
Ecological Informatics 72 (2022) 101896

Available online 5 November 2022
1574-9541/© 2022 Published by Elsevier B.V.

Embracing imperfection: Machine-assisted invertebrate classification in 
real-world datasets 

Jarrett Blair a,*, Michael D. Weiser b, Kirsten de Beurs b, Michael Kaspari b, Cameron Siler b,c, 
Katie E. Marshall a 

a Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 
b Department of Biology, University of Oklahoma, Norman, OK 73019-0235, USA 
c Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Ave., Norman, OK 73072-7029, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Computer vision 
Image classification 
Macroecology 
Terrestrial invertebrates 

A B S T R A C T   

Despite growing concerns over the health of global invertebrate diversity, terrestrial invertebrate monitoring 
efforts remain poorly geographically distributed. Machine-assisted classification has been proposed as a potential 
solution to quickly gather large amounts of data; however, previous studies have often used unrealistic or 
idealized datasets to train and test their models. 

In this study, we describe a practical methodology for including machine learning in ecological data acqui
sition pipelines. Here we train and test machine learning algorithms to classify over 72,000 terrestrial inverte
brate specimens from morphometric data and contextual metadata. All vouchered specimens were collected in 
pitfall traps by the National Ecological Observatory Network (NEON) at 45 locations across the United States 
from 2016 to 2019. Specimens were photographed, and two separate machine learning paradigms were used to 
classify them. In the first, we used a convolutional neural network (ResNet-50), and in the second, we extracted 
morphometric data as feature vectors using ImageJ and used traditional machine learning methods to classify 
specimens. Issues stemming from inconsistent taxonomic label specificity were resolved by making classifications 
at the lowest identified taxonomic level (LITL). Taxa with too few specimens to be included in the training 
dataset were classified by the model using zero-shot classification. 

When classifying specimens that were known and seen by our models, we reached a maximum accuracy of 
72.7% using eXtreme Gradient Boosting (XGBoost) at the LITL. This nearly matched the maximum accuracy 
achieved by the CNN of 72.8% at the LITL. Models that were trained without contextual metadata under
performed models with contextual metadata. We also classified invertebrate taxa that were unknown to the 
model using zero-shot classification, reaching a maximum accuracy of 65.5% when using the ResNet-50, 
compared to 39.4% when using XGBoost. 

The general methodology outlined here represents a realistic application of machine learning as a tool for 
ecological studies. We found that more advanced and complex machine learning methods such as convolutional 
neural networks are not necessarily more accurate than traditional machine learning methods. Hierarchical and 
LITL classifications allow for flexible taxonomic specificity at the input and output layers. These methods also 
help address the ‘long tail’ problem of underrepresented taxa missed by machine learning models. Finally, we 
encourage researchers to consider more than just morphometric data when training their models, as we have 
shown that the inclusion of contextual metadata can provide significant improvements to accuracy.   

1. Introduction 

Several recent studies have suggested that terrestrial invertebrates 
may be suffering drastic population and diversity losses (Dirzo et al., 
2014; Welti et al., 2020; Wepprich et al., 2019). However, these losses 

are not distributed equally across the planet nor across taxonomic di
versity (Guzman et al., 2021; van Klink et al., 2020). Generalizations 
about trends in global invertebrate diversity and abundance require a 
solid data foundation, yet invertebrates remain significantly poorly- 
sampled relative to their diversity and abundance (Høye et al., 2021; 
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van Klink et al., 2020). While there are many invertebrate bio
monitoring programs operating around the world, the data collected 
from these programs are often spatiotemporally coarse and lack taxo
nomic diversity (Høye et al., 2021). Large-scale invertebrate bio
monitoring efforts require vast funding and human resources, reducing 
their accessibility to developing nations and further limiting the 
geographic scope of biodiversity data (Karlsson et al., 2020; van Klink 
et al., 2020). One of the most time and resource intensive aspects of any 
invertebrate biomonitoring program relates to specimen sorting and 
taxonomic identification (Karlsson et al., 2020). While these processes 
are traditionally performed by trained taxonomists, often in coordina
tion with parataxonomists (i.e. individuals who are not expertly-trained 
taxonomists; Krell, 2004), advances in machine learning and computer 
vision have made machine-assisted classification a possibility for many 
groups of insects (Ärje et al., 2020; Blair et al., 2020; Marques et al., 
2018; Mayo and Watson, 2007). Not only does machine-assisted clas
sification have the potential to increase the efficiency, output, and 
accessibility of biomonitoring programs (Peters et al., 2014; Thessen, 
2016), but also, in a time when more data on invertebrate diversity and 
abundance is desperately needed, such an approach offers a trans
formative solution to the way we monitor global invertebrate diversity 
in a changing climate. 

Excitement regarding the possibilities of machine learning for taxo
nomic classification has led to many publications on the topic over the 
last decade. However, a common theme in this literature is the use of 
unrealistic or idealized case studies. Specifically, many datasets used in 
these studies have low species richness, uniform taxonomic resolution, 
and no geographic/temporal component (Ärje et al., 2020; Blair et al., 
2020; Joutsijoki et al., 2014). Additionally, nearly all studies that have 
used large ecological datasets accept that low abundance taxa must be 
sacrificed for the benefit of model performance (Marques et al., 2018; 
Mayo and Watson, 2007). In most natural communities, most taxonomic 
diversity is comprised of low-abundance taxa (i.e. the “long tail” of rank 
abundance curves; Preston, 1948; Verberk, 2012; Whittaker, 1965), so 
simply ignoring them is not feasible if machine learning tools are to be 
widely used in ecological studies. We note that the previously- 
mentioned machine learning studies still provide foundational knowl
edge about machine learning’s potential uses for taxonomic classifica
tion. However, significant work remains to improve the practicality of 
computer vision for specimen classification if it is to be integrated into 
ecological data acquisition pipelines. 

While there have been some promising results developing models for 
classifying biological specimens (Blair et al., 2020; Ding and Taylor, 
2016; Spiesman et al., 2021; Van Horn et al., 2018), ecological datasets 
pose several challenges for machine learning. One challenge that is 
effectively universal among macroecological datasets are taxa that are 
‘unknown’ to the model. These are taxa that the model was not trained 
to classify, but that the model may need to classify in the future. Most 
commonly, these taxa will be hidden in the aforementioned ‘long tail’ of 
uncommon species that are excluded from model training due to their 
low prevalence. For machine learning to be a practical solution for use in 
ecological studies, this problem must be addressed. 

Another challenge facing the classification of ecological datasets 
(especially large, diverse ones) is a ‘ragged edge’ of taxonomic specifi
cation: in many ecological datasets, identifications are made at varied 
taxonomic resolution dependent on the taxonomist’s knowledge (Jansen 
et al., 2018; Schmidt-Kloiber and Nijboer, 2004). For example, some 
specimens may be identified down to species, while others are identified 
to a higher taxonomic level only (e.g. family, order, etc.). This then poses 
the question of what a ‘correct’ classification is, and machine learning 
algorithms may need to weigh the benefits of accuracy versus specificity 
(Deng et al., 2012). Here we explored two potential ways to address this 
problem: lowest identified taxonomic level (LITL) models and single- 
level models. Single-level models assign labels to specimens and mea
sure accuracy all at one specified taxonomic level, while LITL models 
assign labels and measure accuracy based on the LITL label assigned to 

each individual. LITL labels allow for maximum inclusion and speci
ficity, but result in nested labels (i.e. labels belonging to related taxa at 
different taxonomic levels, such as Formicidae and Insecta; Fig. 1). 
Single-level models prevent nested labels by classifying all individuals at 
a single taxonomic level but can result in excluded individuals that were 
labelled at higher taxonomic levels in the training dataset. Additionally, 
single-level models restrict taxonomic specificity as classification cannot 
be made below the specified taxonomic level. From an ecologist’s 
perspective, there is likely no definitive “best” solution as the impor
tance of taxonomic specificity will vary depending on the use case. 

Despite the challenges ecological datasets pose, they also provide 
many unique opportunities for improving machine learning perfor
mance. For example, they often have contextual metadata about the 
collection site (e.g., location, time, temperature, etc.) that can be used to 
inform computer vision. This contextual metadata can significantly 
improve accuracy, as seen in an accuracy increase of 9.1% (48.1% ➔ 
57.3%) when classifying ladybeetles (Coleoptera: Coccinellidae; Terry 
et al., 2020), an 11.2% increase (68.6% ➔ 79.8%) when classifying 
North American birds (Berg et al., 2014), and a significant improvement 
when classifying marine plankton (Ellen et al., 2019). Additionally, the 
hierarchical structure of taxonomies can be used to perform ‘zero-shot 
classification’, which allows unknown and unseen classes to be classified 
by making predictions at the higher taxonomic rank that is known by the 
model (Blair et al., 2020; Deng et al., 2012). Deng et al. (2012) shows 
that while ‘flat’ classifiers (i.e. single-level classifiers) have zero accu
racy and zero information gain when classifying unknown and unseen 
classes, hierarchical classifiers can often predict these classes accurately. 
Strategies such as these may greatly increase the practicality of incor
porating computer vision methods in large scale ecology projects. 

One such large scale ecology project is the National Ecological Ob
servatory Network (NEON), which collects open access ecological data 
at a continental scale in the United States (Keller et al., 2008). Part of 
NEON’s ecological monitoring involves collecting and processing 
thousands of invertebrate specimens every year from arrays of pitfall 
traps that are collected and pooled every 14 days (Hoekman et al., 2017; 
Thorpe et al., 2016) (Fig. S1). NEON’s current workflow for these 
samples is to have a local parataxonomist separate and identify all 
ground beetles (Family: Carabidae), while the remaining unsorted 
invertebrate bycatch is stored in a biorepository. While NEON’s decision 
to focus on carabids is understandable given the human resources it 
would require to properly sort the invertebrate bycatch, it also means 
they are sitting on a large and as-of-yet untapped source of North 
American terrestrial invertebrate data. This makes NEON’s invertebrate 
bycatch a prime target for machine assisted specimen classification so 
that researchers in a wide variety of disciplines can make use of this 
extensive data source. 

Here we apply machine learning and deep learning classification 
methods to the large terrestrial invertebrate dataset collected by NEON. 
Our primary goals are to address the challenges taxonomic classification 
poses for machine learning while also taking advantage of the benefits 
provided by ecological datasets. We also compare the advantages and 
drawbacks of traditional machine learning algorithms (e.g. k-nearest 
neighbour, decision trees) and deep learning algorithms (e.g. convolu
tional neural networks (CNNs)). We did this by training a variety of 
algorithm types on several configurations of the NEON dataset to 
determine the optimal algorithm and dataset configuration. Using the 
NEON dataset, we ask: (1) How does the inclusion of contextual meta
data impact model performance and what is its relative importance 
compared to morphometric data? (2) How can we improve classification 
in the real-world conditions of low-abundance taxa and inconsistent 
taxonomic resolution? (3) Are deep learning algorithms universally su
perior to traditional machine learning algorithms, or are there merits to 
each? Here we show that the inclusion of contextual metadata improves 
classification performance while unevenness in label representation is 
relatively unimportant. We also compare the performance and practi
cality of LITL vs a single-level (order) model and use zero-shot 
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classification to overcome the ‘long tail’ problem (See Table 2 for a 
glossary of terms). Finally, we show that traditional machine learning 
algorithms can outperform deep learning algorithms, even when given 
less data. Taken together, we outline potential approaches for the 
challenges of machine-assisted classification in “real world” ecological 
datasets. 

2. Methods 

2.1. Invertebrate bycatch collection 

We used terrestrial invertebrates collected from pitfall traps by the 

National Ecological Observatory Network (NEON, see Hoekman et al., 
2017 for collection methodology). All specimens were collected from 
2016 to 2019. NEON sets the pitfall traps to collect ground beetles 
(Coleoptera: Carabidae) and separates them from the rest of the in
vertebrates immediately, so the ground beetles are not considered here 
(but see Blair et al., 2020). 

2.2. Imaging 

We made bulk digital images of the invertebrates (mostly Arthro
poda, Mollusca and Annelida) at a resolution of 729 pixels per mm2 

against a white background (for complete methods, see Weiser et al., 
2021; Fig. S1). Using the FIJI implementation of ImageJ (Schindelin 
et al., 2012), for each individual organism we extracted 21 morpho
logical measures (e.g., major and minor axis, perimeter, image area) and 
eight statistics (e.g., mean, skew, and kurtosis) for the distribution of 
values from each of the three RGB (Red, Green, and Blue) colour layers. 

2.3. Contextual metadata 

Here, we define contextual metadata as any non-morphometric and 
non-taxonomic data included in the invertebrate dataset. We sourced 
our contextual metadata from NEON (spatiotemporal data such as 
location and elevation) (NEON, 2022), NASA’s Land Processes Distrib
uted Active Archive Center (LP DAAC; gross primary productivity and 
evapotranspiration) (Running et al., 2015, 2017), and the Daymet V4 
dataset (Thornton et al., 2021). A complete list of all variables used and 
their definitions can be found in this table (Table S1). All contextual 
metadata values were the same for all specimens collected in a given 
trap event. Between our morphometric data and contextual metadata, 
49 descriptive variables were used as our training data (36 morpho
metric variables, 13 contextual variables). 

Fig. 1. Lowest Identified Taxonomic Level (LITL) and order-level labelling methods. (A) The top table shows the taxonomic names (from phylum to species) for five 
specimens. Cells filled with “–” indicate that our labeller was unable to make a classification for that specimen at that taxonomic level. The cells highlighted in green 
show which label was chosen for each specimen, which are summarized in the bottom table. Labels were chosen based on the LITL for each specimen. (B) The 
methodology is the same as (A), except that all labels were recorded at the order-level, regardless of the LITL identified by our labeller. No order-level label was given 
to specimen #1, so it can only be identified using zero-shot classification. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Table 2 
Classification algorithms and their respective parameter settings used for clas
sifying the NEON invertebrate bycatch.  

Algorithm Name Parameter settings 

Linear Discriminant 
Analysis 

No tuning parameters to optimize. 

Naïve Bayes No tuning parameters to optimize. 
K-Nearest Neighbours k values of all integers between 1 and 25 were tested, and 

the k value with the lowest error in the training dataset 
was selected. 

eXtreme Gradient 
Boosting 

max.depth was set as 10, eta was set at 0.1, and nrounds 
was set at 120. 

Artificial Neural 
Network 

1 hidden dense layer with 128 nodes and ReLU activation 
function. 
Optimizer: Adam 
Loss function: Categorical cross-entropy 
Epochs: 10 

Convolutional Neural 
Network 

Base model: ResNet50 with ‘imagenet’ weights (He et al., 
2016) 
2 hidden dense layers (1024 and 128 nodes, respectively), 
both with batch normalization, 0.3 dropout, and ReLU 
activation function. 
Optimizer: Adam 
Loss function: Categorical cross-entropy 
Epochs: 10  
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2.4. Machine learning 

2.4.1. Preparation 
To prepare the data for machine learning training and testing, we 

first removed all taxa with fewer than 100 observations from the dataset 
(Fig. 2), as these taxa contained too little data to properly train the 
models. We then randomly split the dataset in training and testing 
datasets at a ratio of 70:30 (Fig. S2). Each dataset was randomly shuffled 
to prevent overfitting. We normalized the feature vector data by 
centering and scaling each predictor variable such that they all had a 
mean of 0 and standard deviation of 1. In the image dataset, all images 
were scaled to 224 × 224 pixels and randomly augmented (i.e. sheared, 
zoomed, flipped horizontally and vertically). 

2.4.2. Algorithm types and architecture 
After pre-processing the data, it was ready to be used for training in a 

machine learning model. We contrasted four types of ‘traditional’ ma
chine learning algorithms: K-nearest neighbours (KNN; Cover and Hart, 
1967), linear discriminant analysis (LDA; Mika et al., 1999), naïve Bayes 

(NB; Mika et al., 1999), and eXtreme Gradient Boosting (XGBoost; Chen 
and He, 2015). We chose these four algorithms as they use a wide range 
of machine learning techniques. Our methods for optimizing these al
gorithms are described in Table 1 and Fig. S3. All traditional machine 
learning methods were developed using R version 4.1.1 (R Core Team, 
2021). 

We also trained artificial neural network (ANN) models using Python 
version 3.9.12. Unlike the traditional machine learning models, which 
only took input data in the form of feature vectors, we designed our 
ANNs to take data as feature vector-only, image-only, or image and 

Fig. 2. Log-scale rank abundance plots of invertebrates in the NEON dataset. 
(A) Each bar represents a lowest identified taxonomic label (LITL), as identified 
by MDW. Blue bars represent groups that had ≥100 individuals and were 
included in the training dataset; orange bars represent groups with <100 in
dividuals and were removed from the training dataset. A cut off of 100 in
dividuals (represented by a horizontal line) was used to ensure the models had 
sufficient data to classify each LITL label. (B) Each bar represents a taxonomic 
order of invertebrates, as identified by MDW. Blue bars represent groups that 
had ≥100 individuals and were included in the training dataset; orange bars 
represent groups with <100 individuals or had a LITL above the level of order 
(e.g. class or phylum) and therefore were removed from the training dataset. A 
cut off of 100 individuals (horizontal line) was used to ensure the models had 
sufficient data to classify each LITL label. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Glossary of terms.  

Term Definition 

‘Long tail’ Refers to the ‘long tail’ of rank abundance curves in which most 
taxa have low abundance compared to the relatively few high 
abundance taxa. 

Label A categorical label given to a specimen (e.g. Formicidae, Canthon 
viridis, etc.). Synonymous with the machine learning definition of 
‘class’. 

(Un)known & 
(Un)seen 

Known labels are those that were input into the model. Unknown 
labels are those that were not input into the model. For example, 
a model trained using the labels “Cat”, “Dog”, and “Bird” knows 
the labels “Cat”, “Dog”, and “Bird” but does not know the label 
“Pigeon”. 
Seen labels are those that are represented in the model via data. 
Seen labels may be known by the model, but it is not required. 
Using the same example as above, if images of pigeons were used 
to train the model to recognize birds, pigeons would be seen but 
not known by the model. If images of pigeons were not in the 
training dataset, pigeons would be unseen and unknown. 

Lowest 
Identified 
Taxonomic 
Level (LITL) 

A specimen’s LITL is the level at which the specimen’s most 
specific label is assigned. E.g. the LITL of a specimen labelled 
Canthon sp. is genus and it’s LITL label would be Canthon. 

LITL Model A LITL model is a machine learning model that is trained using 
LITL labels, usually consisting of multiple LITLs. 

Contextual 
Metadata 

Non-morphometric data that provides context about the time, 
location, and environment a specimen was collected in. 

Zero Shot 
Classification 

The classification of unknown and unseen specimens by making 
classifications at a level where the specimen’s label is known. E. 
g. if the beetle family Elateridae is unknown and unseen by the 
model, but the order Coleoptera (beetles) is known and seen by 
the model, Elateridae specimens can be zero shot classified at the 
order level. 

Hierarchical 
Classification 

Hierarchical classification can infer labels at higher levels from a 
single, base classification. These classifications can be used to 
calculate hierarchical accuracy at multiple levels. Zero shot 
classification is an example of hierarchical classification. 

Training and 
Testing 
Datasets 

The training dataset is used as the input layer of the machine 
learning model. It is used as the reference data to train the model 
how to classify each label. The testing dataset is composed of 
entirely separate specimens from the training dataset and is used 
to measure a trained model’s performance metrics (Fig. S3). 

Comprehensive 
Zero Shot 
Accuracy 

Zero shot accuracy using all zero shot specimens at every 
taxonomic level, regardless of if they had a known taxonomic 
label for any given level. 

Limited Zero 
Shot Accuracy 

Zero shot accuracy measured only using specimens that had a 
known label at any given taxonomic level. 

Top 1 Accuracy Accuracy measured using only the label with the highest 
probability as measured by the model. 

Top 3 Accuracy Accuracy measured using the labels with the three highest 
probabilities as measured by the model. If any of the three labels 
match the actual label, the classification is deemed correct. 

F1 score When referring to a model’s F1 score (i.e. macro F1 score): 

macroF1 =

1
n

∑n
i=1

True Positivesn

True Positivesn + 0.5
(
False Positivesn + False Negativesn

)

When referring to a label’s F1 score (i.e. micro F1 score): 

microF1 =
True Positives

True Positives + 0.5(False Positives + False Negatives)
Precision & 

Recall 
Precision =

True Positives
True Postivies + False Positives 

Recall =
True Positives

True Positives + False Negatives  
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feature vector data simultaneously. We first trained and tested our 
single-input-type models independently to optimize their training pa
rameters, then combined them in our multi-input model. Our feature 
vector model was constructed using a single dense layer and softmax 
classifier layer. For the image model, we trained a CNN using the 
ResNet-50 architecture for feature extraction (He et al., 2016). We then 
added one global average pooling layer, two dense layers, and a softmax 
classifier layer. To combine the feature vector and image models, we 
removed the classifier layers from each, concatenated their output 
layers, added one dense layer and one softmax classifier layer (Fig. S4). 
The model was trained over 10 epochs, the point at which loss was 
minimized (Fig. S3). 

All machine learning and deep learning code is available on GitHub 
(Blair, 2022). 

2.4.3. LITL & order-level labels 
Due to the uneven taxonomic resolution of our dataset (i.e. some 

individuals were classified to lower taxonomic levels than others), 
specimens in the training dataset were labelled at their lowest identified 
taxonomic level (LITL; Fig. 1a). We treated nested taxonomic labels (e.g. 
Staphylinidae and Coleoptera) as non-equivalent and mutually exclu
sive. For example, if a specimen with a LITL label of Staphylinidae is 
classified as Coleoptera by a model, or vice-versa, that classification 
would be deemed incorrect despite Staphylinidae being a family within 
Coleoptera. We also created a separate training dataset in which all 
specimens were labelled at the order level (Fig. 1b). Any specimens with 
an LITL label below the order level were relabelled as their corre
sponding order (e.g. Staphylinidae would be relabelled as Coleoptera). 
Conversely, any specimens with an LITL label above order level were 
removed from the training dataset. These datasets were pre-processed 
separately from the LITL datasets and included orders with 100 or 
more individuals in the NEON dataset. Performance of the LITL and 
order-level models were measured using accuracy and F1 score. 

2.4.4. Contextual metadata 
To determine the effects and importance of contextual metadata, we 

trained and tested models of each algorithm type using the LITL and 
order-level datasets that contained both contextual metadata and 
morphometric data as well as with datasets that only contained 
morphometric data. Differences in performance were measured as the 
net change in accuracy, and variable importance was measured using 
‘mean decrease accuracy’ in the XGBoost model. 

2.4.5. Zero-shot classification 
We performed zero-shot classification by taking taxa that had too few 

specimens to be included in our training datasets (“unseen” taxa) and 
classifying them at taxonomic levels where they belonged to a common 
group that was included in the training dataset (“known” taxa). For 
example, there were only 92 specimens from the family Elateridae (click 
beetles) in our LITL dataset, and thus this family was not included in the 
training dataset. This makes the label “Elateridae” unknown and unseen 
by the models, which means that the models cannot classify this label at 
the family level. However, Elateridae belongs to the order Coleoptera, 
which is a label known by the model. The hierarchical structure of 
taxonomy allows us to make classifications at multiple taxonomic levels 
simultaneously, as long as these levels are not more specific than the 
original classification (e.g. you cannot infer species from a genus level 
classification). This allowed us to make a zero-shot classification for 
Elateridae at the order level and above by classifying them as Coleop
tera. When measuring zero-shot accuracy, any classification made of a 
label belonging to the known group would be deemed correct. For 
example, if “Elateridae” was classified as “Staphylinidae” instead of 
“Coleoptera”, it would still be considered accurate at the order level 
despite “Staphylinidae” being treated as mutually exclusive from 
“Coleoptera” in the LITL models. We note that in practical situations, 
uncommon groups could be added to the training dataset by labelling 

them at their known taxonomic level, but they were left out of our 
training dataset so we could measure zero-shot classification perfor
mance. We also performed zero-shot classification using the order level 
models by classifying unincluded taxa at the class and phylum levels. 

We also used zero-shot accuracy to estimate LITL and order-level 
accuracy across the entire invertebrate dataset. We weighted the accu
racies measured from the testing datasets to the training datasets to get 
an estimated accuracy for all ‘known’ specimens (70,466 LITL speci
mens and 53,683 order-level specimens). We then combined this esti
mated accuracy with our zero-shot accuracies to get an estimated 
accuracy for the entire dataset. 

We measured the taxonomic specificity of the LITL and order level 
models by averaging the taxonomic level of each label in the training 
and testing datasets, as well as the first known levels for zero shot 
specimens. Six taxonomic levels (species, genus, family, order, class, and 
phylum) were used. Each taxonomic level was assigned a numerical 
value in ascending order (i.e. species = 1, phylum = 6). If the taxonomic 
level of a label was between one of the six measured levels, its value was 
rounded up (e.g. superfamily labels were measured as order level). 
Specimens labelled as “Ignore”, “Larva”, “Nymph”, and “Juvenile” were 
not assigned a numerical value and were removed from the 
measurement. 

3. Results 

3.1. LITL 

Our entire NEON invertebrate dataset contained 72,678 specimens 
with 160 LITLs and 30 taxonomic orders, sampled across 45 sites and 
323 sampling events (i.e. 323 pitfall trap collections) (Fig. 2). After we 
removed uncommon LITL labels (<100 individuals per label), our 
training datasets contained 49,337 specimens across 46 LITL labels 
while our testing datasets contained 21,129 specimens (Fig. 2). The 
2212 uncommon specimens we removed from the training and testing 
datasets were used for zero-shot classifications. 

We found models that contained contextual metadata always per
formed better than their non-metadata counterparts on all metrics across 
all algorithms when predicting specimens down to their LITL (Fig. 3). Of 
the ‘traditional’ models we tested, XGBoost always performed best, with 
an average top-1 accuracy of 72.7%, top-3 accuracy of 89.8%, and F1 
score of 0.661 when including metadata. XGBoost also had the greatest 
accuracy increase between the metadata and no-metadata configura
tions (+10.2%; 62.5%➔ 72.7%). The average accuracy boost when we 
included metadata in the training dataset was 8.7% across all models. 
We also found the F1 score of XGBoost was improved the most when 
metadata was added (+0.173), with an average increase of 0.132 across 
all models. Latitude and longitude had the highest importance (mean 
decrease in accuracy) among metadata variables for the XGB models, 
ranking sixth and seventh out of 46 predictor variables respectively 
(Fig. 4). 

Of our artificial neural network configurations, the CNN with all 
three data types (images, morphometric data, and contextual metadata) 
performed best across all metrics (top-1 accuracy 72.8%, top-3 accuracy 
91.2%, F1 score 0.623) (Fig. 5). Conversely, the metadata-only model 
performed the worst with a top-1 accuracy of 36.9% (Fig. 5). Overall, 
XGBoost and the best performing CNN returned similar results. XGBoost 
had relatively higher top-1 accuracy and F1 score (+0.7% and + 0.047), 
while the CNN had higher top 3 accuracy (+0.6%). XGBoost also per
formed slightly better on taxa with low abundance (Fig. S5, Fig. S6), but 
neither had a significant difference in F1 score relative to abundance 
(XGBoost: F = 1.016, df = 1, 44, p > 0.05, R2 = 0.023; CNN: F = 1.716, 
df = 44, 1, p > 0.05, R2 = 0.038; Fig. S5). 

We performed zero-shot classification on unseen and unknown 
specimens by classifying them as known classes at higher taxonomic 
levels using XGBoost with metadata, our best-performing model. When 
classified to the lowest possible level, we found XGBoost zero shot 
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classification had a top-1 accuracy of 39.4%. When we combined regular 
classifications and zero-shot classifications, the average overall top-1 
accuracy of the XGBoost model across the entire NEON dataset was 
71.7% when classifying to the lowest possible label with metadata 
included. Comparatively, the top performing CNN had a top-1 zero shot 
accuracy of 65.5%, resulting in a whole-NEON-dataset accuracy of 
72.6%. The average specificity for the LITL labeling scheme was 3.2 (i.e. 
specimens were generally classified either as family or order). 

3.2. Order level 

After we removed uncommon orders and specimens with LITLs 
above order (Fig. 2), our training datasets contained 37,578 specimens 
across 16 orders (including “Ignore”, “Larva”, and “Nymph” groups) 
while our testing datasets contained 16,105 specimens. The 18,995 
specimens we removed from the training and testing datasets were used 
for zero-shot classifications. 

When we trained and tested the models at the order level, XGBoost 
still performed the best out of the ‘traditional’ models with an average 
top-1 accuracy of 83.3%, top-3 accuracy of 95.5%, and F1 score of 0.675 
(Fig. 3). Zero-shot accuracy was 15.1% when classified to the lowest 
possible level resulting in a whole dataset accuracy of 65.5%. The neural 
network with the highest accuracy used all three data types (images, 
morphometric data, and contextual metadata), and returned a top-1 
accuracy of 86.5%, top 3 accuracy of 97.1%, and F1 score of 0.723 
(Fig. 5). The CNN’s zero shot accuracy was 34.7%, resulting in a whole 
dataset accuracy of 73.0%. Unlike the LITL models, the CNN out
performed XGBoost across all performance metrics at the order level. 
Both the CNN and XGBoost models greatly overpredicted the ‘Ignore’ 
label when making zero-shot classifications, with ‘Ignore’ comprising 
65.3% of classifications in the XGBoost model and 58.1% in the CNN 

model. The average specificity for the order level model was 4.6 (i.e. 
most specimens were classified as either order or class). 

4. Discussion 

Here, we explore practical approaches for using machine learning 
specimen classification on a challenging terrestrial invertebrate dataset. 
Our dataset is continental in scope, has varying levels of taxonomic 
specificity, spans three phyla of terrestrial invertebrates, contains non- 
invertebrate and fragmented specimens, and had a very long tail dis
tribution rank abundance curve—in short, it looks much like many real- 
world ecological datasets. Despite this, our best performing model 
(CNN) reached an overall LITL accuracy of 72.6%, and an order-level 
accuracy of 73.0%. These accuracies include zero-shot classifications 
in which the models identified taxa belonging to labels not included in 
the training dataset. When used in a practical setting, machine learning 
models will have to frequently overcome common challenges of 
ecological datasets while maintaining high performance standards. We 
propose our methods and results presented here be used as a foundation 
to be built and improved upon as we strive to increase the robustness 
and practicality of ecological machine learning models. 

4.1. The challenges and opportunities of ecological datasets 

Ecological datasets have a wide range of challenges and opportu
nities compared with the idealized datasets frequently examined in 
machine learning classification studies. Due to data complexities like 
inconsistent taxonomic resolution and the long tail of diversity, our 
classification accuracies are significantly lower than in other machine 
learning studies (Ärje et al., 2020; Blair et al., 2020; Marques et al., 
2018; Mayo and Watson, 2007; Terry et al., 2020). But we also propose 

Fig. 3. (A, B, C, D) Invertebrate bycatch classification performance metrics for ‘traditional’ models (i.e. not deep learning) trained with and without contextual 
metadata. Top 1, Top 3, and F1 score are defined in the Glossary. (A) Top 1 and top 3 accuracy at LITL. (B) F1 score at LITL. (C) Top 1 and top 3 at order level. (D) F1 
score at order level. (Naïve Bayes [Bayes]; Linear discriminant analysis [LDA]; K-Nearest Neighbours [KNN]; Artificial Neural Network [ANN]; Extreme Gradient 
Boosting [XGB]). 
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solutions for these more real-world datasets. In datasets with inconsis
tent taxonomic resolution, we find that LITL classification has two main 
advantages over single-level classification. First, LITL classification al
lows for more data to be seen by the model. In the LITL models, 97.0% of 
all specimens were included in either the training or testing dataset, 
compared to only 73.9% of specimens being included in the order-level 
models. This resulted in only a 0.2% minimum difference between the 
CNN LITL model’s accuracy with and without zero-shot specimens 
(72.8% vs 72.6%), while the order-level classifier had a minimum 13.5% 
gap (86.5% vs 73.0%). LITL classification also increase the model’s 
specificity, with our LITL models having a specificity score of 3.2 (be
tween family and order) compared to the order-level’s specificity score 
of 4.6 (between order and class). 

We have also shown here that contextual metadata is one example of 
how common features of ecological datasets can be advantageous to 
model performance. Previous studies have already shown adding 
contextual metadata can improve performance in deep learning models 
(Ellen et al., 2019; Terry et al., 2020), but similar research in traditional 
machine learning models had not been explored to our knowledge. 
Location data was especially important, with latitude and longitude 
ranking sixth and ninth out of 46 variables respectively (Fig. 4). Other 
contextual metadata such as date, temperature, and precipitation were 
also more important than most morphometric variables (Fig. 4). This is 
despite the possibility that the effect of these variables may have been 
dampened by the fact that data was only collected over a three year 
period, with 92.9% of the data coming from 2016 alone. Without a 
larger timeframe to allow trends to emerge, some metadata like 

temperature and precipitation are unlikely to provide any additional 
information than location and time. The fact that contextual metadata 
variables like temperature and precipitation still show some importance 
in our models testifies to their potential value in datasets spanning 
several years with more sampling events. In such datasets, patterns be
tween taxa occurrence and contextual metadata could be much stronger, 
leading to greater variable importance and possibly higher overall 
accuracy. 

4.2. Challenges of measuring accuracy 

Throughout the course of this study, we discovered that defining a 
model’s accuracy is more subjective and contextual than intuition may 
suggest. For our XGBoost models, accuracy can be measured as top-x (e. 
g. top-1, top-3, etc.), at the order-level or LITL, with zero-shot, without 
zero-shot, or only zero-shot. As shown in our zero-shot accuracy as well 
as in other studies (Blair et al., 2020), the hierarchical structure of 
taxonomies can also be used to measure accuracy at multiple taxonomic 
levels, even if the model was trained to be used at one taxonomic level. 
Model performance can also be measured on a per-label basis using 
precision, recall, and confusion matrices (Fig. S6). This all leads to an 
overwhelming number of options to measure and interpret model 
performance. 

To filter through this data deluge, we recommend choosing accuracy 
metrics that are reflective of the research question your model is 
addressing. For example, to estimate a model’s accuracy when it sees 
and knows all input taxa, an accuracy measurement that excludes zero- 

Fig. 4. Predictor variable importance for the Lowest Identified Taxonomic Level (LITL) XGBoost multiclass classifier. “Importance” is defined in the xgboost R 
package as the contribution of each feature (predictor variable) to the model (Chen & He, 2014). Bars of variables representing contextual metadata (i.e. data about 
the sampling event, such as location and weather) are shaded darker. 
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shot accuracy would be the most informative. Conversely, including 
zero-shot accuracy would be best for a practical measurement of accu
racy that uses all possible input data, regardless of if it is seen or known 
by the model. 

We also recommend researchers consider the fit of their chosen 
model to their research question and study design. While researchers 
might be eager to use ‘bleeding edge’ technology with deep learning 
models, we have shown that traditional machine learning models are 
still deserving of consideration. Deep learning methods offer conve
nience to the end user as they accept the most types of input data, and do 
not necessarily require images to be standardized. In cases when the 
imaging conditions are expected to be variable (e.g. in the field), deep 
learning models should be favoured. Deep learning models also tend to 
see greater benefit compared to traditional machine learning as the 
amount of training data increases (Zappone et al., 2019). However, 
when the training dataset is relatively small, the performance differ
ences between deep learning and traditional machine learning are not as 
pronounced, and may actually favour the latter. In cases where imaging 
conditions can be precisely controlled (such as a lab setting), traditional 
machine learning models warrant consideration. Traditional machine 
learning models have the benefit of simplicity, both in terms of inter
pretability and required programming skills. This simplicity also leads to 
accessibility benefits, as the hardware requirements to run traditional 
machine learning models are markedly lower than deep learning 
models. If part of the motivation behind automating specimen classifi
cation is to remove barriers to entry for large scale biomonitoring ef
forts, the development of accessible methods should be encouraged. 

4.3. Next steps 

We show that zero-shot classification is highly practical for ecolog
ical purposes, as it allows otherwise unknown taxa, such as those with 
too few observations or with broadly specific labels to still be classified 
by the model. However, zero-shot classifications performed this way are 
still imperfect. They are less accurate than normal classifications (7.3% 
less accurate in our LITL CNN model: 65.5% vs 72.8%), must be at a 
lower taxonomic specificity than their original label, and are restricted 
to the seen and known taxonomic groups of the model (Fig. S7). It is also 
currently impossible to know with certainty which classifications should 
be considered zero-shot in a practical setting where the correct labels are 
not known a priori. This means that while the long tail of uncommon 
species (Fig. 2) can be classified to some degree, there currently is un
avoidable information loss and severe practicality issues when making 
these classifications. Solving these problems of unavoidable information 
loss and restricted labelling would be a breakthrough for zero-shot 
classification in ecological datasets. 

5. Conclusion 

Automated classifications via machine learning has the potential to 
transform the way ecologists conduct large scale monitoring programs. 
However, if machine learning classification is to be accepted as a stan
dard data collection tool for ecologists, our assessments of model per
formance must be demonstrative of real-life scenarios. While there is a 
tendency to want to be ‘fair’ to our models, fairness means very little in 
practice. If our models do not meet the performance demands of ecol
ogists under field conditions, that simply means our models must be 

Fig. 5. (A, B, C, D) Invertebrate bycatch classification performance metrics for different configurations of artificial neural network (ANN) models trained. Top 1, Top 
3, and F1 score are defined in the Glossary. Filled bars represent top 1 results, hollow bars represent top 3 results. (A) Top 1 and top 3 accuracy at LITL. (B) F1 score at 
LITL. (C) Top 1 and top 3 at order level. (D) F1 score at order level. (ANN trained with only metadata [AnnMeta]; ANN trained with only morphometric data 
[AnnMorph]; ANN trained with metadata and morphometric data [AnnBoth]; ResNet-50 trained using only images [RN]; Combined ResNet-50 with ANN trained 
only using morphometric data [RNMorph], Combined ResNet-50 with ANN trained only using metadata [RNMeta], Combined ResNet-50 with ANN trained using 
both metadata and morphometric data [RNBoth]). 
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adapted and improved. Here we showed that the inclusion of contextual 
metadata can greatly improve classification accuracy, particularly when 
the specificity of classifications is high. We also explored experimental 
techniques in zero shot classification to address the challenge of classi
fying under-represented taxa. Finally, we contrasted traditional ma
chine learning methods with newer deep learning techniques and 
showed that traditional machine learning methods may still warrant 
consideration in some use cases. Overall, we demonstrated methods in 
which models can be assessed practically while also describing methods 
in which classification performance can be improved in the face of 
challenges posed by ecological datasets. 
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