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Scheduling Flexible Nonpreemptive Loads in
Smart-Grid Networks
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Abstract—A market consisting of a generator with ther-
mal and renewable generation capability, a set of nonpre-
emptive loads (i.e., loads which cannot be interrupted
once started), and an independent system operator (ISO) is
considered. Loads are characterized by durations, power
demand rates, and utility for receiving service, as well
as disutility functions giving preferences for time slots in
which service is preferred. Given this information, along
with the generator’s thermal generation cost function and
forecast renewable generation, the social planner solves
a mixed-integer program to determine a load activation
schedule which maximizes social welfare. Assuming price-
taking behavior, we develop a competitive equilibrium con-
cept based on a relaxed version of the social planner’s
problem, which includes prices for consumption and incen-
tives for flexibility, and allows for probabilistic allocation of
power to loads. Considering each load as representative of
a population of identical loads with scaled characteristics,
we demonstrate that the relaxed social planner’s problem
gives an exact solution to the original mixed integer prob-
lem in the large population limit, and give a market mecha-
nism for implementing the competitive equilibrium. Finally,
we evaluate via case study the benefit of incorporating load
flexibility information into power consumption and genera-
tion scheduling in terms of proportion of loads served and
overall social welfare.

Index Terms—Electric vehicles, power system planning,
power systems economics.

I. INTRODUCTION

OVER THE roughly century-long history of the electrical
power grid, the situation facing both grid managers and

end users has remained largely the same: electricity available on
demand. In the case of the latter, operation of lightbulbs, televi-
sion sets, and other appliances has been just the flip of a switch
away, while for the former, the set of available controls and
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actions was oversupply, i.e., which generators to activate—How
much to generate and when [21]? Managers have consistently
succeeded in providing an adequate supply to meet the demand
of end users from second to second largely due to the fact that
over the past century, demand forecasting has reached day-ahead
accuracy within 5% [14].

Recently, circumstances have changed on both the supply
and demand sides of the grid. Increased adoption of renew-
ables means that the available power supply is becoming less
controllable. Thus, even in the presence of relatively pre-
dictable aggregate load, forecasting errors in excess load can be
significant. Meanwhile, the rise of networked appliances in
homes and buildings is now facilitating synchronization and
coordination of consumption to the extent that the demand-side
flexibility stands to become one of the most important assets
available to grid operators [20]. Water heaters and electric
vehicles (EVs) typify loads characterized by such flexibility.
A recent report from the Brattle Group estimates that load
flexibility could be expanded to satisfy nearly 20% of the US
peak demand, and avoid nearly $18 billion in annual genera-
tion capacity, energy, transmission, and ancillary service costs
[13].

Currently, aggregate flexibility is leveraged through demand
response programs. Typically, these programs are used to reduce
peaks in demand, either by indirect load control via real-time
pricing or direct control, where utilities have the ability to turn
devices ON or OFF. Moving forward, much of the additional
benefit is expected to come from expanding the use of demand
response to applications such as load shifting and building, e.g.,
to track a time-varying supply of renewable energy, and services
such as frequency regulation and voltage control [13].

This work considers a population of nonpreemptive loads, i.e.,
loads which must be served continuously for a predetermined
amount of time without interruption once service has started. Ex-
amples of such loads are household appliances like dishwashers
and EV charging with tight deadlines [10]. Users report their
level of discomfort for being served at each time slot of a finite
time horizon. The social planner tasked with serving these loads
has access to a thermal generator with convex generation cost,
as well as a renewable generator with zero marginal cost. Given
the users’ preferences, thermal generator’s cost function, and
knowledge of the renewable generator’s output, the scheduler
determines an efficient schedule for cost minimization. We seek
to answer the following questions: How can these flexible loads
be scheduled over the available time slots? Once a schedule has
been determined, how should users be compensated for their
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flexibility? What is the “price of inflexibility” in this setting?
In particular, the problem of monetizing flexibility has proven
challenging thus far due to a lack of suitable optimization
formulations [20].

A. Related Work

While the problem of scheduling processor time for ser-
vice of both pre-emptive and nonpreemptive tasks has long
been studied in computer science literature [7], load schedul-
ing in the context of demand response in energy systems has
received considerable attention over the past several years.
Model predictive control (MPC) [8], successive binary op-
timization [25], and greedy algorithms [19] have been ap-
plied to the particular objective of tracking a target ag-
gregate load profile at minimum cost, without considering
pricing.

Beyond costs associated directly with generation, several
works incorporate exogenous energy pricing schemes as param-
eters of their respective formulations. Fixed uniform rates [24],
tiered rates based upon given affine per unit pricing functions [9],
and peak/off-peak pricing schemes [11] modeling programs
implemented by utilities have been considered in concert with
earliest deadline first, least laxity first, and MPC scheduling
policies.

Of the works that derive flexibility pricing schemes endoge-
nously alongside optimal schedules, relatively few consider
nonpreemptive loads. This is primarily due to the binary start
time decision variables necessary when introducing nonpre-
emptive loads, which precludes direct use of traditional convex
optimization or marginal pricing-based schemes [20]. Without
explicit inclusion of nonpreemptive consumption profiles, the
scheduling and pricing of a continuum of deadline differentiated
loads is studied in [2], wherein the longer a consumer is willing
to defer, the lower their energy price.

Targeting nonpreemptive loads with hard constraints on ac-
ceptable service windows, both [4] and [18] adopt a bilevel
programming approach in which an energy provider optimizes
a pricing schedule in the upper level, and consumers react by
scheduling their loads in order to minimize costs and discomfort.
Genetic algorithm [18] and evolutionary and particle-swarm [4]
based scheduling heuristics are used to handle the nonpreemp-
tive -related integer constraints.

More recently, Qin et al. [20] detail a power exchange plat-
form allowing for flexible suppliers, as well as consumers with
nonpreemptive consumption patterns. A fluid relaxation on de-
mand profile shapes along with a projection method for deriving
a feasible schedule is given, and the resulting solution is shown
to be asymptotically optimal in the infinite load limit. Marginal
pricing, given a schedule of the flexible loads, is shown to be
inadmissable with respect to incoming offers.

Closest to this work, in [7], a setting similar to the one
presented here in continuous time is examined. Prices for load
consumption and inflexibility are derived as dual variables to
the scheduler’s convex optimization problem, and a competitive
equilibrium with respect to reported loads reported consump-
tion level and duration is studied. Under time discretization,

approximately optimal scheduling and pricing heuristics are
developed. In contrast to this work, user disutility is not modeled,
and flexibility incentives do not arise from the optimization
formulation. Further, the optimality of the associated heuristics
cannot be proven.

B. Statement of Contributions

In this article, we propose a tractable optimization formulation
for scheduling and pricing nonpreemptive load service. Inclu-
sion of such loads necessitates specification of constraints and
variables capturing their noninterruptible nature, and in general
results in NP-hard optimization problems [20]. In summary, the
key steps and contributions of this article are as follows.

1) We propose a novel specification of load flexibility and
decentralized optimization formulation for the scheduling
of nonpreemptive loads.

2) We formulate a corresponding centralized welfare max-
imization problem, and prove the existence of a com-
petitive equilibrium in the relaxed version of this setting
with finitely many loads, i.e., we show that there exist
prices for per unit energy consumption and inflexibility
such that the thermal generator produces efficient levels at
each time step, and a social planner schedules loads such
that demand equals supply while respecting the loads’
flexibility preferences.

3) We prove that the competitive equilibrium determined for
the finite population setting is also a competitive equilib-
rium in the original mixed binary problem, when each
load is interpreted as representing an infinite population
of loads with appropriately scaled demand. Thus, the
prices derived via convex relaxation are suitable for use in
the binary-constrained setting. Such a result is currently
absent in the related literature.

4) We specify a market mechanism for implementing the
competitive equilibrium.

5) We present a case study demonstrating the utility of our
formulation, based on real-world EV charging data drawn
from the Adaptive Charging Network (ACN) project [15].

II. PROBLEM FORMULATION

The market consists of M nonpreemptive loads (or con-
sumers) and a single thermal generator. Additionally, an ISO
(independent system operator) ensures safe grid operation. Let
T = [1, . . . , T ] denote the discrete time horizon over which
loads are scheduled. For simplicity, we assume a single-bus
network model. We assume throughout that all entities are price
taking, i.e., their actions do not affect market prices.

A. Market Entity Problems

1) Loads: Each load i is characterized by a tuple
(τi, li, U i, u

dS
i· , udE

i· ), where τi gives the duration in time slots, li
gives the consumption level, and udS

i· and udE
i· give the disutility

functions of consumer i due to service starting prior to or after
a desired service window, respectively. Consumer i demands
li MW of electricity for τi consecutive time slots, and derives
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Fig. 1. Example disutility vectors.

utility U i as their load is fulfilled. Fig. 1 plots an example pair of
disutility functions vectors. If consumer i is allowed to be served
in time slot t, it suffers disutility udS

it + udE
it ≥ 0. For example,

an EV commuter may prefer that his or her vehicle be charged
for a 5-h period at 5 kW/h between 9 AM and 5 PM—while he or
she works—rather than arrive early or stay late in order to charge
the vehicle. Thus, the consumer’s overall utility is a function of
the flexibility that it allows for in the scheduling of its load.

Denote xC
i := (xC

i1, . . . , x
C
iT ) ∈ {0, 1}T . We will similarly

define vector- and matrix-valued quantities throughout. Given
flexibility incentives pSi ∈ RT

+ and pEi ∈ RT
+, consumer i solves

the following optimization problem:

(CONSi) min
xC
i ∈{0,1}T ,

yC
i ≥0, zC

i ≥0

∑
t

pcon
it xC

it − U i

T−τi+1∑
t=1

xC
it

+
∑
t

(
(1− yCit )(u

dS
it − pSit) + (1− zCit )

(
udE
it − pEit

))
(1)

s.t.
t∑

s=1

s∑
r=max{1,s−τi+1}

xC
ir ≤ τi(1− yCit ) ∀ t (2)

T∑
s=t

s∑
r=max{1,s−τi+1}

xC
ir ≤ τi(1− zCit ) ∀ t. (3)

In the context of EV charging, if xC
it = 1, then consumer

i chooses to begin charging his or her vehicle at time slot
t and pays activation price pcon

it . The inner sums on the left-
hand side in constraints (2) and (3) give the charging/idle
status of load i at each time slot s. That is, the sums will
be equal to 1 if consumer i’s vehicle started charging in any
time slot {max{1, s− τi + 1}, . . . , s} and 0 otherwise. The
term (1− yCit ) > 0 when consumer i’s EV has started charging
prior to or at time slot t. In such a case, consumer i incurs
disutility (1− yCit )u

dS
it ≥ 0 for having started by time t, but

is compensated at early start rate pSit. Similarly, (1− zCit ) > 0
indicates that consumer i’s EV will be charging at or after time
slot t, with udE

it and late charge ending rate pEit analogous to udS
it

and pSit.
2) Thermal Generator: The generator is characterized by

its thermal generation cost function c(·) : R+ → R+, which is

assumed to be strictly convex, increasing and twice differen-
tiable on R+. In addition to the generator’s thermal plant, we
assume that it also owns a renewable generator which produces
energy at zero marginal cost. The output of the renewable gen-
erator, g : T → (0,∞), is assumed to be known to all market
participants at time t = 0. Given prices pgen ∈ RT

+, the generator
chooses generation levels qG ∈ RT

+ to solve the following profit
maximization problem:

(GEN) max
qG≥0

∑
t

(
pgen
t (qGt + gt)− c(qGt )

)
.

3) ISO: Finally, the ISO collects all load profiles and deter-
mines the set of admissible load and generation schedules by
solving

(ISO) min
qI≥0, xI

∑
t

pgen
t

(
qIt + gt −

∑
i

li
∑

s=max{1,t−τi+1}
xI
is

)

s.t.
∑
i

li

t∑
s=max{1,t−τi+1}

xI
is − gt ≤ qIt ∀t, xI ∈ {0, 1}M×T

where qI ∈ RT
+. Note that the ISO incurs positive cost at any

time slot t, where thermal generation qIt exceeds residual de-
mand (aggregate demand less renewable generation) and, thus,
will find those schedules which balance thermal generation and
residual demand optimal.

B. Centralized Social Planner’s Problem

In order to study the welfare properties of the competitive
equilibrium given later, we introduce a social planning problem.
The social planner is concerned with maximizing the combined
welfare of all market participants, while ensuring safe operation
of the power grid. Specifically, the social planner collects the
profiles of each load i, and schedules them so that each is served
without interruption for the entire duration. In practice, either
the ISO or equivalent market participant, or a government orga-
nization often assumes responsibility for these tasks [6]. Here,
we introduce the social planner as a distinct entity for clarity
as we investigate properties of our market formulation. Let
x̂it ∈ {0, 1} denote the social planner’s decision as to whether
load i will begin service in time slot t, where x̂it = 1 denotes
that load i will start at time slot t. A schedule is then defined as
x̂ ∈ {0, 1}M×T . The social planner selects a schedule, auxiliary
load status variables ŷ and ẑ, and corresponding generation
levels q̂ := (q̂1, . . . , q̂t) in order to solve the following problem:

(SPP) min
q̂≥0, x̂∈{0,1}M×T

ŷ≥0, ẑ≥0

∑
t

c(q̂t) +
∑
i

∑
t

udS
it (1− ŷit)

+
∑
i

∑
t

udE
it (1− ẑit)−

∑
i

U i

T−τi+1∑
t=1

x̂it (4)

s.t.
∑
i

li

t∑
s=max{1,t−τi+1}

x̂is − gt ≤ q̂t ∀ t (5)
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t∑
s=1

s∑
r=max{1,s−τi+1}

x̂ir ≤ τi(1− ŷit) ∀ i, t (6)

T∑
s=t

s∑
r=max{1,s−τi+1}

x̂ir ≤ τi(1− ẑit) ∀ i, t. (7)

III. CONVEX RELAXATION AND PRICING

In order to develop prices for electricity consumption and
load inflexibility, as well as a competitive equilibrium concept,
we relax the binary constraints on x̂, and consider the following
problem:

(SPP-R) min
q̂,x̂,ŷ,ẑ≥0

∑
t

c(q̂t) +
∑
i

∑
t

udS
it (1− ŷit)

+
∑
i

∑
t

udE
it (1− ẑit)−

∑
i

U i

T−τi+1∑
t=1

x̂it (8)

s.t. λ̂t :
∑
i

li

t∑
s=max{1,t−τi+1}

x̂is − gt ≤ q̂t ∀ t (9)

ν̂Sit :

t∑
s=1

s∑
r=max{1,s−τi+1}

x̂ir ≤ τi(1− ŷit) ∀ i, t (10)

ν̂Eit :
T∑

s=t

s∑
r=max{1,s−τi+1}

x̂ir ≤ τi(1− ẑit) ∀ i, t (11)

where λ̂t, ν̂Sit, and ν̂Eit denote the dual variables corresponding
to constraints (9)–(11). It can be shown that constraints (10) and
(11) ensure that all entries of x̂, ŷ, and ẑ are less than 1, and

T−τi+1∑
t=1

x̂it ≤ 1 ∀ i, t. (12)

Under the relaxation, since in addition to (12), each schedule
decision variable x̂it satisfies 0 ≤ x̂it ≤ 1, x̂ may be interpreted
as a matrix specifying the probability that a given load of type i
will be scheduled at time slot t for all i and t. That is, for each
i, the planner will choose x̂i· ∈ RT equal to et, the tth standard
basis vector, with probability x̂it. Therefore, x̂ in (SPP-R) gives
a probabilistic schedule for the loads and if, for a given i, (12)
holds with equality, then load i is certain to be activated at some
time slot t ∈ T . Otherwise, the load only has a chance of ever
being activated. Fixing a matrix of probabilities x̂, (1− ŷit) and
(1− ẑit) give probabilities that load i has been activated up to
time t, and will be active from time slot t onward, respectively,
for all i and t. Thus, the (SPP-R) objective may be viewed as
the expectation of overall social welfare, and the constraints
as in expectation. This interpretation is key to the competitive
equilibrium definition and properties we detail in later sections.

Note that due to the non-negativity of udS
it and udE

it for all
i, t, for any fixed x̂, it is always optimal to choose each entry
of matrices {1− ŷ} and {1− ẑ} as small as possible, where 1
denotes the matrix of size M × T with each entry being equal
to 1. Therefore, constraints (10) and (11) may be replaced with

equalities, and matrices ŷ and ẑ are completely determined given
a particular x̂.

Having relaxed the binary constraints on matrices x̂, ŷ, and
ẑ, we may employ Lagrangian analysis in order to arrive at a
solution to (SPP-R). Let

pλ̂
it = li

min{T,t+τi−1}∑
s=t

λ̂s (13)

pν̂it =

T∑
s=t

ν̂Sis min{s− t+ 1, τi}

+

min{T,t+τ−1}∑
s=1

ν̂Eis min{T − t+ 1, τi, τi − (s− t)}.

(14)

See [5] for the derivation of pλ̂ and pν̂ . In addition to feasibil-
ity, the KKT optimality conditions for (SPP-R) are

c′(q̂∗t )− λ̂∗
t ≥ 0, q̂∗t

(
c′(q̂∗t )− λ̂∗

t

)
= 0 ∀ t (15)

for all i, t ≤ T − τi + 1

pλ̂∗

it + pν̂
∗

it − U i ≥ 0, x̂∗
it

(
pλ̂∗

it + pν̂
∗

it − U i

)
= 0 (16)

for all i, t > T − τi + 1

pλ̂∗

it + pν̂
∗

it ≥ 0, x̂∗
it

(
pλ̂∗

it + pν̂
∗

it

)
= 0 (17)

and for all i and t

τiν̂
S∗
it − udS

it ≥ 0, ŷ∗it
(
τiν̂

S∗
it − udS

it

)
= 0 ∀ i, t (18)

τiν̂
E∗
it − udE

it ≥ 0, ẑ∗it
(
τiν̂

E∗
it − udE

it

)
= 0 ∀ i, t (19)

λ̂∗
t

⎛
⎝∑

i

li

t∑
s=max{1,t−τi+1}

x̂∗
is − gt − q̂∗t

⎞
⎠ = 0 ∀ t (20)

λ̂∗
t ≥ 0 ∀ i, t. (21)

Note that due to condition (16), load i may only be acti-
vated with nonzero probability during time slots when the sum
pλ̂∗
it + pν̂

∗
it is equal to the constant marginal utility term U i.

Additionally, condition (15) implies that for time slots in which
it is optimal to produce a positive quantity of electricity, we have
that λ̂∗

t = c′(q̂∗t ) > 0, the marginal cost of production. In turn,
condition (20) implies that generation in such time slots will be
equal to demand less forecast renewable generation.

In view of our interpretation of the (SPP-R) objective as the
expected value of social welfare and the constraints as being met
in expectation, the solution to (SPP-R) yields a set of admissible
load activation schedules which may be randomly selected by the
social planner in a single shot of the original, binary-constrained
problem. We will further examine this correspondence in later
sections. Fixing such an activation schedule and taking into
account renewable generation output gt, the optimal generation
schedule follows from constraints (5) and (9), and condition
(19).
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A. Convex Relaxed Entity Problems

Inspection of the (SPP-R) Lagrangian suggests the following
decomposition of the relaxed social planner’s problem into re-
laxed versions of the individual entity problems presented above.
See [5] for the optimality conditions corresponding to each of
these problems.

1) Loads: Starting with the consumer problems, we have

(CONS-Ri) min
xC
i , yC

i

zC
i ≥0

∑
t

pcon
it xC

it − U i

T−τi+1∑
t=1

xC
it

+
∑
t

(
(udS

it − pSit)(1− yCit ) +
(
udE
it − pEit

)
(1− zCit )

)
(22)

s.t. θSit :

t∑
s=1

s∑
r=max{1,s−τi+1}

xC
ir = τi(1− yCit ) ∀ t (23)

θEit :
T∑

s=t

s∑
r=max{1,s−τi+1}

xC
ir = τi(1− zCit ) ∀ t. (24)

Again, under the relaxation of the binary constraints onxC
i , we

may interpret the consumer’s problem as selecting probabilities
of activation for each time slot t, in the interest of maximizing
their expected net utility (here written in minimization form).

2) Generator: The generator’s problem remains the same

(GEN-R) max
qG≥0

∑
t

(
pgen
t (qGt + gt)− c(qGt )

)
. (25)

3) ISO: Finally, the relaxed ISO problem is given by

(ISO-R) min
qI≥0
xI≥0

∑
t

pgen
t

(
qIt + gt −

∑
i

li

t∑
s=max{1,t−τi+1}

xI
is

)

s.t. αt :
∑
i

li

t∑
s=max{1,t−τi+1}

xI
is − gt ≤ qIt ∀ t.

IV. COMPETITIVE EQUILIBRIUM AND THEOREMS OF

WELFARE ECONOMICS

The competitive or Walrasian equilibrium is a standard refer-
ence point in economic analysis for assessing market outcomes.
A competitive equilibrium is specified by an allocation of goods
and prices, with the defining characteristic that taking the equi-
librium prices as given, every market participant finds it optimal
to select the corresponding equilibrium allocation [16]. At equi-
librium prices, the quantity of goods demanded by consumers
is equal to that produced by suppliers., i.e., the market clears.
Therefore, equilibrium prices provide a coordinating signal for
decentralized market operation.

Assuming that a competitive equilibrium exists for a particular
market setting, it is natural to compare the equilibrium allocation
to allocations which directly maximize the aggregate welfare of
all market participants. The latter allocations are called efficient,
and here correspond to solutions to (SPP-R).

We now give the competitive equilibrium definition for our
setting, and explore existence, as well as welfare properties of

such an equilibrium. As related above, competitive equilibria
are typically specified in two-sided settings involving consumers
and producers maximizing their individual well-being and prof-
its, respectively. Similar to the analysis found in [22] and [26],
we augment the standard definition to include a nonprofit entity,
i.e., the ISO.

Definition 1: (Competitive Equilibrium). A tuple
(q∗, x∗, y∗, z∗, pcon∗, pS∗, pE∗, pgen∗) with pgen∗ ≥ 0 is said
to be a competitive equilibrium if, given (pcon∗

i , pS∗
i , pE∗

i ),
(x∗

i , y
∗
i , z

∗
i ) solves (CON-Ri) for each i, q∗ solves (GEN-R),

given pgen*, q∗ solves (GEN-R), and given pgen∗, (q∗, x∗) solves
(ISO-R).

As noted in the previous section, since solutions to (CON-Ri)
will, in general, give values of xC

it ∈ [0, 1], the quantities
(x∗, y∗, z∗) in the competitive equilibrium in Definition 1 have
probabilistic interpretations: consumers select probabilities xC

it

of being scheduled at each time slot t ∈ T , in order to maximize
their expected net utility.

Our first result addresses the existence of the competitive
equilibrium defined above.

Theorem 1: There exists a competitive equilibrium, given by
an optimal solution (q̂∗, x̂∗, ŷ∗, ẑ∗) to (SPP-R), and the following
prices derived from an optimal dual solution to (SPP-R), for all
i and t

pcon∗
it =pλ̂∗

it + pν̂∗it , p
gen∗
t = λ̂∗

t , p
S∗
it =τiν̂

S∗
it , p

E∗
it =τiν̂

E∗
it .(26)

Proof: See [5].
The two fundamental theorems of welfare economics describe

the relationship between competitive equilibria and efficient
allocations. The first fundamental theorem states that competi-
tive equilibria lead to, or support efficient allocations [16]. The
second fundamental theorem states that the converse also holds,
and in our setting corresponds to Theorem 1. We now state
and prove the first fundamental theorem for our setting, given
by Theorem 2. While proofs of the efficiency of competitive
equilibria often require that the balance of supply and demand be
included in the definition of such equilibria, in our development,
this equality arises from the given formulation of the ISO’s
problem (ISO-R). That is, facing equilibrium prices, the ISO
will act to balance supply and demand as it optimizes (ISO-R).

Theorem 2: Any competitive equilibrium forms an optimal
solution for (SPP-R).

Proof: By definition, the competitive equilibrium
(q∗, x∗, y∗, z∗, pcon∗, pS∗, pE∗, pgen∗) satisfies

c′(q∗t)− pgen∗
t ≥ 0, q∗t

(
c′(q∗t)− pgen∗

t

)
= 0 ∀ t (27)

pcon∗
it + pθ∗it − U i ≥ 0 ∀ i, t ≤ T − τi + 1 (28)

x∗
it

(
pcon∗
it + pθ∗it − U i

)
= 0 ∀ i, t ≤ T − τi + 1 (29)

pcon∗
it + pθ∗it ≥ 0 ∀ i, t > T − τi + 1 (30)

x∗
it

(
pcon∗
it + pθ∗it

)
= 0 ∀ i, t > T − τi + 1 (31)

pS∗
it + τiθ

S∗
it − udS

it ≥ 0 ∀ i, t (32)

y∗it
(
pS∗
it + τiθ

S∗
it − udS

it

)
= 0 ∀ i, t (33)
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pE∗
it + τiθ

E∗
it − udE

it ≥ 0 ∀ i, t (34)

z∗it
(
pE∗
it + τiθ

E∗
it − udE

it

)
= 0 ∀ i, t (35)

pgen∗
t − α∗

t ≥ 0, q∗t
(
pgen∗
t − α∗

t

)
= 0 ∀ t (36)

− pp
gen∗

it + pα
∗

it ≥ 0, x∗
t

(
−pp

gen∗

it + pα
∗

it

)
= 0 ∀ t (37)

α∗
t

(∑
i

li

t∑
s=max{1,t−τi+1}

x∗
is − gt − q∗t

)
= 0 ∀ t (38)

α∗
t ≥ 0 ∀ t (39)

for some θS∗, θE∗, and α∗ ≥ 0, as well as the feasibility con-
ditions for each of the individual entity problems. Therefore,
observing that for any pgen∗ ≥ 0 the form of the objective
in (ISO-R) ensures that complementary slackness condition
(20) will be satisfied at the competitive equilibrium, select-
ing (q̂∗, x̂∗, ŷ∗, ẑ∗) = (q∗, x∗, y∗, z∗) as the primal variables,
and dual variables λ̂∗ = pgen∗ = α∗ and (ν̂S∗

it , ν̂
E∗
it ) = (pS∗/τi +

θS∗
it , p

E∗/τi + θE∗
it ) for all i, t, forms optimal primal and dual

solutions to (SPP-R).

V. REPLICATED AND LARGE ECONOMIES

In general a competitive equilibrium is not guaranteed to
exist when the social planner’s problem is a mixed integer pro-
gramming problem. Still, our competitive equilibrium definition
allows for probabilistic allocations, and thus the existence of a
competitive equilibrium is related to the existence of a primal
and dual solution to the relaxed (SPP-R) problem. In this section,
we justify the study of this relaxed problem by demonstrating
its equivalence to the original, binary constrained (SPP) when
each load i is interpreted as representing an infinite population
of identical loads, with scaled demand.

Thus far, our development has crucially relied on the assump-
tion that market participants are price-taking, i.e., presented
with market prices; they make decisions in view of their own
preferences and constraints, revealing their true demand without
consideration of how their choices might influence these prices.
But why should they act in this manner? In economic theory,
the notion of large economies provides one justification for
adoption of this assumption. The essence of the argument is
as follows. As the number of market participants increases, any
influence that an individual participant might have on market
prices diminishes. When that number grows to infinity, that
influence vanishes entirely, and the price-taking assumption
becomes reasonable [1].

Following this intuitive argument, the question of how to add
individuals to the market still remains. A special method, known
as replication, is to introduce participants with preferences and
constraints identical to existing types, in the same proportion as
existing ones [12]. In the context of EV charging, this could mean
scaling up the number of drivers with the same model vehicle
and desired charging schedule, with demand scaled down so as
to avoid infeasible aggregate demands as the population of each
type grows. In general, it can be shown that as participants are

added in this way, those of the same type will receive the same
allocation.

Suppose that each load i is replicated N times, and that the
resulting loads have demand, utility, and disutility scaled by
N . Indexing the replicas of each type i with the index n, the
binary-constrained SPP with N replication is

(SPP(N )) min
x̂∈{0,1}M×N×T

q̂, ŷ, ẑ≥0

∑
t

c (q̂t)−
∑
i

∑
n

U i

N

T−τi+1∑
t=1

x̂int

+
∑
i

∑
n

∑
t

udS
it

N
(1− ŷint) +

∑
i

∑
n

∑
t

udE
it

N
(1− ẑint)

s.t. λ̂t :
∑
i

∑
n

li
N

t∑
s=max{1,t−τi+1}

x̂ins − gt ≤ q̂t ∀ t

ν̂Sint :
t∑

s=1

s∑
r=max{1,s−τi+1}

x̂inr = τi(1− ŷint) ∀ i, n, t

(40)

ν̂Eint :

T∑
s=t

s∑
r=max{1,s−τi+1}

x̂inr = τi(1− ẑint) ∀ i, n, t.

(41)

We refer to the problem with N replication which relaxes the
binary constraint on x̂ as (SPP(N )-R) (instead of (SPP(1)-R),
we will still refer to the original relaxed problem as (SPP-R)).
When we wish to emphasize the dependence of variables on the
replication factor N , we will append (N), e.g., x̂int(N).

Proposition 3: Let (q̂∗, x̂∗, ŷ∗, ẑ∗, λ̂∗, ν̂S∗, ν̂E∗) denote an
optimal solution to (SPP-R). Then, for any N , an optimal
solution to (SPP(N )-R) can be formed by setting x̂∗

int(N) = x̂∗
it,

ŷ∗int(N) = ŷ∗it, ẑ
∗
int(N) = ẑ∗it, for all i, n, t, λ̂∗

t(N) = λ̂∗
t for all

t, and ν̂S∗
int (N) = ν̂S∗

it /N and ν̂E∗
int (N) = ν̂E∗

it /N for all i and t.
Proof: (SPP(N )-R) has the following KKT conditions. For

all t

c′(q̂∗t (N))− λ̂∗
t(N) ≥ 0 (42)

q̂∗t (N)
(
c′(q̂∗t (N))− λ̂∗

t(N)
)

= 0 (43)

for all i, n and T ≤ T − τi + 1

pλ̂∗
it (N)/N + pν̂∗int(N)− U i/N ≥ 0 (44)

x̂∗
int(N)

(
pλ̂∗
it (N)/N + pν̂∗int(N)− U i/N

)
= 0 (45)

for all i, n, and T > T − τi + 1

pλ̂∗
it (N)/N + pν̂∗int(N) ≥ 0 (46)

x̂∗
int(N)

(
pλ̂∗
it (N)/N + pν̂∗int(N)

)
= 0 (47)

for all i, n, and t

τiν̂
S∗
int (N)− udS

it /N ≥ 0 (48)

ŷ∗int(N)
(
τiν̂

S∗
int (N)− udS

it /N
)
= 0 (49)

τiν̂
E∗
int (N)− udE

it /N ≥ 0 (50)
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ẑ∗int(N)
(
τiν̂

E∗
int (N)− udE

it /N
)
= 0 (51)

and for all t (here suppressing the dependence of λ̂∗, x̂∗, and q̂∗

on N )

λ̂∗
t

(∑
i

li
N

∑
n

t∑
s=max{1,t−τi+1}

x̂∗
ins − gt − q̂∗t

)
= 0 (52)

λ̂∗
t ≥ 0. (53)

The proof of the theorem follows from making the selections
specified in the theorem statement, substituting into (42)–(53),
and comparing with (15)–(21).

Proposition 3 states that an optimal probabilistic schedule
x̂∗(N) in the problem with N replication can be derived from
an optimal probabilistic schedule x̂∗ for (SPP-R) and specifies
how to do so. In the limit as N → ∞, we can use x̂ to generate
an optimal deterministic, binary-constrained schedule if we in-
terpret x̂∗

it as the proportion of the population of type i activated
at time t. This is stated formally as follows.

Theorem 4: An optimal solution to (SPP(∞)) is given by
activating proportion x̂∗

it of type i population at time t for each
i and t, where x̂∗ is an optimal solution to (SPP-R).

Proof: Note that constraint (40) may be rewritten

ŷint = 1− 1

τi

t∑
s=1

s∑
r=max{1,s−τi+1}

x̂inr ∀ i, n, t (54)

and similarly for (41), so that (SPP(N )) can be written as

min
q̂≥0,

x̂∈{0,1}

∑
t

c (q̂t)−
∑
i

U i

T−τi+1∑
t=1

1

N

∑
n

x̂int

+
∑
i

∑
t

udS
it

(
1

τi

t∑
s=1

s∑
r=max{1,s−τi+1}

1

N

∑
n

x̂inr

)

+
∑
i

∑
t

udE
it

(
1

τi

T∑
s=t

s∑
r=max{1,s−τi+1}

1

N

∑
n

x̂inr

)

s.t. λ̂t :
∑
i

li

t∑
s=max{1,t−τi+1}

1

N

∑
n

x̂ins − gt ≤ q̂t ∀ t.

(55)

Now, if x̂int(N) is considered as a Bernoulli random variable
with P (x̂int(N) = 1) = x̂∗

it and q̂∗t (N) is chosen as q̂∗t (1) = q̂t
for all t, then by the Law of Large Numbers, constraint (55)
converges to

∑
i li

∑t
s=max{1,t−τi+1} x̂

∗
is − gt ≤ q̂∗t for all t.

Similarly, terms of the form 1
N

∑
t x̂int → x̂∗

it in the (SPP(N))
objective function as well. Since the optimal objective of the re-
laxed problem provides a lower bound for the binary-constrained
problem, and load service is satisfied in the limit asN → ∞, the
solution produced by randomly activating loads according to x̂∗

converges to an optimal binary-constrained solution asN → ∞.

VI. MARKET MECHANISM FOR LARGE

POPULATION ECONOMY

Market mechanism design is an approach in economic theory
which, rather than taking economic institutions as fixed and
predicting the outcomes generated by such institutions, starts
with an outcome identified as desirable and attempts to construct
a mechanism by which it may be delivered [17]. In this section,
we consider the competitive equilibrium concept discussed in
prior sections as the target outcome for our market, and specify
a mechanism by which it can be achieved. Mechanism design
plays a crucial role for market in which participants may mis-
report preferences, costs, or other information when it is in
their individual best interest to do so. Therefore, the mechanism
presented in this section may be viewed as a starting point for
future work in which market participants are allowed to behave
strategically.

The competitive equilibrium definition given in the previous
section allows for nonbinary activation schedule x∗. As men-
tioned, since 0 ≤ x∗

it ≤ 1, and
∑

t x
∗
it ≤ 1, each x∗

it may be
interpreted as giving the portion of load i activated at time t under
relaxation of the binary constraints on the activation schedule or
the probability that an individual load of type i in the infinite
replication setting is fully activated at time t.

Let us explore the infinitely replicated setting from the per-
spective of an individual load n of type i. It can be shown that
under N replication and relaxation, the optimization problem
for consumer n of type i is given by

(CONSin(N)-R) min
xC
in,y

C
in

zC
in≥0

∑
t

pcon
int (N)xC

int −
U i

N

T−τi+1∑
t=1

xC
int

+
∑
t

((
udS
it

N
− pSint

)
(1− yCint) +

(
udE
it

N
− pEint

)
(1− zCint)

)

s.t. θSint :
t∑

s=1

s∑
r=max{1,s−τi+1}

xC
inr = τi(1− yCint) ∀ t (56)

θEint :

T∑
s=t

s∑
r=max{1,s−τi+1}

xC
inr = τi(1− zCint) ∀ t (57)

pλ̂
int(N) and pν̂int(N) are defined analogously to (13) and (14).

Multiplying by N , the (CONin(N)-R) objective function is∑
t

Npcon
int x

C
int +

∑
t

(
udS
it −NpSint

)
(1− yCint)

+
∑
t

(
udE
it −NpEint

)
(1− zCint)− U i

T−τi+1∑
t=1

xC
int.

(58)

As in Theorem 1, set

pcon
int (N) = pλ̂∗

int(N)/N + pν̂∗int(N), pgen∗
t (N) = λ̂∗

t(N)

pSint(N) = τiν̂
S∗
int (N), pEint(N) = τiν̂

E∗
int (N)

and as in Proposition 3, choose

λ̂∗
t(N) = λ̂∗

t(1) = λ̂∗
t , ν̂

S∗
int (N) = ν̂S∗

it /N, ν̂E∗
int (N) = ν̂E∗

it /N.
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Then, letting N → ∞ gives

lim
N→∞

Nτiν̂
S∗
int (N) = τiν̂

S∗
it , lim

N→∞
Nτiν̂

E∗
int (N) = τiν̂

E∗
it .

This implies that limN→∞ Npcon
int (N) = pλ̂∗

it + pν̂∗it . Therefore,
posing the prices described in Proposition 3 in the limit as N →
∞, the objective functions for all (CONin) converge to

∑
t

(
pλ̂∗

it + pν̂
∗

it

)
xC

int − U i

T−τi+1∑
t=1

xC
int+

∑
t

((
udS
it − τiν̂

S∗
it

)
(1− yCint) +

(
udE
it − τiν̂

E∗
it

)
(1− zCint)

)
.

Thus, the pricing facing each load of type i is identical,
and, in fact, the problem facing each is the same as the single
load of type i in the decomposition with relaxation but not
replication. Further, each will select the same xC∗

in· = x̂∗
i· ∈ RT

+,
where xC∗

int = x̂∗
it gives the probability that the load will be

scheduled at time t. Therefore, the equal allocation for in-
dividuals of the same type mentioned earlier holds in our
setting.

The following mechanism (FLEX-SCHED(N )) uses the prob-
ability values selected by the continuum of consumers to gener-
ate a binary-constrained schedule in the setting with N repli-
cation. Note that since the generator’s problem does not in-
volve consumer utility and disutility functions, nor consumer-
scheduling variables, its problem is not affected by replication
(or relaxation). Therefore, (GEN(N)) is the same as (GEN) for
all N , including N = ∞.

1) Each consumer (i, n) submits udS
i· and udE

i· , and the
generator submits c to the social planner (i.e., the entity
taking on this role, such as the government or ISO).

2) The social planner solves (SPP-R), and announces
(pcon∗, pS∗, pE∗, pgen∗, pbal∗) as specified in Theorem 1.

3) Each consumer i solves (CON(∞)-Rin), the generator
solves (GEN(∞)), and (x∗

i , y
∗
i , z

∗
i ) for all i, as well as q∗

are submitted to the social planner.
4) The social planner randomly assigns proportion x∗

i of
loads of type i to start at time t, for each i and t. The
generator produces q∗ over the finite horizon. Combined
with the renewable generation output g, this generated
power is allocated to the consumers according to x∗

i and
demands li for each i.

In the large population context, individual rationality is
achieved if the optimal objective values to (GEN(N)),
(ISO(N)), and (CONSin(N)) for all i and n with N = ∞,
i.e., the individual entity problems under infinite replication but
without relaxation, under the (FLEX-SCHED(∞)) solutions are
nonnegative. Budget balance is achieved if

∑
t

pgen
t (qGt + gt) +

∑
t

∑
i

∑
n

pSint(1− yCint)

+
∑
t

∑
i

∑
n

pEint(1− zCint) =
∑
i

∑
t

∑
n

pcon
int x

C
int.

(59)

Given these definitions, the following result regarding (FLEX-
SCHED(∞)) holds.

Theorem 5: The mechanism (FLEX-SCHED(∞)) is ex post
individually rational, budget balanced, and efficient.

Proof: See Ref. [5]. �

VII. MULTIBUS EXTENSION

Thus far, we have set aside the network model in order to focus
on the scheduling and pricing aspects of this problem. As posed
above, our formulation above could be interpreted as modeling
the cases where a single network point (e.g., EV charging station
or smart building) is equipped with renewable generation, such
as a solar panel array, as well as a backup generator [23]. More
broadly, our single-bus model could represent the operation of
a microgrid, with abstracted, aggregated renewable, and backup
generation, while neglecting distribution network features in
serving the flexible loads.

While we leave generalization to a full distribution network
setting to future work, as a first step in this direction, we
here consider an extension to a two-bus model, in which the
renewable generation and flexible loads are co-located at one
bus, and the conventional generator is located at the other.

We designate the bus where the loads and renewable gener-
ation are located as bus 1, and the bus where the conventional
generator is located as bus 2. Selecting bus 1 as the slack bus,
i.e., choosing from solutions with θ̂1,t = 0 for all t gives the
following relaxation of the two-bus social planner’s problem:

min
q̂,x̂,ŷ,ẑ,θ̂≥0

∑
t

c(q̂t) +
∑
i

∑
t

udS
it (1− ŷit)

+
∑
i

∑
t

udE
it (1− ẑit)−

∑
i

U i

T−τi+1∑
t=1

x̂it

s.t. λ̂t : gt −
∑
i

li

t∑
s=max{1,t−τi+1}

x̂is ≥ −Bθ̂2,t ∀ t

μ̂t : q̂t = Bθ̂2,t ∀ t (60)

(10)− (11) (61)

γ̂12,t : −Bθ̂2,t ≤ fmax, γ̂21,t : Bθ̂2,t ≤ fmax ∀ t. (62)

Note that given the slack bus choice, 0 ≤ q̂t = Bθ̂2,t, so that
−Bθ̂2,t < 0 for all t, i.e., the first constraint in (62) is always
loose and γ̂∗

12,t = 0. See Ref. [5] for this problem’s optimality
conditions.

Employing the traditional locational marginal pricing scheme
yields the nodal prices p∗1,t = λ̂∗

t , p∗2,t = μ̂∗
t . It can be shown

that at optimality, we have

μ̂∗
t = λ̂∗

t − γ̂∗
21,t ≤ λ̂∗

t (63)

so that the per unit energy price at bus 2, i.e., the rate paid to the
conventional generator, is upper bounded by the per unit energy
price paid by the collection of flexible loads.

The two-bus network model affects the individual problems
only via the generator and ISO objectives, as given below:

generator :
∑
t

p2,tq
G
t − c(qGt )
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ISO :
∑
t

[
p1,t

(∑
i

li

t∑
s=max{1,t−τi+1}

xI
is − gt

)
− p2,tq

I
t

]
.

The consumer problem formulation does not change, as the
energy consumption component of pcon

it now includes a pλ̂∗
term

derived from the nodal price at bus 1, rather than the dual
variables to the single power balance constraint from our initial
formulation. See [5] for the aggregated individual entity problem
optimality conditions.

Both the definition and proof of existence of a competitive
equilibrium do not change in the two-bus model, save for the
addition of nodal prices, rather than the single per time slot
energy consumption/production price. Nor do the proofs of the
relationship between competitive equilibria from the original
relaxed setting, and the relaxed, replicated settings.

Given the shift from a single per time slot energy consump-
tion/production price to a pair of prices, one for consumption at
node 1, and one for production at node 2, the only remaining
question is whether Theorem 5 continues to hold, in particular
the budget balance component. Essentially due to inequality
(63), instead of budget balance, we now have budget adequacy,
i.e., under the proposed scheduling and pricing schemes, our
market mechanism is either budget-balanced, or incurs a surplus
in the form of congestion revenue.

To see this, the inequality which we would like to show is∑
t

pgen
t qGt +

∑
t

∑
i

∑
n

(
pSint(1− yCint) + pEint(1− zCint)

)

≥
∑
i

∑
t

∑
n

pcon
int x

C
int =

∑
i

∑
t

(
pλ̂∗
it + pν̂∗it

)
x̂∗
it. (64)

Note that at optimality, if renewable generation exceeds the
load scheduled for a time slot t, then we have that θ̂∗2,t = q̂∗t =

λ̂∗
t = μ̂∗

t = γ̂∗
21,t = 0, i.e., the generator is not dispatched at time

t. For all other time slots, we have that

q̂∗t =
∑
i

li

t∑
s=max{1,t−τi+1}

x̂∗
is − gt. (65)

Together, (63) and (65) show that in problem instances where the
line connecting the generator and load nodes becomes congested
at any time slot, the summed load payments will in general
exceed payments to the generator

∑
t

μ̂∗
t q̂

∗
t ≤ λ̂∗

t

(∑
i

li

t∑
s=max{1,t−τi+1}

x̂∗
is − gt

)
.

In such cases, the system operator will collect nonzero conges-
tion revenue, and the mechanism is either budget-balanced or
runs a surplus for the system operator.

VIII. CASE STUDY: EV CHARGING

EV charging constitutes one of the most important and chal-
lenging applications of load-scheduling optimization currently
facing power grid operators. Today, the transportation sector
accounts for approximately 64% of global consumption of oil, a

resource which has been linked to increasing CO2 emissions, and
further is expected to expire in about 50 years. In contrast, trans-
portation sector operations comprise just 1.5% of worldwide
electricity usage [6]. Reliance on electricity is more amenable
to a shift toward renewable sources of energy such as solar and
wind, which in total are expected to make up approximately
one-third of all power generation by 2040. Further, according
to the International Energy Agency, 740 000 vehicles were
produced in total in 2014, and that figure is expected to reach
20 million by 2020 [6]. Charging scheduling is now viewed as
one of the key technologies for integration of EVs into existing
grids.

In order to demonstrate the utility of our flexible scheduling
problem formulation, we simulated its performance on real-
world load and renewable generation data in the context of
EV charging. The input load parameters (τi, li, u

dS
i , udE

i ) are
derived from data included in the ACN-Data dataset, a dynamic
dataset of workplace EV charging [15]. In particular, we take
as our base set of loads the recorded vehicle arrivals for May
28, 2018. For each vehicle charging session, the ACN dataset
includes vehicle connection and disconnection times, as well as a
charging completion time. In these simulations, each time index
represents a 15-min period. We take τi as the difference between
charging completion time and the first time period where the EV
drew a positive amount of current. We then divide the total kWh
delivered to the vehicle by τi to arrive at li.

Turning to load disutility functions, let tC denote the vehicle’s
recorded connection time, and tD denote its recorded disconnec-
tion time. Then, for each load i, we let

udS
it = α(tC − t)21{t ≤ tC − 1}

udE
it = α(t− tD)21{t ≥ tD + 1}

(66)

where α is a scaling parameter. Thus, udS
it + udE

it = 0 for t ∈
[tC , tD], and elsewhere increases quadratically away from this
desired service window. The sample disutility curves pictured
in Fig. 1 are generated according to this quadratic form.

We set U i = U for some nonnegative scalar U . We take our
renewable generation profile gt from data generated by NREL’s
SAM tool [3] for downtown Los Angeles, also for May 28, 2018.

We compare the performance of our flexible load-scheduling
approach to a schedule which naively begins charging loads as
soon as they arrive. We implemented the latter by setting

udS′

it = αmax{t2C , (T − tC)
2}1{t ≤ tC − 1}

udE′

it = αmax{t2C , (T − tC)
2}1{t ≥ tC + 1}

i.e., loads are essentially inflexible, with 0 disutility at time tC
and the maximum disutility in (66) for all other time periods
t 
= tC . We consider the social welfare objective value achieved,
as well as the percentage of loads served.

We adjusted α, U , and a scale on the quadratic cost c(zt)
in order to ensure that both scheduling approaches successfully
scheduled all loads. In particular, we let α = 0.01, U = 100,
and scaled the cost by factor 0.5. As shown in Fig. 2(a) and (b),
when users report disutility functions, the scheduler shifts loads
such that that overall demand moves toward the mid-day period
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Fig. 2. Aggregate scheduled load (a) and generation (b) with and without load flexibility.

Fig. 3. (a) Percentage of loads served (a) and social welfare achieved (b) with and without flexibility.

of high renewable generation, thus relying less on the generator
and incurring lower cost and higher social welfare overall. As
seen in Fig. 2, the peak generation falls from 4.67 to 3.46 kW,
a reduction of roughly 29%, while the peak demand falls from
7.23 to 5.46 kW, a reduction of roughly 24%.

To demonstrate the robustness of the disutility function ap-
proach to a surge in demand, we randomly sample loads served
during the other weekdays of May 2018 in order to increase
overall power demand. Specifically, we study demand scaled up
in increments of 25% of the base load up to a 100% increase in
load in terms of overall demand. Loads are randomly added to
the base until the total power demand exceeds the desired level
of increase, and the same random sets of loads are added in the
cases with and without flexibility. The performance of both ap-
proaches are shown in Fig. 3(a) and (b). The flexibility-enabled
schedule which makes use of the disutility functions continues
to offer increased social welfare over on demand scheduling.
Additionally, while disutility-based scheduling still includes all
loads, the on-demand-based scheduler excludes between 25%
and 33% of loads as the number of loads increases to double the
base.

IX. CONCLUSION

In this work, we study how to schedule and price service
for a set of flexible, but nonpreemptive loads, in the presence
of renewable generation, as well as a dispatchable thermal

generator. Formulating a collection of mixed-integer optimiza-
tion programs for the consumers, and the generator, we then
study a centralized version of our setting with relaxed integer
constraints, allowing for Lagrangian analysis and derivation of
prices. A centralized solutions yields a competitive equilibrium,
and conversely, a competitive equilibrium yields an efficient
solution. Finally, we present a case study involving EV charging
data to demonstrate the efficacy of our approach.

There are several directions for future work in this area. First,
in terms of the scheduling aspect, it is desirable to determine a
method for deriving at least an approximately optimal solution
to the original integer-constrained setting, given an efficient so-
lution to the relaxed social planner’s problem presented here. In
terms of pricing, properties such as fairness should be examined.
For example, assuming that the disutility functions of each user
can be at least partially ordered from less to more restrictive,
is the compensation offered to more flexible users more than
to those which are not as flexible? It will also be of interest
to explore other types of loads, such as those which may be
interrupted, as well as those which might accept less than an
upper bound of total energy delivered. Strategic behavior should
also be taken into account, as well as more detailed network
modeling.
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