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ABSTRACT

Power and energy consumed by DRAM comprising main memory of
data-center servers have increased substantially as the capacity and
bandwidth of memory increase. Especially, the fraction of DRAM
background power in DRAM total power is already high, and it
will continue to increase with the decelerating DRAM technology
scaling as we will have to plug more DRAM modules in servers or
stack more DRAM dies in a DRAM package to provide necessary
DRAM capacity in the future. To reduce the background power,
we may exploit low average utilization of the DRAM capacity in
data-center servers (i.e., 40-60%) for DRAM power management.
Nonetheless, the current DRAM power management supports low-
power states only at the rank granularity, which becomes ineffective
with memory interleaving techniques devised to disperse memory
requests across ranks. That is, ranks need to be frequently woken
up from low-power states with aggressive power management,
which can significantly degrade system performance, or they do
not get a chance to enter low-power states with conservative power
management.

To tackle such limitations of the current DRAM power man-
agement, we propose GreenDIMM, OS-assisted DRAM power man-
agement. Specifically, GreenDIMM first takes a memory block in
physical address space mapped to a group of DRAM sub-arrays
across every channel, rank, and bank as a unit of DRAM power
management. This facilitates fine-grained DRAM power manage-
ment while keeping the benefit of memory interleaving techniques.
Second, GreenDIMM exploits memory on-/off-lining operations of
the modern OS to dynamically remove/add memory blocks from/to
the physical address space, depending on the utilization of memory
capacity at run-time. Third, GreenDIMM implements a deep power-
down state at the sub-array granularity to reduce the background
power of the off-lined memory blocks. As the off-lined memory
blocks are removed from the physical address space, the sub-arrays
will not receive any memory request and stay in the power-down
state until the memory blocks are explicitly on-lined by the OS. Our
evaluation with a commercial server running diverse workloads
shows that GreenDIMM can reduce DRAM and system power by
36% and 20%, respectively, with ~1% performance degradation.
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1 INTRODUCTION

In data-center servers, power and energy consumed by main mem-
ory, which often consists of many DRAM modules, have grown con-
siderably as the capacity and bandwidth of DRAM has increased [33].
The past studies show that the fraction of main memory power in
total data-center server power is ~40% of the total energy in data-
center servers and report that it will steadily increase as applications
demand larger main memory capacity with more cores per server
and memory-based caching technology [20, 28, 32]. Especially, as
the capacity of main memory increases, the DRAM background
power contributes to a large fraction of the total DRAM power. The
background power includes refresh power to retain memory states
and static power of DRAM peripheral and I/O components. Espe-
cially, the refresh power accounts for more than 35% of the total
DRAM power [24] while the average utilization of main memory
capacity is 40%-60% in data-center servers [25, 30].

To reduce the background power, current DRAM architectures
such as DDR4 support low-power states: power-down and self-
refresh that turns off some of the DRAM components in a rank
and DRAM does refresh itself with minimum power consumption,
respectively [33]. When no memory request is sent to a rank for
a certain amount of time, the memory controller can make the
rank enter a low-power state. However, such low-power states at
the rank granularity become ineffective as memory interleaving
techniques are often adopted to improve memory-level parallelism
(MLP). The memory interleaving techniques disperse data in the
contiguous physical address space across different memory chan-
nels, ranks, and banks [22]. Consequently, memory requests of
applications even with small memory footprint are sent to multi-
ple ranks, preventing the ranks from entering a low-power state;
we observe that an application with 64MB of memory footprint
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(i.e., SPECCPU2006 1ibquantum [14]) completely eliminates an op-
portunity to enter a low-power state. Although some prior work
proposes DRAM power management at the sub-rank granularity, it
does not consider memory interleaving or considerably increases
hardware complexity [16, 21]. Furthermore, a rank in such a low-
power state needs to be woken up with an extra latency (e.g., 18
ns and 768 ns for power-down and self-refresh, respectively [7])
whenever it receives a memory request from a memory controller.
Consequently, aggressive power management, which makes ranks
frequently enter/exit a low-power state, inevitably hurts the system
performance.

To tackle the aforementioned limitations, we propose GreenDIMM,
OS-assisted power management. Specifically, GreenDIMM first pro-
poses to take a memory block in contiguous physical address space
mapped to a group of sub-arrays across every channel, rank, and
bank as a unit of DRAM power management. This facilitates fine-
grained DRAM power management (e.g., 1GB granularity in 64GB
main memory or 1.5625% of the total main memory capacity) while
preserving the performance benefit of the channel, rank, and bank
interleaving techniques. Second, GreenDIMM proposes to exploit
memory on-/off-lining operations of the modern OS! and dynam-
ically remove/add memory blocks from/to the physical address
space, depending on the utilization of memory capacity at run-time.
Third, GreenDIMM proposes to implement a deep power-down state
at the sub-array granularity to reduce the background power of the
off-lined memory blocks, building on the same circuit components
and controlling mechanisms as bank-granularity partial array self-
refresh (PASR) supported by LPDDR and DDR DRAM [10]. The
deep power-down state can practically eliminate the refresh and
static power of sub-arrays associated with off-lined memory blocks
by stopping refresh and power-gating peripheral and I/O compo-
nents of the sub-arrays. After GreenDIMM off-lines the memory
blocks and makes the corresponding sub-arrays enter the deep
power-down state, the OS or applications do not send any mem-
ory request to the sub-arrays. That is, GreenDIMM does not need
to wake up the sub-arrays for sudden memory requests to the off-
lined memory blocks in the power-down state and pay a penalty
for waking up the sub-arrays from the power-down state until it ex-
plicitly on-lines the memory blocks. Lastly, GreenDIMM proposes to
increase the fraction of memory capacity in the deep power-down
state while decreasing the performance overhead of on-/off-lining
memory blocks at run-time with optimizations. To the best of our
knowledge, GreenDIMM is the first effective DRAM power manage-
ment technique exploiting the memory on-/off-lining operations
supported by the modern OS.

We evaluate GreenDIMM with a commercial server running Mi-
crosoft Azure VM [6], SPECCPU2006 [14], SPECCPU2017 [4], Hi-
Bench [15], and cloudsuite [12]. The summary of our evaluations is
as follows. GreenDIMM can reduce DRAM energy consumption by
32%-36% (i.e., system energy consumption by 9%-20%) for DRAM
capacity of 256GB to 1TB. GreenDIMM with the proposed optimiza-
tion can reduce DRAM energy consumption by 55% (i.e., the energy
consumption of the server by 30%) with more sub-arrays in the deep

I They are originally developed to support memory hot-plug that allows a (failing)
DRAM module to be unplugged from a server and replaced with a another DRAM
module at run-time.
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power-down state for 1TB capacity at the cost of ~1% performance
degradation.

The rest of this paper is organized as follows. Section 2 and
Section 3 explains the background and motivation of GreenDIMM,
respectively. Section 4 describes the main idea and overall archi-
tecture of GreenDIMM. Section 5 discusses implementation issues
of GreenDIMM. Section 6 shows experimental results of GreenDIMM
with a real machine setup. Section 7 describes the related work.
Section 8 concludes this paper.

2 BACKGROUND
2.1 DRAM Architecture

A DRAM-based main memory is organized in a hierarchical manner,
consisting of channels, Dual In-line Memory Modules (DIMMs),
ranks, and banks. Each DRAM device provides 4-, 8-, or 16-bit I/O
(i.e., X4, X8, and x16 DRAM devices), and thus a rank comprises
16, 8, or 4 DRAM devices to provide 64-bit I/O. To provide a large
capacity for servers, we typically use DIMMs with X4 or X8 DRAM
devices, each with 4Gb or 8Gb. Then, suppose a rank consisting of
eight X8 DRAM devices. From a memory controller perspective,
a (logical) bank in the rank in fact consists of 8 (physical) banks
from 8 DRAM devices accessed with the same bank, row, and col-
umn addresses in a lock-step manner. A physical bank consists of
multiple sub-arrays [29, 34], each consists of multiple MATs. For
example, a bank of DDR4 X8 4Gb DRAM devices has 64 sub-arrays
and a sub-array has 16 MATs, each of which typically comprises
512 rows and 512 columns.

2.2 DRAM Power Management with
Low-Power States

For DRAM power management, the memory controller can dynam-
ically set DRAM power states [11]. The current DRAM, such as
DDR4, supports multiple power states such as power-down and self-
refresh that can reduce the background power considerably at the
cost of performance. For example, the power-down state disables
clock and turns off I/O circuits, consuming only 40%-70% of the
power consumed by active state. The self-refresh state additionally
turns off power-hungry delay-locked loop (DLL), consuming down
to 10% of the power consumed by active state. However, such low-
power states require a significant amount of wake-up time (e.g., 18
ns and 768 ns for power-down and self-refresh, respectively [7]) to
turn on the DRAM components and then serve memory requests,
considerably increasing the latency of memory accesses.

2.3 Memory On/Off-lining

The memory on/off-lining is a part of the memory hot-plug tech-
nique that allows administrators to install/remove DIMMs physi-
cally for the purpose of upgrade/replacement without system down-
time [17, 23]. For the memory off-lining, the kernel changes the
state of a region of the physical address space to the off-line state by
updating the sysf's file. Before the OS off-lines the region, it first
clears the page table entries by removing memory pages associated
with the region from the list of available memory, the mem_map list,
and the buddy lists. Subsequently, the OS migrates the pages in
the regions to other on-lined regions. Since the OS does not allo-
cate pages in the off-lined regions, the OS-level memory off-lining
provides an opportunity to reduce power and energy consumption
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Table 1: DRAM power vs. the utilization of memory capacity.

Utilization of Memory Capacity
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Capacity

of the memory systems. For example, the memory controller can
set the power state of DRAM associated with off-lined regions to
a deep power-down state that turns off the most of components
and does not refresh states without worrying about paying a steep
performance penalty to wake up the DRAM from the deep power-
down state until the OS explicitly on-lines the regions. However,
the OS can on/off-line only a region of contiguous physical address
space. This limits the effectiveness of memory on/off-lining for cur-
rent DRAM power management at the rank granularity, as memory
interleaving techniques disperse the region across multiple ranks.

2.4 Kernel Samepage Merging

The Linux OS provides a memory de-duplication feature, Kernel
Samepage Merging (KSM). KSM was originally developed to be used
with kernel-based virtual machine (KVM). It allows us to share the
same data at the page granularity between virtual machines (VMs)
and thus fit more VMs into limited physical memory space of a
server [2]. It is also useful for any application that generates many
instances of the same data. We can enable KSM by compiling the
kernel with config_ksm option and configure parameters such as
the number of scanned pages in a single pass and the time between
the passes using the sysfs interface. The KSM daemon (ksmd)
periodically scans those areas of user memory which have been
registered with it, looking for pages of identical content which can
be replaced by a single write-protected page (which is automatically
copied if a process later wants to update its content). Note that KSM
only operates on those areas of address space which an application
has advised to be likely candidates for merging, by using a system
call, madvise(). When an application runs, madvise() is invoked
and sets a flag (i.e., MADV_MERGEABLE flag) for mergeable memory
regions. Then, ksmd periodically merges the mergeable pages by
exploiting two trees, stable tree and unstable tree, for shared
pages and non-shared pages, respectively. Specifically, ksmd tra-
verses stable tree first to find a page with the same contents with
the target page, and then traverses unstable tree when it fails to
find the same page at stable tree and the checksum is equal to
the old checksum in the previous scanning phase.

3 OPPORTUNITY AND CHALLENGE IN
DRAM POWER MANAGEMENT
3.1 Utilization of Memory Capacity in Servers

In prior studies [25, 30], the data-center servers show 40%—60%
utilization of the memory capacity on average. That is, the kernel
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Figure 2: DRAM idle and busy power.

may off-line approximately 50% of memory blocks on average, and
thus considerably reduce the power and energy consumed by the
main memory if it can place every off-lined memory block into
power-down or self-refresh state.

To investigate the utilization of memory capacity in data-center
server environments, we measure the utilization of memory capac-
ity for 24 hours after reproducing the execution setup of a server
based on the Microsoft Azure VM trace [6]. Specifically, we first
establish a virtualized system with KVM hypervisor on a server
with a 16-core Intel Xeon processor and 256GB of memory con-
sisting of eight 2Rx4 32GB DDR4 DIMM:s. Second, we randomly
choose 100 different types of VMs from the Microsoft Azure VM
trace, each of which has a different number of vCPUs, memory size,
and lifetime. Lastly, we schedule/consolidate VMs on the server
every five minutes while ensuring that the consolidation ratio of
vCPUs is less than or equal to two and the total memory capacity
used by VMs does not exceed the maximum memory capacity (i.e.,
256GB), as virtualized clouds typically do.

Figure 1 shows the percentage of memory capacity used by
VMs running on the server for 24 hours. It shows that the average
memory capacity used by the scheduled VMs running on the server
is 48% of the total memory capacity, while varying from 7% to
92% for 24 hours. This agrees with prior studies [25, 30] observing
40%-60% utilization of memory capacity on average and 90% usage
at peak time [25]. As discussed in Section 2.4, KSM can further
reduce the memory capacity used by VMs. Thus, we also measure
the memory capacity used by the VMs after we enable KSM; the
KVM hypervisor supports KSM for VMs without requiring any
modification of source code. Figure 1 (‘w/ ksm’) shows that KSM
can reduce the memory capacity used by the VMs by 4%-90% (24%
on average). Consequently, KSM can allow the kernel to off-line
76% of the memory capacity on average.

3.2 DRAM Power in Server Environments

To obtain the breakdown of DRAM and server power, we first mea-
sure the power of the server (16-core processor with 64GB-256GB
memory) using a HPM-100A power meter. We also measure the
power consumed by the DRAM and processor using Running Aver-
age Power Limit (RAPL) [8]. In Figure 2, we show DRAM busy and
idle power consumption as we increase the memory capacity. For
the DRAM busy power consumption, we run 16 copies of a memory-
intensive application (i.e., mcf) on the processor. This shows that
the DRAM consumes a considerable amount of power even when
it is idle. For example, 256GB DRAM consumes 18 and 26 Watts
for idle and busy power, respectively. That is, the refresh and static
power account for 70% of the total DRAM power. Moreover, as the
memory capacity increases, both the total DRAM power and the
fraction of DRAM background and static power steadily increase.
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Figure 3: The impact of memory interleaving on server performance and energy; we run benchmarks with high misses per
kilo-instructions (MPKI) from SPECCPU2006 on a commodity server with 64GB DDR4 DRAM (four channels, each with four

ranks) with four-way channel and rank interleaving,.

For example, while the DRAM power increases from 9 to 91 Watts
as the DRAM capacity increases from 64GB to 1TB, the percentage
of background DRAM power increases from 44% to 78%. Meanwhile,
in Table 1, we show that the DRAM power consumption is rela-
tively constant, although we change the utilization of the memory
capacity. This is because not only sub-array peripheral and I/O
components consume static power, but also sub-arrays associated
with the unused capacity still need to be refreshed periodically
without any power management for unused capacity.

3.3 Limitation of Current DRAM Power
Management

A memory interleaving technique is often adopted by most commer-
cial processors because it can significantly improve the performance
of memory-intensive applications. For example, Figure 3a shows
that it improves the performance of 1bm by 3.8x. Nonetheless, it
makes the current DRAM power management ineffective. This is
because a memory interleaving technique disperses data in contigu-
ous physical address space across ranks, while the DRAM power
management supports the low-power states at the rank granular-
ity [31]. That is, no rank can stay in idle state long enough to enter a
low-power state. This is confirmed by Figure 3b (“w/ interleaving”)
where we measure the number of cycles that each rank spends in
self-refresh state and plot the average of cycles from all the ranks.
Although the memory capacity used by these memory-intensive
benchmark programs is as small as 1.2GB out of 64GB (i.e., ~2% of
the total memory capacity), we observe that no rank ever enters
self-refresh state?. Another DRAM power management technique is
exploiting PASR which stops refresh of idle banks. Our experiment
using Ramulator([19] running the same memory-intensive bench-
marks also shows that no bank has a chance to enter a low-power
state. That is, the current DRAM power management techniques
relying on a low-power state at the rank or bank granularity (e.g.,
RAMZzz [33]) are not effective when a memory interleaving tech-
nique is deployed. In contrast, disabling the memory interleaving
technique gives opportunities for the ranks to stay in a low-power
state (e.g., 54% of execution cycles on average in Figure 3b (“w/o
interleaving”)), which allows the server to reduce energy consump-
tion by 26% on average in Figure 3c.

ZRAPL does not support the measurement of cycles that ranks spend in power-down
state but our indirect measurement suggests that ranks do not enter the power-down
state, either.
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4 OS-ASSISTED DRAM POWER
MANAGEMENT

To tackle the limitation of current rank-granularity DRAM power
management, we propose an OS-assisted DRAM power manage-
ment, GreenDIMM. Figure 4 describes the overall architecture of
GreenDIMM. More specifically, GreenDIMM consists of three compo-
nents. GreenDIMM takes a memory block in contiguous physical
address space mapped to a group of DRAM sub-arrays across every
channel, rank, and bank (@ in Figure 4) with the same sub-array
address (@ in Figure 4). As the most significant bits of a physical ad-
dress are used to index a group of sub-arrays, GreenDIMM not only
provides fine-grained DRAM power management but also keeps
the performance benefit of memory interleaving techniques (Sec-
tion 4.1). GreenDIMM exploits memory on/off-lining operations of
the modern OS to dynamically remove/add memory blocks from/to
the physical address space (@ in Figure 4), depending on the uti-
lization of memory capacity at run-time (Section 4.2). GreenDIMM
implements a deep power-down state at the sub-array granularity
(@ in Figure 4) to reduce the background power of the off-lined
memory blocks (Section 4.3). The deep power-down state turns off
the most of the peripheral and I/O components and does not refresh
memory cells in sub-arrays mapped to off-lined memory blocks.
This practically eliminates the background power consumed by
the off-lined memory blocks. Meanwhile, as the off-lined memory
blocks are removed from the physical address space, the sub-arrays
will not receive any memory requests and stay in the power-down
state until the memory blocks are explicitly on-lined by the OS.
Thus, GreenDIMM can considerably reduce power and energy con-
sumed by unused memory space, which is significant even in highly
consolidated data-center environments, with a negligible perfor-
mance penalty. The rest of this section describes each component
in detail.

4.1 Interleaving-Agnostic DRAM Power
Management

Modern processors typically use memory interleaving techniques
that disperse data in contiguous physical address space across chan-
nels, ranks, and banks, hashing a part of physical address bits to
choose a channel, rank, and bank addresses. As discussed in Sec-
tion 3.3, memory interleaving techniques better exploit memory-
level parallelism and thus improve the performance of memory-
intensive applications. As it is important to preserve the perfor-
mance benefit of the memory interleaving techniques, GreenDIMM
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Figure 4: The overall architecture of GreenDIMM.

proposes an interleaving-agnostic DRAM power management tech-
nique.

Specifically, GreenDIMM exploits the fact that the most significant
N bits of the physical address are used to index a row in a bank
and the most significant M bits of the row address are taken to
index a sub-array in the bank (i.e., a group of sub-arrays across
DRAM devices in a rank). For example, consider 64GB main memory
consisting of 4 channels, each with a 2-rankx8 DIMM, which leads
to memory interleaving depicted in Figure 5. A rank comprises
eight 4Gb DRAM devices and thus provides 4GB with 16 256MB
(logical) banks. In Figure 5, each (physical) bank has two types
of row address decoders, a global and local row decoders. When
decoding the row address, the global decoder chooses a sub-array,
and the local decoder chooses a row in the sub-array. In an 4Gbx8
DRAM device, the number of bits for the row address is 15 (= N) and
the number of sub-arrays is 64 in a bank as illustrated in Figure 5.
That is, the global decoder uses 6 bits (= M) to choose a 4Mb sub-
array (i.e., 4MB across 8 DRAM devices in a rank), and uses the
remaining 9 bits to choose a particular row among 512 rows in the
sub-array.

35 2120 1918 1716 1514 87 65 32 0
@) Row ID Bank (]:}:‘ol:;) Rank | Column [Chann.| Block | Byte
ID ID ID ID ID | offset | offset
Memory (b)
Controller | _ Sub-array (4Mb)
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Figure 5: Address mapping (a) for a 64GB main memory con-
sisting of 4 channels, each with a 4-rank x8 DIMM adn (b)
within a DDR4 x8 4Gb DRAM device. The sub-array in the
grey-color box is the minimum unit of DRAM power man-
agement.
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Exploiting the fact described in previous paragraph, GreenDIMM
proposes a group of sub-arrays across every channel, rank, and bank
((@ in Figure 4)) with the same row address range (@ in Figure 4)
as a minimum unit of DRAM power management. In Figure 5, as
the 64GB main memory has 16 ranks, each with 16 banks, the
minimum unit becomes 1024MB (= 4MB X 16 banks X 16 ranks),
1.5625% of the total capacity; the percentage does not change with
smaller or larger total capacity. This granularity of DRAM power
management is fine enough to maximize the chance of reducing
the background power of unused memory space while keeping
the benefit of interleaving across channels, ranks and banks. The
unit of DRAM power management can vary with grouping of more
sub-arrays (e.g., two or four adjacent sub-arrays in a bank), and
we will further discuss its impact on power/energy reduction and
performance in Section 5.1.

4.2 DRAM Power Management Based on
Memory On/Off-lining

GreenDIMM implements DRAM power management daemon that
leverages the memory on/off-lining operations supported by Linux
(® in Figure 4). Specifically, memory_usage_monitor() of Green-
DIMM periodically obtains the current utilization of the memory
capacity from /proc/meminfo [13] in Linux and then records the
memory utilization (e.g., every 1 second); we observe that the period
less than 1s increases the monitoring overhead while not helping
off-line more memory blocks. If the amount of on-lined but unused
memory (or free memory) is greater than a threshold, of f_thr (e.g.,
10% + a of the total memory capacity), memory_usage_monitor()
sends a request to block_selector () of GreenDIMM to choose free
memory blocks to be off-lined. We observe that the system per-
formance dramatically degrades when the threshold is less than
10% because pages are frequently swapped between the main mem-
ory and the storage. block_selector(), which we implemented,
searches the list of memory blocks and picks movable memory
blocks. Among the movable blocks, GreenDIMM chooses to off-line
blocks only with unused pages. Consequently, off-lining does not
migrate data and their physical addresses are unlikely to be cached
in TLB. Note that there are unmovable memory blocks that are used
by the kernel or devices (cf. Section 5.2).

Then, block_selector() calls of fline_pages() of Linux with
the starting physical page number (PPN) and the number of pages
to off-line the selected memory blocks from the physical address
space. After GreenDIMM completes the memory off-lining, it updates
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control registers in the memory controller, based on the starting
physical address and the number of pages in the off-lined memory
block. This makes sub-arrays associated with the off-lined memory
blocks enter the deep power-down state. We describe the mecha-
nism and overhead in Section 4.3.

When memory_usage_monitor() observes that the amount of
free memory is lower than a threshold, on_thr, it begins to on-
line memory blocks. On-lining an off-lined memory block goes
through the off-lining steps in the reverse order, except that Green-
DIMM should wait until the sub-arrays completely exit from the
deep power-down state before it calls online_pages() of Linux.
GreenDIMM can determine whether the sub-arrays are ready by
polling a memory controller register bit. We provide more informa-
tion on the exit latency of the deep power-downstate in Section 4.3.

4.3 Sub-array Deep Power-down State

GreenDIMM’s deep power-down state at the sub-array granularity
requires two steps. First, the memory controller stops refresh of
sub-arrays corresponding to the physical address space of the off-
lined memory block. Its implementation basically builds on the
current memory controller’s support for PASR and partial array
auto-refresh (PAAR), stopping refresh of one or more banks [5].
A memory controller supporting PASR has a memory-mapped a
bit vector register that enables/disables the refresh of a bank, it
will need 16 bits per rank and 128 bits for 4 channels, each with 2
ranks (i.e., memory system configuration in our setup). By contrast,
GreenDIMM requires fewer bits as it controls a group of sub-arrays
across channels, ranks, and banks with a single bit. That is, regard-
less of the number of channels and ranks, GreenDIMM needs only
64 bits as there are always 64 groups of sub-arrays.

Second, the memory controller sets the DRAM mode register [1]
such that the peripheral and I/O circuits of sub-arrays are turned
off. Its implementation builds on the current memory controller’s
support for the power-down state at the rank granularity described
in Section 2.2 together with the bit vector register to enable/disable
the refresh of a sub-array. After the DRAM mode register of all
every DRAM device in a rank is concurrently updated, each DRAM
device turns off the power gates for the peripheral and I/O circuits
of the target sub-array.

Note that, a power gate is a switch transistor that connects the
external power/ground with the internal power/ground of DRAM
circuits, and the power-gating granularity can be as small as a
circuit block (e.g., row decoder of a sub-array). Especially, PMOS
switch transistors are mainly used for pull-up (between external
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Figure 7: Execution time as the size of a memory block
change; a memory block maps to one (128MB), two (256MB),

and four (512MB) sub-array groups.

Table 2: The number of on-lined and off-lined memory
blocks as the memory block size changes.

Application # of on/off | # of on/off | # of on/off
128MB 256MB 512MB
mcf 6 2 1
gce 47 24 12
soplex 36 18 8
Ibm 30 15 6
libquantum 37 17 8
povray 40 20 9

and internal power) while NMOS switch transistors are used for
pull-down (between internal and external ground). As the use of
an excessively large switch transistors can increase both the area
overhead and the switch’s on/off latency, the size of switch tran-
sistors are carefully optimized. In general, a long length transistor
of 1.2 times or more is used to prevent leakage current and the
turn-on resistance of the power switch is designed to be less than
0.1Q. Our analysis based on a commercial 1xnm 8Gb DRAM design
shows that the size of the switch transistors for each subarray is
1500um?, accounting for 0.64% of the total DRAM chip size. Even if
the control logic is added in each sub-array unit, the area overhead
is negligible as it is less than 1% of the total DRAM chip size.

GreenDIMM control circuit in DRAM is almost identical to ones
for PASR/PAAR. The only difference is how we group sub-arrays
for preventing refresh. PASR/PAAR can be applied to every group
of 16 sub-arrays in each bank; 16 instances of the control circuit
are required as there are 16 banks in each chip, while GreenDIMM
is applied to every group of 16 sub-arrays across 16 banks in a lock-
step manner. As such, we expect DRAM cost increase is almost the
same as PASR/PAAR, i.e., 0.1% of total DRAM die area.

The long exit latency of the traditional self-refresh state (e.g.,
768ns) is primarily contributed by turning on the DLL circuit of
DRAM devices. In contrast, GreenDIMM’s deep power-down state
does not turn off the DLL circuit, as it places only a part of DRAM
devices. Thus, the exit latency of GreenDIMM’s deep power-down
state is no longer than that of the power-down state which takes
only 18ns to disable the clock and turn off the I/O circuits of the
entire DRAM device.
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Table 3: The average latency of off-lining, on-lining, and off-
lining failure while running mcf.

l Event l Avg. Latency (ms) ‘
off-lining 1.58 ms
on-lining 3.44 ms
failure (EAGAIN) 4.37 ms
failure (EBUSY) 6 us

5 IMPLEMENTATION CHALLENGES
5.1 Size of On/Off-lined Memory Blocks

As described in Section 4, GreenDIMM monitors the current utiliza-
tion of memory capacity and determines on-line/off-line memory
blocks periodically. The size of a memory block, which is the unit of
memory on/off-lining, affects the off-lined capacity of GreenDIMM
and the applications’ performance. The default size of a memory
block for on/off-lining is 128MB in Linux and the size of a mem-
ory block is configurable through /sys/devices/system/memory/
block_size_bytes. For example, as the size of a memory block
increases, GreenDIMM can off-line less capacity since the amount of
free memory except for reserved free memory with of f_thr (10% of
total capacity) must be larger than the block size to off-line a block.
In addition, the size of a memory block determines the number
of on/off-lining including page table updates and page migrations,
affecting performance.

Figure 6 plots the off-lined capacity by GreenDIMM as the size
of a memory block change. We use 128MB, 256MB, and 512MB
as the size of a memory block, each of which is the size when a
memory block is mapped to one, two, and four sub-array groups in
our experimental setup; note that we can manipulate the size of a
memory block based on the capacity of a sub-array group. For ex-
ample, with 512MB memory blocks, four sub-array groups enter to
deep power-down state when the kernel off-lines a memory block.
Not surprisingly, GreenDIMM off-lines more blocks with the smaller
block size. For example, while running gcc, GreenDIMM with 128MB
memory blocks off-lines 3.125GB while off-lining 2GB with 512MB
memory blocks. Since GreenDIMM can off-line the memory block
only when the amount of free memory that can be turned off is
greater than the single block size, GreenDIMM is likely to off-line
less capacity with the larger block size. Furthermore, as the size
of a memory block increases, the off-lining failure occurs more
frequently since all pages in the block must be removable; we will
discuss the off-lining failure in Section 5.2. To observe the perfor-
mance overhead as the memory block size changes, we plot the
increased execution time in Figure 7. While all cases show per-
formance degradation less than 3%, the performance overheads
slightly increase as the size of a memory block decreases. For ex-
ample, GreenDIMM degrades the performance of mcf by 2.9% with
128MB blocks while degrading the performance of mcf by 2.2% with
512MB blocks.

The reason for more performance overheads with the smaller
size of the memory block is that the number of on-lining/off-lining
increases as the size of the block decreases as represented in Ta-
ble 2. For example, with gcc, the number of off-lining/on-lining is
reduced from 47 to 12, as the size of memory block increases (i.e.,
from 128MB to 512MB). Since on-lining and off-lining require extra
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Figure 8: The number of off-lining failures with a removable
value.

number of failures

operations for enabling/disabling memory blocks in the physical ad-
dress space, more on-linings/off-linings lead to more performance
degradation.

Although GreenDIMM shows the different performance overheads
and off-lined capacity with varying sizes of the block, we observe
that the difference in the performance overheads is not much while
the difference in the off-lined capacity is considerable for some
applications. We use the size of a memory block that fits in a sub-
array group (i.e., 128MB block size) in our evaluation for more
power reduction. However, since the block size is configurable
and GreenDIMM does not require extra features as the size of block
changes, GreenDIMM can decrease/increase the block size for more
power reduction or less performance overheads.

5.2 Identifying Removable Memory Blocks for
Off-lining

GreenDIMM fails to off-line a memory block when any page in the
block is used by the kernel or devices since the page is not mi-
gratable (i.e., unmovable). Furthermore, repetitive failures can also
occur, degrading the performance notably. Although the Linux OS
can configure the range of movable memory regions through a
booting parameter (e.g., movablecore=8G), the reserved movable
regions can also have unmovable pages.

We observe two cases of the off-lining failure, EBUSY and EAGAIN.
EBUSY occurs when the kernel fails to isolate the target memory
block from the physical address space since some pages in the mem-
ory block are unmovable. EAGAIN occurs when the kernel cannot
use the necessary resource temporarily even though all pages in the
block are movable. For example, while off-lining memory blocks,
EAGAIN occurs when the kernel fails to find other memory regions
to migrate pages from the off-lined blocks.

To observe the effects of off-lining failures on the performance,
we represent the average latency when on-lining, off-lining, off-
lining failure with EAGAIN, and off-lining failure with EBUSY occur
while running mcf in Table 3; we map a memory block to a sub-
array group (i.e., 128MB block size). As shown, the off-lining failure
with EBUSY only requires 6ys latency. However, the latency of off-
lining failure with EAGAIN is even longer than the latency of off-
lining success. For example, the failure latency with EAGAIN is
4.37ms while the off-lining latency is 1.58ms; in our experiments,
the off-lining success occurs only when we attempt to off-line a
memory block only with unused pages, requiring no page migration.
Since EAGAIN occurs after three attempts to migrate pages fail if
we choose a memory block that has used pages, it shows about 3x
longer latency than the success; note that recent kernel attempts
page migration infinitely until it succeeds, which can degrade the
performance substantially.
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Figure 9: DRAM energy consumption.

To reduce the number of off-lining failures, GreenDIMM uses
a variable (i.e., removable) offered by the Linux kernel through
sysfs, which represents whether the memory block contains un-
movable pages or not; removable is true when all pages in the block
are movable. Since the value of removable becomes zero when the
memory block has unmovable pages, if GreenDIMM chooses a block
to off-line among blocks with removable set to one, the number of
off-lining failures will be alleviated.

Figure 8 shows the comparison of the number of off-lining fail-
ures between when GreenDIMM chooses blocks to off-line randomly
and when GreenDIMM chooses blocks with removable set to 1 first.
As plotted, applications showing frequent changes in the memory
footprint, such as gcc and soplex, show more off-lining failures
than applications showing smaller changes in the memory foot-
print, such as mef, 1bm, 1ibquantum, and povray. Furthermore, we
observe that the portion of EAGAIN increases as the number of off-
lining failures increases. Consequently, as the number of off-lining
failures increases, the performance can be degraded substantially;
note that failures with EAGAIN show much longer latency than fail-
ures with EBUSY. However, if GreenDIMM checks the removable for
each block when it chooses blocks to off-line, GreenDIMM reduces
the number of off-lining failures by about 50%, mitigating delays
due to the off-lining failures.

5.3 Memory Off-lining with Kernel Samepage
Merging

As discussed in Section 3.1, KSM, which reduces the memory foot-

print of applications, helps GreenDIMM to reduce the energy con-

sumption by allowing GreenDIMM to off-line further memory blocks.

To quickly react to the changes in the utilization of the memory

capacity by the KSM, GreenDIMM monitors the current utilization
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of the memory capacity and attempts to off-line memory blocks as
soon as the KSM daemon completes merging pages regardless of
GreenDIMM’s monitoring period. We will discuss the effects of such
simple optimization for the KSM in Section 6.3.

Although the KSM daemon reduces the memory footprint fur-
ther, it incurs extra performance overheads while consuming com-
puting resources for scanning and merging pages. Furthermore,
copy-on-write operations occur when shared pages are modified.
However, KSM’s parameters related to performance overheads are
configurable, such as the number of pages to be scanned and the
scanning period. In this work, we use 1000 and 50ms as the number
of pages to be scanned and the scanning period, respectively. With
the configuration, the KSM daemon only consumes 10% of a core to
scan, merge, and manage the pages while showing the considerable
reduction in the memory footprint; we can also change the param-
eter values to reduce the memory footprint further at the cost of
performance.

6 EVALUATION

6.1 Experimental Methodology

To evaluate GreenDIMM, we run applications from SPECCPU2006 [14]
and SPECCPU2017 [4]. We evaluate GreenDIMM with data-center
workloads from HiBench [15], cloudsuite [12]. Furthermore, we
also evaluate GreenDIMM in the virtualized server environments us-
ing Microsoft Azure VM trace [6]; we establish a hypervisor-based
virtualized system on the real machine using KVM hypervisor.
We implement the software manager of GreenDIMM that on/off-
lines memory blocks based on the current utilization of the mem-
ory capacity and estimate the effects of the on-lining/off-lining on
DRAM power reduction using CACTI [3]. We measure the power of
the real machine using hardware performance counters and power
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Figure 10: System energy consumption

meters as we do in Section 3.1. We compare GreenDIMM with the
conventional techniques and prior studies that manage the back-
ground power by the channel, rank, and bank-granularity, such
as self-refresh, RAMZzz [33], and PASR [10], respectively. Lastly, to
observe the synergy when GreenDIMM with KSM as mentioned in
Section 3.1, we conduct experiments after enabling KSM with the
Azure VM trace.

We use eight 4Gb 2R x8 DDR4-2133 8GB DIMMs (total 64GB)
with four channels, each of which has two DIMM slots for running
SPECCPU applications and data-center workloads. For running
the Azure VM trace, we use eight 8Gb 2R x4 DDR4-2133 32GB
DIMMs (total 256GB). We configure the size of a memory block
to fit in a group of sub-arrays as discussed in Section 5.1. We off-
line a sub-array only when neighboring sub-arrays are off-lined,
assuming that two consecutive sub-arrays share a sense amplifier
in the middle [26]. We also assume spare rows from separate repair
arrays [18], which typically occupy less than 2% of total DRAM
rows, are always turned on.

6.2 Energy Reduction

We measure energy consumption with interleaving and without
interleaving. We denote them as w/ intlv and w/o intlv. We
compare GreenDIMM with RAMZzz and PASR rank-granularity and
bank-granularity power management, respectively. RAMZzz moni-
tors the memory access pattern, and migrates data from cold rank
to hot rank to reserve the more idle ranks, and promotes/demotes
the power state of the cold ranks for the background power. PASR
allows each idle bank to enter the deep power-down state in mobile
DRAM for the background power reduction. For comparison with
RAMZzz and PASR, we model power reduction by them based on the
number of idle ranks/banks.
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Figure 9 shows DRAM energy consumption. We normalize all re-
sults to the results of w/o intlv srf_only, which means that only
self-refresh is used for background power management without
memory interleaving. As plotted, the memory interleaving increases
DRAM energy considerably for CPU-intensive, but not memory-
intensive workloads even with rank-/bank-granularity power man-
agement, such as RAMZzz and PASR. For example, memory inter-
leaving increases DRAM energy by 40% and 44% for 403.gcc and
500.perlbench, respectively, when only self-refresh is used. This
is because the memory interleaving prevents ranks/banks from
entering low power states even with applications showing a small
memory footprint.

However, GreenDIMM reduces DRAM energy consumption ef-
fectively for all workloads even though memory interleaving is
enabled. GreenDIMM reduces the energy consumption for 403.gcc
that even shows the minimum reduction by 9% compared with w/
intlv srf_only. Compared with the results of RAMZzz and PASR,
GreenDIMM shows more reduction by 49%p (percent point) when the
interleaving is enabled. On the other hand, for memory-intensive
workloads, the memory interleaving reduces the DRAM energy
considerably. For example, for 470. 1bm, the memory interleaving
reduces the DRAM energy consumption by 38% for self-refresh only
cases. This is because the memory interleaving reduces the execu-
tion time of memory-intensive applications (e.g., 462.1ibgauntum,
470.1bm, and ml_linear) substantially even though it prevents
ranks/banks from entering low power states while running applica-
tions. However, GreenDIMM reduces the background power regard-
less of memory interleaving even while the memory-intensive appli-
cation is running, leading to energy reduction further. GreenDIMM
reduces DRAM power for SPECCPU applications and data-center
workloads by 38% and 60% on average.
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Figure 11: Increased execution time by GreenDIMM.
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Figure 10 shows system energy consumption. We also normalize
all results to results of w/o intlv srf_only. As plotted, RAMZzz,
PASR, and GreenDIMM reduce the system energy effectively w/o
memory interleaving. However, only GreenDIMM reduces the sys-
tem energy consumption with memory interleaving, since chan-
nel/rank/bank memory interleaving disturbs the channel-, rank-,
and bank- granularity power management as aforementioned be-
fore.

The memory interleaving also increases the system energy con-
sumption for non-memory-intensive workloads. For example, in the
case of 403. gcc, memory interleaving increases the system energy
consumption by 10% while increasing DRAM energy consumption
by 1.4x as plotted in Figure 9a. For memory-intensive workloads,
462.1libquantum, 470.1bm, 519.1bm, and ml_linear, memory in-
terleaving reduces the system energy by 47%, 45%, 45%, and 54%,
respectively, even though the interleaving prevents ranks/banks
to enter low power states. However, GreenDIMM reduces system
energy reduction regardless of memory interleaving. For SPECCPU
applications and data-center workloads, GreenDIMM reduces system
energy by 26% and 30% on average.

Lastly, we investigate the performance overheads in terms of
the execution time and tail response latency (i.e., 95th and 99th
percentile latency) by on-/off-lining memory blocks of GreenDIMM
for power management. We observe that GreenDIMM consumes
0.34%/0.16% of a single core’s cycles for on-lining/off-lining every 1s
only when on-lining/off-lining occurs GreenDIMM on-lines/off-lines
0.05/0.47 blocks every 1s on average. Consequently, GreenDIMM
does not incur considerable performance degradation as plotted
in Figure 11. For example, 403.gcc and 502.gcc show the most
performance degradation by less than 3% while other workloads
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Figure 13: DRAM and system power consumption as the
memory capacity increases.

show the degradation by less than 2%. Furthermore, we do not ob-
serve notable degradation in tail response latency of latency-critical
applications by GreenDIMM, such as data-caching, data-serving,
and web-serving. For those applications, GreenDIMM shows much
less number of on/off-lining as the applications show a constant
memory footprint.

6.3 Power Reduction in VM Server
Environment

As discussed in Section 3.1, the server environments have many
opportunities to reduce DRAM power with low average memory
utilization. Although rank-granularity low power states fail to re-
duce the DRAM power, sub-array granularity power management
by GreenDIMM reduces the DRAM power considerably with the low
memory utilization.

Figure 12 shows the number of off-lined blocks. With the VM
trace, GreenDIMM off-lines 116 blocks (45% of total capacity) on aver-
age out of 256 blocks; GreenDIMM off-lines 230 (90% of total capacity)
and 4 (1.5% of total capacity) memory blocks when the utilization of
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memory capacity is minimum and maximum, respectively; we use
1GB as the size of memory block for 256GB memory size. Assum-
ing the sub-array groups mapped to the off-lined memory blocks
enter deep power-down state, GreenDIMM reduces the DRAM back-
ground power by 46%. Furthermore, with KSM, GreenDIMM off-lines
61 more memory blocks and reduces the DRAM background power
by 70%.

Figure 13 shows the estimated DRAM power and system power
consumption with GreenDIMM. Based on the measured power with
256GB memory, we estimate the DRAM power and system power
as the memory capacity increases using a simple linear model. With
256GB memory capacity, GreenDIMM reduces the DRAM power and
system power by 32% and 9% on average, respectively. With KSM,
GreenDIMM reduces the DRAM power and system power by 48% and
13%, respectively. GreenDIMM reduces more power as the memory
capacity increases since the memory with larger capacity consumes
more background power. As plotted in Figure 13, GreenDIMM re-
duces 36% and 20% of DRAM power and system power, respectively,
with 1TB memory capacity. With KSM, GreenDIMM reduces 55%
and 30% of DRAM power and system power, respectively, with 1TB
memory capacity. These results demonstrate that the background
power of DRAM is one of the major contributors to the total system
power, and GreenDIMM can reduce the system power considerably
by reducing DRAM background power, especially with large capac-
ity.

Note that GreenDIMM will not reduce power consumption of
memory in servers running storage and in-memory database appli-
cations that consume most of or all the memory space (e.g., page
cache for storage servers).

7 RELATED WORK

There have been many hardware/software studies for DRAM power
management [9, 10, 16, 21, 27, 33, 35]. RAMZzz [33] proposes rank-
aware power management that groups pages showing analogous
locality and place them into the same rank. RAMZzz classifies ranks
into the hot rank and cold rank, each of which means the frequently
accessed rank and rarely accessed rank, respectively. Then, RAMZzz
migrates pages in the cold ranks to the hot ranks, and makes the
cold ranks enter the low power state (e.g., self-refresh). RAMZzz
requires monitoring accesses of all pages, increasing performance
overhead considerably, while not considering the memory inter-
leaving. PASR [10] is the refresh policy to reduce the background
power consumption for Mobile DRAM. PASR allows some banks
in a rank to enter self-refresh state and the other banks to enter
deep power-down state, reducing the background power consid-
erably. However, PASR also cannot be adopted to modern systems
employing memory interleaving.

ESKIMO [16] proposes a DRAM power management that selec-
tively refreshes allocated pages by tracking allocation/de-allocation
of pages. ESKIMO also reduces power for unused pages as GreenDIMM,
but ESKIMO focuses on the refresh power reduction while GreenDIMM
mostly eliminates the background power by implementing deep
power-down state at the sub-array granularity without tracking
allocation/de-allocation of pages. PADRAM [21] proposes power-
aware page allocation that allows chips to enter low power states
more often. When allocating pages, PADRAM first allocates the pages
mapped to chips that do not stay at the low power states. However,
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PADRAM also does not consider the memory interleaving. Zhou et
al. [35] propose a utility-based memory allocation policy to reduce
the DRAM power. They track Miss Ratio Curve (MRC) for appli-
cations at run-time, and identify idle regions and allow them to
enter low power states. Malladi et al. [27] propose a mechanism
that reduces the background power by eliminating or mitigating
long-latency DLL wake-ups by shifting circuitry from the DRAM
to the controller. After improving the wake-up latency, they re-
duce the power consumption by aggressively entering power-down
states even during the short idle period. Delaluz et al. [9] propose a
data migration policy that reduces energy by dynamically placing
arrays with temporal affinity into the same set of banks. While
assuming bank granularity low power states, they reduce energy
by reserving more idle banks.

8 CONCLUSION

We propose GreenDIMM that is OS-assisted DRAM power manage-
ment with a sub-array granularity power-down state. GreenDIMM
uses a DRAM sub-array group across every channel, rank, and bank
as a power management unit, and maps a memory block in the
physical address space to the sub-array group. Then, GreenDIMM
exploits memory on-/off-lining to off-line unused capacity of mem-
ory, allowing the sub-array group mapped to the off-lined blocks
to enter deep power-down state. For the sub-arrays mapped to the
off-lined blocks, GreenDIMM implements deep power-down state at
the sub-array granularity. Consequently, GreenDIMM reduces the
background power with the software memory on-lining/off-lining
policy based on the current utilization of the memory capacity. Our
evaluation with a commercial server running diverse workloads
including data-center workloads shows that GreenDIMM reduces
DRAM and system power by 36% and 20%, respectively. Further-
more, GreenDIMM reduces DRAM and system power by 36% and
20%, respectively, in VM server environments. We also investigate
synergistic potentials in power reduction with KSM. With the KSM,
our experimental results show that GreenDIMM can reduce DRAM
and system power by 55% and 30%, respectively.
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