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Abstract—Evaluation of pair potentials is critical in a number of areas of physics. The classical N-body problem has its root in evaluating
the Laplace potential, and has spawned tree-algorithms, the fast multipole method (FMM), as well as kernel independent approaches.
Over the years, FMM for Laplace potential has had a profound impact on a number of disciplines as it has been possible to develop highly
scalable parallel versions of these algorithms. This is in stark contrast to parallel algorithms for oscillatory potentials such as the Helmholtz
potential. The principal bottlenecks to scalable parallelism are the computation and communication costs of operations necessary to
traverse up, across, and down the tree. In this article, we analyze asymptotic costs for both computation and communication in a parallel
implementation, and describe techniques to overcome bottlenecks and achieve high performance evaluation of the Helmholtz potential for
different distributions of particles. We demonstrate that the resulting implementation has a load balancing effect that significantly reduces
the time-to-solution and enhances the scale of problems that can be treated using full wave physics.

Index Terms—Helmholtz equation, multilevel fast multipole method, tree algorithm, electromagnetic interaction, global interpolation

1 INTRODUCTION

HYSICS described by hyperbolic partial differential equa-

tions (PDEs) form the backbone of a wide array of modern
technologies. Solutions to PDEs governing electromagnetics
and acoustics have enabled technologies that have had, and
will continue to have, a broad and profound effect on our
daily lives. Our interest herein, is solution to the Helmholtz
equation for radiation and scattering, posed in terms of con-
volution with a Green’s function [1]. The common thread for
the wide range of phenomena described by the Helmholtz
equation is understanding and manipulation of wave physics
at multiple length scales. This task is increasingly challenging
given the increase in geometric complexity (smaller and more
complex features) and wider range of operating frequencies
(requiring more precision and detail to achieve optimal per-
formance at all frequency bands). Advances in these technolo-
gies, and engineering sophisticated yet robust systems, are
intimately tied to a detailed understanding of the underlying
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wave physics. Today, more often than not, such insight
requires simulations via high-fidelity computational tools.

One of the main challenges in developing such tools is
computing fields on electrically large objects. Here, electrical
length is measured in terms of the largest linear dimension
in terms of wavelengths. For several emerging problems, the
electrical length can be several thousand wavelengths. For
some perspective, the number of degrees of freedom typi-
cally required to model the physics (unless dictated by geo-
metric constraints) scales as 10-15 per wavelength in a single
dimension. The typical solution to the requisite integral
equation proceeds via solving dense matrix equation itera-
tively. And, herein lies the problem-the dense matrix arises
from evaluation of the Green’s kernel that corresponds to an
N-body problem. The Fast Multipole Method for Helmholtz
equations (H-FMM) reduces the O(N?) cost of direct poten-
tial evaluation to O(N,log Ny) [2] for surface distributions.
Here, N, denotes the number of degrees of freedom. This
algorithm bears a strong similarity to that developed for Lap-
lace equations (L-FMM), i.e., for non-oscillatory potentials
such as gravitational or electrostatic fields [3]. The literature
on the intricacies of both L-FMM and H-FMM (and their
close cousins, tree-codes) are extensive; see [4], [5], [6], [7],
[8], [9]. As is evident from these review papers, applications
of these algorithms is extensive and cross-cutting in terms of
the number of disciplines that it has benefited.

Given the wide applicability of FMM, a number of par-
allel algorithms and parallel implementations have been
developed. Those developed for L-FMM have indeed been
highly successful in terms of their performance and scal-
ability. Indeed, several Gordon-Bell awards have gone to
scalable L-FMM algorithms [10], [11], [12], [13]. This is in
contrast to the development of parallel algorithms for H-
FMM, despite sustained efforts [14], [15], [16], [17]. The
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challenges to developing efficient parallel algorithms for
H-FMM arise due to (a) the varying structure and cost of
the computational workflow over the underlying tree
representation, and (b) accuracy requirements of the target
applications. To understand these issues better, we next
present the nuances of H-FMM in comparison to L-FMM,
summarize the existing literature on parallel algorithms
for H-FMM and contributions of this paper that overcome
some of the bottlenecks.

2 PROBLEM STATEMENT AND BACKGROUND

To set the stage for this work, we just consider the evalua-
tion of the Green’s kernel and not an an integral equation.
Consider a collection of N, point sources with intensity u, €
C located at points r, € R*, n = 1,..., N,. The potential ®(r)
due to these sources at some observation point r is then
given by

Ny
q)(r) = Zg(r - rn)um (1)
n=1

Here, the Green’s function g(r) for the Helmholtz equation
is given by

ik

 dmr|’

g(r) (2)

where k = 27/\ denotes the wavenumber in rad/m and X is
the wavelength in meters. Note, the Green’s function for the
Laplace potential is recovered when k= 0. Sums of the
form (1) often arise in electromagnetics and acoustics [18],
in which ®(r) must be evaluated at each source point
ty,m=1,..., N, implying a cost of O(N?). The multilevel
fast multipole algorithm (MLFMA) [19], [20], or H-FMM as
referred to in this paper, allows approximating these quan-
tities in O(N,log Ny) for surface distributions or O(N;) volu-
metric distributions to arbitrary precision.

To set the stage for the scope of the problems that we aim
to address, and to provide some context, we will assume
that the distribution of these N, sources is related to the
wavelength A. We are not interested in pathological distri-
butions, for instance along a line as in a wire or dilute as in
light scattering from clouds/dust, etc. In a number of these
cases, there are fast algorithms that outperform H-FMM
[21], [22]. Likewise, in dilute distribution, it is possible to
envision a scenario wherein a direct summation is faster.
The motivating application for the presented work is accel-
eration of dense matrix-vector products arising from discre-
tization of integral equations, specifically surface integral
equations. In general, for this class of problems, the number
of degrees of freedom N, ox 1/A\? o f? where f is the fre-
quency. By and large, this rule governs the growth of the
number of degrees of freedom. Of course, there are a num-
ber of situations wherein geometric features increase the
number of degrees of freedom locally. The increase in den-
sity of distribution locally implies that one needs a hybrid/
wideband algorithm: one that behaves like L-FMM in some
regions and transitions to H-FMM elsewhere. There exists a
sizable body of research, including parallel algorithms, that
address this problem [15], [23], [24], [25], [26], [27], [28],
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Fig. 1. Top-down view of the lowest two levels of an FMM tree, illustrating
the key computational kernels. Particles (green dots) are mapped onto
leaf nodes (small squares) in an octree partitioning.

[29]. In this paper, we do not consider a wideband algo-
rithm. Our focus is purely on optimizing operations in the
H-FMM algorithm presented in detail in [15], [27] that
ensures error controllable operations.

Fast Multipole Methods. Both L-FMM and H-FMM follow
the same algorithmic rubric. First, the computational domain
is recursively subdivided into cubes (boxes) until a pre-
determined box dimension or a maximum number of par-
ticles per box is reached, and each particle is mapped to the
box in which it resides. The hierarchical structure resulting
from this recursive subdivision procedure can be repre-
sented as a tree specifically an octree in which each subdivi-
sion results in the creation of (up to) eight boxes of half the
diameter in 3D.

Assuming an octree with L levels, let the root node reside
at level [ = 1, and the leaf boxes reside at level [ = L. At all
levels, boxes are classified as being either in the near- or far-
field of each other if they are sufficiently close. Two boxes
are in each other’s near-field if their domains share a face,
edge or node. At any given level, two boxes are designated
to be in each other’s far-field if (a) they are not in the near
field of each other, and (b) their parents are in each other’s
near-field. This permits a hierarchical partitioning of the
computational domain in terms of near- and far-field inter-
actions. Near-field calculations take place only at the lowest
level; at all other levels, interactions between boxes is per-
formed via far-field through a five stage process shown in
Fig. 1 and listed below (note, specific mathematical details
are omitted in this discussion, and can be found in [23], [30]
and elsewhere [5], [6]):

1) Compute charge to multipole information for each
leaf node based on the particles it encloses (C2M),

2) compute the multiple expansions for each node in
the tree by interpolating from the multipole informa-
tion of all of its children (M2M),

3) calculate interactions between far-field pairs by
translating multipole expansions of sources to the
observers’ locations (M2L),

4) starting at the highest level nodes and going all the
way down to the leaves, shift and then downsample
(anterpolate [1], [31]) multipole expansions aggre-
gated at non-leaf observer boxes as a result of M2L
(these expansions are then referred to as local expan-
sions) from parent to child boxes (L2L),
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5) convert the resulting local expansions at each leaf
box to particles enclosed therein (L20).

Laplace versus Helmholtz FMM and Ramifications on Paralle-
lization. As alluded to earlier, highly efficient parallel imple-
metations of L-FMM exist [12], [13] in contrast to those for
H-FMM [17], [27], [32], [33]. To understand why, one needs
to examine the underlying mathematics.

e In L-FMV, irrespective of the tree level, the amount
of multipole data needed to be stored at each node in
the tree is identical because the magnitude of a Lap-
lace potential monotonically decreases with distance.

e Due to the constant information content in L-FMM
nodes, the per-level cost of far-field interactions falls
off exponentially, and the bulk (80-90% or more) of the
work in L-FMM is associated with the leaf nodes.
Thus, existing L-FMM efforts have focused on opti-
mizing the computation and masking communication
costs primarily at the leaf level [34], [35], [36], [37].

e In contrast, in H-FMM the amount of multipole data
for a node depends on the level due to the oscillatory
nature of the potential. More precisely, the multipole
data for a parent must be at least four times larger
than that of its children to ensure that the desired
level of accuracy can be obtained. This fundamental
difference leads to major scalability and memory
bottlenecks in H-FMM implementations [1], [15].

e Due to the quadrupling of the information content as
one ascends an H-FMM tree, computational and
memory costs in H-FMM stay constant for each tree
level for surface geometries and halves for volumet-
ric problems. For this reason, advances in parallel L-
FMM do not translate readily to parallel H-FMM
despite significant and sustained research [32], [38],
[39], [40], [41], [42]. The commonly-used local essen-
tial tree (LET) [43] paradigm from the L-FMM litera-
ture fails for H-FMM because the size of the “ghost”
region representing sources residing on other pro-
cesses rapidly exceeds available memory.

Addressing these performance and scaling challenges,
while maintaining high accuracies in potential evaluations,
constitutes the main motivation for the present work.

Related Work. The aforementioned work profile of the H-
FMM octree suggests that any efficient parallelization must
strike a balance between distributing the many lightweight
boxes at lower levels and distributing the work of the few
heavyweight boxes at higher levels across processes. Fur-
thermore, the choice of interpolation/anterpolation method
significantly influences the design of the parallel algorithm.
The existing algorithms address these different scenarios
with different trade-offs. For the purposes of the ensuing
discussion, we note that multipole and local expansions for
any box at level | may be viewed as two-dimensional
Ny(l) x Ng(l) arrays of sampled function values evaluated
at angular points (0;,¢;), i =1,...,Np(l), j=1,..., Ng(I)
on the unit sphere $>={(0,¢) |0 <0 <m, 0<¢ < 27}

At scale, multipole and local expansions of octree boxes at
the uppermost tree levels must be distributed across pro-
cesses to achieve load balance [44]. To reduce the costs of
communication in M2M and L2L for these distributed nodes,
several authors have employed local interpolation techniques
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[33], [45], [46], in which only a small “halo” of nearby sam-
ples are required to compute each new entry of the multipole
or local expansions. However, despite a slightly lower M2M
and L2L asymptotic complexity of O(N,log N,), when com-
pared to exact (“global”) interpolation’s complexity of
O(N,log?Ny,) [47], [48], [49], this approach increases memory
and computational costs due to the need to significantly over-
sample multipole and local expansions, in addition to reduc-
ing the numerical accuracy of the H-FMM. Alternatively, we
propose the use of a parallel version of the global interpolation
method, which has typically remained restricted to the serial
M2M/L2L operations at lower levels of the tree. Though the
global algorithm obviously has higher communication costs,
it does not introduce additional numerical errors, and it facili-
tates optimal (minimum) sampling rates for multipole/local
expansions [27], [50].

Local interpolation based hierarchical partitioning (Hil)
approach distributes expansions hierarchically at the upper-
most levels in block columns, or strips [46]. However, the
M2M and L2L communication costs scale as O(v/N;) per
process, hampering the scalability of the H-FMM evalua-
tion [32]. The blockwise HiP (B-HiP) strategy [33], [51] alle-
viates this bottleneck by distributing expansions in blocks,
whose much lower surface-to-volume ratio results in O(1)
communication costs per process, hence improving scalabil-
ity [52]. In both methods, M2L operations are carried out in
parallel by collecting on each process samples of the remote
multipole expansions required to compute the local expan-
sions it owns. It should also be noted that the increased sam-
pling required by local interpolation hampers the scalability
of the M2L phase, as collecting remote multipole expansions
requires a significantly higher communication bandwidth
compared to a global scheme with optimal sampling rates.

Building on the HiP approach, Yang et al. [17] transition
from hierarchical partitioning to plane-wave partitioning
(PWP) [44] for the highest levels of the tree, using a binary
tree decomposition of the MPI communicator to flexibly
load balance the computation. The PWP approach achieves
zero communication overhead for M2L operations by dis-
tributing expansions at the uppermost levels of the tree by
assigning each process a fixed window of samples for all
expansions at a given level. However, the transition from
HiP to PWP requires expensive communications in M2M
and L2L phases to rearrange the expansions, though this
cost may be justified by recognizing that each node interacts
with at most 8 other nodes to perform the M2M/L2L opera-
tions, while the maximum number of nodes for M2L opera-
tions is 189 (with a volumetric problem).

As previously stated, local interpolation methods are
convenient for parallelization but result in an H-FMM that
is not strictly error-controllable. The principal challenge to a
scalable H-FMM with error control is the communication
cost of distributed global (exact) interpolation. In [15], Mela-
pudi et. al. describe an error-controllable H-FMM based on
global interpolation using a bottom-up partitioning which
gives great flexibility for load balanced partitioning of the
tree. This line of research in H-FMM with global interpola-
tion has continued with the work reported by Hughey et. al.
[27]. The scalability of the algorithm described by Hughey
et. al. is hampered by its coarse-grained parallelization
where all tree nodes are handled by individual processes.
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While this scheme avoids most inefficiencies of the LET
technique, it still fails to leverage the high degrees of paral-
lelism available within the high level tree nodes. As will be
discussed in more detail below, a fine-grained paralleliza-
tion of samples within large tree nodes among multiple pro-
cesses during M2L and complete elimination of redundant
calculations in M2M/L2L phases are the main improve-
ments of this work over that reported by Hughey et. al. [27].

Contribution. In this paper, we build upon our earlier
efforts [15], [27] toward a scalable, error-controllable H-
FMM based on global interpolation. We address several
challenges regarding parallelization and communication,
and we demonstrate an efficient and scalable method for
evaluation of the Helmholtz potential. In particular, our
contributions can be summarized as follows:

1)  Development of a fine-grain parallel algorithm with
bottom-up partitioning that enables scalable evalua-
tion of deep uniform MLFMA trees,

2)  maintain the high level of controllable accuracy shown
in previous global interpolation implementations,

3) a detailed analytical model to characterize the com-
plexity and memory use of the parallel algorithm for
far-field interactions, and

4)  demonstration of the overall algorithm performance
and validation of this performance against our ana-
lytical model for different test scenarios.

3 PARALLEL ALGORITHMS AND IMPLEMENTATIONS

In what follows, we describe details of each stage of the
algorithm. For completeness, we replicate some of the con-
cepts introduced in [15], [27], before delving into details of
our specific contributions. Mathematical formulae and oper-
ators used in this algorithm can be found in [15], [27].

3.1 Tree Construction and Setup

Let NN, denote the number of processes used in the computa-
tion. We initially distribute the IV, particles evenly across all
processes and determine the diameter D, of the cube bound-
ing the entire computational domain. Given the finest box
diameter D(L), the number of levels in the tree is calculated
as the smallest integer L such that L > log,(Dy/D(L)) + 1.
Once the number of levels and therefore the position of the
leaf nodes are known, every particle is assigned a key based
on the Morton-Z order traversal of the tree [53]. A parallel
bucket sort on the keys is then used to roughly equally dis-
tribute particles across processes at the granularity of leaves.
This is done by selecting N, — 1 keys, or “splitters”, which
divide the Morton Z-curve into N, contiguous segments.
Whole leaves are uniquely assigned to processes using these
splitters. Given a contiguous segment of leaf nodes, each pro-
cess determines all ancestor keys of its leaves up to the root.
The leaf through ancestor nodes are used to construct the
local subtree. A simple method of storing the local subtree is
as a post-order traversal array. To quickly access any node,
we use an indexer into this local subtree array.

Plural Nodes. Despite the non-overlapping partitioning of
leaf nodes, overlaps among different processes at the higher
level nodes are inevitable (and in fact, are desirable) as shown
in Fig. 2. Details and associated proofs on such partitioning
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Fig. 2. Parallel farfield MLFMA.

can be found in [15]. We call such nodes shared by multiple
processes plural nodes. While there are no limitations to the
number of processes that can share a plural node, we desig-
nate a particular process, i.e., the right-most process sharing
the plural node in the MLFMA tree, as its resident process. We
refer to the resident process’s copy of a plural node as a shared
node and copies residing on other processes as duplicate nodes.
We call the set of processes that own these duplicate nodes
users of the shared node, denoted by U(s), where s is the
shared node.

One notable advantage provided by plural nodes is that
storage of the node is split between multiple processes. In
this case, the indexer additionally stores which slice of a tree
node the current process actually stores in its local subtree
array. As the information content for a node is not available
to any single process in its entirety, a fine grain paralleliza-
tion is necessary to perform computations associated with
plural nodes. We note that a process can have at most two
plural nodes per level in its local tree (essentially one to the
“left”, and another to the “right”); for proof see [15].

3.2 Parallel Evaluation
321 C2M

C2M is unchanged from our previous works [15], [27]. As
each process is assigned a contiguous segment of whole leaf
nodes, each process handles the C2M phase for its assigned
leaf nodes in parallel independently.

322 M2M

In a nutshell, M2M creates multipole expansions of non-leaf
boxes from the multipole expansions of their children. This
first requires multipole expansions of all children to be inter-
polated to the size of the parent box using fast Fourier trans-
form (FFT) interpolation. Next, each interpolated child
expansion is shifted from the center of the child box to the
center of the parent box. Finally, multipole contributions of
every shifted child box are aggregated to form the multipole
expansion for the parent box.

M2M computations start at the leaf level and proceed
upwards in the tree following a post-order traversal of the
local tree. Our parallelization of M2M depends on the level
of the node and is described in Algorithm 1. The approach is
as follows: i) Non-plural tree nodes (typically found at lower
levels of the tree) are handled by their owner processes in
parallel independently, ii) for plural nodes without any plu-
ral children, interpolation and shift steps for child nodes are
performed sequentially, and the aggregation step is per-
formed as a reduce-scatter operation among processes shar-
ing the plural node, iii) plural nodes with plural children
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Fig. 3. Graphical illustration of the transposition and folding operations during fine grained parallel interpolation of multipole data of child node ¢ to
parent node p for Ny = 3, N, = 4 (for ¢) and M, = 5, M, = 6 (for p) using 3 processes each of which owns a column of the initial multipole data as indi-
cated by the hashmarks. Multipole data from (a) is interpolated along the ¢ dimension locally, leading to the multipole expansions in (b). The folding
operation acting on the interpolated data is shown by the repositioning of the data as in (c). The hash marks show how the folded data is stored on
the wrong processes, and must be communicated to the correct process as shown in (d). With the entire multipole data columns in the 6 direction
being available on each process, another set of interpolations are performed locally (e), which is then transposed and folded to yield the final multi-
pole expansions (f). A final communication step is needed to send each 6 vector to their owner processes (g) which can then be shifted to the center
of the parent box and added to the parent’s multipole expansions in accordance with the spherical symmetry condition.

(which typically are located at the higher levels of the tree
and incur significant computational and storage costs) are
processed using a fine-grained parallel algorithm that we
discuss in more detail below.

Algorithm 1. Multipole-to-Multipole Interpolation

Require: p.center coordinates of the parent box center
Ensure: pmp is parent’s multipole representation
1: for each box p in post-order traversal do

2:  for each child box ¢ do
3 if ¢ is plural then
4 mp|c] < parallel_interpolation(c)
5: else
6: mplc] « serial_interpolation(c)
7 end if
8: smp|c| < shift(mp, p.center)
9: end for
10:  if pis plural then
11: reduce_scatter(smp, users(p))
12:  else
13: for each child box ¢ do
14: aggregate(pmp, smp|c])
15: end for
16: end if
17: end for

Fine-Grained Parallel Interpolation. For plural nodes that
necessitate fine-grained parallelization of M2M, the multi-
pole data of the child nodes needed for FFTs are themselves
split among multiple processes as indicated in Algorithm 1.
Prior to elucidating our parallel algorithm, we note that our
M2M implementation uses a Fast Fourier Transform (FFT)-
based interpolation over the uniformly spaced multipole
expansions of the child nodes [48]. FFT-based interpolation
on the Fourier sphere requires equispaced samples along ¢
(vertical) and ¢ (horizontal) directions. Due to the inter-
dependencies of the FFT algorithm, there is no way to parti-
tion the data so as to avoid communication.

Our approach is as follows: First, each process is assigned
a (roughly) equal number of contiguous columns of multi-
pole data (which correspond to groups of samples along the
¢ direction). The operation begins with a set of independent
FFTs along these columns for interpolation in the ¢ direction,
performed the same as in [48]. Then, the interpolated col-
umns are shifted into rows (see Fig. 3), transposing and fold-
ing the samples in the # direction into individual columns.

The next step with serial processing would be FFT interpola-
tion in the 6 direction, but this data is split between processes
sharing the plural node. Therefore, each process is communi-
cated the 0 samples they need to complete their assigned col-
umns using an MPI_Alltoallv collective call. Now that
each process is storing full columns of 8 samples, these multi-
pole data can be interpolated. The fully-interpolated multi-
pole data is transposed and folded back to its original form
(¢ samples along columns, 6 samples along rows). The data
are again communicated back to the processes that own the
corresponding multipole samples via another MPI_All-
toallv. These major steps are illustrated in Fig. 3.

Shifting of Interpolated Data. Shifting of multipole data is
simply the translation of the interpolated samples from the
child node’s center to the parent node’s center. Translation
of each multipole data is independent of others and trivially
parallelizable even in the case of fine-grained parallel M2M.

Aggregation. Aggregation requires adding all correspond-
ing samples from each interpolated and shifted child node
together to form the multipole expansion of a parent node
(step (g) in Fig. 3). When children are owned by separate pro-
cesses (as is the case for plural nodes), reduction communica-
tions are required. Note that in fine-grained parallel M2M for
a plural node, each process owns only a portion of the parent
node’s multipole data. A reduce/scatter operation (for
instance using MPI_Reduce_scatter) could perform both
the aggregation and distribution of the appropriate portions
of the aggregated multipole data to the processes sharing a
plural node. One complication here is that the reduce/scatter
operation would require memory to be allocated to the full-
size of the parent node by each user process through pad-
ding the parts not owned by a process with Os. Clearly, this
would lead to significant memory and computational over-
heads, especially at the highest levels of the H-FMM tree
(due to the large sizes of the plural nodes there). Therefore,
we opt for a custom point-to-point aggregation scheme
where the interpolated and shifted multipole samples from
child nodes are communicated directly (via MPI_Send and
MPI_Recvs) to the process that owns the corresponding
samples of the parent node. If the source and destination are
the same process, obviously no communication is per-
formed. Each process sharing the parent node then adds up
the corresponding multipole samples it receives from each
child node, local or communicated. This method reduces
both the amount of temporary memory necessary for aggre-
gation and the overall communication volume.

Authorized licensed use limited to: Michigan State University. Downloaded on August 02,2022 at 14:35:13 UTC from IEEE Xplore. Restrictions apply.



3656

Realigned

Process Ordered
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Fig. 4. This image shows how multipole samples, ordered clockwise
starting at 12 o’clock, are assigned to processes owning the children
nodes (C1-C5) overlap with processes owning the parent node (P1-P5)
when assigned in process rank order on the left, and with our realign-
ment scheme on the right. The darker portions on the parent samples
show the regions where the parent node data overlap with the child node
data, and are essentially local data that do not require communication.

Process Alignment. In fine-grained parallel M2M, perfor-
mance impact of how the multipole data of child and parent
plural nodes are mapped to processes sharing those nodes
also needs to be considered. From the description of our cus-
tom point-to-point aggregation scheme above, it is evident
that increasing the overlap of the multipole sample regions
owned by a process in the child and parent nodes is critical
for reducing the communication volume. As an extreme
example, if a process owns no samples in the parent node that
correspond with any of the samples it owns in the child node,
all its interpolated and shifted child node samples would
have to be communicated to another process for aggregation.
In fact, this extreme example is not uncommon when multi-
pole data of a node is simply partitioned into blocks and
mapped to user processes according to their process ranks.
This situation is illustrated on the left side of Fig. 4; some pro-
cesses own samples of a parent node that has no overlap with
the samples they own in the child node. Specifically, while
process 1 owns overlapping samples in the child and parent
nodes, process 2 and 3 own no overlapping samples.

As a heuristic to minimize the communication volume,
we order processes within a parent node such that the parent
node samples are assigned by following the priorities below
to ensure maximal overlap with their child node samples:

1) Index of the lowest sample they own in the child

nodes (lower comes first),

2) number of samples they own in the child nodes

(fewer comes first),

3) process rank.

In the example given in Fig. 4, both process 1 and process
3 own samples with index 0 in the child nodes, but process 3
has a smaller number of samples so it is assigned the first
portion of the parent node samples with process 1 being
assigned the second portion. Following processes 3 and 1,
process 4 owns the multipole sample with the lowest index
in the child nodes, followed by process 2, and then process
5. As such, remaining portions of the parent node samples
are assigned in this order. As can be seen in the figure, all
samples each process owns in the parent node fully overlap
with samples that they own in the child nodes, despite the
non-uniform layout. With the proposed process alignment
scheme, process 3 will still need to communicate some sam-
ples to process 1 for aggregation, but over half of the child
samples interpolated by process 3 remains local. Note that
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Fig. 5. A translation operation between two plural nodes shared by differ-
ent numbers of processes.

with the straight-forward ordering of processes by their
ranks, the entire child data interpolated by process 3 would
have to be communicated to processes 1 and 2. In the new
scheme, all processes use interpolated samples from their
part of a child node without having to communicate. While
this scheme would work best with a perfectly balanced tree,
this approach will still be effective in reducing the commu-
nication volume during aggregation with any tree structure.

323 M2L

The M2M step builds the multipole expansions of all tree
nodes owned /shared by a process, starting from leaves all
the way up to the highest level of computation. During M2L
each observer node loops through all source nodes in its
far-field and translates the source multipole data to its
locale, aggregating the effects from all its far-field interac-
tions in the process. When the source-observer node pair is
on the same process, this interaction is handled purely
locally. However, when the source node data is on another
process (or a set of processes), one needs a load balanced
algorithm that is communication efficient.

To understand the scope of the problem, consider Fig. 5.
Here, the source node is a plural node shared by three pro-
cesses (51, S2 and S3); the observer node is shared by two
processes (O1 and O2). Multipole samples for both are
shared starting at the top of each circle and increasing clock-
wise (consistent with the process alignment scheme utilized
during M2M). Process S1 and O1 both own multipole sam-
ples with the lowest indices, with S1 having less samples
than OI1. For this far-field interaction, S1 would need to
send all samples that it owns to O1. S3 and O2 both own
samples with the highest indices; here S3 would need to
send all of its samples to O2. Finally, S2 owns samples that
are needed by both O1 and O2, therefore S2 must send half
of its samples to O1 and the other half to O2. Since each
node in the H-FMM tree interacts with several others (=27
for surfaces and up to 189 for volumes) each of which may
be shared by a varying number of different processes, it is
evident that coordination of all communications that must
take place during an H-FMM evaluation is non-trivial.

In an initialization step before the actual M2L operations,
all processes discover the owner process(es) of the tree
nodes (i.e., observers) which will need the multipole data
for the source nodes they own, given the partitioning of leaf
nodes (for load balancing purposes) and process alignments
for plural nodes. This pre-calculated list is formed to carry
out the actual communications that will take place during
the ensuing H-FMM potential evaluations. If a source node
or the corresponding observer node is plural, then the pre-
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calculated communication list will include only the intersec-
tion of the multipole data owned by both the source and tar-
get processes. When a source node on a process is needed by
multiple observers on another process, it is sufficient to
include the source node in the communication list to that
other process only once. Also, multipole data for multiple
source nodes residing on one process that are needed by
another can be combined into a single message in this com-
munication list, even if the source nodes are at different lev-
els. Note that the tree structure in most H-FMM applications
are fixed. As such, the overheads associated with such an ini-
tialization stage is minimal.

Algorithm 2. M2L Translation

: Determine the intersection of data owned by both source
and target.

2: procedure M2L

3: for each source box do

4: for each farfield interaction target do

5

6

7

—_

if Target box is not local then
for each process sharing target box do
Add source multipole data in union of data owned
by both source and target to buffer.

8: end for

9: end if
10: end for
11:  end for

12:  Communicate buffers between processes.
13:  for each target box do

14:  for each farfield interaction source do

15: if Source box is local then

16: Load source multipole data from local memory.

17: Translate source multipole data to target and add to
existing translated data for target node

18: else

19: for each process sharing source box do

20: Read source multipole data from communication.

21: Translate source multipole data to target and add to

existing translated data for target node

22: end for

23: end if

24: end for

25:  end for

26: end procedure

While far field interactions between plural nodes (which
constitute the most expensive communications in an H-FMM
evaluation) could be carried out using all-to-all communica-
tions that involve only the users of the two corresponding plu-
ral nodes, due to the excessive number of M2L interactions
present in large-scale computations (and hence the large num-
ber of different communicators that must be created), we
choose to perform these communications using non-blocking
point-to-point send/recv operations (i.e., MPI_Isends and
MPI_Irecvs) in the default global communicator. Another
reason for opting for a point-to-point scheme is that there are
significant differences in the amount of data that must be sent
to one process compared to another. As part of the initializa-
tion step then, each process allocates a message buffer for
every other process that it will communicate with. The size of
the send buffer is limited to avoid excessive memory use and
maximize communication overlap.
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To perform communications during M2L, every process
first fills their send buffers for each process based on the pre-
calculated communication list and initiates the message
transmission using MPI_Isends. Immediately after initiat-
ing the sends, each process starts waiting for their expected
messages using MPI_Irecvs. The status of these communi-
cations are checked periodically. Computations are over-
lapped with M2L communications in two ways. First, blocks
of translations that are entirely local (which is actually com-
mon at the lower tree levels) are processed while the non-
blocking send/recvs are taking place. Second, translation
data that is detected as received during the periodic checks
are applied immediately, overlapping the corresponding
computational task with communications underway. Due to
the limit we impose on the message buffer sizes, communica-
tions with processes that involve a large amount of data
transfer need to be performed in multiple phases. Hence,
upon reception/delivery of a message from another process,
if there is more data to be transferred, a new non-blocking
recv/send operation is initiated.

Translation Operators. Source node data is translated to
the target node by multiplying it with a translation operator.
The translation operators can be pre-calculated to reduce
computational costs. As these can potentially take signifi-
cant memory, we limit such memory use by each process by
having them store the pre-calculated operators only for
translation of the local and remote samples that they will
actually need. This information can be determined from the
pre-calculated M2L communication list. In case the memory
available is not sufficient to store the needed operators, we
use techniques outlined in [27] to sample and interpolate
translation operators.

324 L2L

To anterpolate and distribute the translated local expan-
sions down to the child nodes, L2L applies the operations in
M2M in reverse order. First, local expansions at the parent
node are shifted to the center of each child node, they are
then anterpolated and percolated down the tree. Finally, the
anterpolated data is aggregated with local expansions pre-
viously translated to the child node during the M2L stage.
Much like M2M, L2L is parallelized in three different
ways: i) Non-plural parent tree nodes at the lower tree levels
are processed independently in parallel by their owner pro-
cesses, ii) for a plural node with a non-plural child, shifts
involve communications, but the ensuing anterpolation and
aggregation (with translated local expansions) are performed
sequentially by the owner of the child node, iii) plural nodes
with plural children require fine-grained parallelization.
Shift. In a parallel shift operation, parent node samples
corresponding to those of the child node must be communi-
cated by the processes sharing the parent node to the pro-
cess(es) owning the child node. This is most easily done
before the data has been shifted, as the parent will not need
to know the position of the child node. In case of plural par-
ent and non-plural child, this communication would essen-
tially be a gather, and in case of plural parent with a plural
child, it would be an all-to-all, in both cases involving all
processes sharing the parent node. However, only a subset
of the processes sharing the parent node will actually share
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the child node. To avoid non-trivial issues that would arise
from having to coordinate several collective calls among dif-
ferent subsets of processes, we again resort to point-to-point
communications instead. Consequently, messages are only
sent from processes owning a piece of the parent node to a
process owning the corresponding piece of the child node.
Once a process gathers all of necessary samples of the par-
ent node, it applies the shift operation to all its multipole
samples independently.

Anterpolation. Anterpolation would have to be performed
in parallel only if the child node is a plural node. The proce-
dure for parallel anterpolation is exactly the same as that of
the parallel interpolation, except that the number of multi-
pole samples is reduced (rather than increased).

Aggregation. Aggregating the shifted and anterpolated
parent data with translated local expansions is trivial. Even
in the case of plural child nodes, all required data is already
available locally.

325 L20

As in C2M, each process handles the L20 computations of
its assigned leaf nodes in parallel independently.

4 COMPUTATIONAL AND COMMUNICATION
COMPLEXITY ANALYSIS

In this section, we analyze the asymptotic computational
and communication complexity of the parallel H-FMM
algorithm described above. To simplify the analysis, we
focus on two extreme cases, a 2D surface represented by
points on a regularly spaced planar grid (dimension d = 2)
and a 3D volumetric structure represented by points on a
regularly spaced cubic grid (d = 3). These represent extreme
cases, and hence are ideal for asymptotic analysis.

Denote the multipole truncation number at level [ as
K(l) « kD;, where k is the wavenumber in the simulation
medium and D; is the diameter of a box at level [. Observe
that the total number of samples in (0, ¢)-space is of order
O(K(1)*). All FMM algorithms are constructed such that the
only operators that depend on particles are C2M and L20,
the operations of M2M, M2L and L2L only depend on the
existence of the leaf node [54], [55], [56], [57]. As such we
assume that each leaf node contains O(1) samples. It follows
that the number of leaf nodes is < N,, the number of source
points. For simplicity and with no loss in generality, we
assume that the constant of proportionality is 1. Next, we
denote the number of nodes at level [ by G(I). The total
number of levels is given by N;. As one moves up the
octree, we observe that the number of groups per level is
reduced by roughly 4 times for the 2D surface and 8 times
for the 3D volume. Leveraging the relation between the
dimensionality of a structure and the rate of decrease in the
number of nodes per level, one can write G(1) as follows:

N

G) = i

(3)

Since K (I) doubles at each level, given K (1) = C}, it follows
that

K(l) =2, 4
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Finally, we define P as the number of processes, P, as the
level where (almost) all nodes in a level start becoming plu-
ral and Py(!) as the average number of processes sharing a
plural node at level /. Equivalently, P, is the level when
G(Pr) < P for the first time, and this remains true from
hereon to the root. Given P, N, and d,

dy(-1)
Pyll) :%:%. ®)

4.1 Interpolation (M2M)

Computational Complexity. M2M is performed for each node,
starting from the leaf level up to the highest level N;. The
dominant component in the computational complexity for
M?2M is FFT-based interpolation. Shifting and aggregation
are O(K(l)*) operations each, while interpolation for a given
node costs O(K (1)*log?(K(1))). This gives a total computa-
tional complexity of

Np,
C oY GIE(1)log*(K(1)). (6)
=1

Plugging in the Equations (3) and (4) and simplifying the
summation, we obtain the computational complexity for a
surface to be

C x O(N,og?N,), (@)
and for a volume to be:
C o< O(Ny). (©)

Number of Messages (Latency). Communication in M2M
happens during aggregations for both coarse-grained and
fine-grained parallel M2Ms, as well as the FFTs of the fine-
grained parallel M2Ms. As described in Section 3.2.5, we
perform aggregations (which are effectively reduce-scatter
operations) using point-to-point communications. In an ideal
tree, every source and observer node will be divided among
the same number of nodes. This means the portion of a
source node owned by any process will only be owned by a
single process in the observer node, limiting the communica-
tion for each source node process to one process in each
observer node. Since this is done for each group at each level,
the total message count for aggregations becomes

Ny,

Mag o< Y G(I)Py(1+1). ©)

Pr,

Using expressions for Py(l + 1) and G(!), yields the number
of messages for aggregation

My, = O(Plog (N,)29). (10)
Here, we ignore aggregations that would be needed for plu-
ral nodes (located at process boundaries) below level Pj.
Note that there may only be two such plural nodes per level
for each process and these aggregations will involve only
two processes. As such, their contribution to the number of
messages during aggregations is of a lower order term.
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Next, consider the parallel FFTs in fine-grained parallel
M2Ms. In this case, an all-to-all communication is per-
formed after each of the two fold and transpose operations.
As we implement these all-to-all communications using
point-to-point calls, the message count for FFTs is then

Mppr = Z G(I)Py(1)* o« O(P?). (11)
=Py,
Consequently, the total number of messages for M2M is
Mo = O(P? + Plog (Ny)). (12)

Note, the N, portion of the equation above is only going to
matter when Py is greater than the number of levels in the
tree. In all other cases, increasing the height of the tree does
not increase the number of levels with plural nodes. Given
that it is practically useless to have more processes than the
number of leaf nodes (which is the condition required for
Py, to be more than the tree height), the message count can
be simplified to My = O(P?).

Communication Volume (Bandwidth). Bandwidth during
interpolation is due to all to all communications during inter-
polation, and a reduce scatter during the aggregation. Each
of these operation communicates up to the entire node,
resulting in a bandwidth that can be written as

B Y GK(1)’
=1

Applying the previous definitions for G(I) and K (!) yields a
communication bandwidth of

13)

B o Nilog Ny, (14)
for the surface geometry, and
B o N, (15)

for the volume geometry.

4.2 Translation (M2L)

Computational Complexity. The complexity for the translation
operation at a given level is directly proportional to the
number of multipole samples for nodes, the average num-
ber of interactions per node (denoted by I(I) for level /), and
the number of nodes at that level. Summing these costs
across all levels, we obtain

AVL
C o Y KW’ING(
=1

While the number of interactions for a node changes based
on its exact position in the geometry (for instance, corner or
edge nodes), the upper limit is the constant 6/ — 3?. Using
the equations for K(l) and G(l), computational complexity
of the translation step can be simplified to

(16)

O(Nlog Ny), 17
for the surface structure, and to
O(N,), (18)

for the volume structure.
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Number of Messages (Latency). At level Pp, or above, a pro-
cess can have multipole samples for only one node. Since a
process owns at most part of a single node, each of its inter-
actions will require a separate communication because the
nodes in its far-field will all reside on different processes.
Assuming an ideal tree partitioning where the source and
target nodes are shared among the same number of pro-
cesses, the kth process for the target node will only need the
source node data from the kth process of the source node.
As we limit the size of each translation message, the number
of messages will then be proportional to the communication
volume between a pair of processes divided by the message
buffer size Mg. At levels below Pr, a process can own multi-
ple nodes. Here groups of nodes can be communicated to
the same process, if all source nodes reside on one process
and all observer nodes reside on another. In this case, the
interaction count is going to be based on the total amount of
data communicated between the two interacting processes,
divided by the message buffer size, summed up for all inter-
acting processes.

Considering contributions at/above P and below Pr
gives a total message count of

M o ZPI

lP=L17l K(l)2 %“ (19)

PNMS + PI(1) { s

where Mg is the size of message buffers. For the surface
geometry, this can be simplified to M o O(Nlog N;) +
O(Ny) (where the first term is for levels > P and the second
term is for levels < Pp), and for the volume geometry it can
be simplified to M « O(Nj) (with both below and above Py,
having the same impact).

Communication Volume (Bandwidth). Communication vol-
ume can be analyzed in two parts as well. At and above Py,
all multipole data for every source node must essentially be
communicated to every target node as no process contains
any multipole data other than its own. Even if the number
of processes increases, still the same amount of data needs
to be transmitted, just among an increased number of nodes.
Therefore, for level at or above P;, the communication vol-
ume is independent of the number of processes

(20)

This expression simplifies to O(N,log N;) for the surface
geometry and to O(NV;) for the volume geometry.

Below Pp, each process will own more than one node,
nodes will be interacting with nodes on the same process,
or multiple nodes owned by a neighboring process. In fact,
only nodes within two nodes off the edge of process bound-
aries will require communications with other processes.
Total communication bandwidth can then be expressed as

Pr—1

BocZPK

where Sy is the number of nodes that have nodes in its far-
field from at least one (out of the 8 possible neighboring pro-
cesses for the surface and 26 for the volume) other processes

2(Sw), (21)
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d-1
touching them and can be represented as Sy :% L

%’((zd)\[ﬁ) T . With this definition of Sy, the total communi-

cation volume for M2L below P; becomes

B x O(Ny), (22)

for the surface, and

B O(ND), 23)

for the volume, due to the lower portion of the tree
dominating.

4.3 Anterpolation (L2L)

As mentioned before, L2L is the reverse operation for M2M.
Similar to M2M, anterpolation dominates the computa-
tional complexity for L2L. Computational complexity for
anterpolations is the same as that of interpolations, so L2L’s
computation complexity is the same as M2M’s. Likewise,
communications performed are the same but in reverse
order. Therefore, the latency and bandwidth costs of L2L are
the same as those of M2M.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the parallel
H-FMM algorithm described. All results were obtained
on the Cori-Haswell supercomputer at National Energy
Research Scientific Computing Center (NERSC). Each node
on this system contains two sockets with Intel Xeon E5-2698
v3 (Haswell) processors clocked at 2.3 GHz. Each node has
32 cores and 128 GB 2133MHz DDR4 RAM. The Haswell sys-
tem uses the Cray Aries with Dragonfly topology intercon-
nect network. The code is implemented in Fortran 90 using
only MPI parallelization and was compiled with the Intel
compiler, version 19.0.3.199. The Cray-FFTW library, version
3.3.8.4,1is used for all FFT operations.

The runs here focus on the timing of the M2M, M2L and
L2L phases of the tree traversal. As discussed in Section 4,
operations in these phases only depend on the existence
and location of the leaf nodes. Thus, we simply populate
each leaf node only with a single unknown, effectively
bypassing the near-field, C2M and L2O processing steps
which are not prone to scaling bottlenecks anyway, allow-
ing us to focus on the high frequency portions of the tree
where nodes become too large to efficiently manage on a
single process. For work that includes the lower frequency
regions of the tree, see [27]. We note that this actually makes
the number of unknowns being processed much smaller
than what could be processed by M2M, M2L and L2L in the
same amount of time when analyzing actual physics as in
[27], and it makes the overall parallel scaling of our imple-
mentation look lower than what it would be in practice. In a
typical 0.25) leaf box (as we use in the runs below) with a
0.1 X discretization rate, one could potentially have any-
where between 100-180 particle per box. Our largest tree
being processed is 14 levels with 42 million points for one
point per leaf box. If the leaf nodes were fully populated,
this tree would be equivalent to processing a tree with 4.2 to
7.5 billion points. Populating leaf nodes would increase the
time of the C2M and L20O steps, but have no impact on the
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execution times of the M2M, M2L and L2L phases. Addi-
tionally, all runs use the same 6 and ¢ discretization as set
by the 0.25) leaf box size and an oversampling rate of x =
1.1, see [40], [50].

Numerical results from all runs were checked against
results in our previous work [27] to verify the only differen-
ces were due to floating point precision, and the previous
work showed the results to be error controllable with
respect to the analytical solution. We note that this previous
work of ours [27] addressed the load balancing issues in H-
FMM for highly non-uniform geometries. Here, we mostly
focus on improvements to parallel processing of higher
level nodes and the complexity analysis of the algorithm.
Thus, we perform our numerical experiments on uniform
geometries to verify that the proposed techniques are per-
forming optimally with respect to the expected complexity.

For all runs testing an increasing number of processes,
the first run is performed with the lowest number of nodes
that can execute the geometry without an out of memory
exception using 32 processes per node (1 process per core).
Processes are assigned to cores using srun, with —cpus-per-
task set to 1 and —nodes set to the number of processes
divided by 32. The number of processes are increased by
increasing the number of nodes used, while maintaining 32
processes per node.

5.1 Load Balance With the Fine Grain Parallel
Algorithm

The intent of the fine-grain parallel algorithm is to provide
improved balance at the upper tree levels where a small
number of large nodes reside. First, we look at the perfor-
mance of a planar grid of particles (in the z = 0 plane) of
dimensions 512\ x 512\ with a grid spacing of A/4 and
4,194,304 particles in total. The box size is chosen to be
0.25), resulting in a 12-level tree with 10 levels of computa-
tion. As seen in the upper subfigure of Fig. 6, the resulting
execution profile is very balanced across process ranks. Exe-
cution time of the fastest to the slowest process varies by
only 1.43%. Balance of total time can be a little misleading
as M2L cannot progress until all processes that a given pro-
cess interacts with completes their M2M stage. However,
M2M execution times are also very balanced, varying from
slowest to fastest process by 5.23%.

Next, we look at the performance for a sphere of diame-
ter 384\ discretized using 4,542,208 dipoles on the surface
with a leaf box size of dy = 0.25), yielding an 11-level tree.
This geometry is less balanced than the grid (see the lower
subfigure of Fig. 6) as high level nodes can range from having
no children due to no particles being in that part of the geom-
etry at the leaf level, up to having a completely filled quad
tree from the leaf level up to a high level node. This results in
notable imbalance in M2M, which as discussed before,
results in delays in M2L execution. Note that while there are
no explicit barriers between phases, there is an implicit bar-
rier at the beginning of M2L processing, as an M2L interac-
tion communication cannot proceed until both interacting
processes have completed their M2M phases (though the
faster process can perform local translations while waiting).
Another (less significant) implicit barrier occurs at the begin-
ning of L2L where nodes that are fully owned by a process
must have all of the data from the translated parent node to
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Fig. 6. Process execution times for a grid and a sphere geometry.

perform anterpolation on this parent node. The M2M execu-
tion range from the fastest to the slowest processes varies by
as much as 84.5%. Despite this imbalance, long execution
times are not clustered among a small group of processes as
one would see if each of the highest level tree nodes were to
be handled by a single process without fine-grain paralleliza-
tion. Even in this unbalanced geometry, the fine-grain paral-
lel algorithm is helping to maintain a good load balance
across processes.

5.2 Scalability

Next, we investigate the strong scaling efficiency of our par-
allel Helmholtz FMM algorithm, first on a surface and then
on a volumetric structure. In this section we focus on very
uniform geometries to simplify comparison of estimated
complexities with measured performance. For previous
analysis of non-uniform geometries, see [1].

For the 2D surface structure, we use the same 512\ x
512X planar grid as above. As our base case for strong scal-
ing efficiency, we use the performance on 128 cores because
this is the smallest number of cores that this problem can be
executed on due to its memory requirements. As seen in
Table 1, both the interpolation and anterpolation phases
(M2M and L2L) perform very well with the increasing process
counts, while M2L’s performance falls off rapidly (down to
25% efficiency on 2,048 cores). There are a couple of factors
that contribute to this difference we observe in scaling charac-
teristics. First factor is that M2M and L2L incur significant
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communications only at the highest level nodes, while M2L
communications occur at every level where the source and
observer nodes are on separate processes, which may essen-
tially happen all the way down to the leaf nodes. Second, and
more importantly, M2M and L2L computations involve rela-
tively computation-heavy FFTs in between its communication
steps. When the number of nodes in a level exceeds the num-
ber of processes, no process can own both a source and
observer node of any translation, so all node data must be
communicated. As the number of processes approaches the
number of leaf nodes, the M2L communication bandwidth
asymptotically approaches the worst case estimate. This
means the increase in M2L bandwidth exceeds the worst case
estimate increase as the number of processes approaches the
number of leaf nodes. Despite M2L not scaling very well, the
fine grained parallel algorithm presented still provides good
speedups, nearly an 8x speedup when going from 128 to 2,048
processes without showing any performance stagnation.

Next, we examine strong scaling on a 32\ x 32X x 32\ vol-
umetric structure (Table 2). From 128 to 512 processes, we
observe very good scaling (80% overall efficiency), but then
parallel efficiency drops off quickly (down to 50% at 2,048
cores). In a volumetric problem, each tree node has a large
number of nodes in its far-field (up to 189). Therefore the over-
all execution time is largely dominated by the M2L stage
which does not manifest good scaling. The ideal scenario for
our algorithm is when the nodes of a given level are distrib-
uted evenly among processes, i.e., when the number of pro-
cesses divides evenly into the number of nodes in a level or
vice versa. This does not occur at 1,024 or 2,048 processes for
this particular problem. Nevertheless, the overall speedup
remains at around 8x when going from 128 to 2,048 processes.

Finally, we look at scaling on the 384\ sphere (Table 3).
As seen in the load balance analysis of the previous subsec-
tion, load imbalances result in the faster processes having to
wait for slower processes. This results in a noticeable drop
in scaling efficiency of the M2M phase, where the imbalance
has the greatest impact, as well as the M2L phase, where
some processes that are already in their M2L phase have to
wait for others that are still in their M2M phase. This also
has an impact on the overall speedup. While increasing the
number of processes continues to improve execution times,
the speedup when going from 128 to 2048 processes is just
under 5x in the sphere case.

5.3 Complexity Analysis

To help validate the complexity analysis presented in Sec-
tion 4, the software was instrumented to report the compu-
tational cost, the number of messages sent and the size of

TABLE 1
Performance of the MLFMA Algorithm on the 512X Grid Geometry

Grid (s) Speedup Par Eff. (%)
N, M2M M2L L2L Tot Tot M2M M2L L2L Tot
128 5.80 5.30 5.30 18.55 1.00 1.00 100 100 100
256 3.06 4.13 2.66 11.21 1.65 0.95 64 99 83
512 1.52 2.76 1.31 6.42 2.89 0.95 48 101 72
1024 0.81 2.12 0.69 4.05 4.58 0.89 31 95 57
2048 0.43 1.31 0.37 2.38 7.78 0.84 25 89 49
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TABLE 2
Performance of the MLFMA Algorithm on the 32X Volumetric Geometry

Volume (s) Speedup Par Eff. (%)
N, M2M M2L L2L Tot Tot M2M M2L L2L Tot
128 0.527 2.15 0.526 3.26 1.00 1.00 100 100 100
256 0.266 1.10 0.263 1.68 1.94 0.99 97 99 97
512 0.14 0.679 0.135 0.99 3.27 0.93 79 97 82
1024 0.079 0.380 0.084 0.574 5.68 0.83 71 78 71
2048 0.051 0.271 0.058 0.406 8.03 0.65 50 57 50
TABLE 3
Performance of the MLFMA Algorithm on the 384\ Diameter Sphere Geometry
Sphere (s) Speedup Par Eff. (%)
N, M2M M2L L2L Tot Tot M2M M2L L2L Tot
128 6.71 13.54 5.29 26.76 1.00 1.00 100 100 100
256 3.86 10.05 2.7 18.00 1.49 0.87 67 97 74
512 2.34 6.20 1.46 11.04 242 0.72 55 91 61
1024 1.23 4.32 0.72 7.70 347 0.68 39 92 43
2048 0.92 3.19 0.416 5.58 4.79 0.46 26 79 30
& M2M/L2L Est = M2M Act
== L2L Act o= M2L Est & M2M/M2L/L2L Est = M2M Act
=+ M2L Act == L2L Act - M2L Act
1012
E 1011 |
101 ;
8 i 10%0 =
g I ;
& 1010 g [
o F 109
10° £ N i
B 10°
L | [N [N O L 2 1 | | - 1
0.15M 1.5M I15SM 0.15M 1.5M I15SM
Particles Particles

Fig. 7. Actual versus estimated computational complexity. The left subfigure shows results for the surface geometry, while the right subfigure is for the

volume geometry.

these messages. In accordance with the geometries analyzed
in Section 4, data was collected on the grid geometries rang-
ing from 64\ to 1024 and volume geometries ranging from
16X to 16 to as these geometries produce perfect quadtrees
of heights ranging from 9 to 13 levels and octrees of heights
ranging from 7 to 11 levels, respectively. As complexity esti-
mates are asymptotic, they are scaled by least-squares fit to
help visualize how well the estimates match the actual
measurements.

Fig. 7 shows the actual versus the estimated overall
computational complexities for the surface and volume
geometries. Note that the computational complexity for the
M2M and L2L phases for a surface was given in Eq. (7), and
for a volume in Eq. (8). Similarly, the computational com-
plexity for the M2L phase for a surface was estimated in
Eq. (17), and for a volume in Eq. (18). The actual complexities

match the estimates very closely. This indicates that the
implementation of this algorithm does not have any unnec-
essary overhead costs in computation as computation is near
to the ideal for Helmholtz FMM.

Fig. 8 shows the actual versus the estimated communica-
tion volumes for each phase separately. Estimated commu-
nication volume for the M2M and L2L tree traversal phases
for a surface geometry is shown in Eq. (14), and for a vol-
ume geometry in Eq. (15). Estimated communication vol-
ume for the M2L tree traversal phase for a surface geometry
is shown in Eq. (22), and for a volume geometry in Eq. (23).
Of note is how the measured communication volume drops
off relative to the estimate. We believe this is due to the
number of samples producing a tree with more nodes at
lower levels than the number of processes. Hence, many
nodes are fully owned by a single process and require no
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communication during M2M or L2L. Increasing the number
of processes would lead to more levels with plural nodes,
bringing the communication volume closer to our estimates.
M2L does not show the same communication volume falloff
as M2M and L2L compared to the estimated volume
because fully owned nodes still require data from the source
nodes to be communicated to the process owning the
observer node. Such communications will be required all
the way down to the leaf nodes.

Fig. 9 shows the measured worst case messages versus
the estimated worst case messages for M2M and L2L. Esti-
mated message count for the M2M and L2L tree traversal
phases is shown in Eq. (12). Estimated message count for
the M2L tree traversal phase for a surface geometry is
shown in Eq. (19). M2M and L2L Message counts are domi-
nated by the P? complexity of the all to all communications
and the actual message count reflects this. The M2L predic-
tion simplifies a very complex process that results in the
number of M2L messages communicated.

5.4 Process Alignment

In Table 4, we compare the number of packets sent between
Rank Ordered and Process Aligned schemes during M2M
and L2L phases for the 512\ grid geometry. There is a nota-
ble reduction in the number of messages exchanged, and
hence the overall bandwidth, for lower process counts and
continued reduction at higher process counts as expected.
This reduction is likely to be effective in the relatively good
scaling characteristics of M2M and L2L phases.

5.5 Memory Utilization

Tables 5 and 6 shows the total program memory utilization
of the three data structures with largest memory needs with
increasing process counts. As expected, the memory used for
tree storage (Tree Mem) does not increase with process
count, despite some fluctuations due to different partition-
ings of the leaf nodes. This shows that the tree data structure
is being nicely partitioned across processes. Size of the trans-
lation operators (Trans Ops) increase slowly with process
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TABLE 4
Comparison of the Number of Packets Sent Between Rank Ordered and Process Aligned Schemes
for the 512\ Grid Geometry in Millions of Packets Sent
Np 128 256 512 1024 2048
Rank Ordered M2M Bandwidth 1714 1872 3009 3126 4246
L2L Bandwidth 1206 1166 2429 2382 3649
Combined Bandwidth 2920 3038 5438 5508 7895
Process Aligned M2M Bandwidth 1468 1662 2711 3272 4412
L2L Bandwidth 960 955 2131 2104 3338
Combined Bandwidth 2428 2617 4842 5376 7750
Delta -492 -421 -596 -132 -145

count, slightly more than doubling going from 128 to 2,048
processes. This is due to the spatial distribution of the tree
nodes; multiple source observer pairs with the same trans-
lation in the tree may belong to different processes. Partic-
ularly, as the process count increases and the number of
nodes in a process decreases. This results in some pro-
cesses storing some of the same translation operators as
the other processes. The greatest memory increase is in the
message buffers (S/R Buffs). The translation send and
receive buffers (5/R Buffs) are used to communicate the
data for source nodes that interact with nodes in another
process. Single node communications for each source and
observer pair would eliminate the need for this buffer, but
would result in drastically more translation messages
which would degrade performance. So the translation
message buffers are maximized to use any remaining
memory to limit the number of translation messages that
must be sent.

On the other end of what can be performed with H-FMM
is the volume geometry. Here the number of nodes per level
is significantly increased due to the underlying full oct-tree
structure (as opposed to a quad tree for a surface geometry),
but the maximum height of a tree that can be computed is
reduced. Most memory is reduced due to the shorter height
of the tree, which reduces the size of the nodes at the top of
the tree. However, the translation message buffers still use
up as much memory as possible to improve translation
communication performance.

5.6 Performance Comparison With BEMFMM

Finally, we compare our approach against another H-FMM
implementation. We note that open-source H-FMM codes
are almost non-existent, with the BEMFMM [58] being a
recent exception. BEMFMM is an FMM-accelerated Bound-
ary Element Method (BEM) parallel solver framework for

TABLE 5
Total Memory Utilization (in GBs) by the Three Largest Data
Structures for the 512\ Grid Geometry

wave scattering problems. It uses the exaFMM backbone
[59] for its matrix-vector multiplication kernel and sur-
rounds it with a GMRES solver for solving the boundary
integral equations. To access the exaFMM kernel for com-
parison of mat-vec times, we have taken a number of steps.
These are as follows: (a) The point cloud used in our code
is derived from data that is an input into the exaFMM tree
structure. (b) The leaf box size is identical as is the tree.
For instance, for the spherical distribution, we use the
same 1.44 million point clould (generated from 240,000
panels). This results in an 8-level tree with 65471 leaf boxes
in both codes. Using this distribution, we have comapred only
mat-vec timings between exaFMM kernel in BEMFMM and
H-FMM kernel as seen in Table 7. As is evident from
Table 7, our fine grain parallel Helmholtz FMM algorithm
shows significantly better performance than exaFMM (in
BEMFMM).

There are two root causes for the significant perfor-
mance differences observed: First, our M2M/L2L imple-
mentations are based on FFT-based global interpolation
methods that are known to be asymptotically optimal in
terms of computational costs, whereas BEMFMM uses
dense rotation based (“point and shoot”) M2M/L2L opera-
tions as in the Laplace FMM codes that have O(K (%)
computational complexity at level /, compared with our
O(K (1)’ log K(1)). The second important cause is that our
implementation uses fine-grained parallelization of H-
FMM operations across the tree as explained throughout
this paper, but the BEMFMM code uses a locally essential
tree (LET) [60], which does not parallelize the processing of
higher level nodes as effectively as our approach. While the
first cause explains the speedup we obtain over BEMFMM at
two processes, the impact of fine-grained parallelization is
seen in the increasing speedups we obtain as the number of
processes are increased.

TABLE 6
Total Memory Utilization (in GBs) by the Three Largest
Data Structures for the 32\ Volume Geometry

N, S/R Buffs Trans Ops Tree Mem N, S/R Buffs Trans Ops Tree Mem
128 1.7 107.5 52.7 128 3.1 6.6 5.0
256 4.5 141.0 62.0 256 8.4 10.1 5.2
512 102.7 162.2 52.8 512 22.3 16.3 5.5
1024 257.0 199.0 62.0 1024 319 214 5.1
2048 431.8 221.4 52.8 2048 51.7 30.4 54
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TABLE 7
Comparison of BEMFMM versus Our Parallel MLFMA Implementation (Referred to as “this work”)
Processes 2 4 8 16 32 64 128 256 512
BEMFMM (s) 108.92 100.85 148.69 91.03 60.45 35.72 29.42 26.72 24.72
This work (s) 8.29 4.28 2.37 1.26 0.68 0.39 0.23 0.17 0.15
Speedup 13.1 23.6 62.7 72.2 88.9 91.6 127.9 157.1 164.8
6 CONCLUSlON AND FUTURE WORK [13] A. Rahimian et al., “Petascale direct numerical simulation of blood

We have demonstrated a novel method for parallel computa-
tion of large, upper level tree nodes in large-scale Helmholtz
FMM which helps alleviate a key performance bottleneck
associated with node dependency. The complexity of this
method has been characterized. The results presented support
the provided characterization and show the balance provided
by this method. The performance of the algorithm has been
shown to compare favorably with an existing Helmholtz
FMM implementation.

Beyond the improvements presented, further work can
be performed to improve memory usage, as well as the M2L
communication overhead. One possible method is a hybrid
approach of MPI parallel with thread parallel. Using thread
parallel within a given node provides the opportunity to
exploit shared memory parallelism. All cores within a node
can be assigned to shared memory threads, rather than MPI
processes, eliminating the need to communicate between
these threads, and reducing duplicate memory allocation.
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