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ABSTRACT

Despite growing concerns over the health of global invertebrate diversity, terrestrial invertebrate monitoring
efforts remain poorly geographically distributed. Machine-assisted classification has been proposed as a potential
solution to quickly gather large amounts of data; however, previous studies have often used unrealistic or
idealized datasets to train and test their models.

In this study, we describe a practical methodology for including machine learning in ecological data acqui-
sition pipelines. Here we train and test machine learning algorithms to classify over 72,000 terrestrial inverte-
brate specimens from morphometric data and contextual metadata. All vouchered specimens were collected in
pitfall traps by the National Ecological Observatory Network (NEON) at 45 locations across the United States
from 2016 to 2019. Specimens were photographed, and two separate machine learning paradigms were used to
classify them. In the first, we used a convolutional neural network (ResNet-50), and in the second, we extracted
morphometric data as feature vectors using ImageJ and used traditional machine learning methods to classify
specimens. Issues stemming from inconsistent taxonomic label specificity were resolved by making classifications
at the lowest identified taxonomic level (LITL). Taxa with too few specimens to be included in the training
dataset were classified by the model using zero-shot classification.

When classifying specimens that were known and seen by our models, we reached a maximum accuracy of
72.7% using eXtreme Gradient Boosting (XGBoost) at the LITL. This nearly matched the maximum accuracy
achieved by the CNN of 72.8% at the LITL. Models that were trained without contextual metadata under-
performed models with contextual metadata. We also classified invertebrate taxa that were unknown to the
model using zero-shot classification, reaching a maximum accuracy of 65.5% when using the ResNet-50,
compared to 39.4% when using XGBoost.

The general methodology outlined here represents a realistic application of machine learning as a tool for
ecological studies. We found that more advanced and complex machine learning methods such as convolutional
neural networks are not necessarily more accurate than traditional machine learning methods. Hierarchical and
LITL classifications allow for flexible taxonomic specificity at the input and output layers. These methods also
help address the ‘long tail’ problem of underrepresented taxa missed by machine learning models. Finally, we
encourage researchers to consider more than just morphometric data when training their models, as we have
shown that the inclusion of contextual metadata can provide significant improvements to accuracy.

1. Introduction

are not distributed equally across the planet nor across taxonomic di-
versity (Guzman et al., 2021; van Klink et al., 2020). Generalizations

Several recent studies have suggested that terrestrial invertebrates about trends in global invertebrate diversity and abundance require a
may be suffering drastic population and diversity losses (Dirzo et al., solid data foundation, yet invertebrates remain significantly poorly-
2014; Welti et al., 2020; Wepprich et al., 2019). However, these losses sampled relative to their diversity and abundance (Hgye et al., 2021;
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van Klink et al., 2020). While there are many invertebrate bio-
monitoring programs operating around the world, the data collected
from these programs are often spatiotemporally coarse and lack taxo-
nomic diversity (Hgye et al.,, 2021). Large-scale invertebrate bio-
monitoring efforts require vast funding and human resources, reducing
their accessibility to developing nations and further limiting the
geographic scope of biodiversity data (Karlsson et al., 2020; van Klink
et al., 2020). One of the most time and resource intensive aspects of any
invertebrate biomonitoring program relates to specimen sorting and
taxonomic identification (Karlsson et al., 2020). While these processes
are traditionally performed by trained taxonomists, often in coordina-
tion with parataxonomists (i.e. individuals who are not expertly-trained
taxonomists; Krell, 2004), advances in machine learning and computer
vision have made machine-assisted classification a possibility for many
groups of insects (Arje et al., 2020; Blair et al., 2020; Marques et al.,
2018; Mayo and Watson, 2007). Not only does machine-assisted clas-
sification have the potential to increase the efficiency, output, and
accessibility of biomonitoring programs (Peters et al., 2014; Thessen,
2016), but also, in a time when more data on invertebrate diversity and
abundance is desperately needed, such an approach offers a trans-
formative solution to the way we monitor global invertebrate diversity
in a changing climate.

Excitement regarding the possibilities of machine learning for taxo-
nomic classification has led to many publications on the topic over the
last decade. However, a common theme in this literature is the use of
unrealistic or idealized case studies. Specifically, many datasets used in
these studies have low species richness, uniform taxonomic resolution,
and no geographic/temporal component (Arje et al., 2020; Blair et al.,
2020; Joutsijoki et al., 2014). Additionally, nearly all studies that have
used large ecological datasets accept that low abundance taxa must be
sacrificed for the benefit of model performance (Marques et al., 2018;
Mayo and Watson, 2007). In most natural communities, most taxonomic
diversity is comprised of low-abundance taxa (i.e. the “long tail” of rank
abundance curves; Preston, 1948; Verberk, 2012; Whittaker, 1965), so
simply ignoring them is not feasible if machine learning tools are to be
widely used in ecological studies. We note that the previously-
mentioned machine learning studies still provide foundational knowl-
edge about machine learning’s potential uses for taxonomic classifica-
tion. However, significant work remains to improve the practicality of
computer vision for specimen classification if it is to be integrated into
ecological data acquisition pipelines.

While there have been some promising results developing models for
classifying biological specimens (Blair et al., 2020; Ding and Taylor,
20165 Spiesman et al., 2021; Van Horn et al., 2018), ecological datasets
pose several challenges for machine learning. One challenge that is
effectively universal among macroecological datasets are taxa that are
‘unknown’ to the model. These are taxa that the model was not trained
to classify, but that the model may need to classify in the future. Most
commonly, these taxa will be hidden in the aforementioned ‘long tail’ of
uncommon species that are excluded from model training due to their
low prevalence. For machine learning to be a practical solution for use in
ecological studies, this problem must be addressed.

Another challenge facing the classification of ecological datasets
(especially large, diverse ones) is a ‘ragged edge’ of taxonomic specifi-
cation: in many ecological datasets, identifications are made at varied
taxonomic resolution dependent on the taxonomist’s knowledge (Jansen
et al., 2018; Schmidt-Kloiber and Nijboer, 2004). For example, some
specimens may be identified down to species, while others are identified
to a higher taxonomic level only (e.g. family, order, etc.). This then poses
the question of what a ‘correct’ classification is, and machine learning
algorithms may need to weigh the benefits of accuracy versus specificity
(Deng et al., 2012). Here we explored two potential ways to address this
problem: lowest identified taxonomic level (LITL) models and single-
level models. Single-level models assign labels to specimens and mea-
sure accuracy all at one specified taxonomic level, while LITL models
assign labels and measure accuracy based on the LITL label assigned to
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each individual. LITL labels allow for maximum inclusion and speci-
ficity, but result in nested labels (i.e. labels belonging to related taxa at
different taxonomic levels, such as Formicidae and Insecta; Fig. 1).
Single-level models prevent nested labels by classifying all individuals at
a single taxonomic level but can result in excluded individuals that were
labelled at higher taxonomic levels in the training dataset. Additionally,
single-level models restrict taxonomic specificity as classification cannot
be made below the specified taxonomic level. From an ecologist’s
perspective, there is likely no definitive “best” solution as the impor-
tance of taxonomic specificity will vary depending on the use case.

Despite the challenges ecological datasets pose, they also provide
many unique opportunities for improving machine learning perfor-
mance. For example, they often have contextual metadata about the
collection site (e.g., location, time, temperature, etc.) that can be used to
inform computer vision. This contextual metadata can significantly
improve accuracy, as seen in an accuracy increase of 9.1% (48.1% -
57.3%) when classifying ladybeetles (Coleoptera: Coccinellidae; Terry
et al., 2020), an 11.2% increase (68.6% = 79.8%) when classifying
North American birds (Berg et al., 2014), and a significant improvement
when classifying marine plankton (Ellen et al., 2019). Additionally, the
hierarchical structure of taxonomies can be used to perform ‘zero-shot
classification’, which allows unknown and unseen classes to be classified
by making predictions at the higher taxonomic rank that is known by the
model (Blair et al., 2020; Deng et al., 2012). Deng et al. (2012) shows
that while ‘flat’ classifiers (i.e. single-level classifiers) have zero accu-
racy and zero information gain when classifying unknown and unseen
classes, hierarchical classifiers can often predict these classes accurately.
Strategies such as these may greatly increase the practicality of incor-
porating computer vision methods in large scale ecology projects.

One such large scale ecology project is the National Ecological Ob-
servatory Network (NEON), which collects open access ecological data
at a continental scale in the United States (Keller et al., 2008). Part of
NEON’s ecological monitoring involves collecting and processing
thousands of invertebrate specimens every year from arrays of pitfall
traps that are collected and pooled every 14 days (Hoekman et al., 2017;
Thorpe et al.,, 2016) (Fig. S1). NEON’s current workflow for these
samples is to have a local parataxonomist separate and identify all
ground beetles (Family: Carabidae), while the remaining unsorted
invertebrate bycatch is stored in a biorepository. While NEON’s decision
to focus on carabids is understandable given the human resources it
would require to properly sort the invertebrate bycatch, it also means
they are sitting on a large and as-of-yet untapped source of North
American terrestrial invertebrate data. This makes NEON’s invertebrate
bycatch a prime target for machine assisted specimen classification so
that researchers in a wide variety of disciplines can make use of this
extensive data source.

Here we apply machine learning and deep learning classification
methods to the large terrestrial invertebrate dataset collected by NEON.
Our primary goals are to address the challenges taxonomic classification
poses for machine learning while also taking advantage of the benefits
provided by ecological datasets. We also compare the advantages and
drawbacks of traditional machine learning algorithms (e.g. k-nearest
neighbour, decision trees) and deep learning algorithms (e.g. convolu-
tional neural networks (CNNs)). We did this by training a variety of
algorithm types on several configurations of the NEON dataset to
determine the optimal algorithm and dataset configuration. Using the
NEON dataset, we ask: (1) How does the inclusion of contextual meta-
data impact model performance and what is its relative importance
compared to morphometric data? (2) How can we improve classification
in the real-world conditions of low-abundance taxa and inconsistent
taxonomic resolution? (3) Are deep learning algorithms universally su-
perior to traditional machine learning algorithms, or are there merits to
each? Here we show that the inclusion of contextual metadata improves
classification performance while unevenness in label representation is
relatively unimportant. We also compare the performance and practi-
cality of LITL vs a single-level (order) model and use zero-shot



J. Blair et al.

Ecological Informatics 72 (2022) 101896

A
1 Annelida -- -- -- -- --
2 Arthropoda Insecta Coleoptera Staphylinidae -- --
3 Arthropoda Insecta Hymenoptera Formicidae Formica --
4 Mollusca Gastropoda Stylommatophora Zonitidae Ventridens ligera
S Arthropoda Insecta Coleoptera -- -- --
| 2 3 4 5
Annelida Staphylinidae Formica ligera Coleoptera
B # Phylum Class Order Family Genus Species
1 Annelida -- -- -- -- --
2 Arthropoda Insecta Coleoptera Staphylinidae -- --
3 Arthropoda Insecta Hymenoptera Formicidae Formica --
4 Mollusca Gastropoda Stylommatophora Zonitidae Ventridens ligera
5 Arthropoda Insecta Coleoptera -- -- -
| 2 3 4 5
-- (zero-shot) Coleoptera Hymenoptera Stylommatophora Coleoptera

Fig. 1. Lowest Identified Taxonomic Level (LITL) and order-level labelling methods. (A) The top table shows the taxonomic names (from phylum to species) for five
specimens. Cells filled with “~” indicate that our labeller was unable to make a classification for that specimen at that taxonomic level. The cells highlighted in green
show which label was chosen for each specimen, which are summarized in the bottom table. Labels were chosen based on the LITL for each specimen. (B) The
methodology is the same as (A), except that all labels were recorded at the order-level, regardless of the LITL identified by our labeller. No order-level label was given
to specimen #1, so it can only be identified using zero-shot classification. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)

classification to overcome the ‘long tail’ problem (See Table 2 for a
glossary of terms). Finally, we show that traditional machine learning
algorithms can outperform deep learning algorithms, even when given
less data. Taken together, we outline potential approaches for the
challenges of machine-assisted classification in “real world” ecological
datasets.

2. Methods
2.1. Invertebrate bycatch collection

We used terrestrial invertebrates collected from pitfall traps by the
Table 2

Classification algorithms and their respective parameter settings used for clas-
sifying the NEON invertebrate bycatch.

Algorithm Name Parameter settings

Linear Discriminant
Analysis

Naive Bayes

K-Nearest Neighbours

No tuning parameters to optimize.

No tuning parameters to optimize.

k values of all integers between 1 and 25 were tested, and
the k value with the lowest error in the training dataset
was selected.

eXtreme Gradient max.depth was set as 10, eta was set at 0.1, and nrounds

Boosting was set at 120.
Artificial Neural 1 hidden dense layer with 128 nodes and ReLU activation
Network function.

Optimizer: Adam
Loss function: Categorical cross-entropy

Epochs: 10
Convolutional Neural Base model: ResNet50 with ‘imagenet’ weights (He et al.,
Network 2016)

2 hidden dense layers (1024 and 128 nodes, respectively),
both with batch normalization, 0.3 dropout, and ReLU
activation function.

Optimizer: Adam

Loss function: Categorical cross-entropy

Epochs: 10

National Ecological Observatory Network (NEON, see Hoekman et al.,
2017 for collection methodology). All specimens were collected from
2016 to 2019. NEON sets the pitfall traps to collect ground beetles
(Coleoptera: Carabidae) and separates them from the rest of the in-
vertebrates immediately, so the ground beetles are not considered here
(but see Blair et al., 2020).

2.2. Imaging

We made bulk digital images of the invertebrates (mostly Arthro-
poda, Mollusca and Annelida) at a resolution of 729 pixels per mm?
against a white background (for complete methods, see Weiser et al.,
2021; Fig. S1). Using the FIJI implementation of ImageJ (Schindelin
et al., 2012), for each individual organism we extracted 21 morpho-
logical measures (e.g., major and minor axis, perimeter, image area) and
eight statistics (e.g., mean, skew, and kurtosis) for the distribution of
values from each of the three RGB (Red, Green, and Blue) colour layers.

2.3. Contextual metadata

Here, we define contextual metadata as any non-morphometric and
non-taxonomic data included in the invertebrate dataset. We sourced
our contextual metadata from NEON (spatiotemporal data such as
location and elevation) (NEON, 2022), NASA’s Land Processes Distrib-
uted Active Archive Center (LP DAAC; gross primary productivity and
evapotranspiration) (Running et al., 2015, 2017), and the Daymet V4
dataset (Thornton et al., 2021). A complete list of all variables used and
their definitions can be found in this table (Table S1). All contextual
metadata values were the same for all specimens collected in a given
trap event. Between our morphometric data and contextual metadata,
49 descriptive variables were used as our training data (36 morpho-
metric variables, 13 contextual variables).
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2.4. Machine learning

2.4.1. Preparation

To prepare the data for machine learning training and testing, we
first removed all taxa with fewer than 100 observations from the dataset
(Fig. 2), as these taxa contained too little data to properly train the
models. We then randomly split the dataset in training and testing
datasets at a ratio of 70:30 (Fig. S2). Each dataset was randomly shuffled
to prevent overfitting. We normalized the feature vector data by
centering and scaling each predictor variable such that they all had a
mean of 0 and standard deviation of 1. In the image dataset, all images
were scaled to 224 x 224 pixels and randomly augmented (i.e. sheared,
zoomed, flipped horizontally and vertically).

2.4.2. Algorithm types and architecture

After pre-processing the data, it was ready to be used for training in a
machine learning model. We contrasted four types of ‘traditional’ ma-
chine learning algorithms: K-nearest neighbours (KNN; Cover and Hart,
1967), linear discriminant analysis (LDA; Mika et al., 1999), naive Bayes

°

Fig. 2. Log-scale rank abundance plots of invertebrates in the NEON dataset.
(A) Each bar represents a lowest identified taxonomic label (LITL), as identified
by MDW. Blue bars represent groups that had >100 individuals and were
included in the training dataset; orange bars represent groups with <100 in-
dividuals and were removed from the training dataset. A cut off of 100 in-
dividuals (represented by a horizontal line) was used to ensure the models had
sufficient data to classify each LITL label. (B) Each bar represents a taxonomic
order of invertebrates, as identified by MDW. Blue bars represent groups that
had >100 individuals and were included in the training dataset; orange bars
represent groups with <100 individuals or had a LITL above the level of order
(e.g. class or phylum) and therefore were removed from the training dataset. A
cut off of 100 individuals (horizontal line) was used to ensure the models had
sufficient data to classify each LITL label. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of
this article.)

log-Abundance

LITL Labels

log-Abundance

Orders
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(NB; Mika et al., 1999), and eXtreme Gradient Boosting (XGBoost; Chen
and He, 2015). We chose these four algorithms as they use a wide range
of machine learning techniques. Our methods for optimizing these al-
gorithms are described in Table 1 and Fig. S3. All traditional machine
learning methods were developed using R version 4.1.1 (R Core Team,
2021).

We also trained artificial neural network (ANN) models using Python
version 3.9.12. Unlike the traditional machine learning models, which
only took input data in the form of feature vectors, we designed our
ANNs to take data as feature vector-only, image-only, or image and

Table 1
Glossary of terms.
Term Definition
‘Long tail’ Refers to the ‘long tail’ of rank abundance curves in which most

taxa have low abundance compared to the relatively few high
abundance taxa.

Label A categorical label given to a specimen (e.g. Formicidae, Canthon
viridis, etc.). Synonymous with the machine learning definition of
‘class’.

(Un)known & Known labels are those that were input into the model. Unknown

(Un)seen labels are those that were not input into the model. For example,
a model trained using the labels “Cat”, “Dog”, and “Bird” knows
the labels “Cat”, “Dog”, and “Bird” but does not know the label
“Pigeon”.
Seen labels are those that are represented in the model via data.
Seen labels may be known by the model, but it is not required.
Using the same example as above, if images of pigeons were used
to train the model to recognize birds, pigeons would be seen but
not known by the model. If images of pigeons were not in the
training dataset, pigeons would be unseen and unknown.
Lowest A specimen’s LITL is the level at which the specimen’s most
Identified specific label is assigned. E.g. the LITL of a specimen labelled
Taxonomic Canthon sp. is genus and it’s LITL label would be Canthon.
Level (LITL)
LITL Model A LITL model is a machine learning model that is trained using
LITL labels, usually consisting of multiple LITLs.
Contextual Non-morphometric data that provides context about the time,
Metadata location, and environment a specimen was collected in.
Zero Shot The classification of unknown and unseen specimens by making
Classification classifications at a level where the specimen’s label is known. E.
g. if the beetle family Elateridae is unknown and unseen by the
model, but the order Coleoptera (beetles) is known and seen by
the model, Elateridae specimens can be zero shot classified at the
order level.
Hierarchical Hierarchical classification can infer labels at higher levels from a
Classification single, base classification. These classifications can be used to

calculate hierarchical accuracy at multiple levels. Zero shot
classification is an example of hierarchical classification.

Training and The training dataset is used as the input layer of the machine

Testing learning model. It is used as the reference data to train the model
Datasets how to classify each label. The testing dataset is composed of
entirely separate specimens from the training dataset and is used
to measure a trained model’s performance metrics (Fig. S3).
Comprehensive Zero shot accuracy using all zero shot specimens at every
Zero Shot taxonomic level, regardless of if they had a known taxonomic
Accuracy label for any given level.

Zero shot accuracy measured only using specimens that had a
known label at any given taxonomic level.

Accuracy measured using only the label with the highest
probability as measured by the model.

Accuracy measured using the labels with the three highest
probabilities as measured by the model. If any of the three labels
match the actual label, the classification is deemed correct.

Limited Zero
Shot Accuracy
Top 1 Accuracy

Top 3 Accuracy

F1 score When referring to a model’s F1 score (i.e. macro F1 score):
macroFl =
1 Z" True Positives,,
n

=1 True Positives, + 0.5 (False Positives, + False Negatives,)
When referring to a label’s F1 score (i.e. micro F1 score):
True Positives

microFl = True Positives + 0.5(False Positives + False Negatives)
Precision & Precision — True Positives
Recall eciston = True Postivies + False Positives
True Positives
Recall =

True Positives + False Negatives
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feature vector data simultaneously. We first trained and tested our
single-input-type models independently to optimize their training pa-
rameters, then combined them in our multi-input model. Our feature
vector model was constructed using a single dense layer and softmax
classifier layer. For the image model, we trained a CNN using the
ResNet-50 architecture for feature extraction (He et al., 2016). We then
added one global average pooling layer, two dense layers, and a softmax
classifier layer. To combine the feature vector and image models, we
removed the classifier layers from each, concatenated their output
layers, added one dense layer and one softmax classifier layer (Fig. S4).
The model was trained over 10 epochs, the point at which loss was
minimized (Fig. S3).

All machine learning and deep learning code is available on GitHub
(Blair, 2022).

2.4.3. LITL & order-level labels

Due to the uneven taxonomic resolution of our dataset (i.e. some
individuals were classified to lower taxonomic levels than others),
specimens in the training dataset were labelled at their lowest identified
taxonomic level (LITL; Fig. 1a). We treated nested taxonomic labels (e.g.
Staphylinidae and Coleoptera) as non-equivalent and mutually exclu-
sive. For example, if a specimen with a LITL label of Staphylinidae is
classified as Coleoptera by a model, or vice-versa, that classification
would be deemed incorrect despite Staphylinidae being a family within
Coleoptera. We also created a separate training dataset in which all
specimens were labelled at the order level (Fig. 1b). Any specimens with
an LITL label below the order level were relabelled as their corre-
sponding order (e.g. Staphylinidae would be relabelled as Coleoptera).
Conversely, any specimens with an LITL label above order level were
removed from the training dataset. These datasets were pre-processed
separately from the LITL datasets and included orders with 100 or
more individuals in the NEON dataset. Performance of the LITL and
order-level models were measured using accuracy and F1 score.

2.4.4. Contextual metadata

To determine the effects and importance of contextual metadata, we
trained and tested models of each algorithm type using the LITL and
order-level datasets that contained both contextual metadata and
morphometric data as well as with datasets that only contained
morphometric data. Differences in performance were measured as the
net change in accuracy, and variable importance was measured using
‘mean decrease accuracy’ in the XGBoost model.

2.4.5. Zero-shot classification

We performed zero-shot classification by taking taxa that had too few
specimens to be included in our training datasets (“unseen” taxa) and
classifying them at taxonomic levels where they belonged to a common
group that was included in the training dataset (“known” taxa). For
example, there were only 92 specimens from the family Elateridae (click
beetles) in our LITL dataset, and thus this family was not included in the
training dataset. This makes the label “Elateridae” unknown and unseen
by the models, which means that the models cannot classify this label at
the family level. However, Elateridae belongs to the order Coleoptera,
which is a label known by the model. The hierarchical structure of
taxonomy allows us to make classifications at multiple taxonomic levels
simultaneously, as long as these levels are not more specific than the
original classification (e.g. you cannot infer species from a genus level
classification). This allowed us to make a zero-shot classification for
Elateridae at the order level and above by classifying them as Coleop-
tera. When measuring zero-shot accuracy, any classification made of a
label belonging to the known group would be deemed correct. For
example, if “Elateridae” was classified as “Staphylinidae” instead of
“Coleoptera”, it would still be considered accurate at the order level
despite “Staphylinidae” being treated as mutually exclusive from
“Coleoptera” in the LITL models. We note that in practical situations,
uncommon groups could be added to the training dataset by labelling
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them at their known taxonomic level, but they were left out of our
training dataset so we could measure zero-shot classification perfor-
mance. We also performed zero-shot classification using the order level
models by classifying unincluded taxa at the class and phylum levels.

We also used zero-shot accuracy to estimate LITL and order-level
accuracy across the entire invertebrate dataset. We weighted the accu-
racies measured from the testing datasets to the training datasets to get
an estimated accuracy for all ‘known’ specimens (70,466 LITL speci-
mens and 53,683 order-level specimens). We then combined this esti-
mated accuracy with our zero-shot accuracies to get an estimated
accuracy for the entire dataset.

We measured the taxonomic specificity of the LITL and order level
models by averaging the taxonomic level of each label in the training
and testing datasets, as well as the first known levels for zero shot
specimens. Six taxonomic levels (species, genus, family, order, class, and
phylum) were used. Each taxonomic level was assigned a numerical
value in ascending order (i.e. species = 1, phylum = 6). If the taxonomic
level of a label was between one of the six measured levels, its value was
rounded up (e.g. superfamily labels were measured as order level).
Specimens labelled as “Ignore”, “Larva”, “Nymph”, and “Juvenile” were
not assigned a numerical value and were removed from the
measurement.

3. Results
3.1. LITL

Our entire NEON invertebrate dataset contained 72,678 specimens
with 160 LITLs and 30 taxonomic orders, sampled across 45 sites and
323 sampling events (i.e. 323 pitfall trap collections) (Fig. 2). After we
removed uncommon LITL labels (<100 individuals per label), our
training datasets contained 49,337 specimens across 46 LITL labels
while our testing datasets contained 21,129 specimens (Fig. 2). The
2212 uncommon specimens we removed from the training and testing
datasets were used for zero-shot classifications.

We found models that contained contextual metadata always per-
formed better than their non-metadata counterparts on all metrics across
all algorithms when predicting specimens down to their LITL (Fig. 3). Of
the ‘traditional’ models we tested, XGBoost always performed best, with
an average top-1 accuracy of 72.7%, top-3 accuracy of 89.8%, and F1
score of 0.661 when including metadata. XGBoost also had the greatest
accuracy increase between the metadata and no-metadata configura-
tions (+10.2%; 62.5%=> 72.7%). The average accuracy boost when we
included metadata in the training dataset was 8.7% across all models.
We also found the F1 score of XGBoost was improved the most when
metadata was added (+0.173), with an average increase of 0.132 across
all models. Latitude and longitude had the highest importance (mean
decrease in accuracy) among metadata variables for the XGB models,
ranking sixth and seventh out of 46 predictor variables respectively
(Fig. 4).

Of our artificial neural network configurations, the CNN with all
three data types (images, morphometric data, and contextual metadata)
performed best across all metrics (top-1 accuracy 72.8%, top-3 accuracy
91.2%, F1 score 0.623) (Fig. 5). Conversely, the metadata-only model
performed the worst with a top-1 accuracy of 36.9% (Fig. 5). Overall,
XGBoost and the best performing CNN returned similar results. XGBoost
had relatively higher top-1 accuracy and F1 score (+0.7% and + 0.047),
while the CNN had higher top 3 accuracy (+0.6%). XGBoost also per-
formed slightly better on taxa with low abundance (Fig. S5, Fig. S6), but
neither had a significant difference in F1 score relative to abundance
(XGBoost: F = 1.016, df = 1, 44, p > 0.05, R? = 0.023; CNN: F = 1.716,
df = 44, 1, p > 0.05, R? = 0.038; Fig. S5).

We performed zero-shot classification on unseen and unknown
specimens by classifying them as known classes at higher taxonomic
levels using XGBoost with metadata, our best-performing model. When
classified to the lowest possible level, we found XGBoost zero shot
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classification had a top-1 accuracy of 39.4%. When we combined regular
classifications and zero-shot classifications, the average overall top-1
accuracy of the XGBoost model across the entire NEON dataset was
71.7% when classifying to the lowest possible label with metadata
included. Comparatively, the top performing CNN had a top-1 zero shot
accuracy of 65.5%, resulting in a whole-NEON-dataset accuracy of
72.6%. The average specificity for the LITL labeling scheme was 3.2 (i.e.
specimens were generally classified either as family or order).

3.2. Order level

After we removed uncommon orders and specimens with LITLs
above order (Fig. 2), our training datasets contained 37,578 specimens
across 16 orders (including “Ignore”, “Larva”, and “Nymph” groups)
while our testing datasets contained 16,105 specimens. The 18,995
specimens we removed from the training and testing datasets were used
for zero-shot classifications.

When we trained and tested the models at the order level, XGBoost
still performed the best out of the ‘traditional’ models with an average
top-1 accuracy of 83.3%, top-3 accuracy of 95.5%, and F1 score of 0.675
(Fig. 3). Zero-shot accuracy was 15.1% when classified to the lowest
possible level resulting in a whole dataset accuracy of 65.5%. The neural
network with the highest accuracy used all three data types (images,
morphometric data, and contextual metadata), and returned a top-1
accuracy of 86.5%, top 3 accuracy of 97.1%, and F1 score of 0.723
(Fig. 5). The CNN’s zero shot accuracy was 34.7%, resulting in a whole
dataset accuracy of 73.0%. Unlike the LITL models, the CNN out-
performed XGBoost across all performance metrics at the order level.
Both the CNN and XGBoost models greatly overpredicted the ‘Ignore’
label when making zero-shot classifications, with ‘Ignore’ comprising
65.3% of classifications in the XGBoost model and 58.1% in the CNN

model. The average specificity for the order level model was 4.6 (i.e.
most specimens were classified as either order or class).

4. Discussion

Here, we explore practical approaches for using machine learning
specimen classification on a challenging terrestrial invertebrate dataset.
Our dataset is continental in scope, has varying levels of taxonomic
specificity, spans three phyla of terrestrial invertebrates, contains non-
invertebrate and fragmented specimens, and had a very long tail dis-
tribution rank abundance curve—in short, it looks much like many real-
world ecological datasets. Despite this, our best performing model
(CNN) reached an overall LITL accuracy of 72.6%, and an order-level
accuracy of 73.0%. These accuracies include zero-shot classifications
in which the models identified taxa belonging to labels not included in
the training dataset. When used in a practical setting, machine learning
models will have to frequently overcome common challenges of
ecological datasets while maintaining high performance standards. We
propose our methods and results presented here be used as a foundation
to be built and improved upon as we strive to increase the robustness
and practicality of ecological machine learning models.

4.1. The challenges and opportunities of ecological datasets

Ecological datasets have a wide range of challenges and opportu-
nities compared with the idealized datasets frequently examined in
machine learning classification studies. Due to data complexities like
inconsistent taxonomic resolution and the long tail of diversity, our
classification accuracies are significantly lower than in other machine
learning studies (Arje et al., 2020; Blair et al., 2020; Marques et al.,
2018; Mayo and Watson, 2007; Terry et al., 2020). But we also propose
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solutions for these more real-world datasets. In datasets with inconsis-
tent taxonomic resolution, we find that LITL classification has two main
advantages over single-level classification. First, LITL classification al-
lows for more data to be seen by the model. In the LITL models, 97.0% of
all specimens were included in either the training or testing dataset,
compared to only 73.9% of specimens being included in the order-level
models. This resulted in only a 0.2% minimum difference between the
CNN LITL model’s accuracy with and without zero-shot specimens
(72.8% vs 72.6%), while the order-level classifier had a minimum 13.5%
gap (86.5% vs 73.0%). LITL classification also increase the model’s
specificity, with our LITL models having a specificity score of 3.2 (be-
tween family and order) compared to the order-level’s specificity score
of 4.6 (between order and class).

We have also shown here that contextual metadata is one example of
how common features of ecological datasets can be advantageous to
model performance. Previous studies have already shown adding
contextual metadata can improve performance in deep learning models
(Ellen et al., 2019; Terry et al., 2020), but similar research in traditional
machine learning models had not been explored to our knowledge.
Location data was especially important, with latitude and longitude
ranking sixth and ninth out of 46 variables respectively (Fig. 4). Other
contextual metadata such as date, temperature, and precipitation were
also more important than most morphometric variables (Fig. 4). This is
despite the possibility that the effect of these variables may have been
dampened by the fact that data was only collected over a three year
period, with 92.9% of the data coming from 2016 alone. Without a
larger timeframe to allow trends to emerge, some metadata like

temperature and precipitation are unlikely to provide any additional
information than location and time. The fact that contextual metadata
variables like temperature and precipitation still show some importance
in our models testifies to their potential value in datasets spanning
several years with more sampling events. In such datasets, patterns be-
tween taxa occurrence and contextual metadata could be much stronger,
leading to greater variable importance and possibly higher overall
accuracy.

4.2. Challenges of measuring accuracy

Throughout the course of this study, we discovered that defining a
model’s accuracy is more subjective and contextual than intuition may
suggest. For our XGBoost models, accuracy can be measured as top-x (e.
g. top-1, top-3, etc.), at the order-level or LITL, with zero-shot, without
zero-shot, or only zero-shot. As shown in our zero-shot accuracy as well
as in other studies (Blair et al., 2020), the hierarchical structure of
taxonomies can also be used to measure accuracy at multiple taxonomic
levels, even if the model was trained to be used at one taxonomic level.
Model performance can also be measured on a per-label basis using
precision, recall, and confusion matrices (Fig. S6). This all leads to an
overwhelming number of options to measure and interpret model
performance.

To filter through this data deluge, we recommend choosing accuracy
metrics that are reflective of the research question your model is
addressing. For example, to estimate a model’s accuracy when it sees
and knows all input taxa, an accuracy measurement that excludes zero-
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shot accuracy would be the most informative. Conversely, including
zero-shot accuracy would be best for a practical measurement of accu-
racy that uses all possible input data, regardless of if it is seen or known
by the model.

We also recommend researchers consider the fit of their chosen
model to their research question and study design. While researchers
might be eager to use ‘bleeding edge’ technology with deep learning
models, we have shown that traditional machine learning models are
still deserving of consideration. Deep learning methods offer conve-
nience to the end user as they accept the most types of input data, and do
not necessarily require images to be standardized. In cases when the
imaging conditions are expected to be variable (e.g. in the field), deep
learning models should be favoured. Deep learning models also tend to
see greater benefit compared to traditional machine learning as the
amount of training data increases (Zappone et al., 2019). However,
when the training dataset is relatively small, the performance differ-
ences between deep learning and traditional machine learning are not as
pronounced, and may actually favour the latter. In cases where imaging
conditions can be precisely controlled (such as a lab setting), traditional
machine learning models warrant consideration. Traditional machine
learning models have the benefit of simplicity, both in terms of inter-
pretability and required programming skills. This simplicity also leads to
accessibility benefits, as the hardware requirements to run traditional
machine learning models are markedly lower than deep learning
models. If part of the motivation behind automating specimen classifi-
cation is to remove barriers to entry for large scale biomonitoring ef-
forts, the development of accessible methods should be encouraged.

4.3. Next steps

We show that zero-shot classification is highly practical for ecolog-
ical purposes, as it allows otherwise unknown taxa, such as those with
too few observations or with broadly specific labels to still be classified
by the model. However, zero-shot classifications performed this way are
still imperfect. They are less accurate than normal classifications (7.3%
less accurate in our LITL CNN model: 65.5% vs 72.8%), must be at a
lower taxonomic specificity than their original label, and are restricted
to the seen and known taxonomic groups of the model (Fig. S7). It is also
currently impossible to know with certainty which classifications should
be considered zero-shot in a practical setting where the correct labels are
not known a priori. This means that while the long tail of uncommon
species (Fig. 2) can be classified to some degree, there currently is un-
avoidable information loss and severe practicality issues when making
these classifications. Solving these problems of unavoidable information
loss and restricted labelling would be a breakthrough for zero-shot
classification in ecological datasets.

5. Conclusion

Automated classifications via machine learning has the potential to
transform the way ecologists conduct large scale monitoring programs.
However, if machine learning classification is to be accepted as a stan-
dard data collection tool for ecologists, our assessments of model per-
formance must be demonstrative of real-life scenarios. While there is a
tendency to want to be ‘fair’ to our models, fairness means very little in
practice. If our models do not meet the performance demands of ecol-
ogists under field conditions, that simply means our models must be
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adapted and improved. Here we showed that the inclusion of contextual
metadata can greatly improve classification accuracy, particularly when
the specificity of classifications is high. We also explored experimental
techniques in zero shot classification to address the challenge of classi-
fying under-represented taxa. Finally, we contrasted traditional ma-
chine learning methods with newer deep learning techniques and
showed that traditional machine learning methods may still warrant
consideration in some use cases. Overall, we demonstrated methods in
which models can be assessed practically while also describing methods
in which classification performance can be improved in the face of
challenges posed by ecological datasets.
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