
UPIR: Toward the Design of Unified Parallel Intermediate
Representation for Parallel Programming Models
Anjia Wang

awang15@uncc.edu
University of North Carolina at

Charlotte
Charlotte, North Carolina, USA

Xinyao Yi
xyi2@uncc.edu

University of North Carolina at
Charlotte

Charlotte, North Carolina, USA

Yonghong Yan
yyan7@uncc.edu

University of North Carolina at
Charlotte

Charlotte, North Carolina, USA

ABSTRACT
The complexity of heterogeneous computing architectures, as well
as the demand for productive and portable parallel application
development, have driven the evolution of parallel programming
models to become more comprehensive and complex than before.
Enhancing the conventional compilation technologies and software
infrastructure to be parallelism-aware has become one of the main
goals of recent compiler development. In this work, we propose the
design of uni�ed parallel intermediate representation (UPIR) for
multiple parallel programmingmodels and for enabling uni�ed com-
piler transformation for the models. UPIR speci�es three commonly
used parallelism patterns (SPMD, data and task parallelism), data
attributes and explicit data movement and memory management,
and synchronization operations used in parallel programming. We
demonstrate UPIR via a prototype implementation in the ROSE
compiler for unifying IR for both OpenMP and OpenACC and in
both C/C++ and Fortran, for unifying the transformation that low-
ers both OpenMP and OpenACC code to LLVM runtime, and for
exporting UPIR to LLVM MLIR dialect. The fully extended paper of
this abstract can be found from https://arxiv.org/abs/2209.10643.

CCS CONCEPTS
• Software and its engineering ! Compilers.

KEYWORDS
Compiler transformation, Parallel intermediate representation, OpenMP,
OpenACC, MLIR

ACM Reference Format:
Anjia Wang, Xinyao Yi, and Yonghong Yan. 2022. UPIR: Toward the Design
of Uni�ed Parallel Intermediate Representation for Parallel Programming
Models. In International Conference on Parallel Architectures and Compilation
Techniques (PACT ’22), October 8–12, 2022, Chicago, IL,USA. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3559009.3569646

1 INTRODUCTION
The past two decades have seen dramatically increased complexity
of computer systems, including the signi�cant increase of paral-
lelism from 10s to 100s and 1000s computing units and cores, the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PACT ’22, October 8–12,2022, Chicago, IL, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9868-8/22/10.
https://doi.org/10.1145/3559009.3569646

wide adoption of heterogeneous architecture such as CPU, GPUs
and vector units in a computer system, and the signi�cant enhance-
ment to the conventional memory hierarchy using new memory
technologies such as 3D-stacked memory and NVRAM. Demands
from users and applications for computing have also become high
and diverse, ranging from computational science, large-scale data
analysis, and arti�cial intelligence that adopts the computation-
intensive deep neural network methods. Together they have driven
the evolution of parallel programming models to become more
comprehensive and complex with multifaceted goals including de-
livering portable performance across diverse architectures, being
highly expressible for the wide ranges of users and applications, and
allowing for high performance implementation and tools support.

It is observed that existing parallel programming models share
common parallelism functionality and use similar interfaces of
essential capability for programming parallelism [2]. However, sup-
porting these parallel models in one compiler often has to cre-
ate language-dependent compiler passes of the same functionality
for di�erent models. We believe one of the barriers is the lack of
language-independent abstraction of the fundamental entities and
constructs for parallelism. This has hindered the research and de-
velopment of parallelism-aware analysis and transformation across
multiple programming models.

In this work, we propose the notion and speci�cation of uni-
�ed parallel intermediate representation (UPIR) to enable language-
neutral parallelism-aware compilation. We create a prototype im-
plementation in ROSE compiler, and demonstrate UPIR for unifying
IR for o�oading code in both OpenMP and OpenACC and in both
C/C++ and Fortran. The demonstration includes a uni�ed trans-
formation that lowers OpenMP and OpenACC o�oading code to
LLVM OpenMP runtime. UPIR is also implemented as LLVM MLIR
dialect, thus the ROSE-based UPIR compiler is able to export the
UPIR of a program to its MLIR dialect.

2 UNIFIED PARALLEL INTERMEDIATE
REPRESENTATION (UPIR)

As existing parallel programmingmodels share common parallelism
functionality and similar interfaces of essential capability for pro-
gramming parallelism [2], a language-independent abstraction of
the fundamental entities and constructs for parallelism and their
connections can be constructed in a uni�ed intermediate repre-
sentation serving as the backbone to enable uni�ed and common
parallelism-aware analysis and transformation. The UPIR design
and speci�cation include 1) the three commonly used parallelism
patterns, namely single program multiple data (SPMD), data par-
allelism, and task parallelism including o�oading tasks; 2) data

530



PACT ’22, October 8–12,2022, Chicago, IL, USA Anjia Wang, et al.

attributes and explicit data movement and memory management
for assisting data-aware optimization for parallel programs; and
3) synchronization operations used in parallel programming for
optimizing synchronization cost by the compiler. Table 1 shows
the UPIR’s support and mapping for the language constructs of
OpenMP and OpenACC.

UPIR OpenMP OpenACC
SPMD
parallelism spmd teams, parallel parallel

Data parallelism loop
loop-parallel distribute, for, simd loop, gang

worker, vector
Async task
parallelism task task, taskwait async, wait

Data attributes data
map(to/from)
shared, private
�rstprivate

data(copyin/out)
shared, private
�rstprivate

Synchronization sync barrier, atomic, critical wait, atomic
Table 1: Mapping of parallel programming model constructs
with UPIR design

3 EVALUATION

Figure 1: UPIR implementation in ROSE compiler to support
C/C++/Fortran and OpenMP and OpenACC

Our prototype is implemented in ROSE source-to-source com-
piler [1]. Figure 1 shows how UPIR is generated from OpenMP and
OpenACC source code, in both C and Fortran, and followed by a
uni�ed transformation. The UPIR is also implemented with LLVM
TableGen to produce the UPIR dialects in MLIR, allowing the ROSE
implementation of the UPIR to be exported to MLIR (Figure 2).

UPIR helps compilers conduct a uni�ed transformation for mul-
tiple parallel programming models. We pick two o�oading kernels
for evaluation: AXPY and 2D stencil. The evaluation compared our
ROSE-based UPIR compiler, NVIDIA HPC SDK, and GCC compiler,
all for both OpenMP and OpenACC, and Clang/LLVM for OpenMP
only. For the OpenMP version, our implementation can achieve up
to 1.28x speedup over LLVM and 25.89x speed up over GCC in aver-
age for all the problem sizes we selected. For the OpenACC version,
UPIR shows up to 235.1x speedup over NVIDIA compiler and 1.15x
speedup over GCC in average for all the evaluated problem sizes.
The performance results for 2D stencil are shown in Figure 3.

4 CONCLUSION
In this work, we present UPIR, a uni�ed parallel intermediate repre-
sentation used for representing parallelism of parallel programming
models to assist parallelism-aware compiler analysis, transforma-
tion and optimization. It is designed to support a wide-variety of

1 func @axpy(%arg0: memref<*xi32, 8>, %arg1: memref<*xi32, 8>, %
arg2: i32, %arg3: i32) {

2 ... // %2, %3, %4, %5 are the data used in the parallel region
3 %2 = upir.parallel_data_info(x, shared, implicit, tofrom,

implicit, read-only)
4 %3, %4, %5 = ...
5 %c6_i32 = constant 1024 : i32
6 upir.task target(nvptx) data(%2, %3, %4, %5) {
7 upir.spmd num_units(%c6_i32 : i32) data(%2, %3, %4, %5)

target(gpu) {
8 %c0 = constant 0 : index
9 %c1 = constant 1 : index
10 upir.loop induction-var(%arg4) lowerBound(%c0) upperBound

(%arg3) step(%c1) {
11 upir.loop-parallel worksharing {
12 ...
13 } } } } }

Figure 2: AXPY in UPIR MLIR dialect, for OpenMP and Ope-
nACC GPU O�loading

64 128 256 512 1024 2048
101

102

103

104

105

Problem size: �lter size = 7, array size = N*N, where N = 64, 128, ...

Ti
m
e
(m

s)
in

lo
g
sc
al
e

UPIR for OpenMP/OpenACC LLVM for OpenMP NVIDIA for OpenMP

NVIDIA for OpenACC GCC for OpenMP GCC for OpenACC

Figure 3: 2D stencil performance of UPIR compiler, LLVM,
NVIDIA, and GCC compilers

parallel programming models and the prototype implementation in
ROSE compiler support C/C++/Fortran, OpenMP, and OpenACC.
UPIR enables a uni�ed compiler transformation for multiple parallel
programming models.

Our experiments show that the UPIR compiler utilizes the uni�ed
transformation to compile both OpenMP and OpenACC programs.
It achieves promising performance and saves much development
e�ort for supporting new programming models by leveraging the
UPIR and the uni�ed transformation. We believe that UPIR provides
a comprehensive, �exible and extensible compiler IR designed for
compiler development targeting modern heterogeneous parallel
systems. Furthermore, having the uni�ed IR would enable lots of in-
teresting research and accelerate the implementation of supporting
new programming models in a compiler.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under Grant No. 1833332 and 2015254.

REFERENCES
[1] Dan Quinlan, Chunhua Liao, Justin Too, Robb P Matzke, Markus Schordan, and

PH Lin. 2012. ROSE compiler infrastructure.
[2] Solmaz Salehian, Jiawen Liu, and Yonghong Yan. 2017. Comparison of threading

programming models. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 766–774.

531


