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Recently, the study of topological structures in photonics has garnered significant interest, as
these systems can realize robust, non-reciprocal chiral edge states and cavity-like confined states
that have applications in both linear and non-linear devices. However, current band theoretic
approaches to understanding topology in photonic systems yield fundamental limitations on the
classes of structures that can be studied. Here, we develop a theoretical framework for assessing
a photonic structure’s topology directly from its effective Hamiltonian and position operators, as
expressed in real space, and without the need to calculate the system’s Bloch eigenstates or band
structure. Using this framework, we show that non-trivial topology, and associated boundary-
localized chiral resonances, can manifest in photonic crystals with broken time-reversal symmetry
that lack a complete band gap, a result which may have implications for new topological laser
designs. Finally, we use our operator-based framework to develop a novel class of invariants for
topology stemming from a system’s crystalline symmetries, which allows for the prediction of robust
localized states for creating waveguides and cavities.

I. INTRODUCTION

In recent years, the incorporation of concepts from
topological physics into photonic structures has gener-
ated significant interest [1–4], as such systems can realize
robust, localized states for enhancing light-matter inter-
actions [5] and routing quantum information [6]. For ex-
ample, topological lasers [7–15] can exhibit efficient phase
locking and increased robustness against disorder in com-
parison to their conventional counterparts [16–18], while
many topological photonic systems, such as those relying
on the photonic analogues to the valley-Hall and quan-
tum spin Hall effects, can be used to create, direct, and
protect quantum states [19–26]. These substantial sci-
entific and technological advances have been rooted in
topological band theory, and stand as testaments to its
many successes. However, these discoveries have also ex-
posed some of the current fundamental challenges facing
the field of topological photonics. First, it has proven dif-
ficult to realize nanoscale photonic Chern insulators, and
their highly desirable non-reciprocal chiral edge states,
using magneto-optic materials; known materials have rel-
atively weak magneto-optic responses at technologically
relevant wavelengths [27, 28], which makes it hard to use
this response to open a complete topological band gap
in a photonic crystal. While there are many photonic
Chern insulator designs that circumvent this obstacle
by using alternate methods for breaking (or effectively
breaking) time-reversal symmetry [29–37], these meth-
ods incur costs in increased system size or experimental
complexity. Second, even in topological photonic sys-
tems that preserve time-reversal symmetry, such as pho-
tonic topological crystalline insulators [38–49], we do not
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have a general theory for how to treat their topological
properties in finite systems. Indeed, many potential ap-
plications of the cavity-like states found in higher-order
topological photonic systems would benefit from coupling
these effective cavities together. However, at present,
finite-size effects in these structures must be understood
using bespoke analyses of individual systems. Finally,
theories of topology for non-linear photonic systems [50–
61] are also tailored to specific system architectures and
are difficult to generalize; as the non-linearity generally
breaks these systems’ crystal symmetries, band theoretic
approaches cannot be directly applied without substan-
tial alterations.

Altogether, these fundamental challenges in the field
of topological photonics can be abstracted to limitations
of band theories of topology: Incorporating finite-size ef-
fects and non-linearities requires significant augmenta-
tion of a band theory, possibly to use a large supercell,
while relying on a bulk band gap to be the measure of
a system’s topological protection forces these theories to
only search for topology in insulators and semi-metals.
Instead, a theory of topological photonics that is indepen-
dent of band theory would potentially provide a path to-
wards solving or circumventing this myriad of challenges
currently facing the field.

Here, we develop a theoretical framework for determin-
ing a photonic structure’s topology from its real-space
operator description (i.e., Maxwell’s equations), without
the need to calculate its band structure or Bloch eigen-
states. Instead, our framework is based on the photonic
system’s spectral localizer, which yields a set of local in-
variants, protected by local gaps, for every symmetry
class. Using this framework, we predict that non-trivial
topology, and associated boundary-localized resonances,
can appear in photonic crystals that lack complete band
gaps; a discovery that may have implications for the de-
velopment of photonic Chern devices at optical and near-
infrared wavelengths where it is difficult to find materi-
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als that enable sufficiently strong time-reversal symme-
try breaking to open complete topological photonic band
gaps. Finally, we show how to develop local invariants
for topology stemming from a system’s crystalline sym-
metries and we provide an example of such an invariant
for inversion symmetric photonic systems. This previ-
ously unknown class of invariants for topological crys-
talline structures allows for the prediction of spatially-
localized topological states without the construction of
Wannier centers or the calculation symmetry indicator
invariants, and we anticipate that these local crystalline
invariants will be useful in the development and optimiza-
tion of new topologically robust photonic waveguides and
cavities for enhancing light-matter interactions and rout-
ing quantum information.

II. THEORETICAL FRAMEWORK

A. Overview of the spectral localizer

Over the last few years, the spectral localizer has
emerged as a method for determining a finite lattice’s
topology directly from its real-space description using
developments from the study of operator theory and C∗-
algebras [62–66]. There are two important conceptual
shifts for defining the topology of finite lattices that dis-
tinguish such theories from traditional band theoretic ap-
proaches. First, the system’s topology can be defined
locally, not globally; thus, these theories can be imme-
diately applied to disordered and aperiodic structures
without alteration, and can discriminate between differ-
ent topological domains within a system. Second, as the
lattice is finite (with open boundaries), it does not pos-
sess a band structure; thus, the measure of the system’s
topological protection determined using its real-space de-
scription must also be local. Here, it may seem intuitive
to try to replace an infinitely periodic lattice’s bulk band
gap with a measure of protection based on a gap in the
full spectrum of the finite lattice — however, this cannot
work, as boundary-localized states (of either topological
or trivial origin) can close or obscure this gap, and at-
tempting to remove these states from the full spectrum
results in an inherently local measure of the protection.
At its core, the spectral localizer takes an “operator-

based” perspective of a material’s topology, in contrast
to the “eigenstate-based” perspective of traditional defi-
nitions of topology (in which the system’s eigenstates are
used to calculate invariants, such as the Chern number
[67–71], Zak phase [72], or symmetry indicators [73–75]).
Nevertheless, the equivalence between the operator and
eigenstate approaches can be understood by analyzing
the properties of atomic limits. In an atomic limit, a
system possesses a complete basis of spatially localized
Wannier functions; in a crystal, these states form a flat
band [76]. As such, from a real-space perspective, an
atomic limit’s Wannier states have both a well defined
position and energy, which means that an atomic limit’s

Hamiltonian, H(AL), commutes with its position oper-

ators, X
(AL)
j , [H(AL), X

(AL)
j ] = 0. For systems that are

not in an atomic limit, the spectral localizer establishes a
system’s topology by determining whether the system’s
Hamiltonian, H, and position operators, Xj , centered
at some choice in position-energy space, (x, E), can be
continued to commuting without breaking any necessary
symmetry or closing the local gap (i.e., does a continu-

ous path of matrices {X
(τ)
j , H(τ)} with 0 ≤ τ ≤ 1 exist,

where at every τ the necessary symmetries are preserved
and the local gap is open, and in which τ = 0 corresponds
to the matrices of the original system centered at (x, E)
and τ = 1 are those of the atomic limit). Any obstruction
to this continuation yields a non-trivial local invariant
and indicates that the system is topological. Overall, the
spectral localizer’s perspective on topology can be viewed
as the real-space analogue to the perspective of topolog-
ical quantum chemistry [77–82], which uses a system’s
eigenstates and band structure to make a similar assess-
ment of whether a set of bands below some chosen energy
can be continued to an atomic limit, and where, again,
any obstruction to this continuation is a manifestation of
non-trivial topology.

To diagnose whether a finite, d-dimensional system at
given position, (x1, · · · , xd), and energy, E, can be con-
tinued to an atomic limit, the system’s operators are first
shifted to be centered at that location, Xj → Xj − xjI
for j ∈ 1, . . . , d and H → H − EI, where I is the iden-
tity matrix. Then, to ascertain whether H − EI and
Xj − xjI can be continued to commuting, the spectral
localizer combines these operators together using a non-
trivial Clifford representation,

Lλ=(x1,··· ,xd,E)(X1, · · · , Xd, H) =

d
∑

j=1

κ(Xj − xjI)⊗ Γj + (H − EI)⊗ Γd+1. (1)

Here, Γ†
j = Γj , Γ

2
j = I, and ΓjΓl = −ΓlΓj for j ̸= l,

and κ is a scaling parameter that ensures H and Xj

have compatible units; in gapped systems, a range of
choices of κ have been proven to predict the same ma-
terial topology [83, Theorem 1]. Rigorously, one can
prove that various properties of the spectral localizer,
Eq. (1), can be used to identify whether the set of ma-
trices {(Xj − xjI), (H − EI)} has an obstruction that
prohibits them from be continued to commuting (while
preserving the necessary symmetries and local gap) for
every symmetry class in every dimension that has the
possibility to exhibit non-trivial topology [62]. However,
just as different symmetry classes have different invari-
ants in topological band theory, distinct properties of the
spectral localizer are used for each symmetry class.

For example, in 2 dimensions, the spectral localizer’s
invariant that determines whether the set of matrices
{(X−xI), (Y −yI), (H−EI)} can be continued to com-
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muting while preserving their Hermiticity is

CL(x, y, E) = 1
2 sig

(

L(x,y,E)(X,Y,H)
)

∈ Z, (2)

in which sig(Lλ) is a matrix’s signature, its number of
positive eigenvalues minus its number of negative eigen-
values; thus, CL(x, y, E) is guaranteed to be an integer.
If CL(x, y, E) = 0, the system is locally trivial and can
be continued to an atomic limit. As this invariant does
not take into account any other system symmetries (i.e.,
the system being described is in class A), CL(x, y, E) is a
local Chern number. As a second example, in a 1 dimen-
sional system with particle-hole symmetry, P2 = 1 (i.e.,
class D), the invariant that identifies whether the set of
matrices {(X − xI), H} can be continued to commuting
while preserving both particle-hole symmetry and their
Hermiticity is

ν̃L (x, 0) = sign

(

det

[

(

0 I
)

L(x,0)(X,H)

(

I
0

)])

= sign(det[(X − xI) + iH]) ∈ {−1, 1} = Z2,
(3)

Here, the invariant is only defined at E = 0, as particle-
hole symmetry can only protect states at that energy,
and the system is locally trivial if ν̃L (x, 0) = 1. (Note,
for class D, there is always a basis in which H is purely
imaginary and X is real, so the determinant in Eq. (3) is
guaranteed to be real.)
For all symmetry classes, and in all dimensions, the

local gap that Eq. (1) preserves through the continuation
process is

µC
λ
(X1, · · · , Xd, H) = min(|σ(Lλ(X1, · · · , Xd, H))|),

(4)
i.e., the absolute value of the eigenvalue of Lλ that is
closest to zero. Here, σ(Lλ) is the spectrum of Lλ, and
the superscript C stands for Clifford, as this indicator
function is related to the system’s Clifford pseudospec-
trum [84]. None of the invariants that the spectral lo-
calizer uses to identify topology can be changed without
µC
λ
→ 0, as they are all continuous functions of invertible

matrices that have the correct mathematical properties
(e.g. the sign of the determinant is continuous on the
set of invertible real matrices). Moreover, as physically
the locations (in position-energy space) where the local
gap closes correspond to approximate locations where H
possesses a state [84], a change in an invariant across a
location where µC

λ
= 0 is precisely how the spectral local-

izer exhibits bulk-boundary correspondence. Altogether,
there are two ways that µC

λ
can close so that the topolog-

ical invariant can change: by either changing one’s choice
of λ (i.e., by probing the system’s topology at a differ-
ent position and/or energy), or by adding perturbations
to the underlying operators, Xj and H. Although the
choice of κ does affect the size of µC

λ
, the local gap for any

given κ only represents a lower bound of the topological
protection at λ. Thus, the best estimate for a system’s

topological protection at λ is found using κ that maxi-
mizes µC

λ
while maintaining the topological invariant (see

Ref. [83, Theorem 1]).
Note that the choice in position-energy space for where

to evaluate the spectral localizer, λ = (x1, · · · , xd, E) ∈
R

d+1, need not exist within the lattice’s spatial or spec-
tral extent. In other words, both the spectral local-
izer’s invariants and local gap can be evaluated anywhere,
and for any energy, regardless of the size of the finite
system under consideration. This freedom of choice is
analogous to the freedom in representation theory–based
approaches to choose any number of bands to assess
whether they are Wannierizable (i.e., whether that set
of bands can be continued to the atomic limit). Just as
adding or removing a band from a given set of bands can
change their Wannerizability (e.g., different band gaps
can have different topology), changing the choice of λ

where the spectral localizer is evaluated can also affect
whether the set of matrices {(Xj − xjI), (H − EI)} can
be continued to commuting.

B. Maxwell’s equations as a Hermitian

eigenproblem

To apply the spectral localizer to photonic structures,
the system must permit a description in terms of an ef-
fective Hamiltonian and position operators. Although
there are some classes of photonic systems that can be
approximated as tight-binding lattices [30, 32, 85] and
could be immediately analyzed using Eq. (1), here we
seek a generic framework that is applicable to all photonic
systems. Thus, in this section we will recast Maxwell’s
equations as a unique Hermitian eigenvalue problem and
analyze the relationship between the symmetries of the
structure and its effective Hamiltonian. To do so, we
assume that all of the materials used in the system are
linear, with spatially local responses, and that the fields
possess a harmonic time dependence, e−iωt. Under these
conditions, Maxwell’s source-free equations are

∇×E(x) = iωµ̄(x, ω)H(x), (5)

∇×H(x) = −iωε̄(x, ω)E(x), (6)

∇ · [ε̄(x, ω)E(x)] = 0, (7)

∇ · [µ̄(x, ω)H(x)] = 0. (8)

Here, E(x) and H(x) are the electric and magnetic fields,
and ε̄(x, ω) and µ̄(x, ω) are the spatially varying, possibly
frequency-dependent, permittivity and permeability ten-
sors of the system’s constituent materials. Strictly speak-
ing, it is not possible for a material to be both dispersive
(i.e., possess a frequency dependent response) and com-
pletely lossless, as this violates the Kramers-Kronig rela-
tions [86]. However, it is necessary for our framework to
incorporate the possibility of dispersion, as many of the
materials used in the construction of topological photonic
systems are inherently dispersive (for example, magneto-
optic materials that can be used to break time-reversal
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symmetry). Thus, we assume that any dispersive ma-
terials have narrow absorption lines that are sufficiently
far away from the frequency ranges of interest, such that
ε̄(x, ω) and µ̄(x, ω) are approximately Hermitian within
those frequency ranges.
In contrast to other classes of physical systems, pho-

tonic systems are somewhat unusual as they generically
possess two independent mechanisms through which they
can dissipate energy: material absorption and radiation.
Thus, even if all of a photonic system’s constituent ma-
terials are energy-conserving, the system can still be ren-
dered non-Hermitian by radiative boundary conditions
[87, 88], which physically represent the loss of energy
from the system due to radiative out-coupling. As such,
to obtain a Hermitian eigenvalue problem for a photonic
system, we require that the system be bounded by a
Hermitian boundary condition, such as periodic bound-
ary conditions or a perfect electric conductor (PEC, i.e.,
Dirichlet boundary conditions on E(x)). Then, for non-
zero frequencies, Eqs. (5) and (6) form a self-consistent
generalized Hermitian eigenvalue problem,

Wψ(x) = ωM(x, ω)ψ(x), (9)

in which ψ(x) = (H(x),E(x))T,

W =

(

0 −i∇×
i∇× 0

)

, (10)

and

M(x, ω) =

(

µ̄(x, ω) 0
0 ε̄(x, ω)

)

. (11)

Even though Eq. (9) only retains Eqs. (5) and (6) from
Maxwell’s equations, it maintains a complete description
of the photonic system for any ω ̸= 0; Eqs. (7) and (8) can
be recovered by taking the divergence of Eq. (9) and using
the vector calculus identity∇·∇×F(x) = 0 for any vector
field F(x). In general, solutions to Eq. (9) for dispersive
materials can be found using iterative methods. However,
it is also possible to remove the frequency dependence
from M(x, ω) by adding auxiliary fields, and associated
equations of motion for the material’s internal degrees of
freedom, to Eq. (9) [89]; this allows for the generalized
eigenproblem to be solved using standard methods at the
cost of increasing the sizes of ψ, W , and M .

To convert Eq. (9) into a unique ordinary Hermitian
eigenvalue equation, we make the final assumption that
M(x, ω) is positive semidefinite, at least over the fre-
quency range of interest. Physically, this is not a sig-
nificant restriction beyond the prior assumption that the
constituent materials are energy-conserving, as it is effec-
tively equivalent to requiring that the system’s materi-
als are dielectrics of some variety, possibly anisotropic or
magneto-optic. This assumption of positive semidefinite-
ness is also used in previous band-theoretic approaches
for determining the topology of photonic crystals [71, 90]
and calculating band structures by directly incorporat-
ing material degrees of freedom [89]. Thus, for these

frequencies of interest, M(x, ω) is guaranteed to pos-
sesses a unique, Hermitian, positive semidefinite square
root matrix, M1/2(x, ω). As such, by defining φ(x) =
M1/2(x, ω)ψ(x), Eq. (9) can be written as

Heff(x, ω)φ(x) = ωφ(x), (12)

where the system’s effective Hamiltonian,

Heff(x, ω) = M−1/2(x, ω)WM−1/2(x, ω) (13)

is both Hermitian and uniquely defined for every fre-
quency. Note that even if a photonic system’s constituent
materials are non-dispersive (i.e., M(x, ω) = M(x)),
Gauss’ laws (Eqs. (7) and (8)) prohibit redefining the
system’s “zero frequency” to an arbitrary value as can
be done in systems described by standard tight-binding
models; ω = 0 is a polarization singularity in Maxwell’s
equations where longitudinal modes appear [82]. (In
passing, we note that requiring M(x, ω) to be posi-
tive semidefinite is slightly too restrictive – a negative
semidefiniteM(x, ω), which would correspond to systems
with negative semidefinite ε̄ and µ̄, can also be used to
realize a unique, Hermitian effective Hamiltonian similar
to Eqs. (12) and (13), and thus is compatible with the
spectral localizer.)
The determination of a material’s topology is inextri-

cably linked to its symmetries, both local [76, 91, 92] and
crystalline [73–75, 77–80]. In photonic systems, the pres-
ence or absence of a given symmetry typically manifests
in its constituent materials and their spatial distribution,
i.e., in M(x, ω). Thus, it is important to understand
what happens to a symmetry of M(x, ω) when construct-
ing Heff(x, ω). Fortunately, one can use the Weierstrass
approximation theorem [93] to prove that ifM(x, ω) com-
mutes or anti-commutes a unitary or anti-unitary sym-
metry, then M−1/2(x, ω) possesses the same symmetry
(see Supplementary Material for a proof), which greatly
simplifies the analysis of the symmetries of Heff(ω).

C. Applying the spectral localizer to Maxwell’s

equations

Given the unique effective Hamiltonian for Maxwell’s
equations, Eq. (13), coupled with an understanding of
how its symmetries relate to those of the underlying pho-
tonic structure, the final step required to apply the spec-
tral localizer, Eq. (1), is to define the photonic system’s
position matrices. At present, the mathematics that un-
derpins the spectral localizer’s ability to assess whether
a set of matrices can be continued to commuting must be
applied to (arbitrarily large) finite matrices that repre-
sent finite (i.e., non-periodic) systems. Thus, one way to
both construct position operators and ensure finite oper-
ators is to discretize the (finite) photonic system and im-
pose PEC boundary conditions. This discretization can
be performed using standard methods, such as the finite-
difference Yee grid [94], or finite element methods [95].
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Although any choice of discretization effectively imposes
an (arbitrarily high) upper frequency cutoff to the pho-
tonic system’s spectrum, the spectral localizer is prov-
ably local in both position and frequency. Thus, as the
spectral localizer is insensitive to the system’s details at
frequencies sufficiently far away from the frequency range
of interest [71], invariants and gaps determined using it
are guaranteed to converge.
Upon choosing a discretization scheme, we can rewrite

W and M(x, ω) as finite matrices that directly incorpo-
rate information about the system across its entire spatial
extent. In particular, M(ω) can be expressed as a block
diagonal matrix,

M(ω) =







M(x1, ω)
M(x2, ω)

. . .






, (14)

in which each block represents the material properties at
a particular vertex of the discretized system, whileW is a
(usually sparse) matrix representing the curl operations
and boundary conditions whose exact form will depend
on the specific discretization scheme chosen. Note, as
M(x, ω) is positive semidefinite, M(ω) is as well, and
thus it also possesses a unique square root whose sym-
metries are directly given by those of the full structure,

M(ω)U ± UM(ω) = 0 =⇒

M−1/2(ω)U ± UM−1/2(ω) = 0. (15)

where U is a unitary or anti-unitary operator (see Sup-
plementary Material for a proof). Thus, altogether,

Heff(ω) = M−1/2(ω)WM−1/2(ω) (16)

is a unique 6n-by-6n matrix, where n is the number of
vertices in the discretization. Finally, in this basis, the
position operators are simply the coordinates of the ver-
tices of the discretization scheme.
For the remainder of this study, we make use of a finite-

difference Yee grid discretization.

III. PHOTONIC CHERN INSULATOR

To provide a concrete example of how the topology of
a photonic crystal can be determined using the spectral
localizer directly from Maxwell’s equations, we first con-
sider the well-known photonic Chern insulator proposed
by Haldane and Raghu [70, 71]. This system consists of
a triangular lattice of high-dielectric rods embedded in
a low-dielectric gyro-electric background (Fig. 1a), and
in which the frequency-dependence of the gyro-electric
response has been ignored. In the absence of any time-
reversal symmetry breaking (i.e., the external magnetic
field is turned off), this system exhibits a Dirac point at
K in its Brillouin zone for its transverse electric (TE)
modes that coincides with a complete band gap in the

transverse magnetic (TM) modes. As the strength of the
time-reversal symmetry breaking is increased, a topolog-
ical band gap opens in the TE modes (Fig. 1b), yielding
boundary-localized chiral edge TE states that can be seen
in a ribbon band structure (Fig. 1c).
As a direct comparison, we show how the spectral lo-

calizer reveals the topology of this photonic Chern insula-
tor without calculating its band structure or eigenstates.
In a 2D photonic structure, the spectral localizer can be
explicitly written as

Lλ=(x,y,ω)(X,Y,Heff) =
(

Heff − ωI κ(X − xI)− iκ(Y − yI)
κ(X − xI) + iκ(Y − yI) −(Heff − ωI)

)

.

(17)

Here, Maxwell’s equations are directly incorporated
through the definition of Heff, Eq. (16), and we have used
PEC boundary conditions to ensure the system is finite.
In the system’s bulk, we find that the local Chern number
for the TE modes, Eq. (2), is non-trivial, CL(x, y, ω) = 1,
while beyond the system’s boundaries the system has
trivial topology, CL(x, y, ω) = 0 (Figs. 1d,e). Thus, as
the system’s topology must switch between these two
domains, the local gap must close at the domain bound-
ary, µC

λ
= 0, which approximately coincides with the sys-

tem’s physical boundaries. The closing of the local gap is
a direct manifestation of bulk-boundary correspondence
in the system, and indicates the presence of boundary-
localized photonic chiral edge states. In contrast, the
same quantities for the system’s TM modes show that
this modal sector is topologically trivial within the same
complete band gap, regardless of whether (x, y) are cho-
sen within or outside the system’s bulk (Figs. 1f-h).
Beyond qualitative agreement, the topology predicted

by the spectral localizer demonstrates quantitative agree-
ment with the band theoretic calculation: the system’s
local gaps in both polarization sectors agree with its re-
spective bulk band gaps. The complete band gap for
the TE modes has a width of approximately ∆ω ≈
0.04(2πc/a). Using the spectral localizer to calculate
the local gap at the middle of the TE band gap (ω =
0.37(2πc/a)), we find that µC

λ
≈ 0.02(2πc/a) in the pho-

tonic crystal’s interior. Thus, by probing the system at
the center of its bulk band gap, we find that the local
gap is approximately half of the bulk band gap, i.e., these
two measures of topological protection are in nearly exact
agreement (from the probed central frequency, a shift of
half the bulk band gap is necessary to reach the near-
est bulk band edge, which is what µC

λ
measures in a

gapped system’s bulk). For the TM modes, the result
is similar, with the spectral localizer yielding a local gap,
µC
λ
≈ 0.04(2πc/a), in the system’s bulk that is a bit larger

than the frequency distance between ω = 0.37(2πc/a)
and the lower frequency bound of the nearest bulk TM
band, ω ≈ 0.40(2πc/a). Given the rigorous connec-
tion between the size of the local gap and the system’s
topological protection [62], the larger TM local gap in-
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FIG. 1. (a) Schematic of a 2D photonic crystal consisting of high-dielectric rods, εjj = 14 for j = x, y, z, with radius r = 0.37a
embedded in a gyro-electric background, εjj = 1 and εxy = −0.4i. The lattice constant is a and all materials have µjj = 1.
The black boundary indicates where perfect electric conductor boundary conditions were used. (b) Bulk band structure for
both the TE (red) and TM (blue) bands. (c) Ribbon band structure for the TE fields with PEC boundaries along the two
non-periodic edges. (d) Spatially resolved local gap, µC

λ(X,Y,Heff), at λ = (x, y, ω = 0.37(2πc/a)) with κ = 0.25. The gap is
in units of (2πc/a). The topological region of the system with CL = 1 is shown in lime, and the system’s scale is identical to
(a). (e) Full localizer spectrum at λ = (x = 0, y, ω = 0.37(2πc/a)). The eigenvalue which is responsible for the change of the
signature of Lλ is highlighted in lime. (f)-(h) Similar to (c)-(e), except for the TM fields.

dicates that, in terms of adding a perturbation to the
photonic system, it is more difficult than the bulk band
gap suggests to change the TM sector to possess non-
trivial topology.

To emphasize that the determination of a finite sys-
tem’s topology is independent of the specific choice of
boundary condition, in Fig. 2 we apply the spectral lo-
calizer to a hybrid system consisting of two different 2D
photonic crystals with different bulk topology. In par-
ticular, we place the same photonic Chern insulator as
before [70, 71] adjacent to a network photonic crystal
of air holes embedded in an ordinary dielectric that has
been designed to exhibit a trivial complete TE band gap
at the same frequency as the photonic Chern insulator’s
topological complete TE band gap. As can be seen in
Fig. 2b, the spectral localizer identifies that the photonic
Chern insulator is topological, CL(x, y, ω) = 1, and that
the network photonic crystal is trivial, CL(x, y, ω) = 0.
Moreover, in both regions, the size of the local gap in the
crystal’s bulk shows approximate agreement with the size
of their respective bulk band gaps. Finally, the closing of
the local gap at the interface between these two regions
indicates that the system possesses boundary-localized
chiral edge states and thus confirms the system’s bulk-
boundary correspondence.

A note on implementation — it is not necessary to cal-

culate the full spectrum of Lλ to find its signature, and
performing the calculation this way will be prohibitively
computationally expensive for many photonic systems.
Instead, due to Sylvester’s Law of Inertia [96, 97], one
can first find the spectral localizer’s LDLT decomposi-
tion, Lλ = NDN†, and then sig(Lλ) = sig(D), where
D is diagonal. Thus, as there are commonly available
LDLT decomposition methods for sparse matrices that
are generally substantially faster than performing a com-
plete diagonalization, CL can be efficiently computed.

IV. TOPOLOGICAL PHASES IN GAPLESS

PHOTONIC CRYSTALS

Separating a system’s measure of topological protec-
tion from its bulk band gap enables the definition of
topology in gapless systems [98], which is of particu-
lar importance in photonic systems as it is experimen-
tally challenging to realize photonic Chern insulators
using magneto-optic materials [7, 13]. Specifically, as
known magneto-optic materials provide relatively mod-
est changes to a system’s dielectric tensor at technolog-
ically relevant wavelengths [27, 28], the design of pho-
tonic Chern insulators is currently burdened by requiring
the system’s geometry to serve two separate functions:
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FIG. 2. (a) Schematic of a system with an interface between
two different 2D photonic crystals. The lower crystal is iden-
tical to the photonic crystal in Fig. 1, while the upper crys-
tal is formed by air holes with radius r = 0.35a embedded
in a uniform background, εjj = 5.5, εxy = 0. Both crys-
tals use the same lattice constant, a, and all materials have
µjj = 1. The upper crystal exhibits a TE band gap between
ω = 0.32(2πc/a) and 0.42(2πc/a). (b) Spatially resolved TE
local gap, µC

λ(X,Y,Heff), at λ = (x, y, ω = 0.37(2πc/a)) with
κ = 0.25. The gap is in units of (2πc/a). The topological
region of the system with CL = 1 is shown in lime, and the
system’s scale is identical to (a).

maximizing the size of the topological band gap while
maintaining a complete band gap at the same frequency.
Instead, in this section, we show that the ability to char-
acterize the topology of systems even in the absence of
a bulk band gap enables the design of photonic struc-
tures that can focus solely on maximizing the size of a
local gap, potentially expanding the frequency range over
which a system can be proven to exhibit topological be-
haviors or enabling the discovery of topological phenom-
ena in geometries that otherwise would not possess bulk
gaps at all. Although any resulting boundary-localized
resonances can hybridize with the available degenerate
bulk states, their partial edge localization and reduced
propensity to back-scatter [99, 100] may still be useful
for enhancing light-matter interactions, such as lasing
[7–15] or soliton formation [50–61]. Indeed, for some ap-
plications it might be comparatively better for a system
to possess a chiral edge resonance with strong topolog-
ical protection that can radiate into the system’s bulk,
rather than a chiral edge state that cannot radiate, but
has substantially reduced topological protection (if such
a chiral edge state can be realized at all).

The crucial realization that enables the prediction of
gapless topological photonic systems is that, although
a bulk band gap guarantees a similarly sized local gap
[63, 83], it is possible for µC

λ
> 0 even in the absence

of a bulk band gap. Thus, in regions with local gaps,
the spectral localizer can be used to predict robust, non-
trivial topology and associated phenomena. Moreover,

FIG. 3. (a) Schematic of a 2D photonic crystal of air holes
with radius r = 0.4a embedded in a high-dielectric back-
ground, εxx = εyy = 12.25. Both the air and background
are approximated to be frequency-independent gyro-electric
materials, εxy = −0.24i. The lattice constant is a and all
materials have µ = 1. The black boundary indicates where
perfect electric conductor boundary conditions were used. (b)
Bulk band structure of this photonic crystal’s TE modes,
lime-colored regions indicate frequency ranges where CL = 1.
The zoomed in right panel indicates one of the topological
frequency ranges, with the local band gap, ∆ω, indicated. (c)
Local density of states for the Hz component of the fields for
ω = 0.720(2πc/a). (d) 2D local gap and local Chern number
for ω = 0.720(2πc/a) and κ = 0.10. For both (c) and (d), the
spatial scale is the same as the system shown in (a).

such gapless topological systems still possess a bulk-
boundary correspondence as the local gap is required to
close, µC

λ
→ 0, across the system’s boundary for the local

topology to change. An example of a gapless gyro-electric
photonic crystal with non-trivial topology is illustrated
in Fig. 3, where we simulate the TE modes of a 2D pho-
tonic crystal consisting of a triangular lattice of air holes
embedded in a high-dielectric background. We artificially
consider both the air and high-dielectric materials to have
a magneto-optic response, which serves as an approxi-
mation of the experimental realization of these systems
through layering a patterned slab of high-dielectric ma-
terial on top of a solid slab of magneto-optic material
[7, 13]. As can be proven using the 2D spectral local-
izer, Eq. (17), this system possesses a pair of frequency
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ranges with non-trivial topology that can be identified by
the local Chern number, CL (see Fig. 3b), despite the fact
that neither of these topological frequency ranges coin-
cide with complete band gaps of the system’s TE modes.
Moreover, even though the presence of bulk states ob-
scures the identification of any boundary-localized reso-
nances in the system’s local density of states (see Fig.
3c), we can explicitly confirm the presence and approxi-
mate locations of this system’s chiral edge resonances in
these topological frequency ranges by determining where
its local gap vanishes, Fig. 3d. Quantitatively, this cal-
culation also shows that for ω in the middle of the topo-
logical frequency range, the local gap within the system,
µC
λ

≈ 0.01(2πc/a), is approximately half of the incom-
plete topological band gap, ∆ω ≈ 0.02(2πc/a) (marked
in Fig. 3b), indicating that this topological phase is pro-
tected against disorder that does not close the incomplete
band gap, regardless of the absence of a complete band
gap.
Beyond reducing the design constraints for developing

topological photonic crystals, the ability to identify topo-
logical frequency ranges without requiring a bulk band
gap enables the discovery and design of topological pho-
tonic crystal systems that operate at high normalized
frequencies, where they are unlikely to possess a com-
plete band gap. As the normalized frequencies shown in
Fig. 3 are equal to the ratio of the lattice constant, a, to
the operating wavelength, λ, i.e., ωa/(2πc) = a/λ, using
phenomena that appear at higher normalized frequencies
(for a fixed operating wavelength) improves these sys-
tems’ fabrication tolerances by increasing the system’s
lattice constant.

V. AN OPERATOR-BASED TOPOLOGICAL

CRYSTALLINE INVARIANT

Recently, there has been significant interest in pho-
tonic systems that exhibit topological states protected
by crystalline invariants, as these structures can exhibit
robust waveguide- and cavity-like states for enhancing
light-matter interactions [5] and do not require materi-
als or configurations that break time-reversal symmetry.
However, as crystalline symmetries fall outside of the
standard classification of topological systems [76, 91, 92],
invariants that rely on crystalline symmetries for predict-
ing topological behaviors must be calculated using a sepa-
rate theoretical framework, such as through Wannier cen-
ters [77–80] or symmetry indicator invariants [73–75]. In
this section, we show how to incorporate crystalline sym-
metries directly into the operator-based framework of the
spectral localizer, and we provide an example of such a
topological crystalline invariant. Not only does this yield
a theory for topological crystalline systems that is not
dependent on a system’s Bloch eigenstates, but it also
indicates how one can begin to place crystalline symme-
tries on equal footing with those symmetries considered
in the ten-fold classification scheme.

The key mathematical observation that allows for the
spectral localizer to consider topological crystalline struc-
tures is that the C∗-algebra theorems that underpin
its operator-based framework [62, 101, 102] are agnos-
tic to the specific physical interpretation of the opera-
tors. Thus, any local topological invariant found using
the spectral localizer can be repurposed for any set of
symmetries, so long as those symmetries obey similar re-
lations with system’s operators, {X1, · · · , Xd, H}. This
argument is best illustrated using an example. Consider
a 1D system with chiral symmetry (i.e., class AIII), such
that the chiral operator, Π, anti-commutes with the sys-
tem’s Hamiltonian, HΠ = −ΠH, and commutes with its
position operator, XΠ = ΠX (in a lattice-vertex basis,
both Π and X are diagonal, so this commutation relation
is guaranteed in general). The topology of such a system
can be determined both using traditional methods, such
as a winding number [103], or using the spectral local-
izer’s associated invariant,

νL (x, 0) =
1
2 sig

[

(

0 I
)

L(x,0)(X,H)

(

Π
0

)]

= 1
2 sig [(κ(X − xI) + iH)Π] ∈ Z, (18)

which is only well-defined at E = 0, as chiral symme-
try can only protect states at mid-gap. However, any
other unitary operator, U , that satisfies the same set of
relations with the system’s operators, UH = ∓HU and
UX = ±XU , will possess a nearly identical invariant as
a chiral symmetric system, with Π → U in Eq. (18) and
possibly also X ↔ H and x ↔ E depending on whether
H or X anti-commutes with U .
In particular, this argument for re-purposing existing

operator-based invariants for crystalline symmetries can
be immediately applied to determine the topology of in-
version symmetric systems, as the inversion operator, I,
satisfies IH = HI and IX = −XI. To demonstrate the
versatility and generality of this method, we study an
inversion-symmetric photonic system consisting of a bi-
partite array of air holes in a high-dielectric background
that possesses an inversion center (Fig. 4a), similar to de-
signs used in photonic nanobeams [104–106]. Due to the
staggered spacing of the air holes, this system exhibits
a bulk band gap in its TE modes, in which a defect-
localized state appears that is bound to the inversion cen-
ter (Figs. 4b,c). When the defect at the inversion center
is removed (Figs. 4d,e), or the air holes are re-positioned
to be evenly spaced (Figs. 4f,g), no such localized state
appears within the system’s lowest bands.
To prove that this defect-localized state is of topolog-

ical origin, we construct the system’s 1D spectral local-
izer, which can be explicitly written as,

Lλ=(x,ω)(X,Heff) =

(

0 A
A† 0

)

, (19)

A = κ(X − xI)− i(Heff − ωI).

Although the photonic system is not uniform in y, here
we are purposefully omitting Y−yI in Eq. (19), which has
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FIG. 4. (a) Schematic of a 1D photonic crystal consisting of air holes with radius r = 0.35a embedded in a high-dielectric
background, ε = 14 and µ = 1, where a is the lattice constant of the uniform system. Spacing between neighboring air holes is
alternately increased and decreased by 0.2a. The full system consists of an inversion-symmetric defect and 16 pairs of air holes
on each side. The black boundary indicates where perfect electric conductor boundary conditions were used. (b) Local density
of states for the Hz component of the fields for ω = 0.091(2πc/a) shown on the same scale as (a). (c) (From left to right) Bulk
band structure, projected-in-y local density of states (LDOS), local gap (see Eq. 4), and local index (see Eq. 20) for this finite
photonic system. The local gap and index are calculated at x = 0 using κ = 0.01. The local gap is given in units of (2πc/a).
(d),(e) Similar to (a) and (c), but for a system lacking the inversion defect and only consisting of 32 pairs of air holes. (f),(g)
Similar to (a) and (c), but for the uniform system, with all air holes separated by a. The local index is not shown in (g) to
emphasize its lack of meaning in the absence of a local gap.

the effect of projecting the entire system onto the x-axis
within the spectral localizer’s framework. By doing so,
we can re-purpose the 1D local winding number, Eq. (18),
for inversion symmetric systems to yield the crystalline
invariant,

ζL (0, ω) =
1
2 sig [(Heff − ωI + iκX)I] ∈ Z. (20)

Just as the winding number can only protect states in chi-
ral symmetric systems at mid-gap, ζL can only protect
states at the inversion center, x = 0, but these states can
have any frequency, ω. Using this invariant, we observe
that the defect-localized state in the bipartite photonic
crystal is topological, as this state’s appearance coincides
with a shift in ζL (i.e., there is a bulk-boundary corre-
spondence), and the state’s frequency is protected by the
large local gap, µC

λ
, that appears at both immediately

higher and lower frequencies (right panels of Fig. 4c). In
contrast, when the defect is removed, the system remains
topologically trivial across its large local gap that coin-
cides with its bulk band gap (right panels of Fig. 4e),
while the uniform photonic crystal completely lacks a lo-
cal gap within the frequency range of the first TE band

(right panel of Fig. 4g). (For completeness, we note that
an analogous invariant to ζL could be constructed using
Y in place of X, which also anti-commutes with I. How-
ever, for the systems in Fig. 4, this Y -based invariant is
always trivial within the displayed frequency range.)

There are a few points that are worth emphasizing for
the spectral localizer’s topological crystalline invariants.
First, unlike previous crystalline invariants for inversion-
symmetric systems, such as the Zak phase [72] and sym-
metry indicators [75], ζL is a Z invariant, not a Z2 invari-
ant, and thus it can identify topology in systems that
may be mis-identified as trivial by these previous invari-
ants. (Note, the possibility that ZN invariants may miss
topological phases that can be identified by a Z invariant
has been previously discussed for higher-order topologi-
cal systems [107].) Second, the standard winding number
for 1D systems and the inversion invariant in Eq. (20) are
both manifestations of the same type of K-theory; specif-
ically, they determine elements in some K-theory group
of a graded real C∗-algebra of matrices and operators
that respect symmetries induced by two anti-unitary op-
erators. (See the appendix of [101] how such algebras
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arise as a mathematical version of the ten-fold classifi-
cation [102].) More broadly, the arguments motivating
Eq. (20) are showing that there is a systematic approach
to finding valid formulas for invariants that can detect
K-theory inherent in the matrices in a given model of
physical system. Many of these formulas are those listed
in [62] but in other cases one may need to work dire-
clty with the C∗-algebras generated by the matrices at
hand. The results in [66] may also be relevant. Finally,
as the spectral localizer is provably local [84, 108], a sys-
tem need not be perfectly inversion symmetric across its
entire extent — beyond some window whose width is re-
lated to ∥[H,κX]∥, perturbations to H and X away from
a chosen frequency and position cannot meaningfully ef-
fect the spectral localizer’s properties. Thus, in practice,
a system need not be globally inversion symmetric to ex-
hibit topological states protected by inversion symmetry,
only locally so.

VI. DISCUSSION

In conclusion, we have developed an operator-based
framework for determining a photonic structure’s topol-
ogy using the spectral localizer. As this theory is based
entirely on the system’s real-space description, it is im-
mediately applicable to aperiodic and disordered struc-
tures which do not possess a band structure or Bloch
eigenstates, as well as systems relying upon finite size
effects [109]. Moreover, using this framework, we have
shown two developments for topological photonic sys-
tems. First, by leveraging the spectral localizer’s abil-
ity to define a measure of topological protection sepa-
rate from a system’s bulk band gap, we have shown that
it is possible to find robust topological states even in
gapless photonic systems. This development has poten-
tially significant experimental implications, as some pre-
vious implementations of topological lasers that do not
exhibit large bulk band gaps may, in fact, possess more
topological protection than their bulk band gaps suggest
[7, 13]. Second, as the mathematical theorems which
underpin the spectral localizer’s framework are agnostic
to the specific physical meaning of any of the system’s
operators, the spectral localizer’s invariants can be im-
mediately re-purposed to handle crystalline symmetries.
This development shows how crystalline symmetries can
be placed on equally strong footing to the topology of
“local” symmetries considered in the ten-fold classifica-
tion of lattices [76, 91, 92]. Moreover, our framework
can be used to determine both the topology of photonic
topological crystalline insulators, and the strength of the
protection of any localized states, without the need to
calculate symmetry indicators or Wannier centers [73–
75, 77–80]. We anticipate this development will substan-
tially increase the possible design space for developing
new topological cavity-like states in photonic systems.
(Our framework also avoids issues associated with the po-
larization singularity at zero frequency and momentum

[82].) Looking forward, as our framework is not reliant
upon a system’s band structure, it may offer the possibil-
ity of yielding a general theory of topology in non-linear
photonic systems.
Nevertheless, despite the broad utility of the spectral

localizer to photonic systems, there are still a number of
open questions regarding its application to specific classes
of topology that are common in photonics:

quantum spin Hall effect – There has been substantial
theoretical and experimental work exploring the pho-
tonic analogue of the quantum spin Hall effect (QSHE)
[20, 23, 85, 110, 111], and in nanophotonic systems an
effective fermionic time-reversal operator (T 2 = −1)
can be constructed for a particular set of a photonic
crystal’s Bloch eigenstates using the bosonic time-
reversal operator (T 2 = 1) and point group symme-
tries [110]. But, while the local invariant for the QSHE
(i.e., 2D class AII systems) is known [62, §5.4], addi-
tional research is needed to understand how to trans-
form Maxwell’s equations’ effective Hamiltonian, Eq.
(13), so as to properly separate the pseudospin sec-
tors. For the local QSHE invariant to be used, Heff

must be explicitly self-dual (in the appropriate basis),

H♯
eff = Heff, where the definition of a matrix’s dual is

(

A11 A12

A21 A22

)♯

=

(

AT

22 −AT

12

−AT

21 AT

11

)

, (21)

in which Alm are n-by-n complex matrices.

valley Hall effect – Similarly, designing photonic crystals
that exhibit a valley Hall effect and corresponding edge
states offers another route to creating (reciprocal) edge
states without the need to break time-reversal symme-
try [112–118]. This effect can appear when regions
of a crystal’s Brillouin zone exhibit strong, localized
Berry curvature, even though the total Berry curva-
ture of the band vanishes. At present, it is not known
whether this kind of topology can be predicted by the
spectral localizer (the valley Hall effect falls outside of
the ten-fold classification of lattice topology).

higher-order topology – The cavity-like states in photonic
systems protected through higher-order topology [73]
have drawn recent interest for their ability to enhance
light-matter interactions [45–49]. However, as there
are at least two different classes of symmetries that
can protect (d−n)-dimensional states in d-dimensional
systems with n ≥ 2, the application of the spectral lo-
calizer to these possible mechanisms must be consid-
ered separately. Chiral symmetry is known to enable
higher-order topology [107], and this class of higher-
order topology can be calculated using the spectral
localizer by projecting a higher-dimensional system
down to a 1D system and using the 1D class AIII local
invariant, Eq. (18), see Ref. [98, §4]. Crystalline sym-
metries can also yield non-trivial higher-order topol-
ogy [73, 75] that the spectral localizer may be able to
handle using the operator substitution arguments from
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Sec. V in conjunction with the dimensional reduction
arguments from Ref. [98, §4], but additional research
is needed to place this on firm theoretical ground.

dislocations and disclinations – Cavity-like states can
also be created in photonic systems by locally break-
ing a crystalline symmetry, creating a disclination or
dislocation in the lattice that can support a topologi-
cal state [119–124]. It is reasonable to speculate that
spectral localizer invariants that apply to systems with
(possibly higher-order) crystalline topology will also be
able to treat these classes of topology due to their sim-
ilar physical origins.

Weyl semi-metals – The linear dispersions and Fermi-
arc surface states that can exist in the vicinity of Weyl
points [125, 126] have potential applications in pho-
tonic devices [127–130], and thus there has been inter-
est in realizing photonic Weyl materials. It has been
previously mathematically proven that the spectral lo-
calizer can be applied to Weyl semi-metals [131], and
thus it is likely that this same formalism can be used
to identify photonic Weyl materials.

Finally, there are numerical developments that are nec-
essary for treating 3D photonic systems, where matrix
sizes will become very large (though 3D tight-binding
models may still be tractable [62, §10.1]) and thus effi-
cient, parallelizable algorithms for manipulating sparse
matrices will be required. While many of the required
algorithms exist, some of the spectral localizer’s invari-

ants make use of atypical matrix operations, such as the
sign of the Pfaffian or the sign of the determinant, that
have not received much attention, especially for sparse
matrices.
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