

Advancing interdisciplinary science for disrupting wildlife trafficking networks

Q:1 **Meredith L. Gore^{a,1} , Emily Griffin^b , Bistra Dilkina^c , Aaron Ferber^c, Stanley E. Griffis^d , Burcu B. Keskin^e , and John Macdonald^f**

Edited by Arun Agrawal, University of Michigan-Ann Arbor, Ann Arbor; received June 30, 2022; accepted January 10, 2023

Q:5 **Wildlife trafficking**, whether local or transnational in scope, undermines sustainable development efforts, degrades cultural resources, endangers species, erodes the local and global economy, and facilitates the spread of zoonotic diseases. Wildlife trafficking networks (WTNs) occupy a unique gray space in supply chains—straddling licit and illicit networks, supporting legitimate and criminal workforces, and often demonstrating high resilience in their sourcing flexibility and adaptability. Authorities in different sectors desire, but frequently lack knowledge about how to allocate resources to disrupt illicit wildlife supply networks and prevent negative collateral impacts. Novel conceptualizations and a deeper scientific understanding of WTN structures are needed to help unravel the dynamics of interaction between disruption and resilience while accommodating socioenvironmental context. We use the case of ploughshare tortoise trafficking to help illustrate the potential of key advancements in interdisciplinary thinking. Insights herein suggest a significant need and opportunity for scientists to generate new science-based recommendations for WTN-related data collection and analysis for supply chain visibility, shifts in illicit supply chain dominance, network resilience, or limits of the supplier base.

green security games | illegal wildlife trade | illicit networks | operations research | supply chain resilience

Q:7 Thinking About Wildlife Trafficking as an Illicit Supply Chain

Wildlife trafficking is a transnational environmental challenge globally distributed in scope and scale, species targeted, and societal impacts. Wildlife trafficking can simultaneously serve as a vector for zoonotic disease and nonnative species invasion, endanger flora and fauna, undermine returns on sustainable development investment, associate with human rights violations, and support an exploited labor force. Although wildlife trafficking can have a unique, illicit supply network, it is not universally considered by conservation, law enforcement, sustainable development, or other authorities to be a severe problem relative to other challenges. Current thinking about wildlife trafficking networks (WTNs) suggests they overlap with and exploit the processes and mechanisms of licit supply chains (e.g., laundering legally protected and wild-caught European glass eels with a shipment of eels raised via aquaculture) (1). In some instances, wildlife trafficking converges with illicit supply networks for light weapons, narcotics, diamonds, and antiquities (e.g., ref. 2). In transnational spaces, WTNs can signal governance

challenges such as insider threats, corruption, and social conflicts such as ethnic strife. For example, Seleka rebels in the Central African Republic, which include armed fighters from Sudan, have been accused of poaching wildlife in Dzanga-Ndoki National Park to support their activities; Resistência Nacional Moçambicana reportedly traded in rhino horn and elephant ivory during Mozambique's civil war. Recently, two officials of the Cambodian Forestry Administration, Ministry of Agriculture, Forestry and Fisheries were indicted in the USA on eight counts of smuggling and conspiracy to violate multiple federal laws for facilitating the capture of wild-caught long-tailed macaques and laundering them through Cambodian entities for export to the U.S. and elsewhere, falsely labeled as captive bread (3). The animals were sent around the USA to biomedical testing facilities and were one of the main species employed to test COVID-19 vaccines (4). Scholars have long noted the social contexts and human dimensions associated with wildlife trafficking that encourage broad engagement by scientific disciplines and professional sectors, including and beyond law enforcement (e.g., ref. 5). Wildlife trafficking is a driver of species declines, and no ecosystem in the world has avoided negative impacts from the activity. Wild species are trafficked for a range of purposes, including food, income, medicine, companionship, novelty, entertainment, and research—contributing to degraded ecosystems and compounding negative impacts of climate change. Because human health and well-being are intricately linked to ecosystem health, degraded ecosystems ultimately result in degraded human health.

Policymakers, donors, and scientists around the world typically define WTNs as occurring across source, transit, and destination geographies (i.e., nodes and pathways or routes between these nodes). WTNs exploit spaces and places operating on the margins of government and the rule of law; they can deepen social fault lines and increase

Author affiliations: ^aDepartment of Geographical Sciences, University of Maryland, College Park, MD 20742; ^bOperations Management and Information Division, Babson College; ^cViterbi School of Engineering, University of Southern California; ^dLogistics and Supply Chain Management, Michigan State University; ^eDepartment of Information Systems, Statistics, and Management Science, University of Alabama; and ^fDepartment of Management, Colorado State University

Author contributions: M.L.G. and S.E.G. designed research; E.G., B.D., and B.B.K. performed research; B.D., A.F., and B.B.K. contributed new reagents/analytic tools; and M.L.G., E.G., B.D., A.F., S.E.G., B.B.K., and J.M. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2023 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). Q:4

¹To whom correspondence may be addressed. Email: gorem@umd.edu.

Published XXXX.

117 facets of risk exposure that may rise to the level of geopolitical consequence. The consequences of their actions are
 118 varied; the recent indictment of monkey importers in the USA from Cambodia may disrupt US drug and vaccine
 119 research (4). Advanced scientific thinking involving quantitative cross-disciplinary data and cross-sectoral approaches
 120 may dramatically improve the data landscape for informing programmatic and policy efforts to address WTN's scope,
 121 scale, and success across the variety of social contexts within which they occur (e.g., rural to urban, global south to
 122 the global north, savanna to forest, very low to very high income) (Fig. 1). WTNs are dynamic and diverse; similarly
 123 diverse is the nature of the harm and range of offenses, organization of the people involved, and the impact on the
 124 socioenvironmental systems within which harms accrue. The scientific baseline about WTNs remains nebulous and
 125 siloed; network and supply chain characteristics of WTNs remain poorly understood and are primarily case based.
 126 Push and pull factors driving consumer preferences for wildlife products are generally recognized as being essential
 127 for enduring demand reduction interventions; respect for government authority, cultural shifts to and from conspicuous
 128 consumption, trade bans, and economic recessions are known to exert varying influence on demand, yet insight
 129 remains cross-sectional (6). Risks to legal supply networks can go undetected and unmitigated (e.g., unusual patterns,
 130 counterintuitive correlations, and emergence of obfuscated monopolies). Relevant conservation biology data sources
 131 are scattered and maintained with different standards by diverse groups of stakeholders with their own interests.
 132

133 Integrating knowledge, methods, and expertise from different disciplines (e.g., Fig. 1) can help catalyze scientific
 134 discovery and innovation (7). Coupled human and natural systems thinking (e.g., ref. 8), telecoupling (e.g., ref. 9),
 135 and convergent science (e.g., ref. 10), for example, are all

136 scientific mechanisms for achieving this goal. However, these
 137 approaches need to be complemented by robust operational
 138 insight, predictive capabilities, and the ability to work with
 139 incomplete, noisy datasets: characteristics that wildlife trafficking
 140 embodies. To advance scientific understanding of WTNs, we were inspired by the concept of supply chain resilience,
 141 or supply network resilience (SNR)—the ability of supply networks to operate in the face of disturbance and
 142 disruption without a substantial decrease in performance. Understanding the operational resilience of illicit supply networks
 143 is an almost ubiquitous contemporary need, as illicit trade has emerged as a significant problem for almost every
 144 government in the world (11). This ubiquity, combined with broad gaps in knowledge, encouraged us to explore new
 145 opportunities to explore advanced analytical methods from licit supply networks to help make more effective and efficient
 146 decisions about disrupting WTN operations (12), whether they are disrupted via law enforcement activities,
 147 social marketing, or economic incentive programs designed to shift or reduce or minimize harm. We believe there is a
 148 great opportunity for an exploratory paper to advance convergent thinking about WTNs among scientists, particularly
 149 those from conservation criminology, supply chain management (SCM), operations research, and computational science
 150 who can leverage strengths and overcome weaknesses of their single-discipline silos.

Key Features of Licit and Illicit Supply Networks in a Resilience Context

151 Transnational illicit supply networks exist for products beyond natural resources including drugs, guns, humans,
 152 microelectronics, organs, counterfeit medication, and antiquities. Counterfeit and pirated products are known to be
 153 purchased by consumers who sometimes know they are

Fig. 1. Interdisciplinary approaches can advance scientific thinking about WTNs to help support efforts to disrupt them and help minimize their negative collateral impacts. The strengths of individual disciplines combine and mutually enhance one another.

237 buying fake products regardless of their awareness of the
238 impacts of the illicit trade, access to licit alternatives, price,
239 or value system. The comingling of licit and illicit goods
240 through the economy is termed convergence (13). This con-
241 vergence may occur across space, time, transport method,
242 money laundering, and form of corruption (e.g., ref. 14).
243 Although illicit supply networks have long been known to
244 converge with licit supply networks as a function of logistics
245 (15), much of illicit supply networks' operations function in
246 the shadow of the licit global economy. In this regard, licit
247 and illicit supply networks share many features. Licit SCM
248 incorporates insights about physical, informational, and
249 financial flows of products and services in the direction of
250 the supplier to the consumer. Network characteristics can
251 predict supply chain resilience for these flows moving in mul-
252 tiple directions. Licit supply network analysis characterizes
253 flow shocks and vulnerabilities which adversely affect a legiti-
254 mate firm's performance operationally, financially, and stra-
255 tegically (16). Just as marketing and supplier development
256 initiatives can increase demand and supply for licit products,
257 they can also serve to increase them for illicit products.
258 Operational perturbations and vulnerabilities are often spa-
259 tially mapped according to network objects characteristics
260 such as manufacturing plants (i.e., nodes) and roads (i.e.,
261 edges) (e.g., ref. 17). Disruptions in supply chains arise
262 from discrete vulnerabilities in interconnected flows (18).
263 Double-edged thinking about supply chain resilience offers
264 a window into how licit supply networks can maximize efforts
265 to maintain resilience throughout its component parts
266 (e.g., be resistant to or quickly recover from disruptive
267 events) and emergent processes such as order processing
268 times. The general supply chain resilience concepts do not
269 appear to have ever been applied to WTNs. Opportunities
270 for research are proliferative.

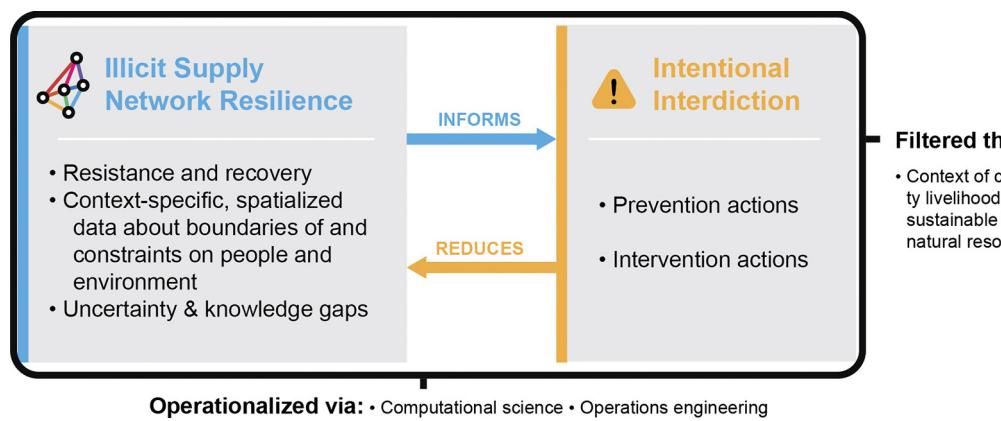
271 SNR thinking encourages scientists to identify operational
272 perturbations and the relevance of disturbance to supply
273 chain function. One class of quantitative tools, especially ana-
274 lytic models based on operations research and machine learning,
275 offer opportunities to advance scientific knowledge about
276 resilience and vulnerability to operational perturbations such
277 as interventions but are not possible to execute without first
278 understanding the underlying supply network(s). Examples
279 of possible interventions include legal remedies that revoke
280 business licenses or mandate employee training; resource
281 reallocation to reroute traffic patterns; human relations job
282 and social services messaging. We know licit networks
283 enhance their resilience using slack resources (e.g., more
284 reserve inventory), responsive processes (e.g., nearshoring),
285 and increased visibility through information sharing (e.g., track
286 and trace capabilities) (e.g., 19). In an illicit setting, knowledge
287 of the structure and scope of a WTN's structure could help
288 those seeking to limit a WTN's actions. For example, the World
289 WISE database covering 2007 to 2018 reported that India and
290 Thailand (e.g., reserve inventories) were the main source
291 countries of shipments seized in international tiger trade,
292 together representing 82% of the whole tiger equivalents
293 where the origin was known. Trafficking routes that have been
294 identified are the trans-Himalayan route from wild popula-
295 tions in South Asia and multiple Southeast Asian routes (e.g.,
296 network diversification) through the Mekong Delta, making
use of both wild and captive tigers (i.e., multisourcing) (1).

297 Although not all WTNs are managed as formally as licit
298 organizations, the same physical, financial, and information
299 flows for resistance and recovery remain necessary to get a
300 product to market. WTNs responding to external and inten-
301 tional shocks to their network need to make recovery deci-
302 sions in a sequence involving disruption recognition,
303 diagnosis of the problem, development of alternatives, and
304 implementation, similar to what has been documented for
305 licit supply chains (18). These disruptions can occur not only
306 from law enforcement activities but also from the community
307 and economic programs designed to reduce supply and
308 demand, effectively dismantling the source and sink nodes
309 that link pathways for WTNs. WTN research has failed to
310 produce a single profile that describes all objects and issues
311 in WTNs (20), it is generally known that: a) wildlife trafficking
312 involves formal and informal inventory warehousing (21),
313 which can serve to support development and implementa-
314 tion of alternative routes; b) the proportion of wildlife
315 products subdivided into smaller parcels often increases as
316 inventory flows away from protected areas (i.e., wildlife
317 source) and toward urban areas (i.e., demand centers) (22),
318 helping traffickers identify efforts to disrupt supply chains;
319 and c) wildlife trafficking hotspots can be identified using
320 combinations of proxy measures such as poaching locations
321 for certain species, high-frequency seizure locations, crime
322 commission process points (23), social media reports (e.g.,
323 ref. 24), or DNA typing (25). These traits apply across supply
324 chain geography.

325 While SNR is often the primary objective of private sector
326 managers and government officials, intentional disruption of
327 illicit networks at vulnerable spaces is an important purpose
328 of law enforcement and conservation entities as well as some
329 financial institutions and regulatory bodies. Interdiction is a
330 strategy by which authorities, from a variety of disciplines,
331 can intentionally disrupt a network in a vulnerable space
332 identified using hotspot deployment or focused deterrence
333 (26, 27). In a licit supply network context, interdiction could
334 be an action where one organization intervenes to prevent
335 competitors from acquiring, moving, or converting critical
336 resources, to gain market advantages (28). Examples of wild-
337 life trafficking interdiction actions include technology-assisted
338 interceptions at border crossings; boarding, detaining, or
339 seizing, under lawful authority, of vessels, vehicles, aircraft,
340 people, cargo, information, facilities, and finances. Other
341 actions to reduce resilience could involve economic actions
342 to prevent individual actors from supplying wildlife products
343 (e.g., new regulations about fines) and community initiatives
344 to increase the importance and protection of natural
345 resources (e.g., education, awareness). These interdiction
346 actions can be oriented toward prevention, deterrence, or
347 intervention activities. WTN interdiction could be thought of
348 as one set of possible actions taken to, among other goals,
349 decrease WTN resilience through a focus on vulnerable net-
350 work characteristics. Intervention is relevant to discrete,
351 in-process, ongoing trafficking activities (e.g., a shipment of
352 refrigerated containers of European glass eels via air freight
353 under cover of, or misdeclared as, other seafood products)
354 to blunt the actions, shipments, or network of specific traf-
355 fickers, shipments, or their supply chains (e.g., Ireland's
356 Rathkeale Rovers gang and their rhino horn trafficking) (29).
The application of disruption activities for different WTNs

varies according to their nodes (e.g., actors or locations) and edges (e.g., physical product movement, information flows, pathways).

Quantitative Models Can Advance Understanding about Illicit Network Resilience


Algorithms can help detect signals of WTN resilience and vulnerability characteristics and predict novel operational dynamics of edges, nodes, and flows. Operations research and game theory can provide insight into the most efficient and effective use of limited interdiction resources, by identifying network nodes and arcs that are vulnerable, and how a WTN may respond to interdiction activities. Together, they offer novel and robust opportunities to prescribe changes to WTN interdiction activities, understand WTN resilience, or optimize targeting of limited resources in a dynamic system (Fig. 2). There are decision-making trade-offs for WTN actors particularly with regard to how they will respond to interdiction activities. Because the characteristics of wildlife trafficking (e.g., obfuscation, laundering), and the products involved (e.g., tarantulas, tigers), are varied, it is possible that an interdiction that is effective for a specific wildlife product (e.g., nonperishable jaguar teeth being trafficked via postal service and personal luggage during international flights for consumers purchasing necklaces, keychains) may not work for another product (e.g., perishable tiger meat being trafficked to treat nausea or malaria). These conceptual feedbacks are situated within the local context often captured by conservation criminology and supply chain resilience thinking and be quantified through operations research and computational science (Fig. 2).

There is a risk that an interdiction activity targeting a vulnerable node in a WTN may not always be helpful or valuable in terms of impact. Resilience and vulnerability may also be time-and location-dependent as a WTN evolves over time. Competing goals for decision-makers can exist, such as to maximize the “total benefit” (e.g., maximize the number of nodes disrupted) or to minimize the “cumulative regret” (e.g., minimize the amount of illicit wildlife products flowing through the supply chain). Authorities can sometimes be considered defenders (e.g., law enforcement agencies or wildlife conservationists) in the context of modeling WTNs

to maximize disruption of harmful activities, increase the traffickers' cost, reduce their flows, or make them easier to interdict by limiting their options. However, such officials can also be offenders (e.g., smugglers, hunters, and wildlife trade enablers) when corrupted.

Domain-specific challenges to applying computer science and operations research models to WTN are complicated by a lack of interoperable data about conservation biology and conservation crime (1) as well as a lack of common standards (30). Machine learning can help fill in data gaps by using available data to build models for predicting likely linkages and routes that have not been detected yet. Many quantitative methods are available for dealing with limited and difficult to process data, which is helpful in this interdisciplinary context (31). Techniques in reinforcement learning have become popular in the Operations Research literature in recent years and present a powerful opportunity to apply optimization methods to areas that have traditionally suffered from a lack of quality data (32). These methods attempt to balance exploring previously untested decisions to gather information about their potential benefits with exploiting decisions that are known to return benefits. In the context of WTNs, this could mean the trade-off between exploiting known trafficking routes by deploying resources to seize illicit goods and exploring potential new trafficking routes where perpetrators have not previously been detected to expand knowledge of WTN operations. Another example could involve the trade-off between dedicating resources to new programs, with unknown effectiveness, designed to reduce the supply/demand for a product in a certain area and increasing resources to enforcement initiatives.

Quantitative approaches that can advance understanding of the contours of WTN vulnerability from the perspective of both offenders and defenders include bilevel optimization and network design models, among others (33). Operations research models offer insight into more effective resource allocation for tactical and operational actions, sourcing practices to reduce the laundering of illicitly obtained products, and data-based decision-making for interdiction (31). Bilevel optimization models, for example, could help incorporate a range of domain-specific characteristics about WTNs and address both offender and defender objectives instead of single-focused analysis. Bilevel optimization models

Fig. 2. Scientific thinking about WTNs can be advanced by quantitative computer science and operations engineering models that both inform on-the-ground interventions and consider the impacts of interventions on the resilience of the network. Feedbacks are filtered through the local socioenvironmental context.

477 determine how to best interdict WTNs by staying one step
478 ahead of traffickers and considering how traffickers will
479 respond to a deployed strategy such as focused deterrence.
480 Models can predict the efficacy of different interdictions for
481 a variety of single or group defender and offender objectives.
482 For example, a trafficker's objectives may include minimizing
483 cost when choosing a path from origin to destination, maxi-
484 mizing their chance of evading detection during trafficking,
485 or minimizing the severity of consequences if caught.
486 Different objectives could be applicable in different contexts
487 and for different products or actors. For example, when traf-
488 ficking rhino horn, minimizing the chance of detection or
489 minimizing the severity of consequences would likely be
490 appropriate objectives for traffickers, given the international
491 attention placed on rhino horn trafficking in comparison to
492 other wildlife products. Defenders, or other stakeholders
493 working to interdict WTN's, have their own objectives, which
494 may not align with offenders' objectives. Defenders may aim
495 to minimize the probability of escape for the trafficker or
496 maximize the penalty for the trafficker, such as concentrating
497 interdiction in countries where legal systems are best
498 equipped to penalize traffickers. Varying enforcement
499 landscapes are a key characteristic of WTNs. For example,
500 Randriamady et al. (34) noted multiple management authori-
501 ties could be present in the same region of Madagascar at
502 the same time (e.g., traditional management with no external
503 assistance, community-based forest management with non-
504 governmental support and externally developed policies,
505 strict eternal management policies), where illegal hunting
506 and trafficking of endangered lemurs occur. We cannot
507 identify any empirical study applying such tools in the
508 scientific literature.

509 Path prediction models could, for example, advance
510 understanding about transit routes between source and desti-
511 nation geographies based on resilient systems and noisy
512 data: which pathways are used because they enable network
513 diversification, inventory buffers, or nearshoring? Because
514 WTNs are agile and can adapt quickly to changes in enforce-
515 ment efforts and shifting patterns of supply and demand,
516 data-driven models about transit routes can incorporate
517 important factors and their weights to provide insight into
518 traffickers' objectives and decision dynamics that can be used
519 when making interdiction decisions and predicting trafficking
520 responses. For example, in Madagascar's Baly Bay National
521 Park, ploughshare tortoise poachers and traffickers may
522 choose between boat, bike, or walking trails to transit
523 between source and destination geographies depending on
524 the season (e.g., rainy, dry), tide and moon cycle, size of the
525 group (e.g., single person, multiple people, single animal,
526 multiple animals). Path prediction can be considered as a
527 type of inverse optimization problem, where scientists use
528 historical trafficking path examples to infer how traffickers
529 value different aspects of a route beyond environmental
530 variables, such as transportation cost, local resilience efforts,
531 cultural drivers, and the presence of other illicit activities.
532 Predicting transition probabilities offers an opportunity to
533 consider the source, destination, and alternative transit geog-
534 graphies of a WTN alongside multiple features of the system.
535 Computational models could advance consideration on the
536 tactical allocation of defender resources as well as the stra-
ategic question of how to deploy resources as networks adapt

537 to change (e.g., tactical and strategic decision-making). Once
538 the network structure and components are understood, the
539 security-related, game-theoretic approaches that currently
540 exist for cyber, cyberphysical, and licit supply networks sys-
541 tems (e.g., ref. 35) could be utilized to inform security invest-
542 ments, such as sensor or checkpoint placement, to detect
543 and interdict specific WTNs or to create a deterrent effect.
544 In practice, law enforcement authorities could use hot spot
545 deployment (i.e., focusing limited resources on specific
546 geographic regions deemed high priority) and/or focused
547 deterrence (i.e., targeting co-offenders with tactics to increase
548 the certainty, severity, and celerity of punishment) strategies
549 based on such analysis (36).

Toward Transforming the Knowledge Landscape About WTNs: The Case of the Ploughshare Tortoise

550 Knowledge of the process model and systems for licit net-
551 works and their resilience is needed from SCM to begin
552 informing insights about illicit network resilience and
553 opportunities for specific interdiction actions. SCM recog-
554 nizes that interdiction does not have to target a person (e.g.,
555 poacher, trafficker), but can rather target the nodes, the
556 mode, or the structure of a network. When promoting resil-
557 ience into licit supply chains, theory suggests adding visi-
558 bility and collaboration among partners (37). Conversely,
559 these same capabilities reveal a potential exposure of, and
560 interdiction opportunity against, illicit supply chains trying
561 to operate unimpeded and keep their network from being
562 visible while minimizing additional collaboration among
563 partners to account for growing risk of detection or focused
564 deterrence.

565 As a case exemplar for the interdisciplinary approach
566 advocated in this paper, we profile ploughshare tortoise
567 (*Astochelys yniphora*) trafficking. The tortoise is endemic to
568 Madagascar's Baly Bay National Park and affected by poach-
569 ing for the international illegal pet trade because of the
570 animals' rarity, beautiful carapace, and charismatic "plough."
571 Prior to 2010 few tortoises were confiscated either in
572 Madagascar or internationally, but global demand for char-
573 ismatic and unique pets fueled an explosion in trafficking.
574 Field reports suggest that two of the four subpopulations are
575 now extinct; population estimation studies conclude the spe-
576 cies has declined rapidly. There is a need for increased action
577 both within Madagascar and along international trade routes
578 if the extinction of the ploughshare tortoise in the wild is to
579 be prevented (38). Ploughshare tortoises are one of the rare-
580 st tortoises in the world; they have been protected by
581 Malagasy law since 1960 and are listed on Appendix I of
582 CITES. All known ploughshare habitat is protected as a "core
583 zone" of Baly Bay National Park. Conservationists know the
584 primary destinations for ploughshare tortoises based on
585 confiscation patterns are southeast Asia with animals typi-
586 cally transiting through the Middle East (38).

587 The potential for interdisciplinary approaches such as
588 those discussed herein is still unrealized and could help
589 transform the knowledge landscape of ploughshare tor-
590 totoise trafficking and poaching and inform new supply net-
591 work interventions designed to reduce the illegal trade,
592 particularly if interoperable datasets became more widely
593 594 595 596

available and accessible. Key questions include, given knowledge about ploughshare source and destination geographies, can we predict which path a trafficker will take? Or, what helps explain a trafficker's path and at a given node, what node will be next? Which nodes could be targeted for communication programs designed to decrease the supply of tortoises coming from the park? Which paths are associated with cultural practices and historical drivers of social disadvantage? How could we allocate limited resources to target nodes most efficiently to stem the flow of ploughshare tortoises out of Baly Bay National Park and off the island of Madagascar? Our efforts to operationalize this interdisciplinary framework for disrupting WTNs are in their scientific adolescence but portend exciting possibilities for advancing knowledge.

In 2018, a participatory risk mapping workshop was held in Soalala, Madagascar with approximately 50 stakeholders. A color base map of the region was placed underneath a clear plastic overlay and participants used colored grease pencils and markers to map the physical location of tortoises, trafficking pathways, villages, and other places that participants deemed relevant to the WTN (Fig. 3A). Participants mapped their lived experience and expertise about ploughshare tortoise source locations, transit routes on land and sea; they also numerically weighted the risk of each node and edge to trafficking (i.e., vulnerability), distinguishing between bike, foot, and vehicle paths (i.e., feature importance) (Fig. 3B). Participants provided data based on their lived experience about paths associated with cultural practices (e.g., avoiding an ancestral and sacred tree), details about how tides influenced decisions to use boats versus bicycles to move animals, and where poachers staged nearshore while planning their activities. All stages of research adhered to human subject protection protocol requirements.

Data from the plastic overlays were digitized and georeferenced in a geographic information system, triangulating a "mess" of possible pathways and nodes existing in a slack or inefficient supply network. SCR-related insights about ploughshare tortoise trafficking helped identify key feature importance among this "mess" (e.g., where key places such as poacher camps, source of animals, and transit pathways spatially overlapped). The data also illustrated key network resilience characteristics (e.g., ocean-based transit pathways

were prolific and preferred but could only be used during specific tide and moon phases) and a suite of variables that could be used in SCR analysis (e.g., clustering of poacher camps along coastlines) to offer a different foundation for modeling the knowledge landscape other than, for example, a conservation-only- or land-only-based study. The WTN reliance on water for logistics (e.g., serving as a resilient pathway for moving tortoises) and worker access (e.g., staging poacher camps on coastline) for example, was deemed important by participants.

The potential effect of network interdiction on ploughshare tortoise trafficking, or other WTNs, cannot be measured without understanding its underlying network resilience. There are multiple entry points for applying process or computational approaches to the problem domain; however, the need for larger datasets and data collection precedes the benefits of existing tools being realized or translating new methodologies that fit WTN requirements. Different knowledge landscapes portray a different definition of the problem, for example, mapping the multiple network routes on land and at sea indicate where the network has the capacity to absorb and thus withstand disruption and also the capacity to adapt, when necessary, to changes arising from interdiction.

Resilience depends on the level of redundancy that is inhabited in the network structure, which has now been mapped and can be computationally analyzed. Beyond the mathematical analysis of the ploughshare trafficking network structure, the approaches suggest considering multiple transit routes (e.g., multiple edges) and spaces outside the national park (e.g., nodes) as part of the resilience characteristics of the WTN. For example, applying path prediction analysis and bilevel optimization to water-related transit data could refocus hotspot deployment about where to target interdiction activities targeting primary node pairs or node-path pairs and suggest new focused deterrence locations on water where partners such as small-scale fishers might be engaged in surveillance, reporting, and monitoring. One could compare different disruption strategies (e.g., hotspot deployment, focused deterrence) aimed at new nodes within the network (i.e., high degree centrality places such as poacher camps instead of the protected area where the tortoises are sourced) or focus on pathways within the network

Fig. 3. Selected (A) supply chain network features and locations for ploughshare trafficking, and (B) different paths used for trafficking ploughshares, derived using participatory mapping methods in Soalala, Madagascar, 2018. Line color denotes boat, foot, or bike path.

717 (i.e., high betweenness-centrality places such as water routes
718 converging around the northeastern peninsula instead of
719 the walking trails surrounding the protected area)?

720 Although we lack the data to model how the WTN would
721 recover by replacing target actors and relations using ties
722 and connections in the network, such insight would signifi-
723 cantly advance our understanding of resilience. SCM process
724 mapping provides initial network understanding, while
725 larger-sized, interoperable, and open-access datasets would
726 help achieve the objective of further interdiction. Empirical
727 research would be hugely beneficial to this knowledge
728 base across spatial scales and amplify the novel contribution
729 of WTNs through machine learning and computational
730 modeling.

731 **A Call for Convergent Science to Disrupt WTNs**

732 Wildlife trafficking can be a financial driver of social conflict,
733 with implications for geopolitics, security, and sustainability.
734 Illicit markets for wildlife and wildlife products have received
735 insufficient interdisciplinary scientific attention. New scientific
736 evidence about how WTNs operate can help inform
737 resource allocation, monitoring and enforcement, promote
738 equity, and communication effectively across efforts to com-
739 bat wildlife trafficking. Given the changing and shifting pat-
740 terns of WTNs, more advanced, dynamic, and convergent
741 science techniques will most accurately capture patterns and
742 respond to the changing environment. Convergent science
743

1. United Nations Office of Drugs and Crime, *World Wildlife Crime Report: Trafficking in Protected Species* (United Nations, New York, 2020).
2. World Bank Group, Analysis of international funding to tackle illegal wildlife trade 2010–2018 (2020). <http://www.appslutelydigital.com/WildLife/cover.html>. Accessed 19 March 2020.
3. U.S. Department of Justice, Southern District of Florida, “Cambodian officials and six co-conspirators indicted for taking part in primate smuggling scheme” (2022). <https://www.usdoj.gov/usao/fls>.
4. D. Grimm, Indictment of monkey importers could disrupt U.S. drug and vaccine research. *Science* **378**, 934–935 (2022).
5. D. W. Challender, D. C. MacMillan, Poaching is more than an enforcement problem. *Conserv. Lett.* **7**, 484–494 (2014).
6. L. Thomas-Walters *et al.*, Systematic review of conservation interventions to promote voluntary behavior change. *Conserv. Biol.*, 10.1111/cobi.14000 (2022).
7. National Science Foundation, “Convergence Research at NSF” (2020). <http://www.nsf.gov/od/ia/convergence/index.jsp>. Accessed 23 March 2020.
8. J. Liu *et al.*, Complexity of coupled human and natural systems. *Science* **317**, 1513–1516 (2007).
9. V. Hull, J. Liu, Telecoupling: A new frontier for global sustainability. *Ecol. Soc.* **23**, 41–50 (2018).
10. P. Sharp, S. Hockfield, Convergence: The future of health. *Science* **355**, 589 (2017).
11. R. Anzoom, R. Nagi, C. Vogiatzis, A review of research in illicit supply-chain networks and new directions to thwart them. *IISE Transac.* **54**, 134–158 (2022).
12. J. C. Smith, Y. Song, A survey of network interdiction models and algorithms. *Eur. J. Oper. Res.* **283**, 797–811 (2020).
13. L. I. Shelley, J. T. Picarelli, Methods not motives: Implications of the convergence of international organized crime and terrorism. *Police Pract. Res.* **3**, 305–318 (2010).
14. N. South, T. Wyatt, Comparing illicit trades in wildlife and drugs: An exploratory study. *Deviant Behav.* **32**, 538–561 (2011).
15. G. McElwee, R. Smith, J. Lever, Illegal activity in the UK halal (sheep) supply chain: Towards greater understanding. *Food Policy* **69**, 166–175 (2017).
16. J. R. Macdonald, C. W. Zobel, S. A. Melnyk, S. E. Griffis, Supply chain risk and resilience: Theory building through structured experiments and simulation. *Int. J. Prod. Res.* **56**, 4337–4355 (2018).
17. S. Liebermann, Participatory mapping for crime prevention in South Africa-local solutions to local problems. *Environ. Urbanization* **16**, 125–134 (2004).
18. C. Bode, J. R. Macdonald, Stages of supply chain disruption response: Direct, constraining, or mediating factors for impact mitigation? *Decis. Sci. J.* **48**, 836–874 (2017).
19. S. H. Melouk, U. Raja, B. B. Keskin, Managing resource allocation and task prioritization decisions in large scale virtual collaborative development projects. *Inf. Res. Manag. J.* **23**, 53–76 (2010).
20. J. Phelps, D. Biggs, E. L. Webb, Tools and terms for understanding illegal wildlife trade. *Front. Ecol. Environ.* **14**, 479–489 (2016).
21. G. Basu, The role of transnational smuggling operations in illicit supply chains. *J. Transp. Secur.* **6**, 315–328 (2013).
22. KAZA, Strategic planning framework for the conservation and management of elephants in the Kavango-Zambezi transfrontier conservation area (2019). <http://www.kavangozambezi.org/download/53/publications-2019/1231/kaza-tfca-strategic-planning-framework-for-the-conservation-and-management-of-elephants-web-version.pdf>.
23. J. Fa *et al.*, Mapping hotspots of threatened species traded in bushmeat markets in the Cross-Sanaga Rivers region. *Conserv. Biol.* **28**, 224–233 (2014).
24. T. P. Bondaroff, Sea cucumber crime in India and Sri Lanka during the period 2015–2020. *SPC Beche-demer Inform. Bull.* **41**, 55–65 (2021).
25. K. J. Gossé *et al.*, DNA-typing surveillance of the bushmeat in Côte d’Ivoire: A multi-faceted tool for wildlife trade management in West Africa. *Conserv. Genet.* **23**, 1073–1088 (2022).
26. J. C. Smith, “Basic interdiction models” in *Wiley Encyclopedia of Operations Research and Management Science*, J. J. Cochran *et al.*, Eds. (Wiley, 2011), 10.1002/9780470400531.eorms0089.
27. D. P. Morton, “Stochastic network interdiction” in *Wiley Encyclopedia of Operations Research and Management Science*, J. J. Cochran *et al.*, Eds. (Wiley, 2011), 10.1002/9780470400531.eorms0085.
28. J. E. Bell, C. W. Autry, S. E. Griffis, Supply chain interdiction as a competitive weapon. *Transp. J.* **54**, 89–103 (2015).
29. United Nations Office on Drugs and Crime, *World Wildlife Crime Report: Trafficking in Protected Species* (United Nations, New York, 2016).
30. M. L. Gore *et al.*, Voluntary consensus based geospatial data standards for the global illegal trade in wild fauna and flora. *Sci. Data* **9**, 1–8 (2022).
31. B. B. Keskin *et al.*, Quantitative investigation of wildlife trafficking supply chains: A review. *Omega* **115**, 102780 (2022).
32. D. Huang, Z. Mao, K. Fang, L. Chen, Solving the shortest path interdiction problem via reinforcement learning. *Int. J. Prod. Res.* **61**, 1–18 (2023).
33. A. Forghani, F. Dehghanian, M. Salari, Y. Ghiami, A bi-level model and solution methods for partial interdiction problem on capacitated hierarchical facilities. *Comput. Operat. Res.* **114**, 104831 (2020).
34. A. Randriamady *et al.*, Evaluation of tenrec population viability and potential sustainable management under hunting pressure in northeastern Madagascar. *Anim. Conserv.* **24**, 1059–1070 (2021).
35. S. McCarthy, P. Vayanos, M. Tambe, “Staying ahead of the game: Adaptive robust optimization for dynamic allocation of threat resources” in *International Joint Conference on AIJCAI*—Please provide the publisher’s name and its location for ref. 35.17 (2017), pp. 3770–3776.
36. T. D. Herold, R. S. Engel, N. Corsaro, S. L. Clouse, “Place network investigations in Las Vegas, Nevada: Program review and process evaluation” (International Association of Chiefs of Police, 2020). https://digscholarship.unlv.edu/cj_fac_articles/198.
37. T. J. Pettit, J. Fiksel, K. L. Croxton, Ensuring supply chain resilience: Development of a conceptual framework. *J. Bus. Logist.* **31**, 1–21 (2010).
38. A. R. Mandimbahsina *et al.*, The illegal pet trade is driving Madagascar’s ploughshare tortoise to extinction. *Oryx* **54**, 188–196 (2020).

777 frameworks should be employed to enable new thinking
778 about the characteristics, mechanics, and resiliencies of
779 WTNs comprising complex supply chain network components
780 and decision point(s) made by multiple decision-makers with
781 the goal of interdicting WTNs and helping to maintain the
782 Earth’s biodiversity. Insights herein suggest a wide berth to
783 generate new science-based recommendations for WTN-
784 related data collection and analysis for supply chain visibility,
785 shifts in illicit supply chain dominance, or limits of the sup-
786 plier base. Until then, it will be difficult to systematically iden-
787 tify WTN threats, vulnerabilities, and resilience to disruption
788 efforts. Understanding WTN resilience has major implica-
789 tions for the way we think about control strategies aimed at
790 wildlife trafficking, promoting justice in control actions, and
791 conserving biodiversity. We humbly offer the following
792 opportunities: 1) multidisciplinary teams should be sup-
793 ported and provided the time and resources to succeed; 2)
794 universities could include more socioenvironmental systems
795 thinking in required courses; and 3) scientific journals more
796 widely publish convergent science exploring different
797 problem domains.

798 **Data, Materials, and Software Availability.** All study data are included in Q:9
799 the main text.

800 **ACKNOWLEDGMENTS.** All authors were supported by U.S. NSF awards CMMI-
801 19135451; Gore was also supported by IIS-2039951. The information contained
802 herein does not represent the opinions of the US Government or any author
803 affiliations.

804 Q:10

776 Q:11

Author Query Form	
Query reference	Query
Q1	Please review 1) the author affiliation and footnote symbols, 2) the order of the author names, and 3) the spelling of all author names, initials, and affiliations and confirm that they are correct as set.
Q2	Please provide city, postal code, and country for affiliations b to f.
Q3	Please review the author contribution footnote carefully. Ensure that the information is correct and that the correct author initials are listed. Note that the order of author initials matches the order of the author line per journal style. You may add contributions to the list in the footnote; however, funding may not be an author's only contribution to the work.
Q4	You have chosen to publish your PNAS article with the delayed open access option under a CC BY-NC-ND license. Your article will be freely accessible 6 months after publication, without a subscription; for additional details, please refer to the PNAS site: https://www.pnas.org/authors/fees-and-licenses . Please confirm this is correct.
Q5	Certain compound terms are hyphenated when used as adjectives and unhyphenated when used as nouns. This style has been applied consistently throughout where (and if) applicable.
Q6	Your article will appear in the following sections of the journal: Social Sciences (Environmental Sciences) and Physical Sciences (Computer Sciences). Please confirm that this is correct.
Q7	Please note that teaser statement has been deleted. Please check and confirm.
Q8	Per PNAS policy, all locants must be defined in the artwork. Please provide the locants A and B for artwork of Fig. 3.
Q9	Authors are required to provide a data availability statement describing the availability or absence of all shared data (including information, code analyses, sequences, etc.), per PNAS policy (https://www.pnas.org/authors/editorial-and-journal-policies#materials-and-data-availability). As your article does not contain Supporting Information, we have changed the statement to "All study data are included in the main text." Please confirm this is correct or revise as appropriate.
Q10	Please provide the accessed date for refs. 3 and 22.
Q11	Please provide the publisher's name and its location for ref. 35.