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Iterative spatial leave-one-out cross-validation and gap-filling based data
augmentation for supervised learning applications in marine remote sensing
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ABSTRACT

In marine remote sensing, supervised learning can link variables measured in-situ near the ocean
surface to variables that can be measured from space. However, the in-situ data used for training
and validating such empirical satellite algorithms are often spatially auto-correlated and clustered,
giving rise to various statistical challenges such as overfitting to spatial structures. Furthermore, co-
located in-situ and satellite measurements are rare in the oceans because of the cost of data
collection from research vessels and frequent cloud cover. We propose two methods to mitigate
these challenges. The first method builds on spatial leave-one-out cross-validation (SLOOCV), an
approach designed to provide sound error estimates when data are spatially auto-correlated by
enforcing a minimum separation distance between training and test observations. However,
estimating this distance may be impossible with sparse and spatially clustered data. We hence
propose to iterate and integrate error estimates over a range of separation distances (iSLOOCV). To
address the often-small size of labeled data sets based on marine in-situ data, we tested if
increasing the number of observations for algorithm training by means of cloud-filling algorithms
for marine satellite data improved predictions. The potential of these two methods is demon-
strated by developing empirical algorithms for mapping the proportions of seven diagnostic
pigments (DPs) that serve as proxies for phytoplankton community composition in the northern
Gulf of Mexico. We estimated the prediction accuracy of 13 algorithms with iSLOOCV, using various
sets of satellite data products as input, and found adequate algorithms for 4 of the 7 DPs. Random
forests combining ocean color and environmental variables as input had the lowest prediction
errors overall. Correlations between predictions and observations estimated by iSLOOCV ranged
from 0.69 to 0.85 and mean absolute errors from 0.02 to 0.13. Daily maps and longer-term
composites of these DPs were broadly consistent with previously published results. Overall, errors
increased when extrapolating over larger distances, highlighting how iSLOOCV can illuminate
changes in algorithm performance based on sub-regional data coverage. Generating larger train-
ing sets by prior gap-filling substantially improved all error measures for 3 of the 7 DPs, with mixed
results for the others. Therefore, data augmentation by gap-filling of satellite data should not be
used as a default approach but can be a useful tool when supervised learning applications are
suspected to be limited by the size of the training set.
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1. Introduction 1998: Stock 2015; Xi et al. 2020). However, the in-situ

Satellite remote sensing allows for mapping of physical
and biological phenomena at high temporal resolution
and broad spatial scales (Kerr and Ostrovsky 2003). In
marine applications, supervised learning — from linear
regression to deep neural networks — often serves to
map variables measured in-situ based on variables that
can be measured from space. Approaches used for this
purpose include linear regression, generalized additive
models, random forests, and neural networks (e.g.
Chen et al. 2019; Doerffer and Schiller 2007;
Hieronymi, Miiller, and Doerffer 2017; Hu et al. 2018;
Keiner and Brown 1999; Liu et al. 2021; O'Reilly et al.

data used for training and validating such empirical
satellite algorithms are rarely randomly distributed in
space and time, creating statistical pitfalls for super-
vised learning (Stock 2022). For example, marine
labeled data are often spatially autocorrelated and
clustered, for example, along ship tracks and near
phenomena of interest like river plumes.
Consequently, the data may not be independent,
a core assumption of standard approaches for the
training and validation of supervised learning algo-
rithms. Ignoring dependence structures when validat-
ing statistical models can lead to an underestimation of
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prediction errors and to the selection of too flexible
models (Roberts et al. 2017). These problems are exa-
cerbated in marine research because in-situ data sets
available for the oceans tend to be small, because data
collection from research vessels is time-consuming and
expensive, and because cloud cover often prevents
matching in-situ measurements with co-located satel-
lite observations. Beyond the statistical limitations aris-
ing from small data sets, frequent cloud cover may
leave whole sub-regions of a study area and rare con-
ditions underrepresented in the data, posing a major
barrier to the training and validation of supervised-
learning based models (Stock 2022).

The objective of this study is to address such chal-
lenges of small, spatially clustered and autocorrelated
labeled data sets. For this purpose, we propose two
new computational approaches focused on error esti-
mation, model selection (the choice between differ-
ent statistical models to minimize prediction errors),
and data augmentation (increasing the amount of
available data) by gap-filling. The first approach builds
on spatial leave-one-out cross-validation (SLOOCV),
a method for error estimation and model selection
when data are spatially auto-correlated (Le Rest et al.
2014; Le Rest, Pinaud, and Bretagnolle 2013).
However, the standard SLOOCV algorithm relies on
the calculation of residual variograms, which can be
misleading when data are spatially clustered (Bel et al.
2009) or when flexible machine learning models are
used (Roberts et al. 2017). We therefore adjusted the
standard SLOOCV algorithm to avoid the calculation
of residual variograms by iterating over a range of
distances (iterative, or iSLOOCV).

The second approach mitigates the typically small
size and limited spatial coverage of marine labeled
data sets. Because satellite data often have large
gaps caused by clouds, the size of the available
data set can be increased by means of gap-filling
algorithms (e.g. Alvera-Azcarate et al. 2007; Barth
et al. 2020; Hilborn and Costa 2018; Liu et al. 2019;
Saulquin, Gohin, and Fanton D’ Andon 2018; Stock
et al. 2020). On the one hand, prior gap-filling could
improve predictive models by creating many addi-
tional matchups for training. On the other hand,
reconstructing pixel values where no satellite obser-
vations exist can introduce additional errors com-
pared to direct satellite measurements. For
example, phytoplankton communities inside and
outside of mesoscale eddies can differ (Soja-

Wozniak et al. 2020), and such differences can be
obscured beyond reconstruction by high cloud cover
lasting several days. It is not clear a priori if the
advantages of a larger data set for model training
would outweigh additional errors introduced by
gap-filling. We hence tested if including additional
in-situ observations matched with reconstructed
satellite data in the training of empirical algorithms
can improve their prediction accuracy.

This study demonstrates the potential of these
new methods by mapping phytoplankton diagnos-
tic pigments (DPs) that serve as biomarkers for
different phytoplankton types in the northern Gulf
of Mexico (NGOM). Chlorophyll a concentration,
a proxy for phytoplankton biomass, is a widely
available standard satellite data product (McClain
2009). However, phytoplankton primary production
and carbon fixation — and hence, their biogeo-
chemical and ecological functions - depend also
on community composition (Chakraborty, Lohrenz,
and Gundersen 2017; Quere et al. 2005).
Researchers have already proposed many algo-
rithms for satellite mapping of different aspects
of phytoplankton community composition (I0CCG
2014; Mouw et al. 2017), including several algo-
rithms for mapping DPs (e.g. Bracher et al. 2015b;
Moisan et al. 2017; Pan et al. 2010). Despite these
advances, the development and accuracy assess-
ment of satellite algorithms for mapping DPs
remain challenging (Bracher et al. 2017; Stock and
Subramaniam 2020), especially in coastal regions -
where monitoring would be especially important,
because human uses and pressures are concen-
trated at the coasts (Stock et al. 2018b).
Phytoplankton community composition is corre-
lated with environmental variables such as light
availability and SST (Mouw, Ciochetto, and Yoder
2019). We thus combined SLOOCV with an ecolo-
gical satellite-mapping approach (Raitsos et al.
2008), i.e. we mapped the DPs based on satellite-
based spectral and environmental variables. We
trained and validated various statistical models,
including both widely used approaches such as
artificial neural networks and models that are the-
oretically suitable but have been less frequently
used in ocean color remote sensing, like boosted
regression trees. Given a lack of DP algorithms
optimized for the NGOM, we used the best-
performing algorithms identified here to generate



daily maps, 8-day, monthly and annual composites,
as well as seasonal climatologies. These data are
available for download in GEOTIF format (see
Section “Data availability”).

2. Materials and methods
2.1 Study area

The NGOM is a region facing substantial environ-
mental changes and risks. Over the 21°' century,
the NGOM'’s physical climate will warm consider-
ably (Biasutti et al. 2012). Offshore oil extraction
poses risks to the Gulf's marine biota and ecosys-
tem services (Beyer et al. 2016; Ozhan, Parsons,
and Bargu 2014). Riverine inputs of nutrients and
stratification lead to seasonal hypoxic conditions in
a large “dead zone,” with substantial reduction of
opportunities for demersal fishing (Rabalais, Turner,
and Wiseman 2002). From a remote sensing per-
spective, the NGOM covers a wide range of bio-
geochemical and bio-optical conditions, from
eutrophic coastal waters to oligotrophic offshore
waters (Martinez-Lopez and Zavala-Hidalgo 2009;
Mdller-Karger et al. 1991; Xue et al. 2013. Because
of these characteristics, and the resulting high spa-
tiotemporal variability of phytoplankton dynamics
and optical water properties, standard ocean color
algorithms for the global oceans can have consid-
erable absolute errors when applied in the NGOM
(e.g.; Nababan et al. 2011).

2.2 In-situ data

We combined HPLC (high-performance liquid chro-
matography) data for 2003-2018 from two sources:
Kramer and Siegel (2019) and SeaBASS (Werdell
et al. 2003; Werdell and Bailey 2002). We extracted
concentrations of seven diagnostic pigments (DPs)
as response variables: 19'-butanoyloxyfucoxanthin
(But.fuco), 19'-hexanoyloxyfucoxanthin (Hex.fuco),
alloxanthin (Allo), fucoxanthin (Fuco), peridinin
(Perid), zeaxanthin (Zea) and total chlorophyll
b (Chl.b). These seven DPs are widely used to
characterize phytoplankton community composi-
tion (Mouw et al. 2017; Uitz et al. 2006; Vidussi
et al. 2001). We removed observations made within
10 km of land according to GSHHS full-resolution
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shorelines (Wessel and Smith 1996) to mitigate
potential effects of stray light and extreme near-
shore conditions such as ephemeral turbidity due
to resuspension of sediment. We also removed
observations made at depths greater than 10 m.
If there were multiple observations within the first
10 m of the water column for a location and time,
we only retained the observation closest to the
surface.

While many empirical satellite algorithms for map-
ping DPs predict absolute concentrations (e.g. Bracher
et al. 2015b), we were primarily interested in predicting
phytoplankton community composition. Absolute DP
concentrations, however, reflect both phytoplankton
biomass and community composition. Many studies
interested primarily in community composition predict
phytoplankton size classes or functional types based
on weighted relative concentrations (i.e. percentage
made up by each of the DPs; Hirata et al. 2011; Mouw
et al. 2017). However, this conversion benefits from
locally derived weights and involves major uncertain-
ties (Chase et al. 2020). No local weights were available
for the Gulf of Mexico, and we could not find published
evidence that global weights (e.g. Uitz et al. 2006)
would be adequate in this region. Thus, relative con-
centrations of the DPs were used as response variables
serving as proxies for community composition. The
relative concentrations were calculated by dividing
each pigment’s absolute concentration by the sum of
all seven pigments’ concentrations, Spp (Vidussi et al.
2001):

Cx

ry = — (Eq.1)
X Sop q

SDP = Caut.fuco + CHex.fuco 1 Callo + CFuco + CPerid + CZea
=+ Cehib

(Eq.2)

where ¢y is the HPLC-measured concentration of the
pigment indicated by the subscript and ry is the corre-
sponding relative concentration that we predicted as
indicators of community composition. The linear correla-
tion between in-situ Chl a and Spp was 0.97, indicating
a high consistency of the various pigment measure-
ments. Histograms of in-situ relative concentrations for
locations with matching satellite data are shown in
Fig. S1.



1284 A. STOCK AND A. SUBRAMANIAM

2.3 Satellite data

Predictors were daily satellite data products for 2003-
2018 from various sources (Table 1). Following El
Hourany et al. (2019), Xi et al. (2021), and Xi et al.
(2020), we obtained most satellite data from the
GlobColour project (version 4.1; Fanton D’ Andon et al.
2009; Maritorena et al. 2010). GlobColour merges ocean
color data from several sensors (SeaWiFS, MERIS, MODIS-
Aqua, VIIRS, and OLCI-A), allowing for a larger number of
matchups for algorithm training and testing. To ensure
the best spatial coverage, we only included GlobColour
data products that merged data from all available sen-
sors for the given time. The spatial resolution was 4 km
and all data from other sources were resampled to the
same grid as the GlobColour data. We acknowledge that
other multi-sensor data sets, such as OC-CCl (Ocean
Color Climate Change Initiative) data, have also been
successfully used for mapping phytoplankton pigments
(Gittings et al. 2019; Sun et al. 2019).

Based on the GlobColour remote sensing reflec-
tances (RRS), we calculated band ratios as additional
predictors; for example, these variables allow the

distinction of optical water types (Le et al. 2014).
Finally, given its well-established statistical relation-
ship to Chl a concentration, we included the maxi-
mum blue-to-green band ratio R as a predictor:

R = log1o((max(RRS443, RRS490))/RRS555) (Eq.3)
In addition, we downloaded multi-instrument, opti-
mally interpolated sea surface temperature data
(JPL MUR MEaSUREs Project 2015), sea level anom-
aly data (E.U. Copernicus Marine Service 2019), and
wind speed and stress data from IFREMER (Institut
Francais de Recherche pour I'Exploitation de la
Mer; wwz.ifremer.fr). The wind data products were
based on QuikSCAT for 2003-2007 (CERSAT at
Ifremer 2019a), and from ASCAT on METOP-A for
2008-2018 (CERSAT at Ifremer 2019b). These envir-
onmental variables were chosen based on previous
research using supervised learning to map aspects
of phytoplankton community composition at differ-
ent spatial scales and based on associations with
biologically relevant phenomena. For example,
remotely sensed sea surface height indicates the

Table 1. Satellite data and derived data used as predictors and their sources.

Abbreviation Variable Res. Online source/comments References
CHL Chlorophyll a 4km  GlobColour data downloaded from ftp://ftp.hermes.acri.fr between (Fanton D’ Andon et al.
CHL_GSM Chlorophyll a (GSM model) daily March 23" and 30 March 2019. 2009; Maritorena
Rrs(412) Remote sensing reflectance at et al. 2010)
412 nm
Rrs(443) Remote sensing reflectance at
443 nm
Rrs(490) Remote sensing reflectance at
490 nm
Rrs(555) Remote sensing reflectance at
555 nm
Rrs(670) Remote sensing reflectance at
670 nm
KD490 Attenuation coefficient at 490 nm
KDPAR Attenuation coefficient of PAR
ZSD Secchi depth
ZEU Euphotic zone depth
BBP Particulate backscattering
coefficient at 443 nm
DM Absorption coefficient of colored
dissolved and detrital organic
matter at 443 nm
R412_443 Pairwise reflectance band ratios 4 km Calculated for all pairs of Rrs(A) products (e.g. 412/443, 412/490, ..., -
etc. daily 443/490, 443/555, .. ).
R Maximum blue-to-green band ratio 4 km  Calculated as described in Section 2.3.
daily
SST Sea surface temperature 0.01°  Optimally interpolated data downloaded from ftp://podaac-ftp.jpl. ~ (JPL MUR MEaSUREs
daily ~ nasa.gov/ on 30 March 2019. Project 2015)
SLA Sea level anomaly 0.25°  Downloaded from my.cmems-du.eu/Core/ (E.U. Copernicus
daily ~ SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047/dataset- Marine Service 2019)
duacs-rep-global-merged-allsat-phy-14/ on 30 March 2019.
wv Wind speed 0.25°  Downloaded from ftp://ftp.ifremer.fr/ifremer/ cersat/products/ 2003-07: (CERSAT at
WS Wind stress daily gridded/MWF/L3/QuikSCAT/ Daily/Netcdf/ (2003-2007) and ftp:// Ifremer 2019a)

ftp.ifremer.fr/ifremer/cersat/products/gridded/mwf-ascat/data/
daily/Netcdf/ (2008-2018) on 30 March 2019.

2008-18: (CERSAT
\at Ifremer 2019b)
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Figure 1. Direct matchups of in-situ pigment and satellite data
(n = 130), and reconstructed match-ups (additional in-situ
observations with satellite data reconstructed by a gap-filling
algorithm; n = 219; see Section 2.7).

spatial extent of the Loop Current (Otis et al. 2019).
Finally, we included day-of-year as a predictor to
account for any seasonal patterns in the data.

While it has been recommended to use a 3 h tem-
poral window and a spatial window consisting of few
pixels at the sensor’s native resolution for matching
satellite data with in-situ data (Bailey and Werdell
2006), the trade-off between a tight spatiotemporal
match and the number of match-ups has led past
research mapping different aspects of phytoplankton
community composition from space to relax these
criteria (e.g. Bracher et al. 2015b; Raitsos et al. 2008).
We followed these examples and matched in-situ with
satellite observations using a same-calendar-day tem-
poral window. Spatially, we used a 4-pixel window at
4 km resolution, and bilinearly interpolated the
extracted value because there are strong land-sea
gradients in coastal parts of our study area (Stock
and Subramaniam 2020). With these criteria, we
obtained 130 matchups of the satellite data with in-
situ measurements of the DPs (Figure 1). The match-
ups covered diverse biooptical and environmental
conditions (Fig. S2). Some algorithms used all predic-
tors, and some used only a subset (e.g. only RRS). To
address co-linear predictors (Fig. S3), variable selec-
tion was integrated in the algorithms using all pre-
dictors, e.g. by regularization, by using principal
components calculated from the original predictors
(following Bracher et al. 2015b; Xi et al. 2020), or by
bagging and boosting based algorithms that are
insensitive to high dimensionality and colinear pre-
dictors (random forests and boosted regression trees;
Belgiu and Dragu 2016; Dormann et al. 2013).
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2.4 Supervised learning algorithms

For each of the 7 DPs, we compared how accurately
13 empirical algorithms predicted relative concentra-
tions for previously unseen data that were spatially
separated from all training data (Table 2).

Pan et al. (2013), (2010) proposed that the broad-
scale spatial distribution of DPs can be approximated
as a cubic polynomial function of remote sensing
reflectance band ratios (algorithm PAN). Following
this example, we fit (least squares) a function of the
form

logio(Ypp) = ao + arr + ayr* + asr’ (Eq.4)

where r is a band ratio and Ypp is the relative concen-
tration of each pigment. Using the closest bands
available in the GlobColour data, we tested both

F— o RRS490 (Eq.5)
~ 1910\ pRs555 9
and
RRS490
r = logio <RRS670> (Eq.6)

For each pigment, we chose the ratio that led to the
best least-squares fit of the polynomial. For predicting
zeaxanthin Pan et al. (2013), (2010) modified r based on

Table 2. Overview of empirical algorithms tested in this study.
“All" predictors means that all variables listed in Table 1 were
provided as input and collinearity was addressed by dimension-
ality reduction methods (e.g. regularization or using principal
components as predictors instead of the original variables).

Model

PAN Regionally fitted polynomial band-
ratio algorithm

ANN5 Artificial neural network, 1 hidden  All
layer with 5 nodes

Predictors

Band ratios: Either 490/
555 or 490/670

Algorithm

ANN10 Artificial neural network, 1 hidden  All
layer with 10 nodes
ANN20 Artificial neural network, 1 hidden  All

layer with 20 nodes
ANN4 + 4 Artificial neural network, 2 hidden Al
layers with 4 nodes each

RF Random forest All

PCRLIN Linear principal component (PC) PC/EOF scores of Rrs(\)
regression

PCRALL  Linear principal component (PC) PC/EOF scores of all
regression predictors

PCRRF Random forest with principal PC/EOF scores of all
components as predictors predictors

BRT1 Boosted regression trees, All
interaction depth 1

BRT2 Boosted regression trees, All
interaction depth 2

BRT3 Boosted regression trees, All

interaction depth 3
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SST. However, on our data, incorporating SST - while
optimizing model fit — led to outlier predictions that
resulted in large mean error estimates, and we hence
did not include SST in our model. Furthermore, it is
important to note that in contrast to the original algo-
rithm, we predicted relative concentrations of the pig-
ments, not absolute concentrations. Consequently, the
algorithm tested here follows the idea but is not an
exact reproduction of Pan et al.’s methods.

Many sophisticated neural-network based ocean
color algorithms have been developed in recent
years for different purposes (e.g. Hieronymi, Mdiller,
and Doerffer 2017; Pahlevan et al. 2020; Ruescas et al.
2018), but given the relatively small size of our data
set, we used simpler model structures. Following
Keiner and Brown (1999) and Gonzdlez Vilas,
Spyrakos, and Torres Palenzuela (2011), we trained
ANNs with 5 (ANN5), 10 (ANN10) and 20 (ANN20)
nodes in a single hidden layer, as well as 4 nodes
each in 2 hidden layers (ANN4 + 4). All ANNs were
trained by means of stochastic gradient descent using
the R package ANN2 (Lammers 2020), with L2 regular-
ization and hyperbolic-tangent activation functions.
We tested different multipliers for the L2 penalty.
Because ANNs are sensitive to initial, randomly cho-
sen parameters, we repeated training each ANN five
times for each penalty multiplier, while withholding
20% of the data for error estimation. We chose the
ANN that achieved the smallest mean squared error
on the withheld data.

Random forests (algorithm RF; Breiman 2001) are
an increasingly popular model choice in remote sen-
sing applications of supervised learning (Belgiu and
Dragu 2016). We generated random forests with 300
trees and various proportions of predictors consid-
ered at each split with the R package randomForest
(Liaw and Wiener 2002). The proportion of predictors
considered was selected based on the out-of-bag
error. We trained boosted regression trees with the
R package gbm (Greenwell, Boehmke, and
Cunningham 2019) and a learning rate of 0.001,
a bag fraction of 75%, and interaction depths from 1
to 3 (models BRT1, BRT2, BRT3). For each tested inter-
action depth, we chose the optimal number of trees
using the algorithm of Elith, Leathwick, and Hastie
(2008).

Finally, given the relatively large number of poten-
tial predictors and correlations between some predic-
tors (e.g. RRS in neighboring bands), we tested three

models that used principal component (PC) scores of
the predictors as input. We first used a linear multiple
regression for this purpose (PCRLIN), following the
methods described by Bracher et al. (2015a) and Xi
et al. (2020): PCs of remote sensing reflectances were
calculated from the matchups, and the number of PCs
chosen to include in the models based on the Akaike
Information Criterion. We also tested principal com-
ponents of all original predictors instead of only RRS
(PCRALL), and random forests instead of a linear
model (PCRRF).

2.5 Iterative Spatial Leave-One-Out
Cross-Validation (iSLOOCV)

Cross-validation (CV) estimates a statistical model’s
prediction error by repeatedly splitting the data into
folds. Each fold serves as a test set for an algorithm
trained on all other folds. The resulting error estimates
are then averaged. This approach reduces the reliance
of the error estimate on the sample drawn for testing,
yielding more reliable estimates (Lyons et al. 2018). In
marine remote sensing, a split into training and test
sets is most often made randomly (Bracher et al.
2015a; Hirata et al. 2011; Raitsos et al. 2008; Xi et al.
2020), which assumes that observations are indepen-
dent (Arlot and Celisse 2010). However, marine
labeled data (including the data used in this study)
are often spatially autocorrelated and clustered in
space and time (Figure 2). Therefore, observations
that are randomly selected for validation may not be
independent of the observations in the training set,
which in turn can lead to an underestimation of pre-
diction errors (Pohjankukka et al. 2017; Stock 2022).
This problem can be overcome by ensuring that train-
ing and test sets are sufficiently separated in geo-
graphic space, in time, or in predictor space,
depending on the data and application. There are
two main cross-validation strategies for such situa-
tions. Spatial block CV splits the data into folds
based on geographical blocks (Roberts et al. 2017;
Stock et al. 2018a; Stock and Subramaniam 2020;
Valavi et al. 2019). However, the choice of block size
and shape can be challenging. In contrast, spatial
leave-one-out CV (SLOOCV; Le Rest et al. 2014; Le
Rest, Pinaud, and Bretagnolle 2013) modifies leave-
one-out cross-validation, where each observation is
held-out as a test set once, while the training set in
each step consists of all other observations. SLOOCV
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Repeat for each observation and different values of radius r
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Figure 2. Spatial leave-one-out cross-validation. The iterative version proposed in this study explores how error estimates change as

a function of the circle’s radius.

adjusts this strategy to avoid the effects of spatial
autocorrelation by excluding all observations located
within a circle around each test observation from
model training (Figure 2). Error estimates are hence
based on models that have been trained using only
data that are at least the circle’s radius, r, away from
the test observation. Le Rest et al. (2014) suggest
using the distance at which the residuals of a model
fitted to the full data set become independent. They
tested this recommendation on a relatively large data
set that was randomly distributed in space. However,
residuals can be misleading if the model is over-fitting
to the spatial structure of the data (Roberts et al.
2017), and our smaller data set with highly uneven
spatial coverage did not allow the reliable estimation
of variograms and the de-correlation range.

We hence used an iterative version of SLOOCV (in
the following, iSLOOCV) for the validation of empirical
satellite algorithms for the oceans. Instead of choos-
ing a fixed distance r, we iterated over values from
0.1 km to 200 km. At r = 0.1 km, the test observation
itself as well and close-by matchups like measure-
ments made in the same location at different days
are excluded from algorithm training. At r = 200 km,
a large sub-region around the test observation is
excluded from training. The following pseudo-code
summarizes the iSLOOCV algorithm for a given statis-
tical model:

(1) For rin 0.1 km to 200 km:
a. For each observation o; in the set of match-
ups O = {04,0,,...,0,k
i. Calculate distances dj(o0;) between o; and

all o;

ii. Create training set O.qn = {0;: 0;€ O and
di(oj) > r}

iii. Train and tune model (see Section 2.4)
with Oygin

iv. Predict response y;, for o;

b. Calculate error measures e(r) based on differ-
ences between y;, and true value y; of the
response.

(2) Calculate average error over the range of

r:e = [e(r)dr/(max(r) — min(r))

2.6 Error measures

We calculated the following error measures (step 1.b
in the pseudo-code above), for simplicity omitting
subscripts for the radius r:

e Linear correlation: COR

e Mean absolute error: MAE = Mean(|(y; — y;)|),
i=T1...n

e Root

mean squared

RMSE = \/Mean((y; —;7,)2), i=1...n

error:

e Mean error: ME = Mean(y; —yi),i=1...n
e Median error: MDE = Median(y; —y;),i=1...n
e Median percentage difference:

MDPD = 100*Median(%), i=1...n

All error estimates for DP algorithms reported in this
study were calculated by means of iSLOOCV.

2.7 Data augmentation

To increase the number of matchups, we filled data
gaps separately for all predictors using three algo-
rithms: Linear temporal interpolation (LTI), data-
interpolating empirical orthogonal functions
(DINEOF), and spatiotemporal Kriging (STKR; Fig. S4).
Stock et al. (2020) found these algorithms to produce
solid reconstructions of pixels obscured by clouds in
3-day composites of Chl a for the Gulf of Mexico;
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furthermore, these algorithms interpolate in time,
which is important given the higher temporal resolu-
tion of the data in this study. The LTI algorithm simply
interpolated between the closest prior and following
observation for each pixel. DINEOF (Alvera-Azcarate
et al. 2005; Beckers and Rixen 2003) was run using the
software provided by GHER (2016). To achieve accep-
table computation times, we split the 16 years of
satellite data into four non-overlapping, 4-year sub-
sets. STKR was implemented using the R packages
spacetime (Pebesma 2012) and gstat (Gréler,
Pebesma, and Heuvelink 2016; Pebesma 2004). We
constructed empirical variograms for a sample of
over 50,000 pixels from satellite data distributed
evenly over the year 2017 (Fig. S4), fitted theoretical
variogram models (manually fine-tuning the fitting
process), and interpolated pixels with missing data
using the 300 closest data points. The GlobColour
product contained two Chl a products (see Table 1):
CHL (based on empirical band ratio algorithms) and
CHL_GSM (based on the semi-analytical Garver-Siegel
-Maritorena algorithm; Maritorena, Siegel, and
Peterson 2002). Following a comparison of the recon-
structed CHL and CHL_GSM values to in-situ observa-
tions of Chl a (Table S1), we chose spatiotemporal
Kriging to fill data gaps in our satellite data, yielding
219 additional, reconstructed matchups (Figure 1).
Reconstructed matchups were optionally used for
algorithm training, but not for validation.

2.8 Selected models and mapping

Among all tested empirical algorithms, we selected
one algorithm for each response based on the
iISLOOCV results. We considered both the average
errors over threshold distances r from 0.1 km to
200 km, and plots of distance-specific errors e(r) ver-
sus the radius r. However, to ensure an acceptable
accuracy of predictions, we only selected final models
for which the linear correlation between predicted
and observed values in the iSLOOCV was =0.6, and
for which there was negligible bias (ME and MDE close
to zero). As the required accuracy for data products
depends on the specific application (Agumya and
Hunter 2002), these criteria are intended as
a minimum requirement because data products with
larger errors are unlikely to be useful for further appli-
cations. Among algorithms fulfilling these criteria, we
qualitatively considered all error measures, as well as

how the estimated errors changed with increasing
SLOOCV radius. Once we selected one algorithm for
each response variable for which the criteria above
could be met, we trained the algorithm on the full
data set. We then used it to create daily maps for the
period 2003-2018. Finally, we averaged the daily
maps into 8-day, monthly, and annual composites,
and monthly and seasonal climatologies. To illustrate
seasonal dynamics, we extracted time series for four
selected locations (GC600: 27.36°N, 90.56°W; Central
GOM: 26.00°N, 90.00°W; Tampa: 27.50°N, 82.90°W;
LATEX: 29.00°N, —93.50°W) using 5 x 5 pixel windows.

3. Results
3.1 Error estimation

For most algorithms and response variables, predic-
tion errors increased and the correlation between
predicted and observed values decreased with higher
threshold distance r in the iSLOOCV (Figures 3, S6).
Furthermore, as r increases, in-situ locations are one-
by-one removed from the training set in order of their
distance to the test observation, resulting in minor
changes of the training set. Hence, fluctuating lines in
Figure 3 (as exhibited by ANN10) indicate that the
trained models were sensitive to particularities of
the sample or random aspects of model training.

We identified at least one and often several algo-
rithms fulfilling the quality criteria (see Section 2.8) for
four of the seven DPs: But.fuco, Hex.fuco, Fuco and
Zea. For these four DPs, the best achieved linear
correlations ranged from 0.85 (Fuco) to 0.73 (Zea).
MDPDs ranged from 26% (Fuco) to 82% (But.fuco).
In most cases, the best error statistics were achieved
by random forests or boosted regression trees; the
polynomial algorithm by Pan et al. (2013), (2010)
worked best for Hex.fuco according to all error mea-
sures. For the other three DPs, none of the algorithms
achieved an adequate correlation between predicted
and observed values. We hence did not select final
models and present no maps for these three DPs.
A complete list of all tested algorithms’ cross-
validated errors is provided in the Supplementary
Materials (Tables 52-S8).

Among the algorithms using principal components
as predictors, using a random forest (PCRRF) instead
of multiple linear regression improved predictions.
The first principal component (PC1, 43% of variance)
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Figure 3. Cross-validated correlations between predicted and observed values as a function of threshold distance r used in the
iterative spatial leave-one-out cross-validation (iISLOOCV), shown for selected algorithms. Models were trained using direct and gap-
filled matchups for Perid, Allo, Zea, and Chl b, but only direct matchups for the other pigments. The mean of the curves’ y-values
corresponds to the single-number correlation over 0.1 km — 200 km reported in Tables 3—6 and 52-S8.

represented variables related to water transparency
(Chl, ZEU, Kd490, etc.), PC2 (22%) was related to RRS
(dominated by 443, 490). PC3 (12%) and PC4 (7%)
were related to environmental variables - PC3 domi-
nated by wind and PC4 by SLA. PC1 was the most
important predictor in PCRRF algorithms across
pigments.

3.2 Data augmentation by gap-filling

Increasing the number of observations for algo-
rithm training by including data reconstructed by
a gap-filling algorithm had mixed positive and
negative effects, depending on the response vari-
able and the algorithm (Table 4, Tables S2-S8).
Including reconstructed observations in algorithm
training improved all error measures for Zea, Allo
and Chl.b. It also improved the correlation for Perid
substantially, while resulting in small increases of
other error measures for this DP. However, of the
four pigments for which training with recon-
structed matchups improved predictions, only
algorithms for Zea met the basic quality criteria
for justifying further applications and analyses
(see Section 2.8). Gap-filling was therefore used in
the training of the final algorithms for Zea, but not
for But.fuco, Hex.fuco and Fuco.

Table 3. Best achieved error statistics averaged over 0.1 km —
200 km distance thresholds in the spatial leave-one-out cross-
validation by the tested empirical algorithms, and the model
which achieved the best value for each response variable and
error measure. A “+” behind the model abbreviation indicates
that the best error was achieved when using gap-filled data for
training, in addition to direct matchups.

Response COR MAE RMSE MDPD
But.fuco  0.79 BRT3 + 0.02 RF + 0.02 RF 82% RF
Hex.fuco 0.74 PAN 0.06 PAN 0.11 PAN 52% PAN +
Fuco 0.85 BRT2 0.12 PCRRF 0.15 RF 26% PCRRF +
Zea 0.73 RF + 0.11 RF + 0.14 RF + 49% RF +
Allo 0.52 RF +  0.02 PCRRF + 0.02 PCRRF + 66% RF +
Perid 0.30 PAN + 0.03 PAN 0.05 BRT3 71% BRT3
Chl.b 0.51 RF + 0.06 RF + 0.07 RF+ 41% RF +

Table 4. Relative difference between best error statistics of
models trained on direct matchups and of models trained on
direct and reconstructed matchups. Values <0 mean a decrease
of the measure if including reconstructed matchups.
Abbreviations as in Table 3.

Response COR MAE RMSE MDPD
But.fuco +7% -5% +0% +4%
Hex.fuco -0% +10% +4% -3%
Fuco -1% +1% +3% -1%
Zea +2% —4% -2% -3%
Allo +10% -5% -2% -0%
Perid +37% +3% +0% +4%
Chlb +40% —6% -8% -5%

3.3 Model selection and predictions

Several algorithms with similar error statistics existed
for each DP, and no algorithm worked best for all DPs.
We chose to use random forests for the four DPs
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Table 5.iSLOOCV errors of final models (all random forests) used
to generate DP maps for further analyses. Abbreviations as in
Table 3, and ME: mean error; MDE: median error.

Response  Gap-filing COR MAE RMSE  ME MDE  MDPD
Butfuco  No 0.74 0.02 0.02 0 0 82%
Hex.fuco  No 069 007 011 -001 -0.02 61%
Fuco No 085 0.3 0.16 000 0.00 26%
Zea Yes 0.73 0.1 0.14 -0.01 -0.02 49%

Table 6. Percent difference between random forests’ error sta-
tistics and best statistics achieved by any model. For example, if
we had chosen the final But.fuco algorithm based on RMSE
alone (i.e. ignoring all other error statistics), the correlation
would have been 6% higher, and the MAE 5% lower (but
other error statistics would have been worse, as the random
forest was the best model according to these). Abbreviations as
in Table 3.

Response COR MAE RMSE MDPD
But.fuco 6% 5% best best
Hex.fuco 7% 19% 7% 17%
Fuco 0% 1% best 1%
Zea 2% 5% 2% 4%

where the basic quality criteria (see Section 2.8) were
met, because random forests worked well across all
DPs and error measures. These models either
achieved the lowest cross-validated errors or came
close to the best ones for But.fuco, Fuco, and Zea
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(Tables 5, 6, S2-S8). Figure 4 shows example 8-day
composites generated with these algorithms. For
Hex.fuco, the polynomial regression following Pan
et al. (2010), (2013) had better error statistics overall,
yet to maintain consistency between algorithms, ran-
dom forests were used as final models to create daily
maps of all four DPs. However, we provide Hex.fuco
maps generated with the PAN algorithm for down-
load in addition to the maps generated with random
forests (see “Data availability”).

3.4 Spatial and summer-winter patterns of
diagnostic pigments

In summer, Fuco made up the largest proportion in
nearshore waters up to 20 km from the coastline, with
some geographic variation (Figures 5, 6). Zea also
made a notable contribution, constituting over 30%
of the DPs in nearshore waters, and was the dominant
pigment further offshore. Hex.fuco accounted for only
a small fraction of the total pigment concentration in
nearshore waters, but for about 25% offshore. But.
fuco made up only few percent of the diagnostic
pigment throughout the study area, increasing
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Figure 5. Seasonal land-sea gradients of the fractions of diagnostic pigments. Lines are averages across the study area (2003-2018);
clouds of semi-transparent dots represent the point density of daily predictions for individual pixels during this period. See Fig. 54 for

spring and autumn gradients.
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Figure 6. Seasonal mean fraction of diagnostic pigments for 2003-2018. See Fig. S8 for spring and autumn.

slightly when moving offshore. In winter, Fuco was
the dominant pigment within the first 80 km from the
coastline, again with some geographic variation. Hex.
fuco and Zea were the dominant pigments further
offshore, with (when averaged throughout the study
area) similar proportions that increased offshore. The
proportion of But.fuco was on average higher than in
summer, but still low. Spring and autumn climatolo-
gies showed primarily transitions between winter and
summer conditions (Figs. S7, S8). It is important to
keep in mind that the numbers presented are the
proportion of the sum of seven DPs, whereas we
present results for only four, because the available
data did not support sufficiently accurate algorithms
for the other three.

Time series of daily predictions for selected loca-
tions reflected these seasonal patterns (Figure 7). The
daily predictions had high short-term variability, likely
resulting from the sometimes large but unbiased pre-
diction errors (such that subsequent observations
may have overestimation followed by underestima-
tion or vice versa). In particular, the proportion of
Fuco fluctuated strongly at the coastal stations over
short time periods. These fluctuations were mostly
countered by opposing fluctuations in Zea and Hex.

fuco (Fig. S9). The time series also exhibited rare and
short-lived peaks of fucoxanthin, with high concen-
trations typical of coastal locations and occurring
across seasons. These peaks occurred at times in
which high-chlorophyll waters reached far offshore
(Fig. S10). While coastal water advection is more com-
mon, the predicted Fuco peaks coincided with the
highest satellite measured Chl a concentrations in
the study period for the two offshore locations (Fig.
S11). While less visible in the composite-based
Figure 7, these peaks were in daily data accompanied
in reductions of other DPs’ proportions (Fig. $S12). For
example, from July 4™ to 7™ 2009, Fuco at GC600
increased by 0.3, while Zea decreased by 0.1, Hex.
fuco decreased by 0.2, and But.fuco stayed almost
the same (all numbers rounded).

4. Discussion
4.1 Cross-validation for satellite mapping

The challenges of predictive modeling when data are
not independent have long been discussed by statis-
ticians, e.g. in the context of time series analysis (Arlot
and Celisse 2010; Opsomer, Wang, and Yang 2001).
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Figure 7. Time series (daily predictions) of diagnostic pigments for four selected locations. Each individual line represents a year from
2003-2018. Rare peaks of fucoxanthin that occur at the two offshore locations are marked with the date.

Recently, the effects of non-independent data have
received renewed interest in spatial statistics, espe-
cially because more complex machine learning meth-
ods are prone to over-fitting to dependence
structures (Gregr et al. 2019; Roberts et al. 2017;
Stock et al. 2018b). Such overfitting cannot be
detected by validation methods relying on randomly
held-out observations, and could be especially pro-
blematic for ocean remote sensing, because marine
in-situ data are often clustered along cruise tracks or
phenomena of interest. For example, Stock and
Subramaniam (2020) found that error estimates from
spatial block CV were considerably larger than error
estimates from 5-fold CV and supported different
conclusions about which algorithms were accurate
enough for further applications. Yet the choice of
statistical designs for algorithm validation is rarely
justified in the biological ocean remote sensing litera-
ture. Recent discussions of and progress in algorithm
validation have focused on the collection of high-
quality in-situ data following shared protocols, the
mismatch of spatial scale between in-situ samples
and satellite observations, and new sources of in-situ
data such as Argo floats (Bracher et al. 2014; Brewin
et al. 2016; Dierssen et al. 2020; Groom et al. 2019;

IOCCG 2014; Ruddick et al. 2019; Wojtasiewicz et al.
2018). These are crucial aspects of satellite algorithm
validation, yet the statistical consequences of the
spatial distribution of labeled data for supervised
learning require similar attention (Stock 2022).

This study demonstrated the use of spatial leave-
one-out cross-validation (SLOOCV) for validating and
selecting empirical satellite algorithms with data that
were spatially clustered. Like spatial block cross-
validation, SLOOCV enforces a spatial separation of
the data used for training and testing models, and
avoids the often challenging definition of spatial
blocks (Roberts et al. 2017; Stock and Subramaniam
2020). However, the original SLOOCV method uses
a single radius, the range of auto-correlation in the
residuals, within which training data are omitted
around each test observation (Le Rest et al. 2014; Le
Rest, Pinaud, and Bretagnolle 2013). This range can be
impossible to estimate on sparse and clustered data
sets that are common in marine research based on in-
situ measurements. We therefore conducted SLOOCV
iterating over a range of distances as opposed to
a single distance. We proposed an iterative version
(iISLOOCV) to explore how the estimated error chan-
ged as a function of distance and used the average



error over the whole range to compare the algo-
rithms. This approach bypasses the need to choose
a single radius and allowed for the selection of algo-
rithms that worked well both in locations well-
covered by training data and when making predic-
tions for locations farther away. Overall, prediction
errors increased with larger radius, but only moder-
ately, suggesting that the algorithms were not over-
fitting to spatial structures. A possible explanation for
the moderate increase of errors at larger radii is that
spatially clustered in-situ measurements were some-
times made in different years or seasons. In dynamic
marine systems, data collected in the same geo-
graphic location but at different times can neverthe-
less represent a large variety of environmental and
bio-optical conditions, and thus be less correlated
than suggested by their spatial proximity. Indeed,
separating the data used for model training and vali-
dation in time or in predictor space can be preferable
to spatial separation, depending on the characteris-
tics of the study system and data and on the model’s
intended application (Roberts et al. 2017). Adaptation
of iISLOOCV to separating training and test data based
on spatiotemporal distances or in predictor space is
a promising direction for future research.

4.2 Data augmentation by gap-filling

The availability of sufficiently large labeled data sets for
supervised learning applications in remote sensing is
a widespread problem and can be addressed from
various angles such as semi-supervised learning (Liu
et al. 2017). Here, we proposed a direct, simple
approach to data augmentation that matched in-situ
observations with reconstructed, gap-free satellite data.
This approach increased the number of available
matchups from 130 to 349. At the same time, recon-
structed pixels can have larger errors than direct satel-
lite retrievals or errors with a different distribution. This
additional noise could counteract possible improve-
ments of prediction accuracy gained from a larger train-
ing set. In this study, including matchups of in-situ
measurements with reconstructed satellite imagery in
algorithm training had mixed effects on prediction
errors. It led to a considerable reduction of prediction
errors according to all measures for three of the seven
DPs, including one of the four DPs for which pre-set
accuracy criteria for further analyses were met. Thus,
while we cannot recommend increasing the number of
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matchups by means of gap-filling as a default proce-
dure, the results show that in situations where research-
ers are concerned about the size of the labeled data set
for algorithm training, increasing the number of match-
ups by means of gap-filling algorithms can be helpful.

4.3 Quality of selected algorithms and generated
data products

While the focus of this study was on methodological
aspects, we provide generated maps for download
and report detailed error statistics to allow potential
users of the algorithms and data to judge their fitness
for potential applications in marine science. For exam-
ple, our results show that fine-scale predictions (i.e.
daily data for individual pixels) could have large
errors, resulting in high short-term variability.
However, all algorithms had negligible bias and regio-
nal-scale spatial distributions as well as seasonal pat-
terns were adequately predicted. Hence, the
generated data products should be primarily used
for broad-scale and longer-term analyses, and poten-
tial users should carefully consider their fitness for the
intended application. The final algorithms’ errors were
similar to those of other published ocean color algo-
rithms for the NGOM. For example, Le et al. (2014)
report relative errors of 40%-60%, and R*> between
0.52 and 0.65 (i.e. linear correlations between 0.72
and 0.81) for a Chl a algorithm for the Louisiana
shelf — an easier prediction task because of the smaller
study area and well-established correlations between
chlorophyll concentrations and ocean color variables.
The four DP algorithms clearing the quality criteria
from Section 2.8 achieved median absolute percen-
tage differences between 26% and 82% and linear
correlations between 0.72 and 0.85. The predictions
exhibited negligible bias; therefore, averaging over
multiple daily images or areas encompassing several
pixels could further increase accuracy (as random
errors cancel each other out). Several algorithms
achieved similar error statistics for each of these DPs,
suggesting that the achieved accuracy is close to
what is possible with the currently available data.
Rare and short-lived high offshore fucoxanthin con-
centrations predicted by the algorithms were asso-
ciated  with  unusually  high  chlorophyll
a concentration in these locations, reflecting oceano-
graphic conditions normally associated with phyto-
plankton typical of coastal waters; however, lacking
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in-situ data for these situations, we cannot conclude
that the spikes reflect real changes in the phytoplank-
ton community. Overall, at broad spatial scales, our
results were qualitatively consistent with the findings
of previous field campaigns focusing on phytoplank-
ton communities in the NGOM (Chakraborty, Lohrenz,
and Gundersen 2017; Chakraborty and Lohrenz 2015;
Lambert, Bianchia, and Santschi 1998; Qian et al.
2003). A detailed qualitative comparison is provided
in Appendix A1. These results demonstrate the poten-
tial of iterative SLOOCV to select adequate supervised
learning-based algorithms for satellite mapping appli-
cations with relatively small, spatially autocorrelated
and unevenly distributed data sets.

Despite these broad-scale similarities between the
predicted spatial distributions of diagnostic pigments
and independent field campaigns investigating phyto-
plankton community composition, it is important to
keep in mind that pigments are imperfect proxies for
phytoplankton types. Yet overall, HPLC is among the
most common and quality-controlled methods avail-
able. Four broad taxonomic groups of phytoplankton
can be reliably distinguished based on their pigment
signatures as described by HPLC data, and several of
the individual pigments mapped here can serve as useful
proxies for these groups: for example, Fuco for diatoms,
Hex.fuco for haptophytes, and Zea for cyanobacteria
(Kramer and Siegel 2019). Locally, more phytoplankton
groups can be distinguished based on HPLC data
(Kramer, Siegel, and Graff 2020; Kramer and Siegel
2019). However, distinguishing more detailed groups
requires data on more pigments than those for which
we found adequate algorithms. Together, these limita-
tions of pigment-based phytoplankton community char-
acterization and satellite retrievals of relevant pigments
suggest that only broad phytoplankton classes can be
distinguished from space by linking HPLC data with
multi-spectral reflectances and environmental variables.

5. Summary and conclusions

(1) Spatial leave-one-out cross-validation that iter-
ates over a range of distances separating train-
ing and test observations allows the validation
and selection of algorithms based on small,
spatially clustered data sets, without the need
to choose a fixed separation distance a priori. It
also provides insights into how errors change

as the distance from locations with data
increases, and into over-fitting as the training
set shrinks with increasing separation distance.
(2) Gap-filling methods can be used to increase the
number of matchups between satellite and in-
situ measurements. The benefits of more match-
ups for training supervised learning algorithms
sometimes, but not always, outweigh additional
errors introduced. Data augmentation by gap-
filling is hence worth testing in applications
where a small matchup data set is suspected to
be the limiting factor for supervised learning.
(3) Regionally optimized supervised learning algo-
rithms for remote sensing of diagnostic phyto-
plankton pigments achieved adequate accuracy
for four out of seven diagnostic pigments, sug-
gesting that some, but not all relevant, broad
phytoplankton classes can be distinguished from
space based on multi-spectral satellite and envir-
onmental data in the northern Gulf of Mexico.

Data availability
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The original data used in this study are publicly available for
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Appendices

Appendix A1: Comparison of generated diagnostic
pigment maps to field campaigns investigating
phytoplankton dynamics in the northern Gulf of
Mexico

At broad spatial scales, our predicted spatial distributions of
four diagnostic pigments were qualitatively consistent with
previous in-situ phytoplankton research in the NGOM.
Chakraborty, Lohrenz, and Gundersen (2017) report that
nearshore waters are dominated by diatoms, with excep-
tions in summer when cyanobacteria and prochlorophytes
can be dominant. Correspondingly, we found Fuco (a pig-
ment characteristic of diatoms, although relationships
between diagnostic pigments and phytoplankton types
can be ambiguous; Nair et al. 2008) to be the dominant
pigment in nearshore waters in winter; in summer, Zea (a
pigment characteristic of cyanobacteria) accounted for
a large fraction of the diagnostic pigments in nearshore
waters. Offshore, Chakraborty, Lohrenz, and Gundersen
(2017) found mixed communities, with haptophytes often
being a major taxon. Correspondingly, our algorithms pre-
dicted that Hex.fuco (a pigment characteristic of hapto-
phytes) could be dominant in winter, still making up
around % of the diagnostic pigments in summer.

Chakraborty and Lohrenz (2015) found diatoms to be domi-
nant in inner and mid-shelf waters of the NGOM, especially in
winter and spring, and still accounting for >30% of Chl a in
summer and fall. Zea was the dominant pigment further off-
shore. These spatial and seasonal results are reflected in our
maps of relative Fuco concentrations.

Qian et al. (2003) found prymnesiophytes to be dominant
in much of the northeastern Gulf, with increasing relative
abundance offshore. The exception were waters near the

mouth of the Mississippi, were prymnesiophytes accounted
for less of the Chl a. They also found diatoms primarily in
nearshore waters. While our predicted concentrations of
Hex.fuco (prymnesiophyes) and Fuco (diatoms) qualitatively
reflect these broad-scale spatial trends, our estimated Hex.
fuco concentrations were overall lower, and Fuco concen-
trations higher, than expected based on this field cam-
paign. Furthermore, Qian et al. (2003) found the highest
abundance of diatoms on the outer shelf to occur in sum-
mer, whereas our algorithms predicted the highest offshore
concentrations of fucoxanthin in winter. However, this
result is consistent with findings from other field campaigns
(Chakraborty and Lohrenz 2015). Our algorithms’ predic-
tions of increasing relative Zea concentrations from coastal
to offshore waters are consistent with a spatial trend
described for prokaryotes, and our predicted low relative
concentrations of But.fuco are consistent with overall low
relative abundance of pelagophytes reported by Qian et al.
(2003).

Lambert, Bianchia, and Santschi (1998) found cyanobac-
teria to be abundant in both coastal and offshore waters,
diatoms (Fuco) to be abundant over the continental shelf,
and pelagophytes (But.fuco) and prymnesiophytes (Hex.
fuco) to be more abundant in slope waters. Our algorithms
similarly predicted high concentrations of Fuco in coastal
waters, high summer Zea concentrations throughout the
NGOM, and high Hex.fuco concentrations offshore. They
also predicted that But.fuco made up only a small fraction
of the diagnostic pigments in most situations. Accordingly,
Lambert et al. found pelagophytes to make up at most
20%, and often less, of the phytoplankton community at
their sampling stations, and that But.fuco occurred in com-
paratively small concentrations even then. Our satellite-
based results are hence also consistent with the findings
of Lambert et al.’s field campaign.
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