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Abstract-Motivated by the ever-increasing concerns on per­
sonal data privacy and the rapidly growing data volume at local
clients, federated learning (FL) has emerged as a new machine
learning setting. An FL system is comprised of a central parame­
ter server and multiple local clients. It keeps data at local clients
and learns a centralized model by sharing the model parameters
learned locally. No local data needs to be shared, and privacy can
be well protected. Nevertheless, since it is the model instead of the
raw data that is shared, the system can be exposed to the poisoning
model attacks launched by malicious clients. Furthermore, it is
challenging to identify malicious clients since no local client data
is available on the server. Besides, membership inference attacks
can still be performed by using the uploaded model to estimate the
client's local data, leading to privacy disclosure. In this work, we
first propose a model update based federated averaging algorithm
to defend against Byzantine attacks such as additive noise attacks
and sign-flipping attacks. The individual client model initialization
method is presented to provide further privacy protections from
the membership inference attacks by hiding the individual local
machine learning model. When combining these two schemes,
privacy and security can be both effectively enhanced. The
proposed schemes are proved to converge experimentally under
non-lID data distribution when there are no attacks. Under
Byzantine attacks, the proposed schemes perform much better
than the classical model based FedAvg algorithm.
Index Terms-Federated Learning, Privacy, Security, Byzantine

attack, Membership inference attack

I. INTRODUCTION

Federated learning (FL) [1] aims to build a robust machine
learning (ML) model where local clients (LCs) distributively
train their ML model using their locally collected data. In a
typical FL setting, a central parameter server (PS) is connected
to multiple clients and aggregates the models uploaded by the
LCs. User privacy can be greatly protected since no local data
is shared. However, it could be more harmful to the system
when the malicious LCs launch Byzantine attacks by sending
the poisoning model to the PS, which can directly degrade the
overall learning performance. Furthermore, privacy is protected
but not guaranteed in FL since attackers can still infer the
private data and some key parameters such as gradients from
the model in a membership inference attack [2].
The Byzantine attacks usually refers to the attacks initiated

from the internal components in the systems. In FL, it is
launched by the malicious LCs aims to degrade the learning
performance. The model poisoning attacks can directly reduce
the local task execution accuracy at LCs. Furthermore, the

individual model of a single LC is invisible over the air or
at the server due to the secure aggregation or other encoding
methods. Only the aggregated model is available. Therefore, it
is very difficult to identify malicious LCs in such a scenario.
There have been extensive works to defend against Byzantine
attacks in the distributed ML and FL. Most works aim to
accommodate the attacks and mitigate the adverse effects, such
as Krum aggregation [3] and geometric median aggregation [4].
Krum aggregation is based on majority and squared distance
to select some representative clients as the benign and trusted
clients and estimate the true center using their updates. This
may result in a biased model, especially when the data among
LCs is not independent and identically distributed (non-lID).
Unlike the classical arithmetic averaging, the geometric median
considers the compounding that occurs from time to time and
mitigates the impacts of poisoning attacks. But this scheme
needs to obtain an individual model, which may cause privacy
disclosure in membership inference attacks that is to infer
membership of individual training instances of a model. In [5],
rather than accommodating the attacks as mentioned above, the
work identified the attackers and removed the model updates
coming from the attackers. However, it could be challenging to
select the dynamic threshold used to determine the attackers.

Another method to provide enhanced privacy protection in
FL is differential privacy (DP) [6]. A typical approach of
DP is to add random noise to the model and hide the real
model from the eavesdroppers. It does not affect the system
performance since the Gaussian noise can be averaged out
due to aggregation. Another way for privacy protection is to
hide the individual model from the eavesdroppers, i.e., only
the aggregated model is accessible. This can be achieved with
the Secure Aggregation protocol (SecAgg) [7] or over-the-air
computation (AirComp) [8] in wireless communications. Since
the PS only needs to know the aggregated model, hiding the
individual model does not impact the system performance.

In this work, we propose to use model update based (MUB)
aggregation to defend against Byzantine attacks and enhance
security. The individual client model initialization (ICMI)
scheme is further used to enhance privacy protection. By com­
bining the two techniques as MUB-ICMI, privacy and security
are enhanced. To the best of our knowledge, this is the first
paper to provide both security and privacy protection without
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the error between the data sample (Xi, Yi) and the mapping
made by model parameters w. Since data is distributed among
K clients, the objective (1) can be rewritten as

(3)

(5)

(4)

(2)

FL Round

Fig. 1: FL Model & FL Round
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Here \7Fk (Wt) is the gradient of Fk (Wt), r; is the stochastic
gradient descent (SGD) step size or learning rate, Wt is the
received global model at round t, wf is the local model at
round t on client k.
At round t + 1, the server updates the global model as

~ IDkl k
Wt+l == ~ lDTWt .

k=l

K IDkl
f(w) = L lDTFk(w),

k=l

where, Fk(W) == IJkl L:iEDk
fi(W), Dk is the dataset on

client k. In each FL round, the client updates the local model
based on the local data and the recently received global model,
that is,

B. Distribution of Model Update
The simple arithmetic averaging algorithm (4) in the classi­

cal MB FedAvg is easy to implement. However, the classical
MB FedAvg is not robust under Byzantine attacks. Motivated
by the difference between model distribution and model update
distribution, we propose the MUB FedAvg algorithm in which
each LC uploads the model update instead of the model itself
to the server. The local model update is defined as the local
model difference, i.e.,

The FL learning repeats till the global model converges. A brief
illustration of the FL model update is shown in Fig. 1 left side.
e in Fig. 1 represents the model parameter W in the classical
MB FedAvg algorithm. The FL learning process is shown on
the right side. Each learning round consists of two parts. The
first part (shaded area) is for model aggregation at the server,
followed by local learning at each LC. Note the global model
Wt at t is the aggregation of the locally trained models at t - 1.
The server initializes the global model in the first round.

changing the fundamental structure of the classical federated
averaging algorithm FedAvg [9]. The critical contributions of
the paper are summarized as follows.
• Since model update distribution has a much smaller de­
viation than the model distribution in federated learning,
model based (MB) aggregation in the classical FedAvg
is replaced by the MUB aggregation in FL. MUB-FL
is robust to Byzantine attacks such as additive noise
attacks and sign-flipping attacks while still achieving good
learning performance.

• By initializing the individual models at LCs rather than
initializing the model at the server and uploading the local
models using SecAgg or AirComp, the ICMI scheme can
effectively hide the LC models. This protects LCs from
membership inference attacks.

• The MUB scheme and the ICMI scheme can be combined
as MUB-ICMI to enhance both security and privacy.
Local learning models are well protected during the entire
learning process by performing model initialization at
each LC and uploading LC model updates instead of
uploading LC models directly.

• The simulation results show that MUB, ICMI, and MUB­
ICMI can achieve a similar level of performance to the
classical MB FedAvg without any attacks. While under
Byzantine attack scenarios, both MUB and MUB-ICMI
schemes are robust against attacks while still achieving
good performance.

The rest of the paper is organized as follows. Section II
introduces the classical MB FedAvg algorithm. It also gives the
motivations to apply MUB, ICMI, and MUB-ICMI schemes in
FL. Section III presents the detailed algorithms for the three
proposed schemes. Simulation results are given in Section IV.
Finally, section V concludes the paper.

II. SYSTEM MODEL

A. FL System Model
FL aims to learn a central ML model without data sharing.

This is achieved by sharing the local ML models trained at each
LC. The system is normally comprised of a central parameter
server (PS) connected by K LCs. Each LC has its dataset,
and the data can be non-lID across different LCs. Considering
bandwidth restrictions, especially in a wireless setting, only a
fraction C of total clients are selected to participate in the FL
process in each round. In the classical MB FedAvg algorithm,
the selected clients perform local learning based on their local
dataset. Each LC then uploads the updated local model to the
server for aggregation. The server employs the updated local
models to get the latest global model via arithmetic averaging
and then sends it back to all the LCs. The process repeats until
the model converges.
The objective function of the FL system can be defined as

min f (W ) , ( 1)
wERd

where f(w) == 111L:~=1 fi(w), IDI is the size of the dataset
D. fi (w) == R(Xi, Yi; w) is the loss function used to capture

where wf is defined in (3), i.e., the local model after the local
learning process; wf' is the local model before local learning,
which will be defined later in (7). The global model update is
defined as
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(6)~ IDkl k
Ut+1 == ~ lDTUt .

k=1

The local ML model before local learning wf' is calculated
based on the local model Wf-I and the most recently received
global model update Ut,

(7)

At t == 1, the server initializes the global model WI as in
the classical MB FedAvg and selects an initial global model
update UI == O. These two initial parameters are broadcasted to
LCs. For convenience, WI in MUB-FL is referred to w~. And
explicitly, w~ is the same for all LCs. Please note that ein Fig.
1 represents the model update U in MUB FedAvg algorithm.
To understand the difference between MB and MUB, we

first derive the distributions of model and model update,
respectively, in the non-lID data case. In Fig. 2, the distribution
of model update in Fig. 2(a) shows much less deviation than
the model distribution in Fig. 2(b). Further, in Fig. 2(a), the
distribution of local model update u~ is similar to the distri­
bution of global model update Ut. Similarly, in Fig. 2(b), the
distribution of local model wf is also close to the distribution
of global model Wt. Thus the distribution of the local model
and local model update is very close to its corresponding global
distribution although the data is non-lID.

model of each client is accessible to the eavesdroppers during
uploading. Thus the eavesdroppers have a chance to perform
membership inference attacks to infer the private data at LCs.
To address that, ICMI is introduced as a new model initializa­
tion scheme. ICMI lets LC initialize its own model rather than
using a common initial model sent by the server. SecAgg or
AirComp can be further used to hide each LC's model from
others, including the server and possible eavesdroppers, during
the uploading stage. The eavesdroppers can only obtain the
aggregated model, which effectively prevents the membership
inference attacks.

D. Combined Scheme

In the MUB scheme, since the model update rather than the
model itself is shared by each client, the local model and the
global model are effectively hidden from the eavesdroppers.
However, due to the fact that the model initialization is done at
the server and then is sent to each client, the eavesdroppers may
still be able to calculate the local model and the global model
based on the initial global model and subsequent local model
updates. To avoid that, MUB can be combined with ICMI
to form the MUB-ICMI scheme, providing further privacy
protection. With MUB-ICMI, no model information is made
accessible to the eavesdroppers. Therefore, there is no need
to use SecAgg or AirComp to hide the individual models.
This simplifies the design of ICMI scheme by avoiding extra
computation or communication overhead.

Fig. 2: Distribution of Model Update and Distribution of Model
with Non-lID data in FL

C. Initial Client Model Initialization

In the classical MB FedAvg, the global model is first
initialized by the server and then sent to LCs. Thus, each
client has the same learning initialization point. Besides, the

In [10], the author proposed the update norm clipping
approach to ensure the norm of each model update is small
enough so that the server is less susceptible to the poisoning
models on backdoor attacks. This is proved to be a valid
defense method for backdoor attacks without much impact on
the performance of the main task. From the distributions of
model and model update in Fig. 2, the l2-norm of the model
update distribution is much smaller than that of the model
distribution. So the model update can naturally work like the
norm-clipped model. And it should also apply to Byzantine
attacks such as additive noise attacks and sign-flipping attacks.

_ i Local ~odel UPdate
i

I-

~GI~M~~ate

Jl
(a) Distribution of Model Update (b) Distribution of Model

III. PROPOSED SCHEME FOR FL PRIVACY & SECURITY
ENHANCEMENT

In the previous section, the motivation to apply the MUB
scheme and ICMI scheme is articulated. In this section, the
details of the proposed schemes are presented.

A. MUB FL

Local model calculation
Aggregatio~ Local learning

l~r4 ~LOCal model update calculation

~IIII ~~IIII ~
I Round 1 I Round 2 I

Fig. 3: Model Update Based FL Round

As mentioned above, there are two stages for each FL round
in classical MB-FL. The first stage is for model aggregation at
the server, and the second stage is for the local learning at the
LCs. For the MUB scheme, the aggregation stage aggregates
model update rather than model, but the aggregation algorithm
remains the same as the MB scheme. For the local learning
part, there are three sub-stages taking place at each LC,
i.e., local model calculation, local learning, and local model
update, as shown in Fig. (3). The process in each substage is
summarized as follows.
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• Local model calculation. When an LC receives the ag­
gregated model update Ut, it first calculates the current
local model wf' based on the previous local model Wf-l.
The calculated local model, is wf' == Wf-l + Ute In the
classical MB-FL, the local model before local learning is
the same as the received global model Wt.

• Local learning. The local learning is performed based on
the local data to get the updated local model wf, i.e.,
wf == wf' - r;\lFk(wf/)·

• Local model update calculation. The local model update
is calculated as u~ == wf - wf /.

The three substages can be summarized as:

(8a)

(8b)
(8c)

In ML, the gradient is usually defined as 9 == \lF (w ), so
the local gradient in FL is gf == \lFk(Wt), and the global

d· . - ",K IDkl k S· k - k/ F ( )gra lent IS gt - Dk=l lDTgt · lnce wt - wt - r; k Wt
or wf == wf' - r;gf, we can rewrite u~ == -r;gf, i.e., the
model update is related to the gradient. This can also be
proved in equation (3), the model before local learning is
Wt, so u~ == -r;\lFk(Wt) == -r;gf. Specifically, this is for
the scenario when only one local iteration is performed in
one FL round on the local data. However, in FL, multiple
local iterations might be performed to save communication
bandwidth. When multiple iterations are executed, equation
(8b) can be rewritten as

wf (0) == wf/, (9a)
wf(j + 1) == wf(j) - r;\lFk(wf(j))· (9b)

The calculated local model wf/ is set as the initial local
learning point as in equation (9a). The local learning can
iterate multiple times in one FL round. The learned model
serves as the learning starting point in the next iteration, as
shown in equation (9b). When a total of N (N > 1) iterations
are performed, the local model becomes wf (N). From this
perspective, the MUB-FL is different from the existing gradient
based FL (N == 1) [11].
In the classical MB FedAvg, an LC only needs to perform

local learning in each FL round. In MUB-FL, a client needs
to execute the three substages, as shown in Fig. 3. This
might result in different local models and different convergence
behavior. When the model is initialized from the server and sent
to LCs, the initial global model WI in the classical MB-FL is
the same for all the clients. The local model after learning is
w} == WI - r;\lFk(WI). For MUB-FL, with the initial local
model w~ == WI and the initial global model update UI == 0,
the local model in the first round is w} == w}/ - r;\lFk (w}/),
where w}/ == w~ + UI. The local model after the first-round
learning is the same as in the classical MB FedAvg. However,
starting from the second FL round, the local model before
learning Wt for the classical MB-FL is the same for all LCs.
The global model update Ut for each LC in MUB-FL is still the

same. However, since the local model Wf-l from the previous
round differs among different clients, the local model before
learning wf' also differs across various clients. This is the main
difference between classical MB-FL and MUB-FL. Although
the local model before learning for clients is different in MUB­
FL, the learning accuracy still converges to the same level as
in classical MB-FL with no attacks. This is verified in the
simulation results.

B. fCMf FL

ICMI aims to provide further privacy protection by hiding
the individual model of each client. It initializes the model at
each client rather than initializing the model at the server. So
the initial models are different across different clients. Further­
more, SecAgg or AirComp can be used for model aggregation
to further hide the individual client model. Several SecAgg
protocols were proposed in [7], e.g., masking with one-time
pads, dropped user recovery using secret sharing, exchanging
secrets efficiently, and minimizing thrust in practice. As the
aggregated model is hidden from eavesdroppers and other third
parties, the membership inference attacks can not be executed.
Since only the initial model WI is different across LCs while
the rest part keeps the same as in the classical MB FedAvg,
ICMI should also converge to a similar level as in classical
MB-FL. This is verified in the simulation.

C. MUB-fCMf FL

To enhance both security and privacy in FL, MUB and
ICMI can be combined to form MUB-ICMI, where the model
initialization is taken place at LCs, and only the model update
(not the model itself) is uploaded. The MUB-ICMI algorithm
is summarized in Algorithm 1.

Algorithm 1 MUB-ICMI FedAvg

1: Each client initializes w~, server initializes UI == 0
2: Server executes:
3: for each round t=I,2, ... do
4: m+--max(C·K,l)
5: St +-- (random set of m clients)
6: for each client k E St in parallel do
7: U~ +-- ClientUpdate(k, Ut)
8: end for

",K IDkl k
9: Ut+l +-- Dk=l lDTUt
10: end for
11: ClientUpdate(k, Ut): II Run on client k
12: !3 +-- (split Pk into batches of size B)

13: wf' +-- Wf-l + Ut

14: wf (0) +-- wf'
15: for each local iteration j from 0 to N - 1 do
16: for batch b E !3 do
17: wf (j + 1) +-- wf' (j) - r;\lFk (wf/) (j)
18: end for
19: end for
20: U~ +-- wf(N) - wf'
21: return U~ to server
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(a) lID data with Additive noise (b) Non-lID data with Sign-
attacks flipping attacks

Fig. 5: Test accuracy with CNN model using classical MB-FL
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Round

Fig. 4: Test accuracy of Non-lID data with CNN model without
any attacks

attacks are considered, additive noise attacks and sign-flipping
attacks. In the additive noise attack, malicious clients add
Gaussian noise to their local model updates and send them
to PS. The malicious clients have the desire to add the noise
with significant power. However, it is easy to detect it by
computing the l2-norm of the model update. In a sign-flipping
attack, the malicious client flips the signs of the model updates
while keeping the magnitude unchanged. So this attack is more
brutal to be identified and thus more harmful to the system
performance.
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Fig. 5 presents the results of classical MB-FL with lID data
under additive noise attacks as well as with non-lID data under
sign-flipping attacks in the CNN model. When more malicious
clients participate in model sharing, the performance becomes
worse. The lID data distribution makes the test accuracy
smoother under Byzantine attacks shown in Fig. 5(a). Due to
the non-lID data distribution, the test accuracy results in Fig.
5(b) experience fluctuation during the learning. Compared with
the additive noise attacks, sign-flipping attacks suffers much
worse performance. When 40% of the clients are malicious
clients, the model almost learns nothing under the sign-flipping
attacks. As shown in Fig. 5, the non-lID data distribution is
more vulnerable to sign-flipping attacks. So in the following
result, only the testing result of non-lID data distribution
under sign-flipping attacks will be presented to demonstrate
the effectiveness of the proposed schemes.

1.0

0.2

IV. SIMULATION RESULTS

In this section, we first show the convergence of the proposed
three schemes as well as the classical MB FedAvg algorithm
by using image classification tasks under no attacks. Then the
testing results of four different schemes under two different
Byzantine attacks, i.e., additive noise attacks and sign-flipping
attacks are presented. Compared with the classical MB-FL
scheme, MUB-ICMI scheme is effective in defending against
Byzantine attacks while still achieving good performance.
We consider a typical FL setting in the simulation where

multiple clients are connected to the PS. Here, we use K == 100
and C == 100%, that is, 100 clients connected to the PS. And
all of them participate in the ML tasks in each FL round. The
image classification tasks are explored, and MNIST dataset is
used. To present a convincing case, both multi-layer perception
(MLP) and convolutional neural network (CNN) ML models
are considered. Different data distributions (both lID and non­
lID) are exploited in the experiment. The MNIST dataset is a
large dataset consisting of handwritten digits with digits 0 - 9.
It contains 60, 000 images for training and 10, 000 images for
testing. Each image is formatted as 28 x 28 pixels. For the MLP
model, only one hidden layer is used. For the CNN model,
two convolutional layers are followed by the pooling layer
with two fully-connected layers at the end. Since the common
features of the images are in the same square or rectangular
blocks, CNN usually achieves better performance than the
MLP model. With lID data distribution, images are selected
randomly and are allocated equally to each client. Non-lID
data distribution allocates the images to the clients based on
their labels. Each client is assigned two labels or digits. And
each client is assigned around 600 images for training. The
testing is performed using the global model after aggregation
in each round on the whole testing dataset. In the MUB-FL, the
global model is calculated by accumulating the global model
update starting from the initial global model. The learning
model hyperparameters are learning rate size r; == 0.01, batch
size B == 5, local iteration count N == 2.
First, the convergence of the classical MB-FL and the

proposed MUB-FL and ICMI-FL are demonstrated using MLP
or CNN model under lID or non-lID data distributions without
any attacks. Fig. 4 shows the testing accuracy of MNIST under
a non-lID data distribution with the CNN model. All four algo­
rithms converge after 200 training rounds and also converge to
the levels that are very close to each other. The MUB algorithm
even achieves slightly better performance than the classical
MB-FL during the learning process. The heterogeneity of data
distribution has less impact when the model update rather than
the model is aggregated. Under lID data distribution, MUB­
FL achieves similar performance compared with the classical
MB-FL. The MUB-ICMI algorithm performs slightly worse
than the other three algorithms.
To demonstrate the effectiveness of the proposed algorithms

in defending against Byzantine attacks, we evaluate the pro­
posed algorithms in several scenarios. First, we assume that
20%, 30%, or 40% of the clients are attackers. Two types of

4889

Authorized licensed use limited to: Utah State University. Downloaded on February 03,2023 at 00:56:29 UTC from IEEE Xplore.  Restrictions apply. 



2022 IEEE Global Communications Conference: Communication & Information Systems Security

No Attack
Sign-flipping Attack (20%)
Sign-flipping Attack (30%)
Sign-flipping Attack (40%)

0.2 -I---II--+-:I-l----+--I

~uco
I...
:::J 0.6 -I--t-f---++---I--+----+-,~-"'f---+---+--+__-+--I

U
U«

-1--1
V1 0.4 i---tt--Ht~r--t-___;======I::==='=======::::I::::::==~

~

0.8 -I--t-f---+----.I"-Vt---t-fI\:-P--+---+---+-~±TI"ilOf_lll--l

25 50 75 100 125 150 175 200

Round

Fig. 8: Test accuracy of Non-lID data with CNN model using
MUB-ICMI scheme
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Fig. 6: Test accuracy of Non-lID data with MLP model using
MUB scheme
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scheme to enhance privacy. The combined new MUB-ICMI can
effectively improve both privacy and security in FL. Two types
of Byzantine attacks were used to demonstrate the effectiveness
of the proposed schemes. The convergence and effectiveness of
the methods were presented using the MNIST dataset with both
lID and non-lID data distributions. The theoretical analysis of
the proposed algorithms and more simulation results on other
datasets will be provided in the future.
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Fig. 6 provides the results of non-lID data with MLP model
using MUB scheme under sign-flipping attacks, and Fig. 7
presents the results of ICMI scheme under sign-flipping attacks.
From Fig. 6, we know MUB-FL can significantly defend
against the sign-flipping attacks. After 100 learning rounds,
even in the worst case with 40% malicious clients, the testing
accuracy is still very close to the result without any attacks
when it converges. Since the ICMI scheme is designed to
enhance privacy, it does not help to defend the Byzantine
attacks. Thus the testing results in Fig. 7 are similar to the
results with the classical MB-FL algorithm shown in Fig. 5(b).
Finally, the MUB-ICMI scheme is applied to non-lID data

distribution with the CNN model under sign-flipping attacks.
To demonstrate the effectiveness of the algorithm, 200 training
rounds are executed. In Fig. 8, the scenarios with 20% and
30% malicious clients achieve similar results to the "N0

Attack" case after 200 training rounds. For the attack with 40%
malicious clients, although the performance is worse than the
"no attack" scenario as expected, it is still much better than
the classical MB-FL shown in Fig. 5(b).

V. CONCLUSIONS

In this paper, we proposed a new method using the MUB
scheme in FL to defend against Byzantine attacks and the ICMI

[1] J. Konen, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon. "Federated learning: Strategies for improving communication
efficiency," [Online]: https://arxiv.org/abs/1610.05492, 2016.

[2] L. Zhu, Z. Liu, and S. Han. "Deep leakage from gradients," in Adv.
NeuralInf. Process. Syst. (NeurIPS) , pp. 14747-14756, 2019.

[3] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, "Machine
learning with adversaries: Byzantine tolerant gradient descent," in Adv.
NeuralInf. Process. Syst. (NeurIPS) , pp. 119-129, 2017.

[4] K. Pillutla, S. M. Kakade, and Z. Harchaoui, "Robust aggregation for
federated learning," [Online]: https://arxiv.org/abs/1912.13445, 2019.

[5] S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen. "Learning to
detect malicious clients for robust federated learning," [Online]:
https://arxiv.org/abs/2002.00211, 2020.

[6] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farhad, S. Jin, T. Q.
S. Quek, and H. V. Poor. "Federated learning with differential privacy:
algorithms and performance analysis," in IEEE Tans. Inf. Forensics
Security, vol. 15, pp. 3454-3469, Apr. 2020.

[7] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMa­
han, S. Patel, D. Ramage, A. Segal, and K. Seth. "Pratical se­
cure aggregation for federated learning on user-held data," [Online]:
https://arxiv.org/abs/161l.04482, 2016.

[8] A. Elgabli, J. Park, C. B. Issaid, and M. Bennis, "Harnessing wireless
channels for scalable and privacy-preserving federated learning," in IEEE
Trans. Commun., vol. 69, no. 8, pp. 5194-5208, Aug. 202l.

[9] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and H. A. Areas,
"Communication-efficient learning of deep networks from decentralized
data," [Online]: https://arxiv.org/abs/1602.05629, 2016.

[10] Z. Sun, P. Kairouz, A. T. Suresh, and H. B. McMahan, "Can you really
backdoor federated learning?" [Online]: https://arxiv.org/abs/191l.07963,
2019.

[11] R. Shokri, and V. Shmatikov, "Privacy-preserving deep learning," in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Security, pp. 1310-1321,
2015.

4890

Authorized licensed use limited to: Utah State University. Downloaded on February 03,2023 at 00:56:29 UTC from IEEE Xplore.  Restrictions apply. 


