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Abstract—Recently, integral equation formulations that use
potentials as opposed to fields as unknown quantities have been
developed for scattering from dielectric objects. It has been shown
that these formulations can be construed so that they are well-
conditioned across a broad frequency spectrum, a result that has
been theoretically proven for spherical systems. Unfortunately,
to date, this formulation has not been implemented on practical
discretizations of objects. This is the goal of this paper. Specif-
ically, we present a well-conditioned and well-tested Decoupled
Potential Integral Equation (DPIE) formulation and all the neces-
sary implementation details for electromagnetic scattering from
homogeneous, dielectric, arbitrarily shaped objects. The resulting
decoupled systems do not suffer from low frequency breakdown.
Results that demonstrate these properties are presented for a
number of different dielectric targets. Furthermore, in order to
fully validate each of the two integral equation for the potentials,
we develop analytical solutions for spherical systems.

Index Terms—DPIE, Scalar Potential Integral Equation
(SPIE), Vector Potential Integral Equation (VPIE), Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT), Müller

I. INTRODUCTION

THE analysis of scattering from non-canonical dielectric

objects was first addressed five decades ago. The usual

surface integral equation framework relies on equivalence

theorems to define both the exterior and interior equivalent

problems and then reduces the number of equations by impos-

ing constraints derived from boundary conditions. The most

popular equations in this vein are the Poggio-Miller-Chang-

Harrington-Wu-Tsai (PMCHWT) [1] and Müller [2] formula-

tions, but it should be noted that several other formulations are

possible and have been investigated in the past. These include

a single integral equation [3, 4] as well as various combinations

of surface equivalence theorems; see [5], [6], and references

therein for some combinations. The necessity of analyzing

composite objects has driven vast advances in the machinery

and techniques necessary to accurately compute scattering. Ex-

pressly, the primary challenges include dense mesh breakdown

[7], low frequency breakdown [8, 9], and topology breakdown

[10]. All of these occur when representing and measuring
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these integral equations on tessellated representations of the

scatter and arise due to either catastrophic cancellation or bad

constraints/scaling of the integral equations. A consequence

of these breakdowns is that the resulting discrete systems are

ill-conditioned and poorly convergent. As a result, there has

been a concerted effort to develop well-conditioned formula-

tions in both the electromagnetics and applied mathematics

communities [11–15] for a while.

Indeed, early work recognizing these challenges and efforts

toward amelioration date back four decades [8, 16–18] with

the introduction of loop-star and loop-tree decomposition.

Development of preconditioners, formulations, as well as

appropriate basis sets to effect these numerically has been a

topic of intense research over the past decade [19]. By and

large, these methods rely on proper representation of traces

or twisted traces of the fields on the surface. More recently,

research has focused on alternative formulations which will be

the emphasis of the remainder of this paper.

A common thread to overcome some of the bottleneck of

the classical integral equations has been the reliance on using

either Debye potentials [20, 21], DPIE [22–25], Decoupled

Field Integral Equation (DFIE) [26], or Dirac formulations

[27]. In what follows, we focus on the DPIE for dielectric

objects which amounts to two sub-formulations, the Scalar

Potential Integral Equation (SPIE) and Vector Potential In-

tegral Equation (VPIE). In effect, this is a solution to the

transmission problem posed in terms of potentials such that

boundary conditions on fields are strictly enforced. It has been

shown that the DPIE is more robust to breakdowns associated

with low frequency, mesh discretization, and topology [24]. As

is usually the case, this approach was first developed to analyze

scattering from Perfect Electrical Conductors (PECs) [22–24].

A corrected Nyström’s method implementation was presented

in [28] and a time domain potential based integral equation

solvers [29, 30] currently exist. As an aside, it can be shown

that [23], while based on potential, is akin to an Augmented

Electric Field Integral Equation (A-EFIE) [31]. As is to be

expected, developing equations for analysis of scattering from

dielectric objects is more complicated. It has its genesis in

[24, 25, 32]. It is well-conditioned and not susceptible to non-

uniqueness due to resonances (under assumptions on consti-

tutive parameters [26, 27]) nor breakdown due to either low

frequencies or topology. All these features were demonstrated

using either analytical basis sets on spheres or Nyström’s

method on canonical geometries. The analysis using potentials
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was first presented by [24] who then continued their work

by developing the DFIE formulation for dielectrics using an

indirect method [26]. It has been noted that the DFIE is

non-unique for certain pairs of constitutive parameters when

loss is present. The formulations presented in this paper are

presumed to have the same problem and only lossless materials

are considered. A more robust formulation has recently been

introduced that has similar properties for a wider range of

constitutive properties [27]. Since the publication of [24] and

[32], there has not been a transition to scattering analysis

on tessellated geometries. The complexity of the operators is

deceptively daunting, but in what follows, we present details

necessary to implement the DPIE on tessellated surfaces

and show that the properties demonstrated using analytical

basis sets are preserved. In addition, we present an analytical

solution to the DPIE that makes it possible to investigate other

formulation variants.

The rest of this paper is organized as follows: The prob-

lem statement and notation are presented in Section II. A

brief overview of the representation and formulation occur

in Sections III-IV. The implementation details are provided

in Section V with a plethora of accompanying results in

Section VI that validate the properties. Appendices provide

details of analytic representation as well as integration on

tessellated surfaces.

II. PRELIMINARIES

A. Problem Statement

Consider a homogeneous dielectric body occupying a vol-

ume Ω2 that is immersed in a homogeneous background Ω1.

The boundary of the scatterer is defined by a two-dimensional

manifold ∂Ω embedded in R
3 with a unique outward pointing

normal n̂ (r) that is defined for all points r ∈ ∂Ω except a

finite number of geometrically singular points (e.g., corners,

tips, and edges). For convenience, we will use n̂p (r) =
εpn̂ (r) to denote normal unit vectors that point into Ωp, with

p ∈ {1, 2} and εp = (−1)
p−1

. Likewise, quantities associated

with domain Ωp will be denoted with the subscript p. The

constitutive parameters of each region are described by the

relative permittivity εrp and relative permeability µrp. Other

defined regional quantities include wavenumber κp = ω
√
µpεp

and refractive index np =
√
µrpεrp.

We seek to compute the scattered fields
{

Es
p (r) ,H

s
p (r)

}

due to a plane wave given by
{

κ1,E
i
1 (r) ,H

i
1 (r)

}

that is

incident on the dielectric scattering body with wavenumber

and direction κ1. Total, incident, and scattered quantities will

be denoted with superscript t, i, and s, respectively. The total

fields
{

Et
p (r) ,H

t
p (r)

}

in each region Ωp obey the boundary

conditions on ∂Ω and the scattered fields {Es
1 (r) ,H

s
1 (r)} in

the background Ω1 obey the radiation boundary condition. In

what follows, we assume a time dependence of exp (jωt) and

suppress it throughout. Next, we present the notation that is

used in the paper followed by a brief summary of the DPIE

formulation.

B. Notation

As is usually done, spatial location is denoted by r; under

convolution with the Green’s function, source quantities will

be denoted with a prime as in r′. When unambiguous, we will

omit writing the dependence on spatial locations. Operators

will be denoted with upper case calligraphy as in O. Likewise,

we will have matrices of operators acting on a vector of

functions. To facilitate these actions, we will adopt matrix

notation and use ◦ to denote the action of an operator (or a

block operator matrix) on a function (or vector of functions).

We will denote a matrix using underlined calligraphy, as in

M. Finally, we define a single-layer potential operator that

can operate on either scalars or vectors as

Sp ◦
(

x

x

)T

=

∫

Gp (r, r
′)

(

x (r′)
x (r′)

)T

dS′ (1)

where

Gp =
exp (−jκp |r − r′|)

4π |r − r′| (2)

denotes the Green’s function for the scalar Helmholtz equation

in a homogeneous region p with wavenumber κp. All other

integral operators used throughout the paper and defined in

Appendix A are with respect to the single-layer potential

operator.

III. REPRESENTATION VIA POTENTIALS

The crux of the DPIE relies on developing an integral

equation for each of the electric scalar and magnetic vector

potentials. In this paper, the representation for the potentials

follows that in [32]. For the SPIE, the scaling on the unknowns

is modified to more closely match how the VPIE scales

its unknowns. For the VPIE, there are two changes. The

first change is a modification to the unknowns (changing

whether certain unknowns are traces or twisted traces) such

that the piecewise vector basis functions are div-conforming

rather than curl-conforming as seen in Section V-A2. The

second is the relationship between divergence of the magnetic

vector potential in two regions; in this paper we have strictly

enforced the Lorenz gauge. For the sake of completeness

and to introduce a unifying formulation for the two integral

equations, we review both using the notation developed earlier.

A. SPIE

The SPIE relies on two surface quantities, the electric scalar

potential and its normal derivative. A surface integral repre-

sentation of the scattered electric scalar potential in region p,

derived from the Helmholtz equation and Green’s identity, can

be succinctly written as

φs
p = Dp ◦ αt

p − Sp ◦ βt
p (3)

with

αp =φp (4a)

βp =n̂p · ∇φp. (4b)
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B. VPIE

The VPIE is a little more complicated. Four unknown quan-

tities are necessary to recover the magentic vector potential

[32]. They are the twisted trace of the curl, the trace, the

normal component, and divergence of the magnetic vector

potential. A surface integral representation of the scattered

magnetic vector potential in region p, again derived from the

Helmholtz equation and the vector analog to Green’s identity,

can be succinctly written as

As
p = −Sp◦

(

n̂p × atp
)

+∇×Sp◦bt
p−∇Sp◦γt

p−Sp◦σt
p. (5)

with

ap =n̂p × n̂p ×∇×Ap (6a)

bp =n̂p ×Ap (6b)

γp =n̂p ·Ap (6c)

σp =∇ ·Ap. (6d)

IV. REQUISITE INTEGRAL EQUATIONS

To construct the SPIE and VPIE formulations we start by

examining the integral equations for each region individually,

viz,

(

αt
p

βt
p

)

=

(

αi
p

βi
p

)

+

(

Dp −Sp

Np −D′
p

)

◦
(

αt
p

βt
p

)

(7a)









atp
bt
p

γt
p

σt
p









=









aip
bi
p

γi
p

σi
p









+









K′t
p κ2

pLt
p 0 −Q1

p

−J 2
p Kp −P2

p −Q2
p

−J 3
p M3

p −D′
p −Q3

p

−J 4
p 0 κ2

pSp Dp









◦









atp
bt
p

γt
p

σt
p









(7b)

These operators are defined in Appendix A. For convenience,

we can let the block operator matrices be denoted as Zχ
p and

the vector of traces as τ
χ

p , with χ ∈ {S, V } for either SPIE or

VPIE respectively, which leads to a condensed way of writing

both formulations,

τ
tχ

p = τ
iχ

p + Zχ
p ◦ τ tχ

p . (8)

Evaluating the left-hand side as r approaches ∂Ω from within

Ωp, leads to

τ
iχ

p =
(

I − Zχ
p

)

◦ τ tχ

p (9)

where I is the idempotent.

Next, boundary conditions are imposed on the potentials

through τ
tχ

p so as to satisfy the boundary conditions on

the electric and magnetic fields. As elucidated in [32], the

boundary conditions on the potentials are derived from those

on electric and magnetic fields, but stricter. They can be

expressed as diagonal matrices and are used to form unknown

surface quantities; specifically

Pχ
1τ

tχ

1 = Pχ
2τ

tχ

2 = τ̄
tχ . (10)

where Pχ
p defines a diagonal matrix that imposes the appro-

priate boundary conditions. For the two formulations, they

are

PS
p =

√
ε0 diag (−jκ0, εpεrp) (11a)

PV
p =

1√
µ0

diag

(

1

µrp

,−εpjκ0,−εpjκ0εrp,
1

µrpεrp

)

.

(11b)

In (11b), the boundary condition on σt
p = ∇ · At

p has been

corrected from [32]. The two diagonal matrices are scaled such

that the unknowns in both formulations are of the same units.

In addition to these conditions, one can choose scale factors

as detailed in [32] to obtain a better conditioned system. The

resulting set of equations for both systems can be written as

Pχ
pWχ

pτ
iχ

p = Pχ
pWχ

p

(

I − Zχ
p

)

◦
(

(

Pχ
p

)−1
τ̄

tχ

p

)

(12)

with Pχ
pWχ

p applied to both sides to scale the system for each

region. For the two formulations, the remaining matrices to be

defined are

WS
p =diag

(

1,
1

εrp

)

(13a)

WV
p =diag

(

µrp, εrp,
1

εrp
,

1

µrp

)

. (13b)

There is some freedom when choosing the scale factors WS
p ,

however, the choice can play a significant role in the behavior

of the formulation. The choice given in (13a) leads to the SPIE

being a second-kind integral equation that is immune to low

frequency and dense mesh breakdowns.

Finally, for the purposes of uniqueness, the normal deriva-

tive of the electric scalar potential and the normal component

of the magnetic vector potential have to satisfy a zero mean

constraint,
∫

βt
p (r

′) dS′ =0 (14a)

∫

γt
p (r

′) dS′ =0. (14b)

Because of the boundary conditions, if the zero-mean con-

straints are satisfied in either region, then they are satisfied in

both regions. Implementation of these zero-mean constraints

will be addressed further in Section V-C.

V. IMPLEMENTATION: ANALYTIC AND PIECEWISE BASIS

SETS

Next, we discuss discretization of these operators using both

analytic and piecewise triangulation basis sets. The former pro-

vides the means for validation of the resulting discrete matrix

system, its convergence against analytical data, as well as end

results (say Radar Cross Section (RCS) or traces on surface).

Furthermore, it provides us the necessary means to explore

different formulations, with regard to broadband behavior, null

spaces, robustness to complex material properties, etc. The

latter permits analysis of scattering from practical objects.
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A. Preliminaries

The integral equations presented thus far are agnostic to the

basis functions used to discretize these systems. Note, for the

SPIE one needs scalar basis sets whereas for the VPIE both

scalar and vector functions are needed. For ease of presentation

(and implementation), we introduce some additional notation.

Let the space of scalar basis functions be denoted using Bs
n, for

n ∈ [0, Ns). Likewise, the space of vector basis functions are

denoted using Bv
n, for n ∈ [0, Nv). In the above, we note that

Ns and Nv are the number of scalar and vector basis functions.

The number of degrees of freedom for the SPIE is 2Ns and that

for the VPIE is 2Nv + 2Ns. It follows that one can represent

the collection of scalar basis functions of dimension 2Ns using

FS = diag (Bs,Bs), where “diag” here is used to mean a

block-diagonal matrix. The space spanned by these functions is

denoted using τ̄
tS

p =
∑2Ns−1

n=0 FS
ny

S
n where the nth coefficient

is denoted using ySn (for n ∈ [0, 2Ns)). In a similar manner, we

can collect vector and scalar basis functions for discretizing

the VPIE using FV = diag (Bv,Bv,Bs,Bs) denoting its span

using τ̄
tV

p and corresponding coefficients using yVn (for n ∈
[0, 2Nv + 2Ns)). Given these definitions, we briefly prescribe

both analytical and piecewise basis sets for both the SPIE and

VPIE.

1) Analytic Basis Sets: For analysis on a sphere of radius

a, we employ scalar and vector spherical harmonics as defined

in Appendix B. As usual, we limit the number of harmonics

used to represent the potentials to Nh. In the spirit of our

earlier discussion, we define

BY =
(

Y0
0 . . . Ym

l . . . YNh

Nh

)

(15a)

B
Ψ

=
(

Ψ0
0 . . . Ψm

l . . . Ψ
Nh

Nh

)

(15b)

B
Φ

=
(

Φ0
0 . . . Φm

l . . . Φ
Nh

Nh

)

(15c)

Scalar unknowns are represented with Ym
l and vector un-

knowns are represented with both Ψm
l and Φm

l

Bs =BY (16a)

Bv =
(

B
Ψ

B
Φ

)

(16b)

with Ns = (Nh + 1)
2

and Nv = 2 (Nh + 1)
2
.

2) Piecewise Basis Sets: For analysis on a triangular mesh

with Nf flat-triangles and Ne edges, we employ pulse and

Rao-Wilton-Glisson (RWG) functions defined as:

pnf
(r) =

{

1 r ∈ Tnf

0 r /∈ Tnf

(17a)

fne
(r) =

{

lne

2A±
ne

%
±
ne

(r) r ∈ T±
ne

0 r /∈ T±
ne

(17b)

where

%
±

ne
(r) =

{

±
(

r − p±
ne

)

r ∈ T±
ne

0 r /∈ T±
ne

(17c)

In the above equations, Tnf
is the nf triangle and Anf

is its

area. Likewise, lne
is the length of edge ne, A±

ne
is the area

associated with triangles T±
ne

, and p±
ne

is the vertex of the

triangle T±
ne

opposite the edge ne [33].

With these basis functions, we can define Bs and Bv as

Bs =
(

p0 . . . pnf
. . . pNf

)

(18a)

Bv =
(

f0 . . . fne
. . . fNe

)

(18b)

with Ns = Nf and Nv = Ne.

B. Discretized System

The discretized system for both the SPIE and VPIE are con-

structed through a Galerkin framework using inner products

defined as

〈g (r) , f (r)〉 =
∫

g∗ (r) f (r) dS (19a)

〈g (r) , f (r)〉 =
∫

g∗ (r) · f (r) dS (19b)

with ∗ indicating complex conjugate and g (r), f (r), g (r),
and f (r) denoting arbitrary functions (scalar and vector). For

each region, we test (12) over the limiting surface as r → ∂Ω
from within Ωp and add the two systems together resulting

in one system, coupled through the boundary conditions, that

can be written as

Z
χyχ = bχ (20)

where the elements of this system are defined as

bχk =
2
∑

p=1

〈

Fχ
k ,Pχ

pWχ
pτ

iχ

p

〉

(21a)

Z
χ
kn =

2
∑

p=1

〈

Fχ
k ,Pχ

pWχ
p

(

I − Zχ
p

)

◦
(

(

Pχ
p

)−1 Fχ
n

)〉

.

(21b)

Note, the sum is over the two regions (interior and exterior).

As the boundary conditions and scale factors manifest

themselves as diagonal matrices, it is trivial to show that

bχk =
2
∑

p=1

P̄χ
pW̄χ

p

〈

Fχ
k , τ

iχ

p

〉

(22a)

Z
χ
kn =

2
∑

p=1

P̄χ
pW̄χ

p

〈

Fχ
k ,
(

I − Zχ
p

)

◦ Fχ
n

〉 (

P̄χ
p

)−1
(22b)

where W̄χ
p and P̄χ

p are also diagonal matrices with repeated

elements of their unbarred counterparts.

Evaluating these operators with analytic basis sets can

be performed exactly by exploiting the orthogonality of the

spherical harmonics. An example of this for one operator is

presented in Appendix E-A. The key challenge of working

with piecewise tessellations is evaluating these operators when

the kth testing domain is close to the nth basis domain.

While a number of operators are familiar, some are not.

To evaluate these integrals, we have taken a straightforward

approach—singularity subtraction. There are certainly other

methods of evaluating these integrals [34], but they are not

necessary to demonstrate the crux of this paper—to prove the

properties of the DPIE for discrete piecewise tessellations. To

that end, we note that even though there are several unfamiliar

operators, the singular integrals necessary are exactly the same

as those used in the Electric Field Integral Equation (EFIE) and
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Magnetic Field Integral Equation (MFIE); all other singular

integrals can be evaluated via a combination of four base

singular integrals. These singular integrals, along with an

example of the complete treatment of one of the operators,

is presented in Appendix E-B.

C. Zero-Mean Constraint

Finally, a critical component of a potential formulation

is the zero-mean constraint. For analytical basis sets, this

is accomplished by setting the coefficients of ySn and yVn
associated with l = m = 0 to zero. For coefficients of basis

functions on tessellations, we use a Lagrange multiplier as in

[35].

VI. RESULTS

In what follows, we present a collection of results that

delineate the properties of the DPIE. Analytic basis set results

are presented to demonstrate the characteristics of the SPIE

and VPIE formulations themselves. The results presented in

[32] are similar to what is presented here, however, the SPIE

system was omitted and the VPIE system is different due

to the changed boundary condition. After demonstrating the

characteristics of the formulations discretized with spherical

harmonics, results from the piecewise discretization are pre-

sented. The piecewise results will fall into two categories: (a)

we will examine the correctness of the solution by comparing

the RCS of objects against similar data obtained either from

analytic calculations (Mie series using fields) or through

numerical implementation of the PMCHWT [1] and Müller [2]

formulations. (b) Next, we will present the condition number

and number of iterations required to converge to an tolerance

of 10−12 for a number of geometries. These sets of results are

meant to ensure that not only are the resulting equations well-

conditioned, but also converge rapidly as well. The dielectric

objects will be immersed in freespace µr1 = εr1 = 1. Finally,

we note the central theme of this paper is to demonstrate

implementation of these formulations using well known basis

sets and has not yet been paired with the fast multipole

method. As a result, objects analyzed are not analytically large.

A. Analytic Basis Sets

The analytic analysis on a sphere gives insight to the

behavior of the SPIE and VPIE. We begin with an analysis of

scattering from a dielectric sphere with radius of 1m.

Note, the data presented in this section only deals with

behavior of the system of equations. RCS data used for

comparison in Section VI-B uses the Mie series solution, and

as is to be expected, agrees with the RCS from the analytic

method presented here.

We examine three scenarios with different material param-

eters. The orthogonality properties of spherical harmonics are

used to isolate each harmonic’s contribution in Z
χ. After

permuting rows and columns, we can arrive at a block-diagonal

matrix Z
χ = diag

(

Z
χ|00 . . . Zχ|ml . . . Zχ|Nh

Nh

)

for both the

SPIE and VPIE. The frequencies examined in each scenario

are limited to when Nh = 2dmaxp < (κpa)e < 120 where
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Fig. 1. Condition number for different band-limited integral equations across
frequencies using analytic basis sets for a dielectric sphere with εr2 = 1.5
and µr2 = 1/1.5.

< (κpa) takes the real component of κpa. The finite dimen-

sional expansion on the unknowns (equivalently, the operator),

in effect creates a bandlimited version of the operator acting

on the current. If the operator is compact, then this series

converges and the condition number is representative of the

system for which Nh → ∞. As is well known, the PMCHWT

integral equation, much like the EFIE, has a hyper-singular

operator so the operator’s true condition number is unbounded.

This is what is represented in the figures.

Developing an analytical framework permits analysis on

operators (both mapping as well as limiting properties). Some

of this analysis was done in [32]. Here, we build to this body

of work. Using the properties of the operators involved, it is

possible to prove mapping properties of the vector operators.

For both the VPIE presented here and [32], quantities repre-

sented using Ψm
l are mapped back to the same basis via the

VPIE operators (ditto for Φm
l ). This is as in [36, 37].

We will examine eigenvalues and condition numbers from

the finite dimensional expansion of the operator. The eigenval-

ues are from the generalized eigenvalue problem, Av = λBv
with Akn = Z

χ
kn and Bkn = 〈Fχ

k ,Fχ
n〉 (or equivalently the

regular eigenvalue problem B−1Av = λv). Condition numbers

are computed from the matrix B−1A.

We apply the Lorenz gauge to arrive at the interface

condition on the divergence of the magnetic vector potential.

This results in slightly different behavior than was reported

in [32]. Here, we examine effects of this change in boundary

condition on the condition number of the band-limited VPIE

for frequency ranges from 10 µHz to about 1GHz, depending

on material parameters. These are shown in Figures 1-3.

The analysis covers the following three different cases for

parameters: n2
1 = n2

2 in Figure 1, n2
1 ≈ n2

2 in Figure 2, and

n2
1 6≈ n2

2 in Figure 3. From these figures some observations

are in order: (a) the condition numbers are constant across

frequencies wherein κp . 2π, (b) the condition number of

the VPIE system is more sensitive to constitutive parameters,

and (c) the behavior of the VPIE system is akin to that of the

Müller systems. The boundary condition on the divergence of
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Fig. 2. Condition number for different band-limited integral equations across
frequencies using analytic basis sets for a dielectric sphere with εr2 = 1.5
and µr2 = 1.
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Fig. 3. Condition number for different band-limited integral equations across
frequencies using analytic basis sets for a dielectric sphere with εr2 = 20

and µr2 = 1.

the magnetic vector potential does affect how well the hyper-

singular terms are cancelled. As a result the condition number

is higher when the contrast is higher.

Next, we examine the eigenvalues of the SPIE and VPIE.

To find these eigenvalues, we fist discretized the systems with

spherical harmonics as before. We focus on the harmonics

n ∈ [1, 10] and m = 0, as representatives of the whole system,

and let the frequency vary from 1MHz to 1THz. For each of

the harmonics and frequencies, we have a 2×2 and 6×6 matrix

for the SPIE and VPIE respectively. Two and six eigenvalues

per harmonic and frequency pair are computed and shown in

Figures 4 and 5. From these figures, we can see that the

eigenvalues accumulate away from 0 as the frequency goes to

0Hz and are bounded.

B. Piecewise

The piecewise discretization is the crowning result of

this paper. It serves to verify that the properties shown for

canonical geometries commute to the complex shapes and
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Fig. 4. Eigenvalues for the SPIE and VPIE for εr2 = 1.5 and µr2 = 1/1.5.
The real and imaginary parts are plotted on the x- and y-axes respectively.
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Fig. 5. Eigenvalues for the SPIE and VPIE for εr2 = 1.5 and µr2 = 1. The
real and imaginary parts are plotted on the x- and y-axes respectively.

objects of actual interest. The incident waves here decompose

Ei
1 = E0 exp (−jκ1 · r) and are in the form found in [28]:

φi
1 =− (r ·E0) exp (−jκ1 · r) (23a)

Ai
1 =− κ1

ω
(r ·E0) exp (−jκ1 · r) . (23b)

All examples have the same constitutive parameters µ2 = µ0

and ε2 = 1.5ε0, and unless otherwise noted, use the same

discretization across frequency.

1) Dielectric Sphere: We begin the piecewise analysis by

considering the scattering from the same dielectric sphere

with radius of 1m. The sphere is meshed into 1280 patches

and 1920 edges with an average edge length at 100MHz of

about λ1/19.9. As predicted in Section VI-A, the condition

number, show in Figure 6, is stable across frequencies. In this

figure, the data is obtained for a set of frequencies starting

at 100MHz and decreasing it by a decade until 10 µHz. At

10 µHz, we reach the limits of double precision accuracy.

Beyond this point, one would need to use extended precision,

but the main arguments are sufficiently supported with this

data. Specifically, the condition number across frequencies of

the SPIE is about 53 and the VPIE is about 83 whereas those

for PMCHWT are several orders of magnitude larger. It should

be noted that the condition number of the Müller system is as

good as that of the DPIEs.
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Fig. 6. Condition number for different integral equations across frequencies
using piecewise basis sets for a dielectric sphere with εr2 = 1.5 and µr2 = 1.
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Fig. 7. RCS of the dielectric sphere at 100MHz.

Next in Figures 7-9, we examine RCS data at three different

frequencies, specifically at 100MHz, 1Hz, and 10 µHz due to

an incident wave directed along κ̂ = −ẑ, polarized along

E0 = x̂, and measured at points along θ ∈ [−π, π] and

φ = 0. In Figure 7, we see that there is good agreement

among all formulations including the analytic formulation at

100MHz. In Figure 8, we see that the PMCHWT and Müller

formulations have already diverged from the analytic solution

at 1Hz whereas the DPIE and Mie agree very well with each

other. Finally, in Figure 9, we see that the DPIE still matches

the analytic solution while the Müller solution is off the chart

at around −320 dBm2 at 10 µHz.

Next, in addition to condition number, one typically cares

about iteration count. For this experiment we used the same

piecewise discretized sphere and, as before, data was collected

from 10 µHz to 100MHz. For this demonstration, we use

the Quasi-Minimal Residual (QMR) but we have verified that

other iterative solvers show similar behavior. A relative toler-

ance of 10−12 is used for two reasons. First, low frequency

convergence, especially to −350 dBm2, necessitated the need

for a smaller than typical tolerance and a relative as opposed
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Fig. 8. RCS of the dielectric sphere at 1Hz.
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Fig. 9. RCS of the dielectric sphere at 10 µHz.

to absolute tolerance

‖residual‖ ≤ tol × ‖RHS‖ . (24)

Second, as we examine convergence across frequencies, we

wanted to keep the relative tolerance constant so that the

iteration count comparison would be fair. The QMR solver

is stopped after 500 iterations unless it stops due to a QMR

related breakdown or the tolerance has been met. From Fig-

ure 10, it is apparent that the iteration count remains low as the

frequency goes toward 0Hz. It is also evident that PMCHWT

requires significantly more iterations than the threshold except

at 10 µHz where the iterative solver does converge within the

tolerance but not to the correct solution. There is a moderate

increase for the SPIE and VPIE as one tends to higher frequen-

cies. This trend mirrors that seen in the Müller system [32]. We

note that methods to mollify the behavior of Müller systems

have been addressed by using intermediate Buffa-Christianssen

basis sets [38], but investigating this phenomena lies outside

the main goals of this paper and will be investigated in the

future.

We turn our attention to the convergence of the iterative

solver. In Figure 11, we see that the SPIE, VPIE, and Müller

formulations converge very quickly in a few iterations to a

solution within the relative tolerance specified. As mentioned
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Fig. 10. Iteration count using QMR method for different integral equations
across frequencies using RWG and pulse basis sets for a dielectric sphere
with εr2 = 1.5 and µr2 = 1. The solver was stopped at 500 iterations if it
had not converged yet.
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Fig. 11. Convergence plot of the relative residual ‖residual‖ / ‖RHS‖
using the QMR method for different integral equations for a dielectric sphere
with εr2 = 1.5 and µr2 = 1. The solver was stopped at 500 iterations if it
had not converged yet. The color of the line indicates the formulation while
the style (dotted, dashed, solid) indicates frequency.

above, the Müller formulation is well-conditioned but falls

victim to the low-frequency breakdown due to how the electric

and magnetic fields are represented. In other words, even

though the solver finds a solution within a few iterations, it is

worthless in the low-frequency regime.

Finally, we analyzed a dielectric sphere meshed with 20,480
patches and 30,720 edges. At 300MHz, the average edge

length is about λ1/26.6. The iteration counts for the SPIE

and VPIE are 52 and 73 respectively. Müller converged

in 42 iterations but PMCHWT only converged to 10−4 in

500 iterations. In Figure 12, we see that there is excellent

agreement among all formulations at 300MHz.

2) Dielectric Almond: Next, we analyze scattering from a

dielectric NASA almond, as seen in Figure 13. The NASA

almond is meshed into 896 patches and 1344 edges. The

average edge length at 100MHz is about λ1/25.7. First, the

condition number data, shown in Figure 14, is stable across

frequencies much like that observed for a sphere. The data
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Fig. 12. RCS of the dielectric sphere at 300MHz.

Fig. 13. NASA Almond geometry with incident and observation angles.

shown in the figure is for a range of frequencies from 100 kHz
to 100MHz. As is evident the condition numbers for the SPIE

and VPIE are relatively constant across the band whereas

PMCHWT quickly blows up.

Next, the RCS is shown at 100MHz with an incident wave

directed along κ̂ = ẑ, polarization E0 = ŷ, and measured
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Fig. 14. Condition number for different integral equations across frequencies
using piecewise basis sets for the dielectric NASA almond with εr2 = 1.5
and µr2 = 1.
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Fig. 15. RCS of the dielectric NASA almond at 100MHz.
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Fig. 16. Iteration count using QMR method for different integral equations
across frequencies using piecewise basis sets for the dielectric NASA almond
with εr2 = 1.5 and µr2 = 1. The solver was stopped at 500 iterations if it
had not converged yet.

at points along θ ∈ [−π, π] and φ = π
2 . In Figure 15, we

see that there is excellent agreement among all formulations

at 100MHz.

Next, the number of QMR iterations needed to converge to

an error of 10−12 is shown in Figure 16 for the same frequency

range. As before, the number of iterations is relatively constant

for both the SPIE and VPIE. Overall, as is evident from

Figures 14-16, the favorable properties of the SPIE and VPIE

hold for non-canonical geometries.

3) Dielectric Arrowhead: Finally, we analyze scattering

from a dielectric arrowhead, as seen in Figure 17. This is

a challenging geometry in that it has sharp tips, and edges.

The arrowhead is meshed into 23,024 patches and 34,536
edges. The average edge length at 100MHz is about λ1/19.9.
Given the size of the problem, we just present the data

for scattering from a 100MHz incident wave directed along

κ̂ = ẑ, polarization E0 = ŷ, and measured at points along

θ ∈ [−π, π] and φ = π
2 . incident. The SPIE and VPIE

converge to a relative error of 10−12, with iteration counts of

75 and 90. Müller converged in 50 iterations but PMCHWT

only converged to 10−3 in 500 iterations. The RCS of this

Fig. 17. Arrowhead geometry with incident and observation angles.
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Fig. 18. RCS of the dielectric arrowhead at 100MHz.

scatterer is shown in Figure 18. As before, we see that there is

very good agreement among all formulations at this frequency.

VII. SUMMARY

This paper presents a rather detailed implementation of the

DPIE on discrete piecewise tessellations. As is observed in

canonical geometries, the discrete piecewise system is well-

conditioned and converges rapidly. Analysis is presented using

analytic basis sets for both the SPIE and VPIE, which explores

condition number across frequencies. While it may seem to

be computationally daunting due to the increased number of

operators and number of unknowns, and this was indeed a

bottleneck in some of the results presented here, this ap-

proach is amenable to acceleration using fast multipole based

methods. This, further analysis into alternate VPIE scaling

weights/formulations, and extension to composite objects will

be presented in upcoming papers.
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APPENDIX A

DEFINITION OF DPIE OPERATORS

The integral operators defined in this paper are as follows:

Sp ◦
(

x

x

)T

=

∫

Gp (r, r
′)

(

x (r′)
x (r′)

)T

dS′ (25a)

Dp ◦ x =−∇ · Sp ◦
(

n̂px
)

(25b)

Np ◦ x =− n̂p · ∇∇ · Sp ◦
(

n̂px
)

(25c)

D′

p ◦ x =n̂p · ∇Sp ◦ x (25d)

K′

p ◦ x =−∇× Sp ◦
(

n̂p × x
)

(25e)

J 2
p ◦ x =n̂p × Sp ◦

(

n̂p × x
)

(25f)

J 3
p ◦ x =n̂p · Sp ◦

(

n̂p × x
)

(25g)

J 4
p ◦ x =∇ · Sp ◦

(

n̂p × x
)

(25h)

Lp ◦ x =
1

κ2
p

∇×∇× Sp ◦ x (25i)

Kp ◦ x =n̂p ×∇× Sp ◦ x (25j)

M3
p ◦ x =n̂p · ∇ × Sp ◦ x (25k)

P2
p ◦ x =n̂p ×∇Sp ◦ x (25l)

Q1
p ◦ x =n̂p × n̂p ×∇× Sp ◦

(

n̂px
)

(25m)

Q2
p ◦ x =n̂p × Sp ◦

(

n̂px
)

(25n)

Q3
p ◦ x =n̂p · Sp ◦

(

n̂px
)

. (25o)

We denote adjoint operators with a prime. Additionally, we

introduce the shorthand for operators Ot
p = n̂p × n̂p ×Op.

APPENDIX B

SPHERICAL HARMONICS

Next, we define the scalar and vector spherical harmonics

used for the analytic basis sets.

Ym
l (r) =

√

2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ) ejmφ (26a)

Ψm
l (r̂) =− r̂ ×Φm

l (r̂) = clr∇Ym
l (r̂) (26b)

Φm
l (r̂) =r̂ ×Ψm

l (r̂) = clr ×∇Ym
l (r̂) (26c)

cl =

{

1 l = 0
1√

l(l+1)
l 6= 0

(26d)

with Pm
l (cos θ) denoting associated Legendre polynomials,

l ≥ 0, and |m| ≤ l. The scaling factor cl is used to

orthonormalize Ψm
l and Φm

l which is not strictly necessary

but eases the derivation. Spherical Bessel functions are denoted

using

b
(α)
l (z) =



















jl (z) α = 1

yl (z) α = 2

h
(1)
l (z) α = 3

h
(2)
l (z) α = 4

(27)

where the index α is used to denote the type and/or the kind.

Using these definitions, the scalar and vector spherical wave

functions are as follows:

ϕ
(α)
lm (κ, r) =cl b

(α)
l (κr)Ym

l (r̂) (28a)

L
(α)
lm (κ, r) =∇ϕ

(α)
lm (κ, r) (28b)

M
(α)
lm (κ, r) =

1

κ
∇×N

(α)
lm (κ, r) = −r ×∇ϕ

(α)
lm (κ, r)

(28c)

N
(α)
lm (κ, r) =

1

κ
∇×M

(α)
lm (κ, r) (28d)

Note, in addition to the usual M
(α)
lm (κ, r) and N

(α)
lm (κ, r)

one need to use L
(α)
lm (κ, r) to represent the magnetic vector

potential [39].

APPENDIX C

PLANEWAVE EXPANSION

For completeness, we include a scalar and vector planewave

expansion in terms of spherical wave functions.

exp (−jκẑ · r) =
∞
∑

l=0

l
∑

m=−l

alm ϕ
(1)
lm (κ, r) (29a)

x̂ exp (−jκẑ · r) =
∞
∑

l=0

l
∑

m=−l

blm M
(1)
lm (κ, r) + clm N

(1)
lm (κ, r)

(29b)

with

alm =

{

j−l

cl

√

4π (2l + 1) m = 0

0 m 6= 0
(30a)

blm =

{

j−l+|m|

cl

√

π 2l+1
l(l+1) |m| = 1

0 |m| 6= 1
(30b)

clm =

{

j−l+m

cl

√

π 2l+1
l(l+1) |m| = 1

0 |m| 6= 1
. (30c)

APPENDIX D

GREEN’S FUNCTION EXPANSION

The final ingredients necessary for analytic evaluation of

the integrals in the DPIE are the expansion of the Green’s

functions. The scalar and dyadic Green’s function expansions

are

Gp =jκp

∞
∑

l=0

1

c2l

l
∑

m=−l

ϕ
(αp)
lm (κp, r)ϕ

(βp)∗
lm

(

κ∗

p, r
′
)

(31a)

G
p
=jκp

∞
∑

l=0

1

glc2l

l
∑

m=−l

M
(αp)
lm (κp, r)M

(βp)∗
lm

(

κ∗

p, r
′
)

+N
(αp)
lm (κp, r)N

(βp)∗
lm

(

κ∗

p, r
′
)

(31b)
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with

αp =

{

4 p = 1

1 p = 2
(32a)

βp =

{

1 p = 1

3 p = 2
(32b)

gl =

{

1 l = 0

l (l + 1) l 6= 0
. (32c)

These expressions together with the spherical harmonics and

wave functions constitute the underpinnings of our analytical

analysis.

APPENDIX E

CANDIDATE INNER PRODUCT EVALUATION

As there are a number of different inner products to be

evaluated, it is cumbersome to provide a detailed prescription

of each. Indeed, for the DPIE, there are 15 unique operators.

As most of these follow the same template, we provide

one illustrative example while leaving the reader with the

necessary tools to flesh out the others.

Our example is one that is less commonly encountered: ZV

for the operator P2
p . For the purposes of illustration, we will

focus on a single region and omit the scaling matrices as these

are diagonal and do not add to the integral. Specifically,

Z̃
V
23,p

∣

∣

∣

kn
=
〈

Bv
k, n̂p ×∇Sp ◦ Bs

n

〉

(33)

where k ∈ [0, Nv) and n ∈ [0, Ns) are the testing and basis

indices for this block of Z̃V .

A. Analytic evaluation

For analytic analysis, we use (16a) and (16b). If we let

testing index k correspond to harmonic indices l and m for

Ψ when k < (Nh + 1)
2

and for Φ when k ≥ (Nh + 1)
2
, and

basis index n correspond to harmonic indices l′ and m′, it is

easy to see that we can take advantage of the orthogonality

of the spherical harmonics. When l 6= l′ or m 6= m′ (in other

words mod
(

k, (Nh + 1)
2
)

6= n), then the system element

is zero. This allows us to focus on a specific harmonic specified

by l and m. We analyze the two cases when k selects a testing

function from B
Ψ

and B
Φ

:

Z̃
V,Ψ
23,p

∣

∣

∣

lm
=
〈

Ψm
l (r) , n̂p ×∇Sp ◦Ym

l

〉

= 0

Z̃
V,Φ
23,p

∣

∣

∣

lm
=
〈

Φm
l (r) , n̂p ×∇Sp ◦Ym

l

〉

=− εp
jκp

c2l

〈

Ψm
l (r) ,L

(αp)
lm (κp, r)

〉

〈

Ym
l

(

r̂′
)

, ϕ
(βp)
lm (κp, r

′)
〉∗

.

(34)

B. Evaluation on Discrete Patches

Next, we briefly prescribe evaluation of all inner products

that are necessary. As alluded to earlier, we use singularity

subtraction and decide to subtract the first two terms from the

Taylor series expansion of the exponential function. As will

d

R0
R− R

R+

ρ
0

ρ
−

ρ
±

ρ

ρ
+

%
±

r′

p
0

p0 p−

r p+

p±

Fig. 19. Vector and point definitions for singular integration.

be evident, the singular integrals needed are identical to the

ones needed for the EFIE and MFIE and can be found in [40,

41]. It follows that, if necessary, one can use better rules [34,

42, 43], but this is not the crux of the presented work. We use

Figure 19 to set the stage for definitions, and it is here purely

for completeness. The definitions here follow those in [40].

It is well known that the following integrals can be evaluated

analytically as we approach the patch.

I 1
R
=

∫

1

R
dS (35a)

I ρ

R
=

∫

ρ

R
dS (35b)

I 1

R3
=

∫

1

R3
dS (35c)

I ρ

R3
=

∫

ρ

R3
dS (35d)

To effect the integration, we used a seven point Gauss-

Legendre rules for the integrals over a patch. For the hyper-

singular integral in the SPIE, there is a line integral and a

fourteen point Gauss-Legendre rule was employed.

As an aside, two issues naturally crop up when surfaces

are modeled using higher order geometric representations–

(a) evaluation of singular integrals and (b) cost of a higher

quadrature rule. The integrals in (35) have been dealt with

in the community using either a mapping of the contour to

a flat patch which allows the use of singularity subtraction

or singularity cancellation techniques. Amelioration of the

costs associated with evaluation of these integrals higher order

geometries have been dealt with in [44, 45] by integrating with

a wideband fast multipole method which uses a combination of

an adaptive quadrature rule and singularity cancellation around

a small neighborhood of the singularity.

The techniques used in this paper rely on the fact that we

are using a flat tessellation. To illustrate a general approach,
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consider the evaluation of Z̃
V
23,p. The integration is typically

over T±

k and Tn. To simplify the presentation, only consider

T+
k (the other follow trivially). Given that n̂p is constant over

T+
k , manipulation of the integral results in

Z̃
V
23,p

∣

∣

∣

kn
=

∫

Tn

pn (r
′) n̂p ·

∫

T
+

k

∇Gp × fk (r) dSdS
′. (36)

As is usually done using singularity subtraction, we get both

an integral with a removable singularity and a non-singular

integral that can be evaluated numerically. We only discuss

the singular portion of the integral that is denoted below using

|S . For (36), this can be written as

Z̃
V
23,p

∣

∣

∣

S

kn
=− 1

4π

∫

Tn

pn (r
′) n̂p ·

(

∫

T
+

k

R

R3
× fk (r) dS

+
κ2
p

2

∫

T
+

k

R

R
× fk (r) dS

)

dS′

(37)

It follows, that to evaluate this integral we need to evaluate
∫

R

R3 × fk (r) dS and
∫

R

R
× fk (r) dS. From (35), one can

derive the following analytic integrals:

IR
R

=

∫

R

R
dS = I ρ

R
+ dI 1

R
(38a)

IR
R
×fn

=

∫ ±

n

R

R
× fn (r) dS = ± ln

2A±
n

(

d + ρ
±
)

× IR
R

(38b)

I fn
R

=

∫ ±

n

fn (r)

R
dS = ± ln

2A±
n

(

I ρ

R
− ρ

±I 1
R

)

(38c)

I R

R3
=

∫

R

R3
dS = I ρ

R3
+ dI 1

R3
(38d)

I R

R3 ×fn
=

∫ ±

n

R

R3
× fn (r) dS = ± ln

2A±
n

(

d + ρ
±
)

× I R

R3
.

(38e)

The integral I fn
R

is not necessary for this example but is

necessary for the other operators. The process for addressing

the rest of the singular integrals follow a similar process. Note,

the singular integrals are either due to Gp or ∇Gp, are over

either testing or source domains, and can all be formed as

combinations of (35). Just as the normal over each triangle

is constant due to the flat-tessellation, n̂ · R and n̂′ · R are

also constant over the testing and source domains respectively.

Below the expressions that we use to treat the singular integrals

are cataloged. They are one of several equivalent expressions

that can be used for singularity subtraction.

For the SPIE, the singular integrals needed for each operator

are as follows:

Z̃
S
11,p

∣

∣

∣

S

kn
=

∫

Tk

(

n̂′

p ·R
)

(

I 1

R3
+

κ2
p

2
I 1

R

)

dS (39a)

Z̃
S
12,p

∣

∣

∣

S

kn
=−

∫

Tk

I 1
R
− jκpAndS (39b)

Z̃
S
22,p

∣

∣

∣

S

kn
=

∫

Tn

(

n̂p ·R
)

(

I 1

R3
+

κ2
p

2
I 1

R

)

dS′. (39c)

The Z̃
S
22,p operator is hyper-singular and is dealt with as in

[46] rather than with singularity subtraction.

For the VPIE, the singular integrals needed for each operator

are as follows:

Z̃
V
11,p

∣

∣

∣

S

kn
=

∫

T
+
n

(

n̂′

p × f ′n
)

·
(

I R

R3 ×f
k
+

κ2
p

2
IR

R
×f

k

)

dS′

(40a)

Z̃
V
12,p

∣

∣

∣

S

kn
=

∫

T
+

k

∇s · fk∇′

s · f ′n
(

I 1
R
− jκpA

+
n

)

− κ2
pfk ·

(

I f′n
R

− jκp

∫

T
+
n

f ′ndS
′

)

dS (40b)

Z̃
V
13,p

∣

∣

∣

S

kn
=0 (40c)

Z̃
V
14,p

∣

∣

∣

S

kn
=

∫

T
+
n

n̂′

p ·
(

I R

R3 ×f
k
+

κ2
p

2
IR

R
×f

k

)

dS′ (40d)

Z̃
V
21,p

∣

∣

∣

S

kn
=

∫

T
+

k

(

n̂p × fk
)

·
(

n̂′

p ×
(

I f′n
R

− jκp

∫

T
+
n

f ′ndS
′

))

dS (40e)

Z̃
V
22,p

∣

∣

∣

S

kn
=

∫

T
+

k

(

n̂p × f ′k
)

·
(

I R

R3 ×f ′n
+

κ2
p

2
IR

R
×f ′n

)

dS

(40f)

Z̃
V
23,p

∣

∣

∣

S

kn
=

∫

T
+
n

n̂p ·
(

I R

R3 ×f
k
+

κ2
p

2
IR

R
×f

k

)

dS′ (40g)

Z̃
V
24,p

∣

∣

∣

S

kn
=

∫

T
+
n

n̂′

p · n̂p ×
(

I f
k
R

− jκp

∫

T
+

k

fkdS

)

dS′

(40h)

Z̃
V
31,p

∣

∣

∣

S

kn
=

∫

T
+
n

n̂p · n̂′

p ×
(

I f′n
R

− jκp

∫

T
+
n

f ′ndS
′

)

dS

(40i)

Z̃
V
32,p

∣

∣

∣

S

kn
=−

∫

T
+

k

n̂p ·
(

I R

R3 ×f ′n
+

κ2
p

2
IR

R
×f ′n

)

dS (40j)

Z̃
V
33,p

∣

∣

∣

S

kn
=

∫

T
+
n

(

n̂p ·R
)

(

I 1

R3
+

κ2
p

2
I 1

R

)

dS′ (40k)

Z̃
V
34,p

∣

∣

∣

S

kn
=−

∫

T
+

k

n̂p · n̂′

(

I 1
R
− jκpA

+
n

)

dS (40l)

Z̃
V
41,p

∣

∣

∣

S

kn
=−

∫

T
+

k

n̂′

p ·
(

I R

R3 ×f ′n
+

κ2
p

2
IR

R
×f ′n

)

dS (40m)

Z̃
V
42,p

∣

∣

∣

S

kn
=0 (40n)

Z̃
V
43,p

∣

∣

∣

S

kn
=

∫

T
+

k

κ2
p

(

I 1
R
− jκpA

+
n

)

dS (40o)

Z̃
V
44,p

∣

∣

∣

S

kn
=

∫

T
+

k

(

n̂′

p ·R
)

(

I 1

R3
+

κ2
p

2
I 1

R

)

dS (40p)

The integrals
∫

T
+

k

fkdS and
∫

T
+
n
f ′ndS

′ are not singular

and can be evaluated analytically or numerically. The above
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prescription is for flat tesselations, and along with the piece-

wise geometric description come challenges in accurately

describing the physics of scattering from objects with singular

features, e.g., cones, finite wedges, etc. While these are well

known challenges (and the DPIE is not immune to these as

they arise from the geometry as opposed to the operator), one

could use singular basis functions [47] or adaptive basis [45,

48] to partially overcome some of the bottlenecks.
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