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Electronic-photonic quantum systems on-chip
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Abstract: We present progress towards realizing electronic-photonic quantum systems on-
chip; particularly, entangled photon-pair sources, placing them in the context of previous work,
and outlining our vision for mass-producible quantum networking blocks. @ 2022 The Author(s)

The recent, rapid, buildup of nascent but promising quantum computing technologies necessitates a need for realizing a
large-scale quantum network to facilitate their cooperative use. With commercial quantum computing already a reality,
the quantum processing power of such systems can be scaled in a way similar to the parallelism of interconnected cores
or servers in classical data centers and supercomputers. This will, however, require optical quantum networks capable
of interconnecting quantum nodes, and transmitting and receiving quantum states without loss of entanglement. These
networks may spark revolutionary developments, such as a quantum internet.

Our vision is to develop monolithic electronic-photonic quantum systems on-chip (epQSoCs) to function as quantum
state transceivers (QSTs) in a quantum communications network. QSTs will be systems with mixed classical and
quantum capabilities, and are ideally implemented in CMOS to allow for cost and complexity scaling. CMOS is not
only the technology to have scaled to billions of components on a single chip, but it also allows for fast control of the
electrical components in quantum photonic circuits. Furthermore, monolithic integration simplifies packaging of the
components, which enables more complex systems, such as a microprocessor with photonic I/O [1].

Thus far, our work has concentrated on building a single-chip photon-pair source using spontaneous four-wave
mixing (SFWM) in a silicon ring microresonator. Figure 1 shows an illustration of our epQSoC-QST concept, on
which we have made progress in multiple stages. To date, we have demonstrated the first quantum-correlated photon-
pair generation device in an unmodified CMOS process; the first single-chip integrated photon-pair source with pump
filtering exclusively on-chip; and the first electronic-photonic quantum system-on-chip with feedback-controlled fre-
quency locking, high-extinction pump rejection, and signal/idler demultiplexing. Table 1 places our work within the
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Fig. 1: (a) Illustration of our concept. Each transmitter in a quantum network is a “wall-plug” epQSoC, which takes DC
power and a CW laser supply as inputs, and outputs photon pairs. (b) The proposed source comprises: (1) a pulse carver
(analog modulator), (2) a bandpass filter to reject the pump laser’s amplified spontaneous emission (ASE), (3) a closed-loop
feedback-controlled microring based on SFWM, (4) Vernier high-order microring bandpass filters to reject the pump photons
and demultiplex the (5) signal and (6) idler photons. The chip’s optical I/O is achieved with low-loss grating couplers [2].
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context of other exciting demonstrations in this field, in which advances are being made at a rapid pace, as the chronol-

ogy in Fig. 2 illustrates.

Reference Filter type
(italic = our work) yP
Harris et al., 2014 [4] Bragg grating

Piekarek et al., 2017 [5]
Gentry et al., 2018 [6]
Kumar et al., 2020 [7]

Oser et al., 2020 [8]
Afifi et al., 2021 [9]
Kumar et al., 2021 [10]

Kramnik et al., 2022 [12]

Fargas-Cabanillas et al., 2021 [11]

Cascaded lattice
Cascaded microrings
CROW
Cascaded Bragg grating

Contra-directional couplers

CROW
Cascaded microrings
N/A

Number of Frequency
chips

locking

Detected Single chip
coincidence  PUTP
rate (cps) ext.mctlon
ratio (dB)
0.04 65/95-100
1.16 55
410 97
138 74
151 80
0.5 60
1900 >96
600 >70
300 N/A
50 >80

Off chip Losses from

pump pair source to  CAR

ext'mcuon detectors (dB)

ratio (dB)
37 50
25 165
6 12
26 155
17 60
8 125
16 145
8 15
10 38
7 5

Wang et al., 2022 [13]
Table 1: Comparison to similar pair sources in the literature, with our work in italics. Highlighted in green are desirable properties
for a pair source: single-chip, with frequency locking, and with all pump rejection performed on-chip. Red indicates that these
conditions are not met, and orange indicates that the condition is met with caveats. *Note that for [13], only one of the signal or
idler channels required off-chip filtering, due to a bug in the design which prevented full signal/idler demultiplexing.
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Fig. 2: A chronology of our work on developing a single-chip photon-pair source with electronics and photonics on the same

chip, indicating when the chip design was submitted to the foundry, and when the work was published. From left to right, the
relevant citations are [3], [6], [11], and [13].
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