Check for
Updates

Exploring Source-to-Source Compiler Transformation of OpenMP SIMD
Constructs for Intel AVX and Arm SVE Vector Architectures

Patrick Flynn Xinyao Yi Yonghong Yan
pflynn5@uncc.edu xyi2@uncc.edu yyan7@uncc.edu
University of North Carolina at University of North Carolina at University of North Carolina at
Charlotte Charlotte Charlotte
Charlotte, North Carolina, USA Charlotte, North Carolina, USA Charlotte, North Carolina, USA

Abstract

Over the past decade, SIMD (single instruction multiple
data) or vector architectures have made significant advances,
now existing across a wide range of devices from commodity
CPUs to high performance computing (HPC) cores. Intel’s
AVX (Advanced Vector Extensions) architecture has been
one of the most popular SIMD extensions to commodity and
HPC CPUs from Intel. Over the past few years, Arm has
made significant inroads with its new SVE (Scalable Vector
Extension), used in the supercomputer of the top place in
the Top500 list. As SIMD has become more advanced and
more important, it has become equally important the compil-
ers support these architecture extensions. In this paper, we
present our approach of source-to-source compiler transfor-
mation of explicit vectorization constructs using the OpenMP
SIMD directive. We present the design of a unified IR that
is easily translated to AVX and SVE vector architectures. Fi-
nally, we conduct performance evaluations on Intel AVX and
Arm SVE to demonstrate how this method of vectorization
can bridge the gap between auto- and manual- vectorization.

Keywords: SIMD, vectorization, SVE, AVX2, AVX-512, com-
piler transformation, OpenMP

1 Introduction

SIMD (single-instruction multiple-data) or vector archi-
tecture has been an effective parallel processing solution
to address the plateauing of Moore’s law and the need for
high performance of scientific data processing. Compared
with multi-/many-core architecture and multi-threading par-
allelism, which can be considered as multiple-instruction
multiple-data architecture (MIMD), SIMD uses long registers
with special instructions that can perform several instances
of a certain operation at once in the same amount of CPU

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9339-3/22/04...$15.00
https://doi.org/10.1145/3528425.3529100

11

time as a single operation. Often being referred to as vec-
tor processing, such an approach is most advantageous for
parallelizing loops, which often consumes the most time in
many computation-intensive applications.

Vector architectures have advanced and changed signifi-
cantly in the last decade, particularly from dedicated vector
architecture machines to general-purpose CPUs with vec-
tor extensions. In 2011, Intel shipped general-purpose CPUs
with the second version of the Advanced Vector Extensions
(AVX2), followed by the AVX-512 extensions in 2013 [2]. The
AVX2 extensions contain 256-bit lane widths, and are very
common in consumer CPUs. The AVX-512 extensions bring
512-bit lane widths into a few high-end consumer CPUs
and many high-performance CPU product lines. Beyond
increasing lane width to 512 bits, AVX-512 brings many ad-
vanced features, most notably masking, an ideal solution for
strided loads and stores. The Arm architecture is another no-
table example of extending general-purpose CPUs to support
SIMD. In 2016, Arm announced its Scalable Vector Extension
(SVE) [1] vector architecture for its high-end Arm CPUs to
extend the aging NEON SIMD extensions. The recent Fuk-
agu supercomputer (ranked #1 in the November 2021 Top500
list and uses Fujitsu’s Arm A64FX CPU with 512-bit vector
length) represents the adoption of the Arm SVE architecture
in production. Arm SVE takes a unique approach of support-
ing SIMD architecture of different vector lane widths. Rather
than creating a new set of extensions for higher lane widths
as Intel does, SVE provides a vector length agnostic model,
which allows the same code to run on different hardware
with varying vector lengths. In other words, vendors can cre-
ate vectors as long or short as needed, and the same machine
code will run on any hardware.

While it is well known that SIMD and vector architec-
tures are well suited for processing data in parallel loops,
programming SIMD or vector architectures in high-level pro-
gramming languages has not been popular for application
developers. Hardware vendors provide intrinsics, which are
pseudo-functions that map directly to the vector instruc-
tions. Yet programming with such a method is difficult, time-
consuming, and produces code tied to only one hardware
architecture. Compiler auto-vectorization has been the most
used approach for transforming a sequential loop to vector
instructions, thus shielding programmers from the complex-
ity of vector architectures and SIMD instructions. However,

https://doi.org/10.1145/3528425.3529100
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528425.3529100&domain=pdf&date_stamp=2022-04-18

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

this automated approach is often constrained by the capa-
bility of parallelizing compilers, and has the disadvantage
of preventing users from fine-tuning data parallel loops to
SIMD processing. This limits the exploitation of the full ca-
pabilities of SIMD architectures enabled in the hardware.

For programmers, using the auto-vectorization approach
limits the exploration and application provided by the man-
ual, intrinsic-based approach. Studying what SIMD instruc-
tions are mapped to from high-level parallel loops would
help programmers to further optimize applications written
in a high-level language to better suit SIMD architectures,
and consequently, performance. In this paper, we implement
the OpenMP SIMD directive using source-to-source com-
piler transformation so users know exactly how high-level
parallel loops are transformed to low-level SIMD intrinsics
and instructions. The solution leverages the strength of the
two aforementioned approaches as it allows users to specify
SIMD processing semantics of data-parallel loops in a pro-
gram, and the compilers to perform SIMD transformation
onto Intel AVX or Arm SVE intrinsics.

The rest of the paper is organized into the following
sections. Section 2 addresses the background and motiva-
tion of vectorization using a source-to-source compiler with
OpenMP. Section 3 discusses the implementation we used.
Section 4 gives an overview of the performance evaluation
we did on a group of basic kernels. Finally, section 5 discusses
related work and section 6 provides a conclusion.

2 Background and Motivation

In the introduction section, we briefly discussed the ad-
vantages of using a SIMD solution. We will now go into more
detail, by comparing it with other two parallel architectures,
i.e. GPUs and multi-core CPUs (via threading). Both thread-
ing and GPU offloading yield high performance once they
begin work, but the task of either loading data or separat-
ing and managing threads often incurs significant overhead.
While the performance gains in certain problems offset this,
for other problems the gains are minimal enough to where
the overhead is not justified. In addition, the efforts of mi-
grating sequential programs to use threading or GPUs are
often nontrivial in comparison to using SIMD or vector ar-
chitectures.

Perhaps the best example of this is with loops. Loops that
perform a single operation or a small number of operations
on a large set of data do not always lend themselves well to
threading. At the same time though, even with loop unrolling,
simply sequentially doing each operation one at a time is just
as slow. SIMD architectures provide the best of both worlds
in these scenarios. At first glance, vector instructions are not
all that different from conventional single-operation instruc-
tions. A SIMD instruction typically will load a block of data
from memory into extra wide registers, and then perform
the same operation at once on all the data. When finished,

12

P. Flynn et al.

it can be stored back to the specified location. Because it is
done in parallel, it takes the same amount of time (in clock
cycles) as conventional instructions. This leads to a factor
of speedup based on the number of elements in the vector,
which can become very substantial over large arrays.

2.1 Approaches to Using Vector Architectures and
the Pros and Cons of Each

The majority of programming languages, including the
most common- C, C++, and Fortran- do not have any con-
structs that map directly to vector programming. As a result,
either specialized functions are needed, or the compilers
have to find a way to do vectorization themselves. There are
multiple approaches, with pros and cons to each.

2.1.1 Auto-Vectorization by Compilers. Auto-vectorization

is the ideal method, and probably the most researched one.
Despite being “auto”, it is not always that. Optimizing com-
pilers such as GCC, LLVM, and other vendor compilers do a
decent job of analyzing and vectorizing simple data parallel
code. They however have challenge of vectorizing loops that
requires information that are hard to be analyzed by compiler.
For example, a data parallel loop that has reduction opera-
tion has loop-carried dependencies. It is often challenging
to vectorize, but can be easily vectorized with if the reduc-
tion variables are explicitly specified, e.g. using OpenMP
simd directive and reduction clause. While the mainstream
compilers may do a degree of vectorization on their own,
they typically require some sort of user intervention, such
as architecture flags to auto-vectorize to the greatest extent.
From our own experience, we have found that the compilers
often do not optimize fully to the hardware available without
several very specific flags- for example, Clang often gener-
ated only AVX-2 or even SSE4 instructions despite AVX-512
hardware being available.

2.1.2 Programming with Vector Intrinsics. At the op-
posite end of the spectrum are vector intrinsics. Intrinsics are
pseudo-functions provided by the compiler that have either
a 1:1 mapping to the underlying assembly, or are very close
to that. Intrinsics offer a big advantage in that the transfor-
mation is guaranteed, and depending on the programmer’s
knowledge of the hardware, a very high level of optimization
can be obtained- sometimes greater than that of an optimiz-
ing compiler. However, by those statements you can likely
see the disadvantages- some of which we discussed earlier.
Vectorization by intrinsics is not cross-platform. In other
words, if we write a loop that is vectorized using AVX-512
intrinsics, it will not work for Arm SVE. Secondly, vectoriz-
ing well requires time and skill, which is not something the
programmer always has or should need to have.

2.1.3 Explicit Vectorization, such as OpenMP SIMD.
Explicit vectorization is a third option, which one could say

Exploring Source-to-Source Compiler Transformation of OpenMP SIMD Constructs

is the middle ground between auto-vectorization and man-
ual vectorization. We argue that this is the ideal solution
over implicit auto-vectorization, as it gives the end-user pro-
grammer control and transparency over the code, while not
forcing the compiler to do anything it cannot do.

While some compilers such as Clang/LLVM and Intel com-
piler provide directives that can perform this explicit vec-
torization, solutions such as OpenMP’s SIMD directive pro-
vide a standard, cross-platform, cross-compiler solution. The
OpenMP SIMD directive is used with a for-loop to specify
code that should be vectorized. Using various clauses, the
user can fine-tune the vectorization specifying things like
vector lane width, safe width, alignments, and others.

2.2 The Benefits of Source-to-Source Compiler
Transformation

Auto-vectorization is a well-established science. All the
mainstream compilers (GCC, LLVM, ICC, etc) support it to
varying degrees, and given the right combination of well-
written code, compiler flags, and so forth, very good, highly-
optimized code can be generated. Although this is great,
there are disadvantages to auto-vectorization, some of which
we discussed above. One of these disadvantages is that with
auto-vectorization, you have only limited control over the
vectorization process, and more often than not, the final
result is hidden from the user. As a result, you have to assume
the compiler knows best and assume the most optimized code
will be generated, which is often not true when a compiler
has to make conservative decision of vectorization.

Source-to-source compiler transformation offers a good
solution to these issues, especially when coupled with an
explicit vectorization method such as using the OpenMP
SIMD directive. As its name implies, the end result of source-
to-source is also source code, which is intrinsics for SIMD
that is human-readable and compilable. Let us consider the
benefits of this approach as follows:

e Guaranteed vectorization: Because intrinsics are gen-
erated, you are guaranteed to have those instructions
in the final compiled binary form. You are also guaran-
teed to have the same style of vectorization you have
in your source code.

e Transparency: Because intrinsics are used, you can
easily follow what the compiler does to vectorize.

e Control of the code: While you should generally trust
the compiler, if you know of a better method to do
something, you can make whatever micro-optimizations
you need to the generated source.

e Control of the vectorization: The OpenMP explicit
SIMD directive allows certain degree of control over
the SIMD directive, by utilizing the available clauses to
potentially change the outcome based on your needs.

1 for (i =0; i <=1199; i +=1) {
2 float __veco;

3 __veco = Y[i];

4 float __vecl;

5 __vecl = a;

6 float __vec2;

7 __vec2 = X[il;

8 float __vec3;

9 __vec3 = __vec2 x __vecl;
10 float __vec4;

11 __vec4 = __vec3 + __vecO;
12 Y[i] = __vec4;

13 }

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

3 Implementation

With this in mind, you can understand why vectorization
is so desirable and why source-to-source compiler transfor-
mation is a viable option. Our implementation is based on
ROSE source-to-sourcec compiler. The compiler generates in-
trinsics for the Intel AVX and Arm SVE vector architectures.
In this section, we will discuss the transformation process
of the OpenMP SIMD directive. All SIMD directives follow a
general process of lowering first to 3-address code, secondly
to an internal SIMD IR, and finally, to the platform-specific
intrinsics. The design of our IR makes it easy to add new
architectures as needed.

3.1 The Input Code

Although you can convert other types of loops, the OpenMP
specification stipulates that the SIMD directive only applies
to for-loops. For-loops make for an easier transformation
since you can eliminate the extra step of determining the
loop increment, as you would have to in other loops. The
first step of the transformation is conversion of the for-loop
in its abstract syntax tree (AST) form to a 3-address format
in the compiler frontend. Consider the AXPY example:

#pragma omp simd
for (int i = 0@; i<N; i++) {
Y[i] += a * X[i];

[

}

Figure 1. AXPY Example in C Language

SIMD architectures follow a RISC-style load/store format.
This includes the AVX extensions, even though the rest of x86
uses CISC instructions. Therefore, the first step is conversion
to a 3-address format, where the left-hand operand is either
a memory location or a scalar variable. Using our compiler,
with the "-simd-target=3addr" command line option, we get
the following code:

Figure 2. AXPY Example in 3-address Format

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

The first two lines represent a load to a vector register,
as do the lines following it. You will then notice two lines
representing math instructions. Finally, you will notice a
store instruction. This code is all valid C. But, because of the
format, we can look directly at these lines in the next pass,
and make a 1:1 conversion to platform-specific intrinsics.

Multi-dimensional arrays posed an interesting challenge.
Let’s say you have an array reference like this: A[i][j]. Ideally,
you would want to convert it to something like A[i*N+j].
The solution was to create an intermediate pointer variable,
which would effectively convert it to a single dimension.
Take this for the A[i][j] example:

1 float *__ptr@ = A[i][0];
2 float __vecl = __ptro[jl;

Figure 3. Intermediate Pointer Variable for A[i][j]

3.2 The SIMD IR

After lowering the program AST to its 3-address format,
we then convert everything to an internal IR which we call
SIMD IR. The SIMD IR is a simple IR based off the ROSE AST.
We did think of originally doing our own internal IR, but
we decided that creating new specialized classes from the
existing AST made more sense, and would lead to a simpler
design. The SIMD IR nodes are based off the nodes for binary
operations, which allow for a left and right operand. Because
the SIMD IR is not meant to represent any concrete code on
its own, it is not used to replace the original program AST.

The SIMD IR has proved to be a very efficient method of
implementation. The IR has an almost 1:1 mapping to what-
ever the underlying architecture is. We originally started
with the Intel AVX architecture. After we had that working,
adding Arm SVE support only took about a week because of
the nature of the architecture-neutral IR for SIMD.

3.3 The Final Transformation

The final step is lowering from SIMD IR to platform-
specific intrinsics. As talked about in the previous section,
this is mostly a 1:1 translation.

Depending on the instruction, some optimizations can be
made. For example, when one of the mathematical operands
is a scalar variable or value, it is most efficient to broadcast
that value outside the loop, and reuse the register on each
iteration. Another example is when you are storing to a scalar
variable (as in the case of reduction). Maintaining a register
with partial values, and then reducing that register to a final
result outside the for loop when it finishes executing is the
most efficient implementation, and leads to very significant
speed increases.

14

P. Flynn et al.

3.4 Supported Vector Operations

While we currently do not support every vector opera-
tion, our compiler is currently capable of transforming the
most common ones, which covers a wide area. Vector archi-
tectures have expanded significantly with new generations
of architectures, with instructions for masks, conditional
statements, comparisons, type conversions, and complicated
mathematical operations. We hope to add more support in
the future. In this section, we will break down our current
areas of support.

3.4.1 Math Operations and Data Types. The conven-
tional add, subtract, multiply, and divide operations are all
supported. New operations can easily be added with new
IR types. Floats, doubles, and 32-bit signed integer opera-
tions are all supported. One of our goals is to provide casting
support to allow for types to be interchanged as needed.

3.4.2 Load, Store, and Broadcast. Conventional load and
stores for all types are fully supported. As mentioned in the
first subsection, loads and stores of multi-dimensional ar-
rays require the address to be broken down. Broadcasts are
also fully supported. To enhance speed and performance,
a broadcast is only performed once, and placed before the
vectorized loop.

3.4.3 Masking (Gather and Scatter). Masked loads, or
gathers, are a new feature we added to support indirect loads.
Originally, we used a gather intrinsic that only used an in-
teger array to determine what should be loaded from the
source array. However, this was highly inefficient and led to
only negligible performance gains. After examining Clang’s
method, we decided to use specialized mask registers, a fea-
ture introduced with AVX-512. Using this method resulted
in substantial performance gains, eventually outperforming
the Clang version we originally used as reference.

Scatter, or masked stores, is also supported, but we did not
have a kernel applicable to testing this. However, scatters are
very similar to gathers (the only difference being the obvious-
one loads and one stores), so we expect that in a scenario
where a scatter is required, a similar ratio of performance
gains would be observed.

3.5 The OpenMP SIMD Directive

The OpenMP SIMD directive is used to annotate a for-
loop for compiler to performance vectorization of the loop.
The OpenMP specification for SIMD directive also outlines
several clauses that can be used with the directive to control
vectorization.

3.5.1 Thesimdlen & safelen Clauses. The "simdlen" and
"safelen” clauses can be used to control the vector length.
"Simdlen" denotes the length we wish to use, while safelen
denotes the maximum (or safe) length we should use.

Exploring Source-to-Source Compiler Transformation of OpenMP SIMD Constructs

Currently, these clauses only affect vectorization on the
Intel AVX architecture. The vector lengths of AVX must be
known at compile time for vectorization. Because of the
multiple extensions that are used, there are three commonly
used vector lengths, i.e. 4 for SSE that uses XMM* vector
registers, 8 for AVX2 that uses YMM* vector registers, and 16
for AVX-512 that uses ZMM” vector registers. We currently
use a straightforward approach of rounding to the nearest
applicable vector length. For example, if the user specified an
odd number such as 12, we would round up to 16. Anything
less than or equal to 8 would use the AVX2 extensions.

Currently, "simdlen” and "safelen" are ignored for the
Arm architecture, because Arm SVE is designed to be vector
length agnostic.

3.5.2 Reduction. The reduction clause is used to indicate
accumulation of data elements that are computed by the
loop. To vectorize a loop that has reduction, a vector register
is initialized before the loop with the values corresponding
to the reduction operations, e.g. 0 for addition, and 1 for
multiplication. Let us name it as reduction register. Then
in each loop iteration, the reduction register is used for ac-
cumulating the partial results for the reduction operation.
However there is no need to accumulate the elements of the
reduction register inside the loop. Finally, at the end of the
loop, the elements in the reduction register are accumulated
to produce a single reduction result.

Thus in general, vectorization is not parallel in the sense of
threading, this translates to maintaining a register with par-
tial results. At the end of the loop, the elements in this register
are accumulated to produce the final result, which is then
stored to the variable indicated in the reduction clause. Both
Intel AVX and Arm SVE have horizontal math instructions
for accumulating the elements of a vector register, which
eliminates the need for an additional loop for accumulat-
ing register elements for implementing reductions. For Intel
AVX, horizontal pair-wise accumulation such as VHADDPS
with intrinsics such as _mm256_hadd_ps can be used for
addition reduction. Multiple of those instructions are needed
to accumulating all the elements of a register into one result
since the instruction performs tree-style reduction. For Arm
SVE, only one horizontal reduction instruction, e.g. faddv, is
needed to accumulate all the elements of a vector register
to produce a single reduction results. We believe the Arm
SVE’s horizontal reduction is implemented in the same way
of pair-wise accumulation.

When testing auto-vectorization, we found that main-
stream optimizing compilers were unable to automatically
create a reduction operation on their own, even in very sim-
ple cases such as a simple array reduction. Even with various
compiler flags and after consulting the documentation, in
no case was Clang or GCC unable to vectorize a reduction
without some sort of explicit instruction in the code. Clang
has a pragma that can force the reduction, which still yields

15

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

excellent performance and correct computational results, but
of course this leads to the obvious implication that it is nei-
ther portable across compilers nor is this auto-vectorization
to begin with. In some cases, the compiler can make up for
this with methods such as loop unrolling, but only in naive
examples such as AXPY can the user reasonably count on
their compiler to perform auto-vectorization.

3.5.3 adda and addv Instructions in ARM SVE for re-
duction. It is important to note that Arm SVE also pro-
vides another instruction to implement reduction operation,
namely adda. adda is a left-to-right reduction operation,
whereas addv uses reduction trees. In the left-to-right ap-
proach of adda, all elements of the vector are added sequen-
tially starting from the lowest position and moving to the
highest. This approach is very similar to a sequential loop.
addv, on the other hand, uses a tree-shape algorithm to re-
cursively perform pairwise reduction of all elements of the
vector.

Consider an example. Let us assume vector A contains 16
float elements, E0-E15. We need to accumulate all elements
of vector A and store them in scalar register R. Since we
are operating on floating-point elements, we will use the
fadda and faddv instructions. The fadda instruction will
add all the elements in order, starting from E0 and working
up to E15. When using faddv, the elements in A will first be
divided into two parts. Each part is then recursively divided
into smaller parts until only two elements are left to do the
addition. At this point, all the elements are accumulated from
bottom-to-top to get the final result.

In our experiment, we used Arm C/C++/Fortran Compiler
21.0 based on LLVM. By default, the compiler chooses fadda
to implement the reduction. In most cases, using this in-
struction resulted in worse performance. If we want to the
compiler to use faddv, we need to use the -ffp-mode=fast
compiler flag when compiling the source OpenMP code. The
experimental results in Section 4 include the efficiency com-
parison of the two methods. Our compiler only supports the
generation of faster faddv instructions.

4 Evaluation

We evaluate our compiler on two machines: our Carina
server for Intel AVX, and the Ookami cluster from Stony-
brook University, which uses the ARM AArch64 CPUs that
support ARM SVE. To provide as meaningful a comparison
as possible, the hardware we chose has a similar core count,
SIMD lane width, and CPU frequency. Table 1 shows the
configurations we used in more detail.

To evaluate performance, we used five kernels, all of which
encompass the fundamental vector operations and form
the base of more complicated problems. We ran three ver-
sions of each kernel. The first version was compiled with-
out any optimization or explicit vectorization. The results
from this test formed the baseline. The second version used

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

P. Flynn et al.

Table 1. Summary of the Configuration of Test Platforms

Server Name Carina Ookami

Model name Intel(R) Xeon(R) Gold 6230N CPU @ 2.30GHz | Fujitsu A64FX @ 2.2GHz

Architecture x86_64 aarch64

Number of Cores | 40 48

Vector Length 512-bit for AVX-512, and 256-bit for AVX2 512-bit ARM SVE

Memory 512GB DDR4-2933 DRAM 32GB HBM

(ON] Ubuntu 18.04 LTS CentOS Linux release 8.1.1911 (Core)

Compilers Clang/LLVM 12.0.1 Arm C/C++/Fortran Compiler 21.0 based on LLVM 12.0.1

the OpenMP SIMD directive to explicitly vectorize the loop
and compiled using Clang/LLVM 12.0.1 on Intel CPU and
Arm C/C++/Fortran compiler on Arm CPU. Finally, the third-
version is the same as the second version, but compiled using
our source-to-source compiler. On both machines, we used
Clang/LLVM 12.0.1, although on Arm, we used their fork of
LLVM 12.0.1 called "armcompiler". The serial version was
compiled using level-0 optimization, while the two SIMD
versions were compiled using level-2 optimizations with
all native extensions enabled. Although int-32 and double
datatypes had similar acceleration ratios, we used the float
datatype in all our tests. Except for our last kernel, we ran
each test 20 times from within the program. All performance
times are measured in seconds.

We also measured code size, but we found that the size
was generally comparable between Clang and our compiler.
In general, the deviation was not more than roughly 0.02%,
depending on the kernel. This is largely expected since the
assemblies between Clang and our compiler were similar.

4.1 AXPY

AXPY is a classic, fundamental test for vectorization. It
encompasses the most common vector operations: addition,
multiplication, and broadcasting. In order to get measurable
results, for this test we used a problem size of 102,400,000
elements. The results can be seen in Fig. 4.

AXPY is a very straightforward program, so Clang can au-
tomatically vectorize it. The test results on Intel are generally
in line with our expectations. Since AXPY is not a compu-
tationally intensive program and its execution efficiency is
limited by data movement, similar results are obtained using
auto-vectorization and OpenMP SIMD directive.

The results on Arm are very close, and upon examining
the assembly, the outputs for the AXPY function were very
similar. The same is true for the Intel AVX. However, we
also noticed that Clang uses AVX2 instructions by default,
even with AVX-512 present, and the performance is similar
to our version, which uses AVX-512. Using compiler flag
"-march=knl", Clang would compile to the AVX-512 instruc-
tions. However, the performance with AVX-512 is roughly
equal to that of AVX2 in most situations. A full explanation
of this can be found near the end of this section.

16

time(s)

Clang12 Clang12 Clang12 Clang12 Our Our
Serial (Auto-, (Auto-, (OpenMP, (OpenMP, Compiler Compiler
AVX2) | AVX512) AVX2) AVX-512) (AVX2) (AVX-512)

Etime 0.23022 0.06726 0.06986 0.06802 0.07012 0.0666 = 0.06869

(a) Runtime (seconds) for AXPY: on Intel 6230N for AVX2 (256-bit vector
length) and AVX-512 (512-bit vector length)

time(s)

ARM Compiler
(adda)

0.02443

ARM Compiler
(addv)

0.02384

Serial on ARM Our Compiler

W time 0.83805 0.02435

(b) Runtime (seconds) for AXPY: on Fujitsu A64FX (512-bit vector length)

Figure 4. Runtime (seconds) for AXPY: on Intel 6230N for
AVX2 (256-bit vector length) and AVX-512 (512-bit vector
length) and on Fujitsu A64FX (512-bit vector length), problem
size: 102400000

4.2 Sum

The sum test is classic, fundamental test for reduction,
a commonly used operation in parallel and vectorized pro-
grams. In this test, we used a problem size of 10,240,000
elements. The results can be see in Fig. 5.

Exploring Source-to-Source Compiler Transformation of OpenMP SIMD Constructs

The performance on Intel AVX was predictable and yielded
the same results. The results on Arm SVE, however, were
interesting and varied based on whether the "fadda" or the
"faddv" instruction was used. By default, the Arm compiler
uses the "fadda" instruction, and while using this is certainly
better than the serial, it is slower than that generated by our
compiler. However, when the "-fip-model=fast” flag is passed
to the Arm compiler, it generates significantly faster results
than the "fadda" version.

Clang is not able to auto-vectorize the Sum example be-
cause of the existence of reduction in the loop body. We
then added Clang’s pragma of "loop vectorize(enable) as ref-
erence to enable vectorization by Clang/LLVM. Both the
performance and the correctness were almost identical to
the OpenMP versions. Upon examining the source code, we
found that the assembly for the vectorized loop was almost

time(s)

G Clang 12 Clang 12 Our Our
Serial (Claﬁ _) (OpenMP, (OpenMP, Compiler Compiler
3 AVX2) AVX-512) (AVX2) (AVX-512)
mtime 0.0268 0.0023 0.00238 0.00234 0.0025 0.00243

(a) Runtime (seconds) for Sum: on Intel 6230N for AVX2 (256-bit vector
length) and AVX-512 (512-bit vector length). Clang/LLVM is not able to auto-
vectorize the code. We then added "pragma clang loop vectorize(enable)”,
the code is vectorized, and the performance shows this versions

=
7]
E
=
- — |
Serial on ARM ARN(Ia(;odr:)pller ARN(I;ZT)’)IIer Our Compiler
Htime 0.19279 0.05156 0.00477 0.00986

(b) Runtime (seconds) for Sum: on Fujitsu A64FX(512-bit vector length)

Figure 5. Runtime (seconds) for Sum: on Intel 6230N for
AVX2 (256-bit vector length) and AVX-512 (512-bit vector
length), and on Fujitsu A64FX(512-bit vector length), prob-
lem size: 10240000

17

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

identical, leading us to think that the compiler used the same
routines to perform the vectorization.

4.3 Matrix-Vector

Both AXPY and Sum are memory intensive kernels in that
elements are read only once and the computational intensity
is low according to the roofline model. Matrix-vector mul-
tiplication can be considered a combination of AXPY and
Sum; thus it is memory intensive as well. The matrix data
is read once and the vector array is reused multiple times.
In this test, we used a matrix of 10240 X 10240 size, and a
vector of 10240 elements. The results can be seen in Fig. 6.

-
T
£
=
cl 12 Cl 12
. St il Our Compiler Our Compiler
Serial (OpenMP, (OpenMP, (AVX2) (AVX-512)
AVX2) AVX-512)
Htime 0.27869 0.03655 0.03579 0.0368 0.03581

(a) Runtime (seconds) for Matrix-Vector Multiplication: on Intel 6230N for
AVX2 (256-bit vector length) and AVX-512 (512-bit vector length)

I
T
£
=
- — I
Serial on ARM ARIVI(a(;(;T)pller ARN(Ia(;odn\:)pller Our Compiler
Htime 2.33776 0.52897 0.03559 0.11022

(b) Runtime (seconds) for Matrix-Vector Multiplication: on Fujitsu A64FX
(512-bit vector length)

Figure 6. Runtime (seconds) for Matrix-Vector Multiplica-
tion: on Intel 6230N for AVX2 (256-bit vector length) and
AVX-512 (512-bit vector length) and on Fujitsu A64FX (512-
bit vector length), input matrix size: 10240 * 10240, input
vector size: 10240

The results on Intel were all very similar between AVX2
and AVX-512 and between Clang and our compiler. The
results on Arm were surprising at first as our version signif-
icantly outperformed the Clang version. Upon inspection,
once again we found that the Arm compiler was using "fadda"
for reductions by default. Adding the "-fip-model=fast" flag

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

significantly improved performance. With this flag, the Arm
compiler out performed our version somewhat. The assembly
outputs were very similar, but the reason for the performance
gain appears to be the "faddv" instruction (as expected) and
extensive use of the "fmla" instruction (fused-multiply-add).

4.4 Matrix-Matrix

The matrix-matrix kernel was our most intensive test. It
is also very similar both in design and results to the matrix-
vector test. For this test, we used a problem size of 1024 (two
matrices of 1024 X 1024). The reasons behind the results are
the same as those behind matrix-vector. The results can be
seen in Fig. 7.

cl 12 cl 12
5 - =l Our Compiler Our Compiler
Serial (OpenMP, (OpenMP, (AVX2) (AVX-512)
AVX2) AVX-512)
Htime 2.8254 0.17712 0.17946 0.18285 0.17293

(a) Runtime (seconds) for Matrix-Matrix Multiplication: on Intel 6230N for
AVX2 (256-bit vector length) and AVX-512 (512-bit vector length)

time(s)

Serial on ARM ARI\/(Ia(;odr:)pller ARM(a((ﬁn‘:)pller Our Compiler
Wtime 23.68276 5.81606 0.53487 1.66752

(b) Runtime (seconds) for Matrix-Matrix Multiplication: on Fujitsu A64FX
(512-bit vector length)

Figure 7. Runtime (seconds) for Matrix-Matrix Multiplica-
tion: on Intel 6230N for AVX2 (256-bit vector length) and
AVX-512 (512-bit vector length) and on Fujitsu A64FX (512-
bit vector length), problem size: 1024 * 1024

4.5 SparseMV

The sparse matrix-vector (MV) kernel provides an example
of indirect memory access, an expensive and challenging

18

P. Flynn et al.

operation to optimize. For this test, we used a problem size of
10,240 elements, but unlike the previous tests, the algorithm
was only ran once due to the intensity of the calculation. The
results are in Fig. 8.

The Arm SVE results were not surprising, but the Intel
AVX results were interesting. Up until now, AVX-512 was
getting roughly the same performance as AVX2, but here
the AVX-512 versions from Clang and from our compiler
outperformed the AVX2 versions. The reason is because
of the gather instructions available on AVX-512. AVX-512
introduces masking registers and instructions, which is a
more efficient way to do indirect memory accesses than
directly using array indices as AVX2 requires.

=
7]
E
=

- = P . .

. Cleligs 22 ki 12 Our Compiler Our Compiler

Serial (OpenMP, (OpenMP, (AVX2) (AVX-512)
AVX2) AVX-512)
Htime 1.9884 1.3686 1.4935 1.051 0.9698

(a) Runtime (seconds) for Sparse Matrix-Vector Multiplication: on Intel
6230N for AVX2 (256-bit vector length) and AVX-512 (512-bit vector length)

ARM Compiler ARM Compiler
(adda) (addv)

8.8162 3.9108

time(s)

Serial on ARM Our Compiler

Htime 11.2334 3.7872

(b) Runtime (seconds) for Sparse Matrix-Vector Multiplication: on Fujitsu
A64FX (512-bit vector length)

Figure 8. Runtime (seconds) for Sparse Matrix-Vector Mul-
tiplication: on Intel 6230N for AVX2 (256-bit vector length)
and AVX-512 (512-bit vector length) and on Fujitsu A64FX
(512-bit vector length), input matrix size: 10240 * 10240, input
vector size: 10240

Exploring Source-to-Source Compiler Transformation of OpenMP SIMD Constructs

4.6 Explanation of Intel Results for AVX2 and
AVX-512

Despite Intel AVX-512 having double the lane width of
AVX2, the fact that there was little to no performance in-
crease is likely surprising. We inspected the assembly for
each case, and we found no differences that could explain
such a discrepancy. We then considered the nature of the
computation and did some research on Intel’s architecture
and on other cases [15], so we have some ideas of the reason.

The first thing to consider is the arithmetic intensity of the
kernels we use. Except for matrix multiplication, the kernels
we used are mostly memory intensive. Loading and storing
from memory is the longest part of the operation, and the
lack of data reuse makes the cache less helpful. Regardless
of the vector length, the same amount of memory has to be
accessed, and while using a vector does improve performance
compared to doing one operation at a time, there will reach
a point where performance will began to plateau, and this
point seems to be at the 256-bit (AVX2) length.

The second thing to consider is the latency of the instruc-
tions. We checked the Intel specs, and found that AVX-512
has a higher latency than the equivalent load instruction on
AVX2. While the latency difference is not huge- 7 on Icelake
and Skylake for AVX2 as opposed to 8 on the same series
for AVX-512- over a large operation size, the difference will
begin to add up. While this does not explain the closeness of
the measurements on its own, we suspect this is a factor.

The third and mostly likely reason is CPU frequency throt-
tling [3]. When AVX-512 instructions are used, the CPU
down-throttles the frequency to keep it within its power
limits. While this occurs on AVX2, the much greater length
of AVX-512 leads to significant down-throttling. While more
work is technically done per loop iteration, the down-throttling
means that more time is required for the work to be carried
out, resulting in the performance loss. This is the reason
GCC and Clang default to AVX2, even on high optimization
levels. AVX2 seems to be the highest extension that can be
used without significant down-throttling.

5 Related Work
5.1 SIMD Optimization Technology

Dorit Nuzman et al. demonstrated vectorization for outer
loops [11]. They re-studied the method of outer loop vec-
torization and paid attention to the properties of modern
short SIMD architecture. Compared with the innermost loop
vectorization which can only provide an acceleration factor
of 1.53, the outer loop vectorization can provide a significant
performance improvement with a factor of 3.13x.

Ken Kennedy et al. proposed a context optimization method
for SIMD execution [5]. Disabling the processor that is not
involved in the current calculation by changing the machine
context is a problem that the SIMD compiler must solve.
They optimize context partitioning and context splitting to

19

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

reducing the cost of context changes. Their method can re-
duce the execution time of the hand-optimized MPL version
by 12%. Angela Pohl et al. addressed potential performance
concerns for the vector length agnostic (VLA) model intro-
duced by Arm and being added to RISC-V [12]. They showed
that VLA code reaches 90% that of fixed length models (ie,
Intel). Additionally, they showed that due to higher memory
demands, performance does not increase proportionally with
higher vector lengths.

5.2 Source to Source Vectorization

We found that the only source-to-source vectorization
work was Scout proposed by Olaf Krzikalla et al. in 2011.
Scout is designed as a source-to-source translator that gener-
ates code with SIMD intrinsics [7]. Based on the syntax tree
generated by the Clang parser, they implement the vectoriza-
tion optimization technique. The unroll-and-jam technique is
applied to vectorize the loop body, supporting multiple SIMD
instruction sets including SSE and AVX2. In the experiments,
they observed that the overall speedup was nearly 1.5. Unlike
Scout, our work has unique advantages. Firstly, Scout only
supports vectorization with target languages AVX2 and SSE.
We support the more modern and higher-performance AVX-
512, and we support the new ARM SVE extensions, giving
us cross-platform support. Secondly, we use more common
algorithms as our benchmarks to test performance. In a vari-
ety of algorithms, our designs have very good performance
optimizations.

5.3 Auto-Vectorization

Michael Klemm first proposed the OpenMP SIMD instruc-
tion in 2012 [6]. The SIMD instruction will allow program-
mers to guide the vectorization process, thereby achieving
more efficient and portable use of the SIMD level. Florian
Wende et al. explored coding strategies to improve SIMD
performance on different compilers and platforms [14]. They
proposed a portable SIMD coding scheme called "enhanced
explicit vectorization” for which different compilers can un-
derstand and generate code equally. The microbenchmarks
they developed show that on Haswell, SIMD execution gives
speedups between 2x and 4x. Oliver Reiche et al. proposed
automatic vectorization technologies for image processing
DSL in the context of source-to-source compilation, and in-
tegrated these technologies into the open-source DSL frame-
work [13]. Compared with the non-vectorized execution
using the latest existing C/C++ compiler, the geometric av-
erage speed of benchmarks obtained from ISPC and image
processing has increased by 3.14.

Ameer Haj-Ali et al. proposed an end-to-end method that
can vectorize loops using deep reinforcement learning(RL) [4].
They integrated RL in LLVM compiler and used deep learn-
ing to capture different instructions, dependencies, and data

PMAM’22, April 2-6, 2022, Seoul, Republic of Korea

structures to determine the optimal vectorization factor dy-
namically. Their experiments show that the performance can
be increased up to 4.73 times compared with the baseline.

Dorit Nuzman et al. developed a compiler containing a
new generic vectorization technique for interleaved data,
which can effectively vectorize non-contiguous access pat-
terns with a constant stride of power of 2 [10]. The SIMD
models available today do not directly support operations
on disjoint vector elements. For interleaved data, once it is
correctly reorganized, it will significantly benefit from SIMD.
Their experimental results show that for interleaving levels
(stride) as high as 8, the speedups in execution time can be
up to 3.7. They also developed an automatic vectorization
program in GCC [9]. Their design can be adapted to various
SIMD architectures, and different alignment mechanisms are
designed for different SIMD platforms.

Matthew Lambert et al. demonstrated how the auto-vectorization

capabilities of Clang/LLVM and GCC could be used to en-
hance performance of the Four Russians Matrix Multiplica-
tion problem [8]. They used a method to store multiple small
prime numbers into a single word called bit-packing. This in
combination with vectorization yielded significant speedups.

For auto-vectorization, checking whether the code can be
vectorized is necessary. But in our source-to-source vector-
ization, we can avoid the overhead of this step. The SIMD di-
rective in OpenMP can directly indicate the part that needs to
be vectorized. Therefore, the design becomes more straight-
forward and yields performance.

6 Conclusion

In this paper, we demonstrated the merits of source-to-
source vectorization using our compiler combined with ex-
plicit vectorization using OpenMP. Vectorization using SIMD
architectures has become an important part of the optimiza-
tion process in many high-performance and scientific appli-
cations. While it is a well-researched field, and while many of
the mainstream compilers do a rather good job at it, there are
disadvantages to the auto-vectorization process, one of them
being the most important: applicability. At the same time,
there are also disadvantages to the manual vectorization
process, another more difficult alternative. Explicit source-
to-source vectorization bridges the gap, bringing the con-
venience of auto-vectorization and the control of manual,
intrinsic-based vectorization. Performance evaluations lend
weight to this conclusion. In no case was our source-to-
source vectorization significantly worse. In all cases, it was
almost as good, if not better.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No 2015254. The
authors would like to thank Stony Brook Research Comput-
ing and Cyberinfrastructure, and the Institute for Advanced

20

P. Flynn et al.

Computational Science at Stony Brook University for access
to the innovative high-performance Ookami computing sys-
tem, which was made possible by a $5M National Science
Foundation grant (1927880).

References

[1] [n.d.]. ARM C Language Extensions for SVE. https://developer.arm.
com/documentation/100987/0000/
[2] [n.d.]. Intel® AVX-512 Instructions. https://software.intel.com/content/
www/cn/zh/develop/articles/intel-avx-512-instructions.html
Mathias Gottschlag, Philipp Machauer, Yussuf Khalil, and Frank Bel-
losa. 2021. Fair Scheduling for AVX2 and AVX-512 Workloads. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 745-758. https://www.usenix.org/conference/atc21/
presentation/gottschlag
Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao,
Krste Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-end
vectorization with deep reinforcement learning. In Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Opti-
mization. 242-255.
Ken Kennedy and Gerald Roth. 1994. Context optimization for SIMD
execution. In Proceedings of IEEE Scalable High Performance Computing
Conference. IEEE, 445-453.
Michael Klemm, Alejandro Duran, Xinmin Tian, Hideki Saito, Diego
Caballero, and Xavier Martorell. 2012. Extending OpenMP* with vector
constructs for modern multicore SIMD architectures. In International
Workshop on OpenMP. Springer, 59-72.
Olaf Krzikalla, Kim Feldhoff, Ralph Miller-Pfefferkorn, and Wolf-
gang E Nagel. 2011. Scout: a source-to-source transformator for SIMD-
optimizations. In European Conference on Parallel Processing. Springer,
137-145.
Matthew A. Lambert and B. David Saunders. 2017. Compiler Auto-
Vectorization of Matrix Multiplication modulo Small Primes. In Pro-
ceedings of the International Workshop on Parallel Symbolic Com-
putation (Kaiserslautern, Germany) (PASCO 2017). Association for
Computing Machinery, New York, NY, USA, Article 7, 10 pages.
https://doi.org/10.1145/3115936.3115943
Dorit Nuzman and Richard Henderson. 2006. Multi-platform auto-
vectorization. In International Symposium on Code Generation and
Optimization (CGO’06). IEEE, 11-pp.
Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization
of interleaved data for SIMD. ACM SIGPLAN Notices 41, 6 (2006),
132-143.
Dorit Nuzman and Ayal Zaks. 2008. Outer-loop vectorization: revisited
for short simd architectures. In Proceedings of the 17th international
conference on Parallel architectures and compilation techniques. 2—11.
Angela Pohl, Mirko Greese, Biagio Cosenza, and Ben Juurlink. 2019.
A Performance Analysis of Vector Length Agnostic Code. In 2019
International Conference on High Performance Computing Simulation
(HPCS). 159-164. https://doi.org/10.1109/HPCS48598.2019.9188238
Oliver Reiche, Christof Kobylko, Frank Hannig, and Jiirgen Teich. 2017.
Auto-vectorization for image processing DSLs. In Proceedings of the
18th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and
Tools for Embedded Systems. 21-30.
Florian Wende, Matthias Noack, Thomas Steinke, Michael Klemm,
Chris J Newburn, and Georg Zitzlsberger. 2016. Portable simd perfor-
mance with openmp” 4. x compiler directives. In European Conference
on Parallel Processing. Springer, 264-277.
Hong Zhang, Richard T. Mills, Karl Rupp, and Barry F. Smith. 2018.
Vectorized Parallel Sparse Matrix-Vector Multiplication in PETSc Using
AVX-512. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3225058.3225100

3

—

[4

[l

[5

—

[6

—

[7

—

8

—

(9]

[10]

[11]

[12]

[13]

[14]

[15]

https://developer.arm.com/documentation/100987/0000/
https://developer.arm.com/documentation/100987/0000/
https://software.intel.com/content/www/cn/zh/develop/articles/intel-avx-512-instructions.html
https://software.intel.com/content/www/cn/zh/develop/articles/intel-avx-512-instructions.html
https://www.usenix.org/conference/atc21/presentation/gottschlag
https://www.usenix.org/conference/atc21/presentation/gottschlag
https://doi.org/10.1145/3115936.3115943
https://doi.org/10.1109/HPCS48598.2019.9188238
https://doi.org/10.1145/3225058.3225100

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Approaches to Using Vector Architectures and the Pros and Cons of Each
	2.2 The Benefits of Source-to-Source Compiler Transformation

	3 Implementation
	3.1 The Input Code
	3.2 The SIMD IR
	3.3 The Final Transformation
	3.4 Supported Vector Operations
	3.5 The OpenMP SIMD Directive

	4 Evaluation
	4.1 AXPY
	4.2 Sum
	4.3 Matrix-Vector
	4.4 Matrix-Matrix
	4.5 SparseMV
	4.6 Explanation of Intel Results for AVX2 and AVX-512

	5 Related Work
	5.1 SIMD Optimization Technology
	5.2 Source to Source Vectorization
	5.3 Auto-Vectorization

	6 Conclusion
	Acknowledgments
	References

