 + y2 + z2 + 2

)
([· · · ])

)

Table 1. The imaginary parts of the reduced characteristic polynomials used in the proof
of Theorem 5.2. For the full polynomials and how they are calculated, see the supplementary
files torus 4 n*.*, in particular the variable impoly.

n Effective real part of reduced characteristic polynomial

3 (−2 cos(3ϕ)− 2 cos(3θ))r3 + 8r6 + 12r4 + 3r2 − 1

4 r4(−2 cos(4ϕ)− 2 cos(4θ) + 20) + 16r8 + 32r6 − 4

5 32r10 + 80r8 +
(
65 + 5

√
5
)
r6 + (−2 cos(5ϕ)− 2 cos(5θ))r5 + [· · · ]

6 64r12 + 192r10 + 240r8 + (−2 cos(6ϕ)− 2 cos(6θ) + 148)r6 + 9r4 − 54r2 − 27
Table 2. Real parts of the reduced characteristic polynomials used in the proof of Theo-
rem 5.2. See the supplementary files torus 4 n*.*, in particular the variable altpoly.

n Derivatives in r of the Effective real parts

3 (−6 cos(3ϕ)− 6 cos(3θ))r2 + 48r5 + 48r3 + 6r

4 r3(−8 cos(4ϕ)− 8 cos(4θ) + 80) + 128r7 + 192r5

5 320r9 + 640r7 +
(
390 + 30

√
5
)
r5 + (−10 cos(5ϕ)− 10 cos(5θ))r4 + [· · · ]

6 768r11 + 1920r9 + 1920r7 + (−12 cos(6ϕ)− 12 cos(6θ) + 888)r5 + 36r3 − 108r
Table 3. Derivatives in r of the function in Table 2.

Proof. We observe that

γ̃T
k =

{
γ̃k if k ̸= 2

−γ̃k if k = 2

and similarly we have the assumption

XT
k =

{
Xk if k ̸= 2

−Xk if k = 2.

so we get that every term Xk ⊗ γ̃k is symmetric. On the other hand, every term λkIn ⊗ γ̃k is symmetric
except for k = 2, where that term is anti-symmetric. Let ϵj = 1 except for ϵ2 = −1. Then we have

(
4∑

k=1

(Xk − λk)⊗ γ̃k

)T

=

(
4∑

k=1

Xk ⊗ γ̃k

)T

+

(
4∑

k=1

λkIk ⊗ γ̃k

)T

=

4∑

k=1

(Xk − λk)⊗ γ̃k +

4∑

k=1

ϵjλkIk ⊗ γ̃k

=

4∑

k=1

(Xk − ϵjλk)⊗ γ̃k

Since the transpose does not effect the determinant, the result follows. □
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Theorem 5.2. Suppose n equals 3, 4, 5 or 6, and define

X1 = 1
2U

∗
n + 1

2Un, X2 = i
2U

∗
n − i

2Un

X3 = 1
2V

∗
n + 1

2Vn, X4 = i
2V

∗
n − i

2Vn

where Un and Vn are the clock and shift unitaries as in (3.4) and (3.5). Then the Clifford spectrum of

(X1, X2, X3, X4) is homeomorphic to a two-torus.

Proof. We would like to solve for where the reduced localizer is zero,

(5.3) det
(
L̃λ(X1, X2, X3, X4)

)
= 0.

We will do that in the following way. First, we will find the condition for the imaginary part of the
localizer to be zero. Then, after setting its imaginary part to zero, we will show that the real part has both
positive and negative values, which implies that it crosses zero at some point. Therefore, at the latter point
both real and imaginary parts are zero, which means the whole thing is zero.

We used computer algebra to calculate and simplify the reduced characteristic polynomial, with results

as shown in Table 1. In all cases, the condition ℑ det L̃(w,x,y,z) = 0 reduces to

(5.4) w2 + x2 = y2 + z2.

We now apply Lemma 5.1 and deduce we have (w, x, y, z) in the Clifford spectrum if, and only if, (w,−x, y, z)
is the Clifford spectrum. Thus we are justified in assuming x ≥ 0. With this assumption, the condition

ℑ det L̃(w,x,y,z) = 0 becomes

x =
√
−w2 + y2 + z2.

This means we can eliminate x in the polynomial ℜ det L̃(w,x,y,z) via the substitution

x 7→
√
−w2 + y2 + z2.

With this substitution, we get a somewhat more reasonable polynomial. In the case of n = 3 it is

−8w3 + 3z2
(
2w + 8y

(
y3 + y

)
+ 2y + 1

)

+6wy2 + 8y6 + 12y4 − 2y3

+12
(
2y2 + 1

)
z4 + 3y2 + 8z6 − 1

and for n = 4, 5, 6 this polynomial has too many terms to easily display. It can be seen as realpoly in the
supplementary files torus 4 n*.*.

Inspired by (5.4) we switch to polar coordinates in the first two and also the last two variables, as we
know the radius will be the same. That is, we make the substitution

(5.5)
w = r cos θ, x = r sin θ

y = r cosϕ, z = r sinϕ

and find the computer does a much better job simplifying. The Clifford spectrum will be the zero set of the
functions shown in Table 2, interpreted via (5.5). The function in the n = 5 case was too long for the table,
but can be seen as altpoly in the supplementary files torus 4 n5.*.

Now we finish the proof for the case n = 4, which is the easiest case. Let’s denote the relevant function
from Table 2 by f(r, θ, ϕ), so

f(r, θ, ϕ) = −4 + 32r6 + 16r8 + (20− 2 cos(4ϕ)− 2 cos(4θ))r4

and its r derivative is
∂f

∂r
= 192r5 + 128r7 + (80− 8 cos(4ϕ)− 8 cos(4θ))r3.

Since sine and cosine are bounded by ±1 we see that, for any angles ϕ and θ, ∂f
∂r > 0 for all r > 0 and so

f(r, θ, ϕ) is increasing for r ≥ 0. By observing that

f(θ, ϕ, 0) = −4

and

lim
r→∞

f(θ, ϕ, r) = ∞
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we know that, for any fixed (θ, ϕ), there exist at least one value of r for which f(θ, ϕ, r) = 0, and the fact
that ∂f/∂r > 0 implies that this value of r is unique. Call this value ρ(θ, ϕ), so

f(θ, ϕ, ρ(θ, ϕ)) = 0

Thus, the surface we are looking for is precisely the surface r = ρ(θ, ϕ), which is indeed topologically
equivalent to a torus since ρ(θ, ϕ) must vary continuously in θ and ϕ since the roots of a polynomial vary
continuous with respect to the coefficients [6]. The resulting surface in illustrated in Figure 5.2.

Now we look at the case n = 3. The relevant function from Table 2 is

f(r, θ, ϕ) = (−2 cos(3ϕ)− 2 cos(3θ))r3 + 8r6 + 12r4 + 3r2 − 1

with derivative in r being

∂f

∂r
= (−6 cos(3ϕ)− 6 cos(3θ))r2 + 48r5 + 48r3 + 6r

For 0 < r ≤ 1
2 we have the estimate

∂f

∂r
> (−6 cos(3ϕ)− 6 cos(3θ))r2 + 6r

≥ (−12r + 6)r ≥ 0

and for 1
2 ≤ r ≤ 1 we have the estimate

∂f

∂r
> (−6 cos(3ϕ)− 6 cos(3θ))r2 + 48r3

≥ (−12 + 48r)r2 ≥ 0

so again the derivative is positive except at zero it is zero. The rest of the proof follows as in the case n = 4.
The resulting surface in illustrated in Figure 5.1.

For the case n = 5 one can prove that for 0 ≤ r ≤ 3
5 ,

f(r, θ, ϕ) ≤ −2

and, for 3
5 ≤ r ≤ 1,

∂f

∂r
≥ 33

so again we see that for each pair of angles there is only one radius to make this function zero. The work to
create these two estimates is shown in the supplementary files torus 4 n5.*.

For the case n = 6 one can prove that for 0 ≤ r ≤ 3
5 ,

f(r, θ, ϕ) ≤ −20

and, for 3
5 ≤ r ≤ 1,

∂f

∂r
≥ 42

so again we see that for each pair of angles there is only one radius to make this function zero. The work to
create these two estimates is shown in the supplementary files torus 4 n6.*.

□

Example 5.3. In example 4.1 we saw that the Clifford spectrum of the gamma matrices lead to a sphere.
Taking the Clifford spectrum of the four gamma matrices (5.1) gives a somewhat different answer. In
the supplementary file GammaMatrices 4B.* are the symbolic calculations that for these four matrices the
reduced characteristic polynomial is

(
w2 + x2 + y2 + z2

)3 (
w2 + x2 + y2 + z2 + 8

)

and so the Clifford spectrum is a single point.
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Figure 5.1. The Clifford spectrum as a surface in four space. The top and bottom represent
half the surface, with color indicating the value in the fourth dimension — white indicates
zero, shades of yellow indicate positive values, and shades of blue negative values. This is
for the for Hermitian matrices extracted from the clock and shift matrices, with n = 3.

Figure 5.2. The Clifford spectrum as a surface in four space, for the Hermitian matrices
extracted from the clock and shift matrices, with n = 4.

Example 5.4. Now we look at a rescaling of the four gamma matrices (5.1),

X1 = 2γ1, X2 = γ2, X3 = γ3, X4 = γ4.
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-2 -1 0 1 2

-2

-1

0

1

2

w

R

Figure 5.3. The Clifford spectrum in Example 5.4 is this curve rotated in the two addi-
tional dimensions.

and find, in supplementary file GammaMatrices 4A.*, that the reduced characteristic polynomial is

(9 + 6R2 +R4 − 6w2 + 2R2w2 + w4)(−15 + 14R2 +R4 + 2w2 + 2R2w2 + w4)

where R =
√

x2 + y2 + z2. For this example, the Clifford spectrum is homeomorphic to the three-sphere.
See Figure 5.3.

6. Symmetry classes and K-theory charges

6.1. Where the index and plotting fail. We have the index to give us critical information about the
surfaces we have plotted. Sometimes the Clifford spectrum is a surface but the index is zero everywhere it
is defined. Moreover, in those situations the computer plotting can fail.

Example 6.1. The three matrices we consider are as follows:

(6.1) X =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , Y =




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


 , Z =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 .

Since the characteristic polynomial respects direct sums, it is easy to see from Example 4.1 that the charac-
teristic polynomial is

char (σx, σy, σz) = (x2 + y2 + z2 − 1)2(x2 + y2 + z2 + 3)2

so the Clifford spectrum is the unit sphere. Also, by looking at the direct sum structure, one can check that
the index zero at the origin. Thus the index is zero everywhere it is defined. Figure 6.1 looks at the plot
Mathematica makes using the characteristic polynomial for

(6.2) Xr =




0 1 0 0
1 0 0 0
0 0 r 1
0 0 1 r


 , Yr =




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


 , Zr =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




for various small values of r, and also at zero. At zero the output is the null plot, which is wrong.
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Figure 6.1. An example where we cannot trust the plot via the characteristic polynomial.
This is using matrices as in Example 6.1, with r = 0 at the top left, increasing by 1/6 and
ending at the bottom right with r = 1/2. The code to create these graphics are in the in
the supplementary files ClassAIIsphere.*.

6.2. A refined index in the case of self-dual symmetry. In the case of the matrices in Equation 6.1,
the matrices had an extra symmetry that went unused. They are all self-dual, a mathematical interpretation
of having fermionic time reversal symmetry.

Recall that the dual operation is defined as,

X# =

[
A B
C D

]#
=

[
DT −BT

−CT AT

]
,

where A,B,C, and D are square complex matrices. When a matrix X is self-dual and Hermitian, we have
both X# = X and X∗ = X.

If we have three matrices that are Hermitian and self-dual, we find that the localizer has an extra symmetry.
In this case, there is a matrix Q that conjugates the spectral localizer nicely, given by

Q =

[
I2n −iZ2n

iZ2n I2n

]

where

Z2n =

[
0 In

−In 0

]
.
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Figure 6.2. The self dual matrices from Example 6.3, plotted using the archetypal poly-
nomial. This is using matrices of Equation 6.3, with s = 0 at the top left, increasing by
1/6 and ending at the bottom right with s = 1/2. Plots made using the supplemntary file
ClassAIIspherePfaff.nb.

.

Conjugating the spectral localizer, by the unitary matrix 1√
2
Q we keep the determinant unchanged. That

is,
(

1√
2
Q
)∗

Lλ(A,B,C)
(

1√
2
Q
)
= 1

2Q
∗Lλ(A,B,C)Q

and

det
(
1
2Q

∗Lλ(A,B,C)Q
)
= det(Lλ(A,B,C)) = charλ(A,B,C).

Using Lemma 8.1 of Factorization of Matrices of Quaternions [9] we confirm that the conjugation produces
a skew-symmetric representation of the localizer and therefore,

(
1
2Q

∗Lλ(A,B,C)Q
)T

= − 1
2Q

∗Lλ(A,B,C)Q

We can now use the pfaffian instead of the determinant to detect where the localizer is singular.

Definition 6.2. The archetypal polynomial of a self-dual Hermitian triple (X,Y, Z) is defined as

archλ(X,Y, Z) = Pf
(
1
2Q

∗Lλ(X,Y, Z)Q
)
.
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Example 6.3. We look at a different path that starts with the troublesome matrices of (6.1). For 0 ≤ s ≤ 1
2

we define matrices

(6.3)

Xs =




0 1− 2s 0 s
1− 2s 0 −s 0

0 s 0 1− 2s
−s 0 1− 2s 0


 , Ys =




0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0


 ,

Zs =




1− s 0 0 0
0 −1 + s 0 0
0 0 1− s 0
0 0 0 −1 + s




which are self-dual and Hermitian. Here the plotting looks a lot better, shown in Figure 6.2. Also, we can
calculate a Z2 invariant, the sign of the archetypal polynomial. Again, this is known to be trivial (+1) far
from the origin, and so a value of −1 of the invariant disallows finite cardinality of the Clifford spectrum.

6.3. An index for even and odd matrices. Moving up a dimension, consider

(6.4)

X =




0 2 0 0
2 0 0 0
0 0 0 −2
0 0 −2 0


 , Y =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0


 ,

Z =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , H =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 .

The characteristic polynomial of these four matrices, computed by the code in the supplementary file
Even odd 4CMathematica.nb, is

(
R4 + 2R2w2 + 6R2 + w4 − 6w2 + 9

) (
R4 + 2R2w2 + 14R2 + w4 + 2w2 − 15

)

where R2 = x2 + y2 + z2. Again we have a surface homeomorphic to a three-sphere.
We introduce a grading via the matrix

Γ =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




so we consider a matrix M even if MΓ = ΓM and odd if MΓ = −ΓM . In the example under discussion,
the first three matrices are even and the last is odd.

With these symmetries, we get an index for points (w, x, y, z) not in the Clifford spectrum and with the

restriction that z = 0. This restriction is needed as translating H will ruin the symmetry HΓ = ΓH. The
index is based on the fact that

iL̃λ(X,Y, Z,H) (Γ⊗ I2)

is Hermitian, and the index is

1

2
Sig
(
iL̃λ(X,Y, Z,H) (Γ⊗ I2)

)
.

Here we are referring the the reduced localizer of (5.2). This is explained in [11].
For the matrices in (6.4), the index at the origin is −1. As always for lambda large compared to the norm

of the matrices the index is 0. Thus the part of the Clifford spectrum that intersects the hyperplane z = 0
is protected. Small, symmetry-preserving perturbations of the matrices will not change by much the part of
the Clifford spectrum intersected with z = 0.
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Figure 6.3. This figure shows parts of the Clifford spectrum for the four matrices in (6.5).
Shown are slices of the Clifford spectrum in 4-space through the hyperplances z = 0, z = 0.2,
z = 0.4 and z = 0.6. There is a ±z symmetry in this example so these images are valid for
the corresponding negative values of z. This plots we created using the file Even odd 4A.nb.

A little exploration of matrices near these lead to the following. Consider the four matrices

(6.5)

X =




r 2 0 0
2 0 0 0
0 0 0 −2
0 0 −2 r


 , Y =




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0


 ,

Z =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , H =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,

so r = 0 recreates the previous example. Figure 6.3 looks at slices of the Clifford spectrum for this example
in the case of r = 3

2 .
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7. Outlook

One striking pattern in our examples is that we never see a one-dimensional Clifford spectrum. Indeed,
the gap may be even larger. For size n matrices we see in our examples that when the spectrum is finite
(so zero-dimensional) it has at most n points. Of course this is known in the commutative case. In the
noncommutative case it is difficult to predict if this a general phenomenon, as our ability to compute the
Clifford spectrum for even four Hermitian matrices is still quite limited.

It would be nice to have examples of almost commuting matrices where we can prove that the Clifford
spectrum is some sort of manifold or other nice space. This will require working with much larger matrices
where the characteristic polynomial will not be accessible. A related study by Arlind [1] looks not at the
surfaces emerging but at representations of noncommutative algebras arising as deformations of surfaces of
higher genus. Perhaps one can find sequences of ever larger matrices with declining norms of commutators
that at every stage have Clifford spectrum a two-holed torus. Such an example could be of great interest in
both mathematics and physics.

Supplemetary files

The supplementary files are available for download from

math.unm.edu/ loring/CliffordExperiments/

and are all Mathematica files, videos created Mathematica files or a PDF copy of a Mathematica file.
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