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Abstract—Recently, integral equation formulations that use
potentials as opposed to fields as unknown quantities have been
developed for scattering from dielectric objects. It has been shown
that these formulations can be construed so that they are well-
conditioned across a broad frequency spectrum, a result that has
been theoretically proven for spherical systems. Unfortunately,
to date, this formulation has not been implemented on practical
discretizations of objects. This is the goal of this paper. Specif-
ically, we present a well-conditioned and well-tested Decoupled
Potential Integral Equation (DPIE) formulation and all the neces-
sary implementation details for electromagnetic scattering from
homogeneous, dielectric, arbitrarily shaped objects. The resulting
decoupled systems do not suffer from low frequency breakdown.
Results that demonstrate these properties are presented for a
number of different dielectric targets. Furthermore, in order to
fully validate each of the two integral equation for the potentials,
we develop analytical solutions for spherical systems.

Index Terms—DPIE, Scalar Potential Integral Equation
(SPIE), Vector Potential Integral Equation (VPIE), Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT), Miiller

I. INTRODUCTION

HE analysis of scattering from non-canonical dielectric

objects was first addressed five decades ago. The usual
surface integral equation framework relies on equivalence
theorems to define both the exterior and interior equivalent
problems and then reduces the number of equations by impos-
ing constraints derived from boundary conditions. The most
popular equations in this vein are the Poggio-Miller-Chang-
Harrington-Wu-Tsai (PMCHWT) [1] and Miiller [2] formula-
tions, but it should be noted that several other formulations are
possible and have been investigated in the past. These include
a single integral equation [3, 4] as well as various combinations
of surface equivalence theorems; see [5], [6], and references
therein for some combinations. The necessity of analyzing
composite objects has driven vast advances in the machinery
and techniques necessary to accurately compute scattering. Ex-
pressly, the primary challenges include dense mesh breakdown
[7], low frequency breakdown [8, 9], and topology breakdown
[10]. All of these occur when representing and measuring
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these integral equations on tessellated representations of the
scatter and arise due to either catastrophic cancellation or bad
constraints/scaling of the integral equations. A consequence
of these breakdowns is that the resulting discrete systems are
ill-conditioned and poorly convergent. As a result, there has
been a concerted effort to develop well-conditioned formula-
tions in both the electromagnetics and applied mathematics
communities [11-15] for a while.

Indeed, early work recognizing these challenges and efforts
toward amelioration date back four decades [8, 16—-18] with
the introduction of loop-star and loop-tree decomposition.
Development of preconditioners, formulations, as well as
appropriate basis sets to effect these numerically has been a
topic of intense research over the past decade [19]. By and
large, these methods rely on proper representation of traces
or twisted traces of the fields on the surface. More recently,
research has focused on alternative formulations which will be
the emphasis of the remainder of this paper.

A common thread to overcome some of the bottleneck of
the classical integral equations has been the reliance on using
either Debye potentials [20,21], DPIE [22-25], Decoupled
Field Integral Equation (DFIE) [26], or Dirac formulations
[27]. In what follows, we focus on the DPIE for dielectric
objects which amounts to two sub-formulations, the Scalar
Potential Integral Equation (SPIE) and Vector Potential In-
tegral Equation (VPIE). In effect, this is a solution to the
transmission problem posed in terms of potentials such that
boundary conditions on fields are strictly enforced. It has been
shown that the DPIE is more robust to breakdowns associated
with low frequency, mesh discretization, and topology [24]. As
is usually the case, this approach was first developed to analyze
scattering from Perfect Electrical Conductors (PECs) [22-24].
A corrected Nystrom’s method implementation was presented
in [28] and a time domain potential based integral equation
solvers [29,30] currently exist. As an aside, it can be shown
that [23], while based on potential, is akin to an Augmented
Electric Field Integral Equation (A-EFIE) [31]. As is to be
expected, developing equations for analysis of scattering from
dielectric objects is more complicated. It has its genesis in
[24,25,32]. It is well-conditioned and not susceptible to non-
uniqueness due to resonances (under assumptions on consti-
tutive parameters [26,27]) nor breakdown due to either low
frequencies or topology. All these features were demonstrated
using either analytical basis sets on spheres or Nystrom’s
method on canonical geometries. The analysis using potentials
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was first presented by [24] who then continued their work
by developing the DFIE formulation for dielectrics using an
indirect method [26]. It has been noted that the DFIE is
non-unique for certain pairs of constitutive parameters when
loss is present. The formulations presented in this paper are
presumed to have the same problem and only lossless materials
are considered. A more robust formulation has recently been
introduced that has similar properties for a wider range of
constitutive properties [27]. Since the publication of [24] and
[32], there has not been a transition to scattering analysis
on tessellated geometries. The complexity of the operators is
deceptively daunting, but in what follows, we present details
necessary to implement the DPIE on tessellated surfaces
and show that the properties demonstrated using analytical
basis sets are preserved. In addition, we present an analytical
solution to the DPIE that makes it possible to investigate other
formulation variants.

The rest of this paper is organized as follows: The prob-
lem statement and notation are presented in Section II. A
brief overview of the representation and formulation occur
in Sections III-IV. The implementation details are provided
in Section V with a plethora of accompanying results in
Section VI that validate the properties. Appendices provide
details of analytic representation as well as integration on
tessellated surfaces.

II. PRELIMINARIES
A. Problem Statement

Consider a homogeneous dielectric body occupying a vol-
ume €2, that is immersed in a homogeneous background €.
The boundary of the scatterer is defined by a two-dimensional
manifold 92 embedded in R?® with a unique outward pointing
normal 1 (r) that is defined for all points r € 9 except a
finite number of geometrically singular points (e.g., corners,
tips, and edges). For convenience, we will use ﬁp (r) =
eph (r) to denote normal unit vectors that point into 2, with
pe{1,2} and g, = (—1)""". Likewise, quantities associated
with domain €, will be denoted with the subscript p. The
constitutive parameters of each region are described by the
relative permittivity €,, and relative permeability fi,,. Other
defined regional quantities include wavenumber &, = w,/liy€p
and refractive index n, = | /frp€rp.

We seek to compute the scattered fields {E3 (r), H} (r)}
due to a plane wave given by {nl,Ei (r),H! (r)} that is
incident on the dielectric scattering body with wavenumber
and direction k. Total, incident, and scattered quantities will
be denoted with superscript ¢, ¢, and s, respectively. The total
fields {Ej, (r) ,H} (r)} in each region {2, obey the boundary
conditions on 9 and the scattered fields {E] (r),Hj (r)} in
the background €2; obey the radiation boundary condition. In
what follows, we assume a time dependence of exp (jwt) and
suppress it throughout. Next, we present the notation that is
used in the paper followed by a brief summary of the DPIE
formulation.

B. Notation

As is usually done, spatial location is denoted by r; under
convolution with the Green’s function, source quantities will
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be denoted with a prime as in r’. When unambiguous, we will
omit writing the dependence on spatial locations. Operators
will be denoted with upper case calligraphy as in O. Likewise,
we will have matrices of operators acting on a vector of
functions. To facilitate these actions, we will adopt matrix
notation and use o to denote the action of an operator (or a
block operator matrix) on a function (or vector of functions).
We will denote a matrix using underlined calligraphy, as in
M. Finally, we define a single-layer potential operator that
can operate on either scalars or vectors as

Sy o0 <’;>T - /Gp (r,r') (’; g,lg)Tds’ (1)

exp (—jkp [r —1'[)
2
4 |r — /| 2)

where

G, =

denotes the Green’s function for the scalar Helmholtz equation
in a homogeneous region p with wavenumber «,. All other
integral operators used throughout the paper and defined in
Appendix A are with respect to the single-layer potential
operator.

III. REPRESENTATION VIA POTENTIALS

The crux of the DPIE relies on developing an integral
equation for each of the electric scalar and magnetic vector
potentials. In this paper, the representation for the potentials
follows that in [32]. For the SPIE, the scaling on the unknowns
is modified to more closely match how the VPIE scales
its unknowns. For the VPIE, there are two changes. The
first change is a modification to the unknowns (changing
whether certain unknowns are traces or twisted traces) such
that the piecewise vector basis functions are div-conforming
rather than curl-conforming as seen in Section V-A2. The
second is the relationship between divergence of the magnetic
vector potential in two regions; in this paper we have strictly
enforced the Lorenz gauge. For the sake of completeness
and to introduce a unifying formulation for the two integral
equations, we review both using the notation developed earlier.

A. SPIE

The SPIE relies on two surface quantities, the electric scalar
potential and its normal derivative. A surface integral repre-
sentation of the scattered electric scalar potential in region p,
derived from the Helmholtz equation and Green’s identity, can
be succinctly written as

by = Dyoal,— S, f, 3

with
op =0p (4a)
By =, - V. (4b)
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B. VPIE

The VPIE is a little more complicated. Four unknown quan-
tities are necessary to recover the magentic vector potential
[32]. They are the twisted trace of the curl, the trace, the
normal component, and divergence of the magnetic vector
potential. A surface integral representation of the scattered
magnetic vector potential in region p, again derived from the
Helmholtz equation and the vector analog to Green’s identity,
can be succinctly written as

A} = —8,0 (7, x 84)+ 78, 0b), - V8,095,001, (5

with
a, :ﬁp X ﬁp x V X Ap (6a)
b, =i, x A, (6b)
Yp =0, A, (6¢)
op =V A, (6d)

IV. REQUISITE INTEGRAL EQUATIONS

To construct the SPIE and VPIE formulations we start by
examining the integral equations for each region individually,

viz,

(e)=G)+ (=)= (%) @

0)=) o) L

a‘; a%) ICg2 KoL 02 —Qé a%

il I B I B S RS

B I N B U A v i B

o, o, -J, 0 kS, Dy o,
(7b)

These operators are defined in Appendix A. For convenience,
we can let the block operator matrices be denoted as Z¥ and
the vector of traces as T;, with x € {S, V'} for either SPIE or
VPIE respectively, which leads to a condensed way of writing
both formulations,

X ix

T, =T,

X

+Z)oT, . ®)

Evaluating the left-hand side as r approaches OS2 from within
(1, leads to

T;X =(I-2))o T;)X 9)

where Z is the idempotent.

Next, boundary conditions are imposed on the potentials
through ngx so as to satisfy the boundary conditions on
the electric and magnetic fields. As elucidated in [32], the
boundary conditions on the potentials are derived from those
on electric and magnetic fields, but stricter. They can be
expressed as diagonal matrices and are used to form unknown
surface quantities; specifically

Pyl =Pyrl =7 (10)

ermission. See httj

where P defines a diagonal matrix that imposes the appro-
priate boundary conditions. For the two formulations, they
are

P = /e diag (—jo: £perp)
I 1 : . 1
BX =——diag (, —EpJko, —EpJKoCrp, > )

vV Ho Hrp Hrp€rp
(11b)

(11a)

In (11b), the boundary condition on Jf, =V A;, has been
corrected from [32]. The two diagonal matrices are scaled such
that the unknowns in both formulations are of the same units.

In addition to these conditions, one can choose scale factors
as detailed in [32] to obtain a better conditioned system. The
resulting set of equations for both systems can be written as

12)

PyWyTy =By (2-2) e ((B) 7))

with PXWX applied to both sides to scale the system for each
region. For the two formulations, the remaining matrices to be
defined are

1
WP =diag (1, ) (13a)

€rp

1 1
WV:d' rpy Crps T T .
“Lp 1ag (N p> Erp erp Hrp)

(13b)

There is some freedom when choosing the scale factors wg ,
however, the choice can play a significant role in the behavior
of the formulation. The choice given in (13a) leads to the SPIE
being a second-kind integral equation that is immune to low
frequency and dense mesh breakdowns.

Finally, for the purposes of uniqueness, the normal deriva-
tive of the electric scalar potential and the normal component
of the magnetic vector potential have to satisfy a zero mean
constraint,

/ B! (x') dS' =0
/ 2 () dS' =0.

(14a)
(14b)

Because of the boundary conditions, if the zero-mean con-
straints are satisfied in either region, then they are satisfied in
both regions. Implementation of these zero-mean constraints
will be addressed further in Section V-C.

V. IMPLEMENTATION: ANALYTIC AND PIECEWISE BASIS
SETS

Next, we discuss discretization of these operators using both
analytic and piecewise triangulation basis sets. The former pro-
vides the means for validation of the resulting discrete matrix
system, its convergence against analytical data, as well as end
results (say Radar Cross Section (RCS) or traces on surface).
Furthermore, it provides us the necessary means to explore
different formulations, with regard to broadband behavior, null
spaces, robustness to complex material properties, etc. The
latter permits analysis of scattering from practical objects.
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A. Preliminaries

The integral equations presented thus far are agnostic to the
basis functions used to discretize these systems. Note, for the
SPIE one needs scalar basis sets whereas for the VPIE both
scalar and vector functions are needed. For ease of presentation
(and implementation), we introduce some additional notation.
Let the space of scalar basis functions be denoted using B7, for
n € [0, N). Likewise, the space of vector basis functions are
denoted using B;, for n € [0, N,). In the above, we note that
N, and N,, are the number of scalar and vector basis functions.
The number of degrees of freedom for the SPIE is 2N, and that
for the VPIE is 2N,, + 2N;. It follows that one can represent
the collection of scalar basis functions of dimension 2N, using
FS = diag (B, B®), where “diag” here is used to mean a
block-diagonal matrix. The space spanned by these functions is
denoted using 7";5 = Ziﬁ%fl F 5 v~ where the n'" coefficient
is denoted using y5 (for n € [0,2Ny)). In a similar manner, we
can collect vector and scalar basis functions for discretizing
the VPIE using ¥ = diag (B, B, B?, B%) denoting its span
using 7";‘/ and corresponding coefficients using 3 (for n €
[0,2N, + 2N,)). Given these definitions, we briefly prescribe
both analytical and piecewise basis sets for both the SPIE and
VPIE.

1) Analytic Basis Sets: For analysis on a sphere of radius
a, we employ scalar and vector spherical harmonics as defined
in Appendix B. As usual, we limit the number of harmonics
used to represent the potentials to N. In the spirit of our
earlier discussion, we define

By = (Y Y YN (15a)
By =(¥) ... ¥ ... ®X) (IS
By = (®; o 23 (15¢)

Scalar unknowns are represented with Y;" and vector un-
knowns are represented with both ;" and ®;"

ﬁs :ﬁy
B'=(By Bs)

(16a)
(16b)

with N, = (N, +1)? and N, = 2(N}, + 1)

2) Piecewise Basis Sets: For analysis on a triangular mesh
with Ny flat-triangles and NN, edges, we employ pulse and
Rao-Wilton-Glisson (RWG) functions defined as:

1 reT,,

n, () = 17a
p f( ) {0 r ¢ Tnf (17a)
ln + +

—le r) reT

n (r) — 2Ane an ( ) Ne (17b)

‘ 0 r¢ TE

where

+ (r —p= ) reTt

+ n n
= e ° 17¢
on, (r) {0 v ¢ T (17¢)

In the above equations, T),, is the ny triangle and A, ; Is its
area. Likewise, [,,, is the length of edge n., A,fe is the area
associated with triangles Tnie, and pi is the vertex of the

triangle Tﬁ; opposite the edge n. [33].
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4

With these basis functions, we can define B® and B" as
ES :(pO pnf pr) (18a)
B =(f, ... f, fy.) (18b)

with Ny = Ny and N, = N,.

B. Discretized System

The discretized system for both the SPIE and VPIE are con-
structed through a Galerkin framework using inner products
defined as

(19a)

g £0) = [ @ twds Ao
with * indicating complex conjugate and g (r), f(r), g (r),
and f (r) denoting arbitrary functions (scalar and vector). For
each region, we test (12) over the limiting surface as r — 0f)
from within €2, and add the two systems together resulting
in one system, coupled through the boundary conditions, that
can be written as

ZXyX = bX (20)
where the elements of this system are defined as
2
b =>" <£§, BZX,M.&;"> (21a)
p=1
2
-1
L =Y (ELBywy (T-2)) o ((B) T EY))-
p=1
(21b)

Note, the sum is over the two regions (interior and exterior).
As the boundary conditions and scale factors manifest
themselves as diagonal matrices, it is trivial to show that

2

b =2 Py (F.7y) (222)
p=1
2

Ly, =Y PAWX(FG (T - 20) o EX) (BY) ™ (22b)

p=1

where WX and PX are also diagonal matrices with repeated
elements of their unbarred counterparts.

Evaluating these operators with analytic basis sets can
be performed exactly by exploiting the orthogonality of the
spherical harmonics. An example of this for one operator is
presented in Appendix E-A. The key challenge of working
with piecewise tessellations is evaluating these operators when
the k™ testing domain is close to the n™ basis domain.
While a number of operators are familiar, some are not.
To evaluate these integrals, we have taken a straightforward
approach—singularity subtraction. There are certainly other
methods of evaluating these integrals [34], but they are not
necessary to demonstrate the crux of this paper—to prove the
properties of the DPIE for discrete piecewise tessellations. To
that end, we note that even though there are several unfamiliar
operators, the singular integrals necessary are exactly the same
as those used in the Electric Field Integral Equation (EFIE) and
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Magnetic Field Integral Equation (MFIE); all other singular
integrals can be evaluated via a combination of four base
singular integrals. These singular integrals, along with an
example of the complete treatment of one of the operators,
is presented in Appendix E-B.

C. Zero-Mean Constraint

Finally, a critical component of a potential formulation
is the zero-mean constraint. For analytical basis sets, this
is accomplished by setting the coefficients of > and y)
associated with [ = m = 0 to zero. For coefficients of basis
functions on tessellations, we use a Lagrange multiplier as in
[35].

VI. RESULTS

In what follows, we present a collection of results that
delineate the properties of the DPIE. Analytic basis set results
are presented to demonstrate the characteristics of the SPIE
and VPIE formulations themselves. The results presented in
[32] are similar to what is presented here, however, the SPIE
system was omitted and the VPIE system is different due
to the changed boundary condition. After demonstrating the
characteristics of the formulations discretized with spherical
harmonics, results from the piecewise discretization are pre-
sented. The piecewise results will fall into two categories: (a)
we will examine the correctness of the solution by comparing
the RCS of objects against similar data obtained either from
analytic calculations (Mie series using fields) or through
numerical implementation of the PMCHWT [1] and Miiller [2]
formulations. (b) Next, we will present the condition number
and number of iterations required to converge to an tolerance
of 10712 for a number of geometries. These sets of results are
meant to ensure that not only are the resulting equations well-
conditioned, but also converge rapidly as well. The dielectric
objects will be immersed in freespace ji,; = €,; = 1. Finally,
we note the central theme of this paper is to demonstrate
implementation of these formulations using well known basis
sets and has not yet been paired with the fast multipole
method. As a result, objects analyzed are not analytically large.

A. Analytic Basis Sets

The analytic analysis on a sphere gives insight to the
behavior of the SPIE and VPIE. We begin with an analysis of
scattering from a dielectric sphere with radius of 1m.

Note, the data presented in this section only deals with
behavior of the system of equations. RCS data used for
comparison in Section VI-B uses the Mie series solution, and
as is to be expected, agrees with the RCS from the analytic
method presented here.

We examine three scenarios with different material param-
eters. The orthogonality properties of spherical harmonics are
used to isolate each harmonic’s contribution in ZX. After
permuting rows and columns, we can arrive at a block-diagonal
matrix ZX = diag ( ZX|g... ZX[]" ... ZH%Z) for both the
SPIE and VPIE. The frequencies examined in each scenario
are limited to when N;, = 2[max, R (kpa)] < 120 where

ermission. See httj
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Fig. 1. Condition number for different band-limited integral equations across
frequencies using analytic basis sets for a dielectric sphere with €,0 = 1.5
and pro = 1/1.5.

R (kpa) takes the real component of x,a. The finite dimen-
sional expansion on the unknowns (equivalently, the operator),
in effect creates a bandlimited version of the operator acting
on the current. If the operator is compact, then this series
converges and the condition number is representative of the
system for which N, — oo. As is well known, the PMCHWT
integral equation, much like the EFIE, has a hyper-singular
operator so the operator’s true condition number is unbounded.
This is what is represented in the figures.

Developing an analytical framework permits analysis on
operators (both mapping as well as limiting properties). Some
of this analysis was done in [32]. Here, we build to this body
of work. Using the properties of the operators involved, it is
possible to prove mapping properties of the vector operators.
For both the VPIE presented here and [32], quantities repre-
sented using W} are mapped back to the same basis via the
VPIE operators (ditto for ®;"). This is as in [36,37].

We will examine eigenvalues and condition numbers from
the finite dimensional expansion of the operator. The eigenval-
ues are from the generalized eigenvalue problem, Av = ABv
with Ay, = Zf, and By, = (Ff,FY) (or equivalently the
regular eigenvalue problem B~! Av = \v). Condition numbers
are computed from the matrix B~ A.

We apply the Lorenz gauge to arrive at the interface
condition on the divergence of the magnetic vector potential.
This results in slightly different behavior than was reported
in [32]. Here, we examine effects of this change in boundary
condition on the condition number of the band-limited VPIE
for frequency ranges from 10 uHz to about 1 GHz, depending
on material parameters. These are shown in Figures 1-3.
The analysis covers the following three different cases for
parameters: n? = n3 in Figure 1, n? ~ n2 in Figure 2, and
n? % n3 in Figure 3. From these figures some observations
are in order: (a) the condition numbers are constant across
frequencies wherein x, < 27, (b) the condition number of
the VPIE system is more sensitive to constitutive parameters,
and (c) the behavior of the VPIE system is akin to that of the

Miiller systems. The boundary condition on the divergence of
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Fig. 2. Condition number for different band-limited integral equations across
frequencies using analytic basis sets for a dielectric sphere with €,0 = 1.5
and pr2 = 1.
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Fig. 3. Condition number for different band-limited integral equations across
frequencies using analytic basis sets for a dielectric sphere with €,2 = 20
and pro = 1.

the magnetic vector potential does affect how well the hyper-
singular terms are cancelled. As a result the condition number
is higher when the contrast is higher.

Next, we examine the eigenvalues of the SPIE and VPIE.
To find these eigenvalues, we fist discretized the systems with
spherical harmonics as before. We focus on the harmonics
n € [1,10] and m = 0, as representatives of the whole system,
and let the frequency vary from 1 MHz to 1 THz. For each of
the harmonics and frequencies, we have a 2x2 and 6 x 6 matrix
for the SPIE and VPIE respectively. Two and six eigenvalues
per harmonic and frequency pair are computed and shown in
Figures 4 and 5. From these figures, we can see that the
eigenvalues accumulate away from 0 as the frequency goes to
0Hz and are bounded.

B. Piecewise

The piecewise discretization is the crowning result of
this paper. It serves to verify that the properties shown for
canonical geometries commute to the complex shapes and

n=1 n=10
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Fig. 4. Eigenvalues for the SPIE and VPIE for €,2 = 1.5 and pr2 = 1/1.5.
The real and imaginary parts are plotted on the x- and y-axes respectively.
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Fig. 5. Eigenvalues for the SPIE and VPIE for €20 = 1.5 and p,2 = 1. The
real and imaginary parts are plotted on the x- and y-axes respectively.

objects of actual interest. The incident waves here decompose
E] = Ejexp (—jk, - r) and are in the form found in [28]:

Qﬁ =—(r-Ey)exp(—jk; 1) (23a)
A’i =— % (r-Ey)exp(—jky-1). (23b)

All examples have the same constitutive parameters ps = L
and e; = 1.5¢p, and unless otherwise noted, use the same
discretization across frequency.

1) Dielectric Sphere: We begin the piecewise analysis by
considering the scattering from the same dielectric sphere
with radius of 1 m. The sphere is meshed into 1280 patches
and 1920 edges with an average edge length at 100 MHz of
about A1/19.9. As predicted in Section VI-A, the condition
number, show in Figure 6, is stable across frequencies. In this
figure, the data is obtained for a set of frequencies starting
at 100 MHz and decreasing it by a decade until 10 uHz. At
10uHz, we reach the limits of double precision accuracy.
Beyond this point, one would need to use extended precision,
but the main arguments are sufficiently supported with this
data. Specifically, the condition number across frequencies of
the SPIE is about 53 and the VPIE is about 83 whereas those
for PMCHWT are several orders of magnitude larger. It should
be noted that the condition number of the Miiller system is as
good as that of the DPIEs.
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Fig. 6. Condition number for different integral equations across frequencies
using piecewise basis sets for a dielectric sphere with €20 = 1.5 and p2 = 1.
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Fig. 7. RCS of the dielectric sphere at 100 MHz.

Next in Figures 7-9, we examine RCS data at three different
frequencies, specifically at 100 MHz, 1 Hz, and 10 pHz due to

an incident wave directed along & = —2Z, polarized along
E, = %, and measured at points along § € [—m, 7] and
¢ = 0. In Figure 7, we see that there is good agreement

among all formulations including the analytic formulation at
100 MHz. In Figure 8, we see that the PMCHWT and Miiller
formulations have already diverged from the analytic solution
at 1 Hz whereas the DPIE and Mie agree very well with each
other. Finally, in Figure 9, we see that the DPIE still matches
the analytic solution while the Miiller solution is off the chart
at around —320dB m? at 10 uHz.

Next, in addition to condition number, one typically cares
about iteration count. For this experiment we used the same
piecewise discretized sphere and, as before, data was collected
from 10uHz to 100 MHz. For this demonstration, we use
the Quasi-Minimal Residual (QMR) but we have verified that
other iterative solvers show similar behavior. A relative toler-
ance of 1072 is used for two reasons. First, low frequency
convergence, especially to —350 dBm?, necessitated the need
for a smaller than typical tolerance and a relative as opposed

Authorized licensed use limited to: Michigan State University. Down
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Fig. 9. RCS of the dielectric sphere at 10 pHz.
to absolute tolerance
|lresidual|| < tol x ||RHS||. (24)

Second, as we examine convergence across frequencies, we
wanted to keep the relative tolerance constant so that the
iteration count comparison would be fair. The QMR solver
is stopped after 500 iterations unless it stops due to a QMR
related breakdown or the tolerance has been met. From Fig-
ure 10, it is apparent that the iteration count remains low as the
frequency goes toward 0 Hz. It is also evident that PMCHWT
requires significantly more iterations than the threshold except
at 10 pHz where the iterative solver does converge within the
tolerance but not to the correct solution. There is a moderate
increase for the SPIE and VPIE as one tends to higher frequen-
cies. This trend mirrors that seen in the Miiller system [32]. We
note that methods to mollify the behavior of Miiller systems
have been addressed by using intermediate Buffa-Christianssen
basis sets [38], but investigating this phenomena lies outside
the main goals of this paper and will be investigated in the
future.

We turn our attention to the convergence of the iterative
solver. In Figure 11, we see that the SPIE, VPIE, and Miiller
formulations converge very quickly in a few iterations to a
solution within the relative tolerance specified. As mentioned

0018-926X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE fermission. See http://www.ieee.org/ ublicationsfstandardsI/Epublications/righ'gs/index.html for more information.

oaded on April

é,2022 at 20:03:40 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2022.3161278, IEEE
Transactions on Antennas and Propagation

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. ??, NO. ??, 2021 8

R Y I I - —  PMCHWT
:' 20 A -—— Miller
) e A T DPIE
C 1 .
3 ~ Mie
810244 £ 10-
---------- SPIE - - PMCHWT @
S ! J S
2 N N R VPIE  --—- Mdller A
© O 0-
@ x
=
_10 .
101 T T T T T T T T T
1073 100 103 106 -n —n/2 0 nr2 m

Frequency [Hz]

Fig. 10. Iteration count using QMR method for different integral equations Fig. 12. RCS of the dielectric sphere at 300 MHz.

across frequencies using RWG and pulse basis sets for a dielectric sphere
with €72 = 1.5 and p,-2 = 1. The solver was stopped at 500 iterations if it
had not converged yet.
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shown in the figure is for a range of frequencies from 100 kHz

) . ) ) to 100 MHz. As is evident the condition numbers for the SPIE
Fig. 11. Convergence plot of the relative residual ||residual| /||RHS|| .
using the QMR method for different integral equations for a dielectric sphere and VPIE are relatively constant across the band whereas
with €72 = 1.5 and pr2 = 1. The solver was stopped at 500 iterations if it PMCHWT quickly blows up.
had not converged yet. The color of the line indicates the formulation while Next. the RCS is shown at 100 MHz with an incident wave
the style (dotted, dashed, solid) indicates frequency. . ’ . R . N
directed along & = Z, polarization E;, = ¥, and measured

above, the Miiller formulation is well-conditioned but falls
victim to the low-frequency breakdown due to how the electric L
and magnetic fields are represented. In other words, even Tl T SPIE
though the solver finds a solution within a few iterations, it is 10% 4 P VPIE
. . ~ - - PMCHWT

worthless in the low-frequency regime. -

Finally, we analyzed a dielectric sphere meshed with 20,480 108 | AN Mller
patches and 30,720 edges. At 300 MHz, the average edge
length is about Ai/26.6. The iteration counts for the SPIE
and VPIE are 52 and 73 respectively. Miiller converged
in 42 iterations but PMCHWT only converged to 10~ in
500 iterations. In Figure 12, we see that there is excellent
agreement among all formulations at 300 MHz.

2) Dielectric Almond: Next, we analyze scattering from a 1(')5 o 1(')6 o 1(')7 o ””108
dielectric NASA almond, as seen in Figure 13. The NASA Frequency [Hz]
almond is meshed into 896 patches and 1344 edges. The
avera:g_e edge length at 100 MHZ IS. about Al_/ 25.7. First, the Fig. 14. Condition number for different integral equations across frequencies
condition number data, shown in Figure 14, is stable across using piecewise basis sets for the dielectric NASA almond with €,0 = 1.5
frequencies much like that observed for a sphere. The data and pr2 = 1.
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Fig. 16. Iteration count using QMR method for different integral equations
across frequencies using piecewise basis sets for the dielectric NASA almond
with €2 = 1.5 and p,2 = 1. The solver was stopped at 500 iterations if it
had not converged yet.

at points along 6 € [—m, 7] and ¢ = 7. In Figure 15, we
see that there is excellent agreement among all formulations
at 100 MHz.

Next, the number of QMR iterations needed to converge to
an error of 10712 is shown in Figure 16 for the same frequency
range. As before, the number of iterations is relatively constant
for both the SPIE and VPIE. Overall, as is evident from
Figures 14-16, the favorable properties of the SPIE and VPIE
hold for non-canonical geometries.

3) Dielectric Arrowhead: Finally, we analyze scattering
from a dielectric arrowhead, as seen in Figure 17. This is
a challenging geometry in that it has sharp tips, and edges.
The arrowhead is meshed into 23,024 patches and 34,536
edges. The average edge length at 100 MHz is about A1/19.9.
Given the size of the problem, we just present the data
for scattering from a 100 MHz incident wave directed along
R = %, polarization E, = ¥, and measured at points along
¢ € [-m,n] and ¢ = 7. incident. The SPIE and VPIE
converge to a relative error of 10~12, with iteration counts of
75 and 90. Miiller converged in 50 iterations but PMCHWT
only converged to 1072 in 500 iterations. The RCS of this
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Fig. 18. RCS of the dielectric arrowhead at 100 MHz.

scatterer is shown in Figure 18. As before, we see that there is
very good agreement among all formulations at this frequency.

VII. SUMMARY

This paper presents a rather detailed implementation of the
DPIE on discrete piecewise tessellations. As is observed in
canonical geometries, the discrete piecewise system is well-
conditioned and converges rapidly. Analysis is presented using
analytic basis sets for both the SPIE and VPIE, which explores
condition number across frequencies. While it may seem to
be computationally daunting due to the increased number of
operators and number of unknowns, and this was indeed a
bottleneck in some of the results presented here, this ap-
proach is amenable to acceleration using fast multipole based
methods. This, further analysis into alternate VPIE scaling
weights/formulations, and extension to composite objects will
be presented in upcoming papers.
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APPENDIX A
DEFINITION OF DPIE OPERATORS

The integral operators defined in this paper are as follows:

S, o <X>T = / G, (r,r) (X (r')>T ds’ (25a)
x ’ x (r')

Dyox=—-V-§,0 (ﬁpx) (25b)
Npox=—1,-VV-S,0 (A,r) (25¢)
D; ox =h, VS,ox (25d)
IC;ox: VxSpo(ﬁpxx) (25e)
ij ox =fi, X S0 (ﬁp X x) (25f)
jp3 ox —ﬁp -Sp o0 (n X X) (25g)
j;l ox =V-§,0 (np X X) (25h)
Lrox=—7VXxVx§ox (251)
Kpox:ﬁ:xVxSpox (25))
Mpox =i, -V xS,ox (25k)
Prox=h,xVS,0x (251)
Qlox=n, xh,xVxS,o () (25m)
Qf, oxr=n,x§,o0 (ﬁpx) (25n)
Q;’, oz =f, S0 (ﬁpm) (250)

We denote adjoint operators with a prime. Additionally, we
introduce the shorthand for operators (9;, =1, x i, X Op.

APPENDIX B
SPHERICAL HARMONICS

Next, we define the scalar and vector spherical harmonics
used for the analytic basis sets.

mon _ (2A+T(T=m) ime
Y (r) = I UTm) P} (cosf) e (26a)
T (F) =1 x @7 (F) = rV Y (7) (26b)
O (7)) =t x O (#) =qr x VY] (¢) (26¢)
{1 1=0 6d)
= 1
NG L#0

with P} (cosd) denoting associated Legendre polynomials,
I > 0, and |m| < [. The scaling factor ¢; is used to
orthonormalize ¥;" and ®;" which is not strictly necessary
but eases the derivation. Spherical Bessel functions are denoted

using
Ji (2) o=
NG _ N (2) o= 27)
1 (2) hl(l) (2) _
h? (2) 4

10

where the index « is used to denote the type and/or the kind.
Using these definitions, the scalar and vector spherical wave
functions are as follows:

o\ (k,x) =ar b (rr) Y1 (£) (282)
Li?) (k,r) =V i) (r,1) (28b)

« 1 «@ «
M7 (k,0) =V x Ni2J (k1) = —x x Vi) (5,7)

(28¢)
) (k,r) (28d)

m

. 1
N (k) =~V x M

Note, in addition to the usual M(* (k,r) and N (k,r)

m m
one need to use Ll(;j;) (k,r) to represent the magnetic vector
potential [39].

APPENDIX C
PLANEWAVE EXPANSION

For completeness, we include a scalar and vector planewave
expansion in terms of spherical wave functions.

00 l
= 1
exp (—jkZ - 1) :Z Z Aim (pl(nz (k,r)

(29a)
=0 m=—1
o0 l
X exp (—jKZ - 1) :Z Z bim Mz(;) (K, 1) + Cim Nl(;z (k, 1)
=0 m=—1
(29b)
with
ﬁ =
ap, =1 @ VAT (2L+1) m=0 (30a)
0 m#0
joiml 20+1 _
S e G e
0 |m| # 1
it 20+1 —
Clm = c I(1+1) |m| =1 . (30c)
0 |m| # 1

APPENDIX D
GREEN’S FUNCTION EXPANSION

The final ingredients necessary for analytic evaluation of
the integrals in the DPIE are the expansion of the Green’s
functions. The scalar and dyadic Green’s function expansions
are

=1
Gp :j:‘{p Z g
1=0

0o l
G, =jfn Y oz D0 My (e r) M (1), v)
1=0 7"l m=—i

+ NI (1, 1) NEP™ (w7,0)
(31b)

l
3l (mpyr) @l (w3, 1)

m=—I

(31a)
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with
4 p=1
ap=4_ 7 (32a)
1 p=2
1 p=1
_ 32b
5r=13 b2 (32b)
1 1=0
o= . (32¢)
1(1+1) 1#0
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These expressions together with the spherical harmonics and
wave functions constitute the underpinnings of our analytical
analysis.

APPENDIX E
CANDIDATE INNER PRODUCT EVALUATION

As there are a number of different inner products to be
evaluated, it is cumbersome to provide a detailed prescription
of each. Indeed, for the DPIE, there are 15 unique operators.
As most of these follow the same template, we provide
one illustrative example while leaving the reader with the
necessary tools to flesh out the others.

Our example is one that is less commonly encountered: Z"
for the operator Pg. For the purposes of illustration, we will
focus on a single region and omit the scaling matrices as these
are diagonal and do not add to the integral. Specifically,

Z%’p‘ — (B}, 4

where k € [0, N,)) and n € [0, N;) are the testing and basis
indices for this block of ZY.

» X VS, 0B;) (33)

A. Analytic evaluation

For analytic analysis, we use (16a) and (16b). If we let
testing index k correspond to harmonic indices ! and m for
W when k < (N}, + 1)* and for ® when k > (N, 4 1)°, and
basis index n correspond to harmonic indices I’ and m/, it is
easy to see that we can take advantage of the orthogonality
of the spherical harmonics. When [ # I’ or m # m/ (in other
words mod (k, (Ny, + 1)2) # n), then the system element
is zero. This allows us to focus on a specific harmonic specified
by [ and m. We analyze the two cases when & selects a testing
function from By and Bg:

Z23p =(¥;" (r), i, X VS, oY) =0
zggjﬁ]l —(®] () f, x VS, 0 Y]")
== (U @)L ()

<Yz" () .ol (1)

(34)

B. Evaluation on Discrete Patches

Next, we briefly prescribe evaluation of all inner products
that are necessary. As alluded to earlier, we use singularity
subtraction and decide to subtract the first two terms from the
Taylor series expansion of the exponential function. As will

ermission. See http://www.ieee.org Opubhcatlons standardsI/Epubllcatlons/nghts/mdex .html for more information.
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Fig. 19. Vector and point definitions for singular integration.

be evident, the singular integrals needed are identical to the
ones needed for the EFIE and MFIE and can be found in [40,
41]. It follows that, if necessary, one can use better rules [34,
42,43], but this is not the crux of the presented work. We use
Figure 19 to set the stage for definitions, and it is here purely
for completeness. The definitions here follow those in [40].

It is well known that the following integrals can be evaluated
analytically as we approach the patch.

T, - / ds (350)
Tp = / Lis (35b)
% /R3 (35¢)
Tg = [ frdS (35d)

To effect the integration, we used a seven point Gauss-
Legendre rules for the integrals over a patch. For the hyper-
singular integral in the SPIE, there is a line integral and a
fourteen point Gauss-Legendre rule was employed.

As an aside, two issues naturally crop up when surfaces
are modeled using higher order geometric representations—
(a) evaluation of singular integrals and (b) cost of a higher
quadrature rule. The integrals in (35) have been dealt with
in the community using either a mapping of the contour to
a flat patch which allows the use of singularity subtraction
or singularity cancellation techniques. Amelioration of the
costs associated with evaluation of these integrals higher order
geometries have been dealt with in [44,45] by integrating with
a wideband fast multipole method which uses a combination of
an adaptive quadrature rule and singularity cancellation around
a small neighborhood of the singularity.

The techniques used in this paper rely on the fact that we
are using a flat tessellation. To illustrate a general approach,
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consider the evaluation of Z{g’p. The integration is typically
over T,j[ and 7T,,. To simplify the presentation, only consider
T,j (the other follow trivially). Given that ﬁp is constant over
T,;L , manipulation of the integral results in

7V
L3

= / pn (r') 1, - VG, x £, (r)dSdS’. (36)
kn T, T,:r
As is usually done using singularity subtraction, we get both
an integral with a removable singularity and a non-singular
integral that can be evaluated numerically. We only discuss
the singular portion of the integral that is denoted below using
|S . For (36), this can be written as

~ S 1 R
\Y4 . ~
Z23,p o A Tﬂpn(r’)np. (/T;r Vo x £, (r)dS
K2 R
Rp n /
+2 R x £, (r)dS | dS
k
(37

It follows, that to evaluate this integral we need to evaluate
[ B xf,(r)dS and [ B x f, (r)dS. From (35), one can
derive the following analytic integrals:

R
*R I N
I%an = ; E an(r)dS::tm (d+p ) XI%
(38b)
+
_ fn (I‘) _ ln +
I, _/n S = (I% —p I%) (38¢)
R
In = / 758 =Tp +dL, (38d)

* R In N
(38e)

The integral Z¢, is not necessary for this example but is
necessary for the Other operators. The process for addressing
the rest of the singular integrals follow a similar process. Note,
the singular integrals are either due to G, or VG, are over
either testing or source domains, and can all be formed as
combinations of (35). Just as the normal over each triangle
is constant due to the flat-tessellation, fi - R and @i’ - R are
also constant over the testing and source domains respectively.
Below the expressions that we use to treat the singular integrals
are cataloged. They are one of several equivalent expressions
that can be used for singularity subtraction.

For the SPIE, the singular integrals needed for each operator
are as follows:

o ., H?)

z3, = /T T1 — jrpA,dS (39b)
k

7.5 5 N Hf’ /

L3y o :/T (np : R) Iﬁ + ?I% ds’. 39¢)
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The Zfz’p operator is hyper-singular and is dealt with as in
[46] rather than with singularity subtraction.

For the VPIE, the singular integrals needed for each operator
are as follows:

Lisy),, =0 (40c)
yAS * T A if’z ds’ 40d
14,p b T+np' }1;3><fk+ 9 Rxf, ( )
S
1% _
Zory),. —/T+ (B, x £;)

2% 7 = (8, x£) (2 s ds
2004, " |- (A, x f;) - Box, T o5 tRxe,
k
(401)
7V s ~ KZ% ’
Loy, :/T+ B, (Irxe, 5 Iry, |45 (409)
7V o PYPN . ,
Lo p X Z/ n,-n, x (Lk —]I'ip/ fde> as
n T:r R T;r
(40h)
~ S
Z3, =/ A-"><<I/—' / f’dS’)dS
3Lp|,. Tinp n, e Jkp .
(401)
_ S 42 .
Loy, =~ /T - (Tn o + ;ngf;) s (40)
k
~ S l€2
1% A
Z3ssl,, = /T . (8, R) <1R13 + 2’)1;?> s’ (40k)
S
73, == /T+ i, - i’ (I% _jnijg) ds (401)
k
4 S N ’%127
L p o /T+ 1y, (Ig,xf; + 2I%><f’n> dS (40m)
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The integrals [+ f,dS and [+ f,dS’ are not singular
A n
and can be evaluated analytically or numerically. The above
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prescription is for flat tesselations, and along with the piece-
wise geometric description come challenges in accurately
describing the physics of scattering from objects with singular
features, e.g., cones, finite wedges, etc. While these are well
known challenges (and the DPIE is not immune to these as
they arise from the geometry as opposed to the operator), one
could use singular basis functions [47] or adaptive basis [45,
48] to partially overcome some of the bottlenecks.
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