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Accelerated molecular-dynamics (MD) simulations based on hyperdynamics (HD) can significantly
improve the efficiency of MD simulations of condensed-phase systems that evolve via rare events.
However, such simulations are not generally easy to apply since appropriate boosts are usually unknown.
In this work, we developed a method called OptiBoost to adjust the value of the boost in HD
simulations based on the bond-boost method. We demonstrated the OptiBoost method in simulations
on a cosine potential and applied it in three different systems involving Ag diffusion on Ag(100) in
vacuum and in ethylene-glycol solvent. In all cases, OptiBoost was able to predict safe and effective
values of the boost, indicating the OptiBoost protocol is an effective way to advance the applicability of

HD simulations.
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I. INTRODUCTION

The temporal evolution of many materials systems is governed by rare events, where the system
spends a relatively long time in one free-energy minimum before escaping and moving on to
another one. While molecular dynamics (MD) simulations can, in principle, elucidate the atomic-
scale processes and rates of rare events, the practical time scale is limited to the microsecond
range. Accelerated MD methods were developed to address this issue.! In this paper, we focus
on hyperdynamics (HD)!? — one accelerated MD technique that has been used in many studies.® "
916 As we will elaborate below, a bias potential is added to the potential energy near the minima in
HD. A careful design of the bias potential induces rapid transitions without affecting the relative
transition frequency and a weighted time increment allows for long-time simulations that can

exceed the microscale by many orders of magnitude.

One HD bias potential is given by the bond-boost method.!”-!® In this method, the strain of the

bond between atoms i and j is defined as

_ (R — R}

Ei . =
] RO
ij

, (1)

where R;; is the current distance between atoms i and j, and R?j the distance when the potential

energy is at a minimum. A bias potential, or “boost”, is applied to the maximally stretched bond —
the bond that is most likely to “break™ and result in a transition. For a fixed atom configuration R,

the boost energy AV of the maximally stretched bond, with &,,,, is given by

Emax (R) ’
AV(R) = AVnax | 1= (T) ) lemax] < q ’ 2)
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where AV, 1s a parameter that controls the magnitude of the boost and g is a cutoff parameter of
the limiting strain at which the bias potential goes to zero. The g parameter should be set such
that the boost is zero at transition states. MD trajectories are then run on a “boosted” potential-

energy surface (PES) V*(R), where the potential energy is given by
V*(R) =V(R) + AV(R) . 3
There are two relevant times in HD simulations. The first is the MD time ¢y, which is given
by
tup = NAt , (4)

where N is the number of MD time steps and At is the MD time increment, typically on the order

of fs. The physical time is given by

N
t= Z At exp [AI;{(TSL') , (5)
i=1

where AV; is the boost applied at time step i. The time-boost factor B is used to assess the
acceleration of HD simulations by the boost potential. It is given by the ratio of Egs. (5) and (4),

1.e.,

_N'lexp T , (6)
i=

It is evident from Eq. (2) that the values of both ¢ and AV, control the time-boost factor in Eq. (6).

In this work, we adopt the value of ¢ = 0.3, which has been shown to be a safe value for many cases in

16,17

previous studies, and we focus our efforts on establishing an appropriate value of AV,
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Figure 1 illustrates both the promise and the difficulty in using HD simulations with the bond-
boost method. Figure 1 shows the escape rate from HD simulations as a function of AV, run for
motion on a one-dimensional cosine potential of the form

1 1
V(x) = - cos 2mx — 3 . (7

The boosted potential in these simulations is given by Eq. (3) and the bias potential is given by
Eq. (2) with @ =0.3. The inset to Figure 1 shows the time-boost factor from Eq. (6) as a function
of AV, 4. For each value of AV,,,,, we ran 500 different trajectories on the cosine potential using
Mathematica® to integrate the equation of motion with the Verlet algorithm and the Andersen
thermostat. The unit of mass is mg, the unit of time is ty, the unit of length is x,, and the
simulations were run at a temperature of kT = 0.2myx32/té. We calculated the rate as the
reciprocal of the average physical time, given by Eq. (5), to exit a minimum after entering. The

exact rate to move from one minimum to another on the cosine potential is given by

1 (ZkT>% exp [‘Z%O) + exp [%7(})]

T2 fol exp [L(x)] dx ,

(8)

mm

where m is the mass, which we take to be 1.0m,,.

In Figure 1, we see that the simulated rate matches the exact rate given by Eq. (8) until
AViar = 1.2 mgx3/té, then the simulated rate begins to deviate from the exact value and the
difference between the exact and simulated rate increases with increasing AV}, ,,. In the inset to
Figure 1, we see the boost increases with increasing AV, 4, up t0 AVpe, = 1.2 mox3/té. At
AVipax = 1.2 mgx3/t2, the time-boost factor has reached a value of B = 81, meaning that the HD
simulation is 81 times faster than regular MD. While the large efficiency afforded by HD

simulations is promising, this can come at the expense of accuracy if AV}, is too large.

4



AlP

Publiching

0.05r - : -

af - LI
arl - i
D.o4F 7 - &1
ol . {
oo 003 - :
Far B . .
. s ¥
o 1l R 13 10 I I |
® 0.02 ; I i N
»
® ¥ =
LEE1 3 | P e . P .___. el e e
Exact Rate
.00
0.0 0.5 1.0 1.5 2.0

2,2
AV gy (Mpsity)

Figure 1. Plot of the rate obtained for escaping the minima of the cosine potential given by Eq. (7)
as a function of AV,,,,. The exact rate from Eq. (8) is given by the dashed line. The inset shows

the boost given by Eq. (6) as a function of AV, 4.

The origins of the deviation of the rate from the exact value in Figure 1 can be seen from a plot
of V*(x), given by Eq. (3) and shown in Figure 2 for the cosine potential with different values of
AVipax-  For AV, = 0.2 moxZ2/t3, the biased PES V*(x) retains the same shape as the original
potential (AV,,4, = 0). From the inset to Figure 1, the boost for AV,,,, = 0.2 is around 2.3, which
is non-negligible but modest in terms of what can be achieved. When AV}, increases to 0.8, the
shape of V" (x) begins to deviate from that of the original potential. However, the shape deviation
is not large and the rate on the boosted surface in Figure 1 is still the same as that on the original
surface. From the inset to Figure 1, the boost for AV,,,, = 0.8 is almost 15, which represents a
significant increase in efficiency over AV,,,,, = 0.2. When we reach AV,,,, = 2.0, the shape of V*

is significantly distorted from the original potential, as there is a maximum where a minimum
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occurs on the original potential, and sub-minima appear near the transition states. Trajectories
become trapped in the sub-minima on V*and they cannot easily access the region of the original
minimum. As a result, the rate increases on VV* compared to that on the original potential and

becomes inaccurate.
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Figure 2. A plot of one period of the cosine potential given by Eq. (7) (AV,4.x= 0), along with the

boosted cosine potential from Eq. (3) for various boost magnitudes AV, .

Thus, care needs to be taken in choosing the boost parameter for HD simulations based on the
bond-boost method. As Figures 1 and 2 demonstrate, the magnitude of AV,,,, should not far
exceed the value of the energy barriers in the system. In the current state of HD simulations, a safe
and effective magnitude of AV, ,, is usually unknown and needs to be decided before running the
simulation. In this work, we develop a method called OptiBoost to adjust the magnitude of the

boost in HD simulations with the bond-boost method.
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II. METHODS AND RESULTS
A. Cosine Potential

The main ideas behind the OptiBoost method are (1) The bond-boost potential in Eq. (2) affects
the potential energy of a bond on an arbitrary 3N-dimensional PES in a similar way that it affects
the potential energy of the cosine potential shown in Figure 2; (2) Dynamics on V*(x), but on the
MD time scale, given by Eq. (4), displays a distinct signature of the boost potential. Regarding (1),
the bond-boost potential is applied to bonds, whose potential energies as a function of strain are
typically harmonic or slightly anharmonic around their minima and have a similar shape to the
cosine potential. Regarding (2), the probability P that a trajectory originating in the potential well

will escape to a neighboring well within a time ¢, is given by

P(tMD) = 1 - e_rMDtMD ) (9)
where 7,p 1s the escape rate on the MD time scale [i.e., not the physical time scale given by Eq.
(5)]. For the “boosted” cosine potential in Figure 2, the escape rate on the MD time scale is given

by

(e i At

Twp =5
2 1 -V*(x
rm s exp[ k7§ )] dx

(10)

Figure 3 shows a plot of Eq. (9) (dashed lines) as a function of AV,,,, for three different time
intervals. From Figure 3, we see P(AV,,4,) has an approximate sigmoid form in each case. This

form can be seen to originate from Eq. (9), which we can write as

et — 1 ryptup + 2uptun)? +
P(tyy) = : _ Tuntun % {Twntup ' (11)
e"MDEMD 1+ ruptup + 3(tmptup)® + -
7
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If all the rates are small, as they are in this example (and as is generally the case for rare events),

and the time intervals t;, are sufficiently short, we have

Tmptup
P(t = — , 12
(tup) = T2 (12

where we note that ry;p = 73p(AViex). We note that Eq. (12) has a sigmoid shape. As we can
anticipate from Figure 2, ryp is a complicated function of AV,,,,, though we expect ryp to
increase with increasing AV}, ., and approach a constant value when AV, is sufficiently large.
Both features will promote a sigmoid curve for P(t,,) with increasing AV, 4., though not of the
exact form as Eq. (12). Because we will not generally know the exact relationship between 7y
and AV, for any arbitrary system, we can write P as

A

1 + Be~CAVmax

This equation also has a sigmoid shape in which we can handle the fact that ry;p = 73p (AViax)

P(AVpay) = (13)

using three adjustable parameters (A, B, and C).

To test Eq. (13), we ran a series of HD simulations on the boosted cosine potential for various
values of AV,,,. We calculated the value of P as an average over 1000 trajectories, each with a
duration of typ. Figure 3 shows the results from the simulations as points and a fit of the
simulation results to the sigmoid curve in Eq. (13) as lines. It is evident there is excellent
agreement between the exact values of P (dashed lines), the simulation values (points), and the fits

to a sigmoid curve (solid lines).
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Figure 3. Plot of Eq. (9) (dashed lines) as a function of Al},,, for short trajectories of various durations
typ- Symbols are results from short MD trajectories and solid lines are fits of the MD results to the

sigmoid function in Eq. (13).

The excellent fit of the sigmoid curve to the P data in Figure 3 is an opportunity to define an
appropriate boost parameter. Namely, P(AV,,,,) reaches an asymptotic value for large AV},
because V*(x) developed a substantial maximum where the original potential V(x) had a
minimum, resulting in sub-minima that trap the trajectory near the transition state. We can identify
the value of AV,,,, where P begins to reach an asymptotic value from the minimum in P"'(AV,,4,).
This value of AV,,,, should represent an aggressive boost. From this perspective, the inflection
point in P(AVy,4x), Where P (AVpyax) = 0 and P'(AV,,,,) exhibits a maximum, is a well-defined

quantity that should provide a safe estimate of AV},
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Figure 4. Plots of (a) P'(AV,,4,) and (b) P"(AV,,4,) for various simulation times t, on the

cosine potential.

Figure 4(a) shows P'(AV,,,,) and Figure 4(b) shows P (AV,,,,) for the simulations shown in
Figure 3. The maxima in Figure 4(a) and the minima in Figure 4(b) are listed in Table I. It is
evident from Figures 1 and 2 that the barrier of the cosine potential is 1.0 myx32/tZ and that HD
simulations become inaccurate when AV, ,,, becomes much greater than the barrier. From Table I
we see that AV}, ., implied from the maximum in P'(AV,,4,) is less than the barrier and the point of
minimum P"' (AV,,4,) is somewhat larger than the barrier. Though the values of AV}, vary for
different time intervals, they are similar. From the viewpoint of computational efficiency, it is
advisable to use the smallest time interval t),, that will yield the sigmoid form — producing P = 0
for AV, 4, around zero and a non-zero plateau for large AV,,,,. From Figure 3, we see t,;p as
small as 0.2t are acceptable for the cosine potential. Generally, the smallest acceptable time

interval depends on the barrier for the transition under consideration.

From Table I, it is evident that maxima on P'(AV,,,,) provide safe and conservative estimates
for AV,,q,- In Figure 1, these values all yield the exact rate, with time-boost factors of B =~ 15.

AV, €stimates from minima on P''(AV,,,,) also yield exact rates in Figure 1, with time-boost

10
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factors of B = 30 — however the HD rate begins to deviate from the exact value immediately
beyond these estimates. Thus, AV,,,, estimates from P’(AV,,,,) are safe and those from
P" (AVp,4y) are bold, but likely still satisfactory. In summary, the OptiBoost method involves (1)
Obtaining escape probabilities P as a function of AV,,,, from a series of short trajectories; (2)
Fitting P(AV,,4,) to the sigmoid function in Eq. (13); (3) Delineating the boost range from the

maximum in P'(AV,,4,) and from the minimum in P"' (AV},,4,.).

Table I. Values of optimal A, for various simulation times ¢ obtained from the plots of P'(AV;,4x)

and P"(AVyq,) in Figure 4.

Minimum in
Maximum in P'(AV,,..)
t(t ) max
’ P'(AVpngy) (o5 /85) .
(mox3/t5)
2t, 0.83 1.21
to 0.86 1.22
0.2¢, 0.91 1.28

B. Ag Diffusion on Ag(100)

To demonstrate that the results for the cosine potential can be observed for other systems, we
applied OptiBoost to three different systems involving Ag atom diffusion on Ag(100): (1) An Ag
atom in vacuum; (2) An Ag dimer in vacuum; and (3) An Ag atom in the presence of ethylene
glycol (EG) solvent. The third case is relevant to understanding the growth of Ag nanocrystals in
solution.19-21 We simulated these system using the LAMMPS code,22 version 290ct2020,
compiled with the ‘REPLICA’, ‘MANYBODY’, ‘MOLECULE’, ‘KSPACE’, ‘USER-MISC’ and

‘PYTHON’ packages. LAMMPS was used as a package to Python, for which we also imported

11
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‘multiprocessing’, ‘os’, ‘random’, ‘shutil’, and ‘numpy’. We note that the parallel implementation

of HD in LAMMPS has been described by Plimpton recently.16

We used an embedded-atom method (EAM) potential for Ag23 and the MOMB force field for
the Ag-EG and EG-EG interactions.24-27 The size of the Ag substrate in the vacuum systems was
8 X 8 X 6 atoms and the substrate consisted of 6 X 6 X 6 atoms with 48 EG molecules in the Ag-
EG system. Prior to production runs, we performed equilibration in the NPT ensemble using the
Nosé-Hoover thermostat and barostat for 10 ns to account for thermal expansion. All systems were
equilibrated at 433 K and 1 bar. The molar mass of EG is 62.02 g/mol and the volume of EG in
the system was 17.5 x 17.5 x 13 A3 after NPT equilibration. Using 48 EG molecules, the density
is 1.24 g/mL, a value somewhat higher than the experimental value of 1.1 g/mL.28 Subsequent
HD production runs were performed in the NVT ensemble using the Langevin thermostat. The

MD time step was 1 fs in all runs.

For the HD simulations, we use q = 0.3 [see Eq. (2)]. There are several specific LAMMPS
parameters for HD simulations.16 One is the bond cutoff D;,, 4, which we take to be 3.32 A. The
bond cutoff is the distance over which LAMMPS defines bonds for the bond-boost method. As the
simulation runs, a check is performed every 1000 time steps to determine whether an event has
occurred. In the solvent system, a check is also performed every 500 time steps and the observed
event rate did not change. The check consists of quenching the system using the ‘quickmin’
method, with dimensionless energy and force tolerances of 0.1, a maximum of 40 iterations, and 50
force evaluations. An event is said to have occurred if the displacement of the new quenched state
from the current quenched state is greater than a distance of Dyyepne, Which we take to be Dgyene =

1.2 A. We note that this value of D, is approximately 70% of the nearest-neighbor distance.

12



In LAMMPS, our OptiBoost HD simulations are driven by Python, in a protocol where N short
trajectories are launched in parallel for each value of AV,,,,. The outcome of each trajectory is
either “yes” if an event occurred or “no” if no event occurred. We then determine the event

probability P(AV,q,) as the number of “yes” trajectories (N,,s) divided by the total number of
launched trajectories, i.e., P(AVpqx) = Nyes/N. All analysis of P(AVqy) (ie., curve-fitting to

the sigmoid function and determination of appropriate values of AV,,,,) is done in Python.

1. Ag Diffusion on Ag(100) in Vacuum

0.040 -
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Rate (ns~1)

0.025
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A2 BL £d 03 04 4% 55 67 Cf
Ly (2]
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Figure 5. Observed surface diffusion rates in HD simulations of Ag adatom diffusion on
Ag(100) in vacuum for different values of AV},,,. The dashed line is the average rate for low

values of AV, 4. The inset shows the time-boost factor B for different Al .

13

Publiching

AlP



AlP

Publishing

We first performed HD simulations of a single Ag atom diffusing on Ag(100). Figure 5 shows
the physical hopping rate as a function of AV,,,,.. Each data point in Figure 5 is an average over 5
simulations, with each run covering 40~200 ns of MD time [ty in Eq. (4)]. The hop rate
fluctuates around a value of 0.035 hops/ns for AVmax between 0.0-0.4 eV and then decreases for
larger AVmax. This trend is opposite to that for the cosine potential in Figure 1 and the
discrepancy can be attributed to the differences in way LAMMPS detects events and the way we

checked for events in our Mathematica simulations.

In the Mathematica code for the cosine potential, the locations of the transition states are
obvious, and we checked every time step for a transition-state crossing. In LAMMPS, an event
check is performed every 1000 time steps and an event is detected when the current quenched state
of the atom displaces longer than a distance of D,y from the previous one. The quench process
in HD uses the ‘quickmin’ minimization routine without a strict tolerance, which implies the
quenched state is not necessarily an energy minimum. When AV,,,, is large, the trajectory is
confined near the transition state (as we see in Figure 2), with a small barrier such that the
transition state could be crossed more than once before an event check occurs. Moreover, when a
trajectory on the boosted surface is confined far from the minimum on the original potential, a
relatively long distance needs to be travelled in ‘quickmin’ to reach the minimum. With loose
tolerances, ‘quickmin’ times out, the minimization does not exactly reach the minimum, and the
atom displacement is shorter than D,,.,,;. An event is not identified, and the net rate decreases.
Though this may be seen as an impediment, we note that the HD simulations yield correct rates
(i.e., the same rate as for diffusion with AV,,,,= 0) for a wide range of AV,,,,. Moreover, the value
of AV, Where the boosted rate begins to deviate from the exact rate is around the value of the

barrier for hopping in this system, which we earlier estimated from climbing-image nudged-elastic

14



bind (CI-NEB) calculations.29 Additional simulation overhead is required for more frequent event
checking and for more thorough optimization, so the loose parameters for these routines are

justified for the present system. However, these parameters may not be satisfactory for all systems.
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Figure 6. Event probabilities P for Ag atom surface diffusion on Ag(100) in vacuum as a function
of AVj,ax- The lines are fits of the points to the sigmoid curve in Eq. (13). The vertical dashed lines

indicate the range of safe and efficient AV, summarized in Table II.

Event probabilities for single-adatom diffusion are shown as a function of Al,,,, for different
short time intervals in Figure 6, along with their fits to the sigmoid curve in Eq. (13). Each data
point in Figure 6 is an average over 200 simulations. Here, we see that P has a similar form to the
cosine potential and it is evident that the sigmoid curve is an excellent fit to the data. As we
discussed for the cosine potential, appropriate values of AV,,,, can be estimated from the

maximum of P’'(AV,,,,) and/or the minimum of P"'(AV,,,,). Table II lists the optimal values of

15
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AV, ax obtained from these derivatives, along with the time-boost factor B for each of value of

AVppax-

From Figure 5, we see that the AV}, predictions listed in Table II for P’'(AV,,,,) are safe, with
values of less than half the barrier29 (~0.5 eV) estimated from Climbing-Image Nudged Elastic
Band (CI-NEB) calculations.30  The AV, predictions from P (AV,,,,) are also safe and are
closer to the CI-NEB barrier. The time-boost factors for these two estimates are B = 25 from
P'(AV,4x) and B = 41-43 from P"' (AV,,4,). To gauge the efficiency, we required 9 hours to
obtain the 150 ps curve and the prediction range in Figure 6. The simulations to acquire P were
run in parallel on 33 cores in several batches. For regular MD simulations, it will take 135 wall-
clock hours to reach 1 microsecond in this system, running on 4 cores of Penn State’s Roar cluster.
With the time-boost factor range of 20-40 in Table II, a simulation with OptiBoost will require 12-
14 hours (9 h for selecting a boost and 3-5 h for HD simulations running on 4 cores). It is evident
that the computational effort has moved from executing the simulation to selecting the boost.

Table I1. Values of optimal AV}, for various simulation times t,;, obtained from P'(AV,,,,) and

P""(AV,qy) for Ag adatom diffusion in Figure 6.

P'(AV nay) P" (AV nay)
t (ps)
AVmax B Avmax B
150 0.29 25 0.40 43
200 0.29 25 0.38 41

Even with the overhead of selecting an appropriate value of AV,,,,, HD simulations are an order
of magnitude faster than regular MD. Here, we note that (1) the efficiency of selecting an

appropriate value of AV}, ,,, could be improved by more extensive, or complete parallelization; (2)

16



a boost can be selected “once and for all” to benefit future simulations, dramatically increasing the
efficiency. Thus, once the boost(s) have been established for a particular system, HD simulations

with the bond-boost method would be more than 20 times faster than regular MD.

2. Ag Dimer Diffusion on Ag(100) in Vacuum
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Figure 7. Net diffusion rate of Ag dimer on Ag(100) in vacuum as a function of AV,,,,. The
dashed line is the average rate for low values of AV}, ,,. The inset shows the time-boost factor as a

function of AV}, 4.

Figure 7 shows the physical hopping rate as a function of AV,,,, for Ag dimer diffusion on
Ag(100) in vacuum. Each data point in Figure 7 is an average of 5 simulations, with each run
covering 40-100 ns of MD time [t,p in Eq. (4)]. The observed dimer event rate fluctuates around

0.14 hops/ns for AV, from 0.0-0.20 eV and then decreases. Unlike single-adatom hopping and
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motion on the cosine potential, several different kinds of events can occur for dimer diffusion and
the rate in Figure 7 reflects all these different events. The most frequent dimer motions are
twirling dissociation and linear dissociation. We quantified these two events using CI-NEB
calculations,® as shown in Figure 8. The smallest-barrier event is backward aggregation from
twirling dissociation in Figure 8(a), which has a barrier of 0.24 eV and we note that the HD
simulations in Figure 7 become inaccurate when the boost is larger than around 0.2 eV. The
forward and backward barriers for linear dissociation, indicated in Figure 8(b), are both larger than

this value.
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Figure 8. Potential-energy profiles obtained from 15 replicas in CI-NEB calculations for (a)
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twirling dimer dissociation, (b) linear dimer dissociation.

Event probabilities for dimer diffusion beginning with the intact dimer state are shown as a
function of AV,,,, for different short time intervals in Figure 9 along with their fits to the sigmoid
curve in Eq. (13). Each data point in Figure 9 is an average over 200 simulations. As for the
previous cases, the sigmoid curve is an excellent fit to the data. Table III lists the values of AV,

obtained from P'(AV,,4,) and P"'(AV,,4,), along with the time-boost factor B. While the AV,,;,
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from P’ (AVq,) and P"'(AV,,4,) are smaller than both barriers to break the dimer from the intact
configuration, these values are larger than the smallest barrier for dimer recombination after
twirling dissociation in Figure 8(a) and larger than the barrier for which the physical rate deviates

from the exact value in Figure 7.
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0.354
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0.25 4
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-
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Figure 9. Event probabilities for dimer surface diffusion on Ag(100) in vacuum for
different MD time intervals as a function of AV,,,,. The dashed lines indicate the values of

AV}, .x summarized in Table III.

Table III. Values of optimal AV, for various simulation times t,, obtained from P'(AV,,,,) and

P""(AVppay) for Ag dimer diffusion in Figure 9, along with the time-boost factors B.

P'(AV nax) P"(AV pax)
typ (pS)
AV ax B AV ax B
100 0.32 25 0.44 50
150 0.31 25 0.42 48
19
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It is possible to isolate the recombination event in Figure 8(a) and determine an appropriate
boost for this event. Beginning with the final state for twirling dissociation in Figure 8(a), we
determined event probabilities for recombination of the dissociated dimer. The results are shown
in Figure 10 where we again see an excellent fit to a sigmoid curve. The vertical lines in Figure 10
indicate the optimal values of AV,,,, obtained from P’'(AV,,,,) and P"'(AV,,,,). Based on the
barrier for twirling dissociation in Figure 8(a) and the barrier for which the physical rate deviates
from the exact value in Figure 7, we can see that these are safe values. Thus, applied to a single

event, the bold boost estimates from the OptiBoost method can predict safe values for AV, .

® 5ps
10ps

0.8 -

0.0 0.1 0.2 0.3 0.4
AV max (eV)

Figure 10. Event probabilities for twirling dimer dissociation on Ag(100) in vacuum for
different MD time intervals as a function of Al},,,,. The dashed vertical lines delineate the
boosts obtained from the maximum of P'(AV,,,) (0.08 and 0.11 eV) and from the minimum of

P"(AV,qy) (0.17 and 0.18 eV).
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For the dimer simulations, 10 min was required to obtain the 5 ps curve and the prediction range
in Figure 10. The time-boost factors were B = 3 and B = 10 based on conservative and aggressive
predictions, respectively. For regular MD simulations, it will take 129 hours to reach 1
microsecond in this system, running on 4 cores of our local facility. With the time-boost factor
range of B = 3-10 achieved in Figure 10, a one-microsecond simulation with OptiBoost will

require 12-36 hours running on 4 cores using a boost that is safe.

Thus, HD simulations running with a minimal boost are up to an order of magnitude faster than
regular MD. Here, we note that it is the current state of HD simulations to run with one boost that
is set at the beginning of the simulation based on the lowest energy barrier. It is evident from the
two examples for Ag in vacuum that such a mode of running would be sub-optimal since the boost
determined for twirling dimer recombination (0.18 eV) is much less than that for single-atom
diffusion (0.40 eV) or dimer dissociation (0.44 eV). Our calculations with the dimer indicate that
it is possible to associate a particular boost with a particular local atomic environment. Thus, once
the boosts have been established for various environments, HD simulations with the bond-boost

method could run with high efficiency.

3. Ag Adatom Diffusion on Ag(100) in Solvent

Special concerns apply to HD simulations of Ag adatom diffusion in the system with EG
solvent. Namely, the EG solvent is highly active so we must frequently update the bond list
between Ag and EG and computational effort is wasted on quenching and re-bonding the system. If
the bond list is not updated frequently, some EG bonded with the adatom will displace further than
the bond cutoff and the bond will remain highly strained. This will result in a zero-bond bias and

no acceleration (B = 1). Figure 11(a) depicts the typical way to group atoms in our HD simulations
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of surfaces. In this set-up, the bottom two layers of Ag are fixed and the upper four layers of Ag

along with the adatom(s) are simulated using HD. We used NVT simulations for EG solvent.

We ran test HD simulations with this protocol, using AV, 4= 0.30 eV and updating the bond list
every 100 time steps. 20 simulations were run for 100 ps each and no events were detected.
Moreover, 99% of the boosted bonds had zero boost and only 55% of the computational effort was
spent on dynamics. Subsequently, 50 simulations were performed in which the bond list was
updated every 10 time steps. Although no event was detected, the time-boost factor was B = 10,
40% of the boosted bonds had zero boost, but only 10% of the computational effort was on
dynamics. By updating the bond list more frequently, larger boosts could be achieved, but a

significant fraction of the computational effort was wasted on quenching and re-bonding.

(a) (b)

MWYT EG - 48 molecules MYT EG — 48 molecules

NVT Ag —1 layers +

Boosted Ag — 4 layers + adatom
adatom

Boosted Ag — 3 layers

Bottom Ag — 2 layers - Bottom Ag — 2 layers -
fixed fixed

Figure 11. Two possible simulation protocols for HD simulations of surface events in EG
solvent. (a) All the moving Ag atoms are simulated with HD and the solvent is simulated in the
NVT ensemble. (b) Three layers of Ag atoms are simulated with HD, while the top Ag layer and

the EG solvent are simulated in the NVT ensemble.
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As an alternative to our standard protocol in Figure 11(a), we implemented the method in Figure
11(b). In this protocol, the top Ag layer and the adatom are run with NVT simulations (together
with the EG), so that Ag-EG bonds are mostly excluded from the HD bond list. 200 HD
simulations were performed for 100 ps each using the modified group method with AV, ;= 0.30
eV. The HD bond list was updated every 1000 time steps. In this protocol, an event occurred in
one simulation out of nine. Only 10% of the boosted bonds had zero boost and over 90% of
computational effort was spent on dynamics. With time-boost factors of B =~ 80, the modified
group method can be applied to systems with a boundary between active and relatively inactive

parts.

o r———-r
EG 20 e il pd 8% o4 7 EF

G.DU 1 7 ':ll-"-\.l-.r'.l"'-'l : I
00 02 04 06 08
ﬂvmax {EV}

Figure 12. Net diffusion rate of Ag atom Ag(100) in EG solvent as a function of AV,,,.
The dashed line is the average rate for low values of Al},,,,. The inset shows the time-boost factor

Bas a function of AV,
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In long-time simulations based on the method in Figure 11(b), the observed event rate as a
function of AV, is shown in Figure 12. Each data point in Figure 12 is an average over five
simulations with times ranging from 40-200 ns. Interestingly, while single-atom hopping of the
adatom on top of the surface occurred in vacuum, exchange diffusion, in which a surface atom and
the adatom exchange places, was the preferred mechanism for a single Ag atom in solvent. We
were able to determine that this was not a result of using the boosting protocol in Figure 11(b)
because HD simulations of single-atom diffusion in vacuum still exhibited hopping using this
protocol. Additionally, the lattice parameters were the same in vacuum and in solvent, so the
exchange mechanism in the solvent systems did not result from strain. Comparing Figures 8 and
12, we see that Ag adatom diffusion in solvent environment is almost an order of magnitude slower
than that in a vacuum environment. From Figure 12, we see the simulated rate becomes inaccurate

for AVyq > 0.4 €V.

To test the OptiBoost method, we conducted 200 HD simulations each for two different time
intervals and various AV}, ,, to obtain the event probabilities shown in Figure 13. In Figure 13, we
see that the event probabilities for diffusion on a surface in EG solvent exhibit the same sigmoid
form as the other systems. Using the OptiBoost analysis of P’'(AV,,,,) and P (AV,,,,), we find
similar boost ranges as we saw previously: For the conservative analysis with P'(AV,,4,), we find
a safe boost of ~0.3 eV for both time intervals. Using the “bold” analysis from P"(AV,,4,), We
predict a safe, but aggressive boost of ~0.4 eV. From the inset to Figure 12, the time-boost factor
for AV, ,,=0.4 eV is B = 230. Interestingly, even though the boosts are similar for Ag diffusion
in a solvent and in a vacuum environment, B is about 40 times greater in the solvent environment.
We attribute these differences to differences in the boosting mode for the solvent system [Figure

11(a) in vacuum vs. Figure 11(b) in solvent], which leads to a greater fraction of non-zero boosts.
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Regarding the efficiency of these simulations, 80 h were required to obtain the 150 ps curve
and the prediction range for AV,,,,. The time-boost factors were B = 100 and B = 230 based on
conservative and aggressive predictions, respectively. For normal MD simulations, it would take
1316 hours to reach 1 microsecond in this system, running on 4 cores. With the time-boost factor
range of 100-230 indicated by Figure 12, a simulation with OptiBoost will require 86-91 hours
running on 4 cores using a safe boost — an acceleration of over an order of magnitude, even with
the substantial overhead of establishing an appropriate value of Al},,,. Without the overhead of

determining AV, ., the acceleration could be two orders of magnitude.

0.5 1 ® 150ps
200ps
0.4 - |
. L
0.3 - "
(i
0.2 -
0.1 -
0.0
0.0 0.2 0.4 0.6 0.8

AVmax (eV)

Figure 13. Event probabilities for Ag atom surface diffusion on Ag(100) in EG solvent for two
different time intervals as a function of AV,,,,. The dashed vertical lines delineate the boost
obtained from the maximum of P’'(AV,,,,) (0.31 and 0.33 eV) and the boost from the minimum of

P""(AVipay) (0.38 and 0.40 eV).
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III.  CONCLUSIONS

We developed a method called OptiBoost to adjust the value of AV,,,, in HD simulations based
on the bond-boost method. The OptiBoost method involves (1) Selecting a value of AV}, and
running a series of short trajectories to obtain the probability P(AV;,,,) that an event occurred;
(2) Fitting P(AV,,4,) to a sigmoid function and; (3) Delineating the boost range from the

maximum in P'(AV,,4,) and from the minimum in P"' (AV,,4)-

We demonstrated the OptiBoost method in simulations on a cosine potential, where exact rates
were known, and exact analysis could be performed. These results showed that the OptiBoost
method could determine safe and aggressive boosts. We then implemented OptiBoost in three
different simulations involving Ag atom diffusion on Ag(100): (1) An Ag adatom on Ag(100) in
vacuum; (2) An Ag dimer on Ag(100) in vacuum and; (3) An Ag adatom on Ag(100) in EG
solvent. We implemented the OptiBoost method for the Ag diffusion systems in the LAMMPS
code, driven by a Python wrapper. All trajectory analysis for the Ag diffusion systems was

performed in Python.

For all the Ag diffusion systems, we obtained similar results to the cosine potential,
demonstrating the robust nature of OptiBoost. Even though OptiBoost incurs computational
overhead, the increases in efficiency enabled by this approach were typically an order of
magnitude. Since determination of the event probability is an “embarrassingly parallel”
calculation, the overhead associated with this calculation would become negligible on a massively
parallel architecture, allowing for more substantial acceleration. Additionally, there are several
aspects of this algorithm that could be optimized, including the length of the run to determine the
event probability and the range of AV,,,, values. While we did not optimize these aspects here,
this would be a worthwhile future goal. Perhaps most importantly, our simulations with the dimer
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showed that an appropriate boost can be established “once and for all” for each local atomic
environment and recalled once the local configuration is re-visited, so that HD simulations can be
run with multiple boosts, free of the overhead incurred to obtain the boost. In this mode of

operation, HD simulations would be particularly efficient.
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