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Abstract

We perform particle-in-cell simulations to elucidate the microphysics of relativistic weakly magnetized shocks
loaded with electron-positron pairs. Various external magnetizations σ 10−4 and pair-loading factors Z± 10 are
studied, where Z± is the number of loaded electrons and positrons per ion. We find the following: (1) The shock
becomes mediated by the ion Larmor gyration in the mean field when σ exceeds a critical value σL that decreases
with Z±. At σ σL the shock is mediated by particle scattering in the self-generated microturbulent fields, the
strength and scale of which decrease with Z±, leading to lower σL. (2) The energy fraction carried by the post-
shock pairs is robustly in the range between 20% and 50% of the upstream ion energy. The mean energy per post-
shock electron scales as µ +

-E Z 1e
1( ) . (3) Pair loading suppresses nonthermal ion acceleration at

magnetizations as low as σ≈ 5× 10−6. The ions then become essentially thermal with mean energy Ei, while
electrons form a nonthermal tail, extending from ~ +

-E Z E1 1
i( ) to Ei. When σ= 0, particle acceleration is

enhanced by the formation of intense magnetic cavities that populate the precursor during the late stages of shock
evolution. Here, the maximum energy of the nonthermal ions and electrons keeps growing over the duration of the
simulation. Alongside the simulations, we develop theoretical estimates consistent with the numerical results. Our
findings have important implications for models of early gamma-ray burst afterglows.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Shocks (2086); Non-thermal radiation
sources (1119); Plasma astrophysics (1261); Gamma-ray bursts (629)

1. Introduction

Relativistic collisionless shocks play a key role in gamma-
ray bursts (GRBs), the most powerful explosions in the
universe. The prompt GRB spectrum peaks around 1MeV and
is followed by softer afterglow emitted by the blast wave from
the explosion, as it expands into the external medium. This
external shock is weakly magnetized and ultrarelativistic, with
a Lorentz factor exceeding 100, and gradually decelerates with
time. Its key feature is the ability to heat the medium to a
relativistic temperature and accelerate nonthermal particles to
high energies, which results in broadband nonthermal after-
glow radiation.

1.1. Pair Loading in External GRB Shocks

Over the past couple of decades, relativistic collisionless
shocks have been studied in detail using first-principles kinetic
simulations. This includes simulations of relativistic shocks
propagating in a weakly magnetized electron-ion medium (see
Section 1.2), which is expected around GRBs. However,
existing simulations do not apply to the earliest and brightest
phase of the GRB afterglow, emitted at radii R 1017 cm. At
these radii, the prompt gamma-rays streaming ahead of the
blast wave load the external medium with copious electron-
positron pairs (Thompson & Madau 2000; Mészáros et al.
2001; Beloborodov 2002). The number of loaded electrons and
positrons per ion, Z±, is independent of the original plasma
density and can be accurately calculated for any GRB with a

known (observed) prompt gamma-ray spectrum (Beloboro-
dov 2002; Beloborodov et al. 2014). This calculation gives
Z±> 1 at radii »R R 10 10 erg17 54 1 2 ( ) cm, where  is
the isotropic equivalent of the GRB energy. At radii R= R±,
the pair-loading factor Z± reaches extremely high values,
exceeding 104, and drops to Z±< 1 when the blast wave
expands to R R±. In addition to the pair loading by the
prompt megaelectronvolt radiation, pairs can be created by
gamma-rays emitted by the shock itself (Derishev &
Piran 2016).
When Z±=mi/me≈ 1836 (the proton-electron mass ratio),

the plasma rest mass is dominated by the ions rather than pairs.
On the other hand, even a modest Z± of a few can qualitatively
change the shock physics because it introduces light charges of
both signs. This can affect the strength of magnetic fields
generated in the shock and the mechanism of particle
energization. Moreover, when the shock energy budget is
dominated by the ions, it is important to know what fraction òe
of the initial ion energy will be given to the post-shock
electrons and positrons (which can efficiently radiate) and what
nonthermal tail should be expected in the downstream particle
distribution.
Answers to these questions have strong implications for the

expected early afterglow of GRBs. In particular, Beloborodov
et al. (2014) proposed that the pair-loading factor Z±(R) shapes
the evolution of early gigaelectronvolt emission detected in
GRBs (Ackermann et al. 2013). Their calculations assumed
that the emission is dominated by hot pairs with òe≈ 0.3 when
1 Z±=mi/me, neglecting any nonthermal tails. This simple
model was found consistent with observations of seven GRBs
with good early gigaelectronvolt data, and was further
confirmed by the optical data available for two bursts (Hascoët
et al. 2015).
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In order to improve confidence in models of the early GRB
afterglow emission, it is important to constrain from first
principles the relevant shock microphysics, such as the
downstream pair energy fraction. To this end, we perform a
set of particle-in-cell (PIC) simulations of collisionless weakly
magnetized relativistic shocks, treating Z± as a fixed parameter
for the upstream plasma. Our simulations are local in the sense
that the scales involved are much smaller than the shock radius
R. We will show below that even moderate pair-loading factors
of order unity significantly affect the structure of the shock on
kinetic scales and the resulting particle acceleration, whereas
the pair energy fraction òe is rather insensitive to the changes in
particle composition.

1.2. Previous Simulations

Kinetic simulations of relativistic electron-ion and electron-
positron weakly magnetized shocks (e.g., Sironi et al. 2013;
Plotnikov et al. 2018) demonstrate the key role of the
magnetization σ, the ratio of the upstream Poynting to kinetic
energy flux. Above a critical magnetization σL (∼10−4 for
electron-ion and∼10−3 for electron-positron shocks) the
incoming flow is stopped by the Larmor gyration of the
particles in the downstream compressed mean magnetic field,
which mediates the shock transition. The downstream particle
energy distributions are essentially thermal.

For magnetizations σ σL the shock is mediated by plasma
microinstabilities, most notably by the Weibel (filamentation)
instability (Fried 1959; Weibel 1959; Medvedev & Loeb 1999;
Silva et al. 2003; Achterberg & Wiersma 2007; Bret et al.
2014; Takamoto et al. 2018; Lemoine et al. 2019a). The Weibel
instability is fueled by the anisotropy of the upstream particle
momentum distribution, composed of the incoming back-
ground plasma and the counterstreaming beam of particles
returning from the shock. It acts to exponentially amplify seed
magnetic fields by channeling particles into elongated current
filaments of alternating polarity, which provides positive
feedback on the field perturbation. The filaments are elongated
along the streaming direction and their typical thickness is
comparable to the plasma skin depth.

During the nonlinear stage of the Weibel instability,
incoming particles scatter off the self-generated turbulence,
thereby isotropizing their momenta. This provides the mech-
anism that mediates the shock. A fraction of particles is
reflected back and forth across the shock front, gaining energy
upon each reflection in a first-order Fermi process (Blandford
& Eichler 1987; Achterberg et al. 2001). Thus, Weibel-
mediated relativistic shocks are efficient particle accelerators
(Spitkovsky 2008a, 2008b; Martins et al. 2009; Nishikawa
et al. 2009; Haugbølle 2011), In the electron-ion case, it has
been also demonstrated that the incoming electrons are
preheated to nearly 40% of the initial ion energy before
entering the downstream (Spitkovsky 2008b; Sironi et al.
2013). Essentially, the preheating eliminates the disparity
between the electron and ion plasma microscales, so that an
electron-ion Weibel-mediated shock behaves qualitatively
almost as if it were composed of electrons and positrons.

1.3. Scope of the Present Paper

While shocks in electron-positron and electron-ion plasmas
have been studied in detail, only a limited number of
simulations of electron-ion-positron shocks have been

performed (Hoshino & Arons 1991; Hoshino et al. 1992;
Amato & Arons 2006; Stockem et al. 2012), and all of them
focused on moderate to high magnetizations, with applications
to the termination shock of pulsar winds. This case is
qualitatively different from the GRB blast waves that propagate
in a very low-σ external medium.
Here, we perform kinetic simulations of weakly magnetized,

relativistic pair-loaded shocks with the goal of understanding
how the shock microphysics depends on the plasma composi-
tion. The simulations provide a fairly comprehensive view of
the relevant parameter space, with magnetizations in the range
0� σ� 10−4 and pair-loading factors 0� Z±� 12. Our
numerical effort is complemented by analytical estimates that
help interpret the results.
This paper is organized as follows: In Section 2 we provide

the numerical details of our shock simulations. We first
demonstrate the role of pair loading in an idealized Weibel
unstable plasma in Section 3. This simplified model helps to
interpret the main results of our shock simulations, which are
presented in Sections 4 and 5. Section 4 shows how the shock
structure changes with respect to the pair-loading factor. In
Section 5 we analyze the collisionless partitioning of energy
between ions and pairs, and characterize their downstream
energy spectra. The implications of our results for the early
afterglow phase of GRBs are briefly discussed in Section 6. We
conclude the paper with a summary of our main results in
Section 7.

2. Simulation Setup

We carried out a series of two-dimensional (2D) PIC
simulations of relativistic electron-ion-positron shocks using
the code OSIRIS 4.0 (Fonseca et al. 2002, 2013). The
simulations are performed for various pair-loading factors

º
+

Z
n

n

2
10e

0i
( )
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s
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n m c4
, 20
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where n0i is the ion density, +n0e the positron density, γ0? 1 is
the Lorentz factor of the cold upstream flow, and B0 is the mean
shock-perpendicular magnetic field. Subscript “0” refers to the
upstream plasma far ahead of the shock. All quantities are
measured in the simulation frame, in which the shocked
downstream plasma is at rest. We consider magnetizations in
the range 0� σ� 10−4 and pair-loading factors 0� Z±� 12.
To save computational resources we opt for a reduced ion-

electron mass ratio of mi/me= 36. We mostly focus on pair-
loading factors of order unity, such that the ions dominate the
upstream momentum even at the reduced value of the mass
ratio. Results from a simulation with Z±= 2 and mi/me= 100
are included for reference in Appendix A, showing good
agreement with our fiducial case mi/me= 36. The upstream
magnetic field =B zB0 0 ˆ points out of the 2D simulation
plane.4 We also initialize a motional electric field
E0=− β0× B0, where b g= - - x1 10 0

2 1 2( ) ˆ is the initial

4 In the weakly magnetized relativistic regime, the out-of-plane field
orientation is preferred over the in-plane configuration because it best captures
the physics of particle acceleration (Sironi et al. 2013).
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three velocity of the upstream flow in units of c. The shock
formation is triggered by the reflection of particles from a
conducting wall located on the left side (x= 0) of the
computational domain (e.g., see Spitkovsky 2008b; Martins
et al. 2009; Sironi et al. 2013). The longitudinal size is chosen
long enough to accommodate the propagating shock front until
the end of the simulation. Periodic boundaries are used in the
transverse y-direction. The transverse size of the domain is
31.4 di, where w g p= =d c m c n e4i pi 0 i

2
0i

2 1 2( ) is the
(upstream) relativistic ion skin depth.

The numerical details of our simulations are as follows: We
set the resolution to eight cells per pair plasma skin depth

w g p= =d c m c n e4e pe 0 e
2

0e
2 1 2( ) , where n0e= (Z± + 1)n0i

is the combined (upstream) density of electrons and positrons.
Our time step is Δtωpe= 1/16. The calculations require
significant resources because the scale separation,
w w = +Z m m1pe pi i e

1 2[( ) ] , grows with the amount of
pair loading. For instance, our largest simulation spans about
295,000× 5400 grid cells and is evolved over 600,000 time
steps. Cubic spline macroparticle shapes and smoothing of the
electric currents are used to reduce PIC noise and numerical
heating. The electric current deposit is charge conserving. An
electromagnetic field solver introduced by Blinne et al. (2018)
is used to mitigate the numerical Cherenkov instability
(Godfrey 1974; Godfrey & Vay 2013). Further details on the
mitigation of Cherenkov instability are provided in
Appendix B. The upstream plasma ahead of the shock is
introduced by a moving particle injector that is initially located
next to the reflecting wall, but moves away from it at the speed
of light as time progresses. The injected particles are sampled
from a distribution with bulk Lorentz factor γ0= 50 and with a
thermal spread of = = = ´ -- +T T T m c4.8 100e 0e 0i

5
i

2. The
injected particle number is typically set to eight or 12 per cell
per species. Higher spatial resolutions and larger numbers of
particles per cell were tested, indicating a qualitative and
quantitative convergence of our results.

3. Homogeneous Beam-symmetric System

To understand how the pair enrichment affects the structure
of a weakly magnetized shock, it is instructive to consider first
an idealized periodic system, broadly resembling the early
stage of shock formation. We shall assume that the initial
configuration consists of two symmetric, unmagnetized cold
plasma shells streaming through each other. Each of the two
shells is charge and current neutral and moves with a bulk
Lorentz factor γ0? 1. The ions have a total simulation-frame
density n0i and the total density of electrons and positrons is
n0e= (Z±+ 1)n0i. To focus on regimes where ions dominate
the energy budget we impose Z±=mi/me.

The idealized configuration described above is prone to
plasma streaming instabilities, the most prominent of which is
in this context the Weibel (filamentation) instability (Wei-
bel 1959; Fried 1959; Silva et al. 2003; Achterberg &
Wiersma 2007; Kumar et al. 2015; Takamoto et al. 2018).
Let us consider the effect of the pair-loading parameter Z± on
the generation of Weibel fields. The pair-driven instability will
grow first and saturate on pair plasma scales, followed by the
slower ion response. At this point, the electrons and positrons
can be reasonably approximated as an isotropic, relativistically
hot background, whereas the counterstreaming ion beams are

still cold. The ion Weibel instability grows initially over the hot
electron (and positron) background at a maximum rate that
depends only on the ion properties. For cold ion beams, the
peak growth rate is Γ; ωpi, where ωpi is the relativistic ion
plasma frequency (e.g., see Achterberg et al. 2007; Lemoine &
Pelletier 2011). We will show below that, unlike the linear
growth rate, the nonlinear saturation strength of ion Weibel
fields depends strongly on Z± as a result of the screening of ion
currents by the pair plasma background.
Saturation of the ion-driven instability proceeds as follows:

the exponential Weibel field growth at a given beam-
perpendicular wavenumber k stalls when the magnetic bounce
frequency becomes comparable to the characteristic growth rate

b d
g

G
e B k

m
, 3x k

i
k

0

0

1 2

⎜ ⎟
⎛
⎝

⎞
⎠

( )

where δBk is the magnetic fluctuation amplitude of modes with
wavenumber∼ k and Γk is the growth rate. Condition (3) is
known as the trapping criterion (Davidson et al. 1972). In
principle, the field may be amplified further after the end of the
linear, exponentially growing stage. A more generic but
equivalent estimate of δBk can be obtained by assuming that
the maximum field strength is reached when all the available
current has been used (Kato 2005; Gedalin et al. 2012). From
Ampere’s law it follows that

d pB en k2 . 4k 0i ( )

The latter leads to the same qualitative conclusion. Namely, as
the field energy grows, short-wavelength modes saturate first,
followed by ever-increasing scales, up to the largest scale that
can sustain growth.
The maximum scale over which the ion instability can grow

at a rate close to the maximum (∼ωpi), hereafter denoted with
λ; π/k*, is controlled by the electron (and positron) back-
ground (Achterberg et al. 2007; Kumar et al. 2015). For a
relativistically hot and isotropic electron background, k* is
estimated as


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where w p g= e n m4pe
2

0e e e
1 2˜ ( ) and ge is the mean electron

(and positron) Lorentz factor. For a detailed derivation of
expression (5) see Lyubarsky & Eichler (2006) and Achterberg
& Wiersma (2007). We mention that the inhibition of field
growth at wavenumbers k k* originates from the screening of
ion current filaments by the electrons (and positrons); a robust
feature known to persist well beyond the linear stage of the
instability (Achterberg et al. 2007; Ruyer et al. 2015b).
A rough estimate for the total magnetic energy at saturation

can be obtained by noticing that the fluctuation amplitude is
proportional to the scale over which the field grows. Thus, the
dominant contribution comes from the largest scale. By
evaluating (4) at k= k* we are led to
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where òB≡ δB2/8πn0iγ0mic
2 is the magnetic energy fraction.

Equation (3) yields the same estimate of òB for k= k* with
wG = 2k pi*

(Achterberg et al. 2007).5

In order to obtain a more concrete prediction for òB and λ we
note that, as the ion instability proceeds, electrons are heated
beyond their initial energy of γ0mec

2 by extracting a fraction
òe∼ 0.1 from the ions (Gedalin et al. 2012; Plotnikov et al. 2013;
Kumar et al. 2015). Therefore, we anticipate that reasonable
estimates can be obtained provided that ge, which appears in the
definition of wpe˜ , takes into account the ion-to-electron energy
transfer. This brings the ratio w wpi pe˜ closer to unity. By defining
the pair energy fraction g gº n m n me 0e e e 0i 0 i , we express the
mean electron Lorentz factor as

g g+
-Z m m1 . 7e

1
0 e i e( ) ( )

The explicit inverse dependence on Z±+ 1 reflects the fact that
the energy drawn from the ions is distributed among a larger
number of the light charge carries with growing Z±. Using
relation (7) we can express the ratio of the squared plasma
frequencies as

w

w
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This leads to the following estimates for the magnetic energy
fraction and transverse coherence scale at saturation:

 l p+ +
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The estimates predict saturation of the ion Weibel instability at
lower field amplitudes and at smaller scales when the plasma is
loaded with pairs.

To test the above predictions, we perform 2D PIC simulations
using a periodic box of size (Lx/di, Ly/di)= (125.6, 31.4) and a
reduced ion-electron mass ratio of 100. The initial condition
consists of two pair-loaded cold plasma beams. The beams have
opposite momenta and equal, spatially uniform particle densities.
We evolve the system using 32 particles per cell per species and a
standard electromagnetic field solver. Other numerical parameters
match those described in Section 2 for our shock simulations.

In all runs we observe the formation of filamentary structures
in the magnetic field, as expected for the Weibel instability. An
example is shown in Figure 1. A careful look at that same
figure reveals also some mildly periodic patterns along the
longitudinal direction, which could be a sign of current filament
disruption via the drift-kink instability (Ruyer & Fiuza 2018;
Vanthieghem et al. 2018).

The time evolution of the system is depicted in Figure 2. The
fields generated by the electron (and positron) driven
instabilities saturate in a few tens of pair plasma times and
decay rapidly, followed by the creation of the longer-lasting ion
Weibel fields. We remark that the linear stage of the ion Weibel

instability is not seen clearly in our setup because it is preceded
by the faster-growing pair-driven instabilities.6

By the time t*ωpi≈ 70 all simulations reach near maximum
field strength of the ion Weibel instability (vertical dashed lines
in Figure 2). We take this as the approximate time of saturation,
at which we determine the pair energy fraction òe that is used to
compensate the curves in the bottom two panels of Figure 2.
The values of òe are at near maximum around t≈ t* and
increase only slightly beyond this time. For Z±� 6, the pair
energy at saturation hardly exceeds the initial amount at the
start of the simulation, given by òe0= (Z±+ 1)me/mi. More
specifically, we find that the energy taken away from the ions
and transferred to pairs, Δòe≈ òe− òe0, is roughly inversely
proportional to Z±+ 1 (not shown). As demonstrated below in
Section 5.1, the heating of electrons and positrons in weakly
magnetized pair-loaded shocks turns out to be more efficient
than what is found in this idealized setup. When òe stops
evolving, the screening wavenumber k* (Equation (5))
becomes a constant. This sets the transverse magnetic field

Figure 1. Structure of Weibel generated magnetic fields in a moderately pair-
loaded plasma.

Figure 2. Time evolution of the Weibel instability in a pair-loaded plasma (see
main text for details). The values of the mean magnetic energy fraction òB(t)
and field coherence scale λ(t) are compensated by the scaling predictions (9).

5 Both Equations (3) and (4) somewhat overpredict òB for the following
reasons: Estimate (4) is based for simplicity on the total available current,
whereas the actual current is some fraction of the total. In the case of
Equation (3), we assume perfectly cold ion beams to estimate the growth rate,
while in practice the growth rate may be reduced by the finite beam dispersion
at the time when the largest scale of the instability is attained. Rather than the
precise value of òB our main interest here is its dependence on Z±. For this
purpose, we find estimate (6) sufficient.

6 To see the linear evolution of the ion instability, we performed additional
simulations with initially isotropic and relativistically hot pairs and found
growth rates Γ ; ωpi, as expected for the ion Weibel instability. Using this
same setup, we also find that the linear stage of the ion instability ends at
around 10 ion plasma times.
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coherence scale λ; π/k* at the time of saturation of the ion
instability.7

The main result of Figure 2 is that òB(t) and λ(t) around the
time t≈ t*, when the ion Weibel fields reach maximum
strength, are both nearly independent of Z± when compensated
by the scaling predictions (9). Therefore, the PIC simulations
confirm that the ion Weibel fields saturate at lower amplitudes
and at smaller scales when the plasma is enriched with pairs.
This result has important implications for the structure of
weakly magnetized relativistic shocks with electron-ion-
positron compositions, as shown in the following.

4. Shock Structure

We now turn to the shock structure as a function of the pair-
loading factor. The key features are summarized in Figure 3,
which shows a series of simulations at fixed magnetization
σ= 10−5 and for various pair-loading factors Z±. The fields are
visualized around tωpi≈ 1850. It is evident that even moderate
changes in the plasma composition significantly affect the
shock structure. In qualitative agreement with the results of
Section 3, the strength and scale of the self-generated magnetic
turbulence drops with Z±. Moreover, the filamentary structure
of the precursor that is characteristic of a Weibel-mediated
shock fades away as pairs are introduced into the upstream
plasma.

4.1. Shock Width

The width of the ion shock, based on the y-averaged ion
density profile, is seen to broaden from about 10 di for Z±= 0
to roughly 100 di for Z±� 6 (Figure 4, top panel). The reason
for the broadening is that the microturbulence becomes
inefficient in stopping the ion flow via particle scattering (see
also Section 4.2). At sufficiently large pair-loading factors
(Z±� 6), the width of the ion shock approaches the ion Larmor
radius in the downstream compressed mean magnetic field,
RL0/di; 1/3σ1/2≈ 100. Together with the shock structure
shown in Figure 3, this suggests that the change in the plasma
composition gives rise to a transition from a Weibel to a
Larmor mediated shock at a fixed strength of the external
magnetization.

The electrons and positrons (not shown) are seen to decouple
from the ions with growing Z± and form a narrower subshock,
as thin as a few di in width (at Z±= 12), ahead of the broad ion
density ramp (Figure 4, bottom panel). This is made possible
by the fact that pairs carry lower inertia than the ions and are
thus able to isotropize more rapidly than the ions when crossing
the shock. In electron-ion shocks, electrostatic coupling
prevents the formation of a narrower electron shock, even if
the two species carry different relativistic inertia. In contrast,
when the plasma is enriched with pairs, a fraction of the total
electron charge is readily compensated by the positrons. This
enables the light particles to decouple from the ions.

4.2. Particle Motion Across the Shock

To further elaborate on the mechanisms that mediate the
shock transition at different values of the pair-loading
parameter, we compare in Figure 5 the trajectories of particles
crossing the shock for Z± = 0 and Z± = 12. The particle
trajectories of the electron-ion shock (Z± = 0) are considerably
more chaotic and disperse rapidly with respect to the initial
direction of motion. The electrons acquire a significant
dispersion even before entering the shock, indicating heating
in the upstream Weibel turbulence (Spitkovsky 2008b). Con-
sistent with the phenomenology of Weibel-mediated shocks, a
fraction of particles performs Fermi cycles, scattering back and
forth across the shock (see also Spitkovsky 2008a; Martins
et al. 2009).

Figure 3. Shock structure as a function of pair-loading factor Z± at σ = 10−5. Shown from left to right are the ion density, the electron density, and the out-of-plane
magnetic field. We determine the shock position xsh(t) as the point where the y-averaged ion density exceeds the upstream value by a factor of 2.3.

Figure 4. Shock density profiles for different pair-loading factors Z± at a fixed
value of the magnetization σ = 10−5.

7 Here and in the rest of the paper, we employ a common definition of the
coherence scale (e.g., Plotnikov et al. 2011) and calculate λ as the power-
spectrum-weighted mean of π/ky, where ky is the transverse wavenumber.
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The motion of ions and electrons across the pair-loaded
shock is significantly more ordered. The ions in particular
display a very clear signature of Larmor gyration in the
compressed mean field, which mediates the shock transition.
The electrons show as well signs of gyration, but the typical
scale of their motions is notably smaller than that of the ions,
owing to the difference in inertia between the species. The
disparity in inertia has another consequence. It gives rise to a
charge separation across the ion shock transition, which
generates a shock-parallel electric field (Lemoine & Pelle-
tier 2011; Lemoine et al. 2019b). This Ex field is imprinted onto
the electron trajectories shown in the top left panel of Figure 5
in the form of a transverse Ex× Bz drift (gray curve).

4.3. Energy Fraction and Scale of the Magnetic Fluctuations

It is worth asking how the results of our shock simulations
can be reconciled with the theoretical estimates from Section 3,
concerning the saturation of ion Weibel fields in a beam-
symmetric system. In the upstream frame of the background
plasma, the maximum ion Weibel instability growth rate is
Γu; ωpb (e.g., see Lemoine & Pelletier 2010), where ωpb is the
beam-plasma frequency of the returning ions.8 The latter is
related to the background ion plasma frequency through the
normalized (downstream frame) kinetic pressure of the beam
ions

x
g

g
g

º =
G -P

n m c

n

n

1
, 10

i
b

b

0 0i
2

b b ad

0 0i
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where gb is the mean Lorentz factor of the beam ions, nb their
density, and Γad is the adiabatic index.

9 Assuming g gb 0, the
beam-plasma frequency can be expressed as

w p g x w= e n m4pb
2

b b i
1 2

b
1 2

pi( ) (Pelletier et al. 2017). In
effect, ξb quantifies the asymmetry of the beam-plasma system
that is inherent to any realistic shock scenario.
As the incoming plasma moves toward the shock, it

experiences a growing beam energy density and pressure,
leading to a gradual slowdown of the background particles over
the turbulent precursor. Instead of trying to describe the
evolution over the entire precursor, we focus here on the
generation of Weibel fields in the near upstream, because this
is what largely controls the nature of magnetic fluctuations at
the shock and further downstream. The region immediately
ahead of the shock is also where the Weibel instability plays
the most prominent role, given that it is the most robustly
growing instability once the background electrons become hot
(Lemoine & Pelletier 2011; Shaisultanov et al. 2012; Plotnikov
et al. 2013).
In analogy with expression (5), the growth rate of the ion

beam driven instability over a background with hot electrons
and cold ions drops below the maximum for transverse
wavenumbers  w wk k cpb

1 3
pe
2 3 * ˜ (Lemoine & Pelle-

tier 2011; Shaisultanov et al. 2012). Using the beam parameter
ξb, the latter can be written as

 x
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k d . 11i b
1 6 pi
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The expression applies to transverse wavenumbers and as such
it is frame independent. It is obtained without taking into
account the relative drift between the background species,
which is appropriate for Z±= 0 since the background electrons
and ions are in this case tightly coupled. With a growing
amount of pair loading, the motion of the background pairs
becomes progressively more decoupled from the ions, as
discussed in Sections 4.1 and 4.2. On this note, we mention that
if the instability were to be driven exclusively by the streaming
between the cold background ions (instead of beam ions) and
the hot background pairs, the screening wavenumber would be
given by Equation (5), which is only marginally different from
Equation (11). A more detailed investigation of this aspect is
left for future works. It is also worth commenting on the
possibility that the field coherence scale is ultimately
determined by the rate of current filament mergers over the
length scale of the precursor (Medvedev et al. 2005; Stockem
Novo et al. 2015; Ruyer et al. 2017), rather than by the local
screening effect. In this regard, we mention that filament
merger is a slow process on scales exceeding the screening
wavelength (Achterberg et al. 2007), whereas the limited
precursor length in a relativistic shock requires a rather fast-
growing mechanism. Thus, in the relativistic case it seems
reasonable to approximate the near-upstream coherence scale
with λ; π/k* as we do below.
Besides the coherence scale, we also require an estimate for

the maximum available current to generate the magnetic fields.
The current filaments are produced by the response of the

Figure 5. Sample trajectories of particles crossing a σ = 10−5 shock for
Z± = 12 (left) vs. Z± = 0 (right). Dashed curves in all panels show the
ensemble-averaged trajectories. The position x tsh

i,e ( ) denotes the point where the
y-averaged density of the species shown in a given panel exceeds the upstream
value by a factor of 2.3. The gray curve in the top left panel shows the mean
transverse displacement due to the Ex × Bz drift.

8 If the returning electrons reach equipartition with the ions, as is the case for
an electron-ion Weibel-mediated shock (Spitkovsky 2008b; Sironi et al. 2013),
then one should strictly speaking use the combined density of beam ions and
electrons to define the beam-plasma frequency (Lemoine & Pelletier 2011). In
the pair-loaded case, beam electrons and positrons do not contribute to the
upstream turbulence as much as the beam ions, because they carry on average
lower relativistic inertia. For simplicity, we define here the beam-plasma
frequency based on ions only.

9 In a 2D geometry with an out-of-plane mean magnetic field, the appropriate
adiabatic index for a relativistic gas is Γad = 3/2.
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background plasma to the return particle beam, which deposits
a fraction of its energy into Weibel turbulence. Therefore, we
identify the maximum current with the current of the return ion
beam, Jb; ξben0ic. Using Ampere’s law based on the beam
current, the maximum Weibel field strength is thus estimated as

d p xB e n k4 . 12b 0i * ( )

Based on Equations (8), (11), and (12), the near-upstream
magnetic energy fraction and transverse coherence scale are
obtained as

 x +
-Z 1 , 13B b

5 3
e
2 3 4 3  ( ) ( )

l px +-


-d Z 1 . 14i b
1 6

e
1 3 2 3 ( ) ( )

Compared to the symmetric case (Equation (9)) the scalings are
modified through the addition of ξb. In the near precursor of an
electron-ion Weibel-mediated shock, typically ξb≈ 0.1,
òe≈ 0.3, òB≈ 0.01, and λ/di≈ a few (e.g., Sironi et al.
2013). For ξb= 0.1, òe= 0.3, and Z± = 0, (13) and (14) give
òB≈ 0.01 and λ/di≈ 3, consistent with previous simulations
using electron-ion plasma compositions.

When comparing the simulation results to the scaling
estimates (13) and (14), one should keep in mind that the
scalings are obtained for a steady-state Weibel-mediated shock
with Z±=mi/me. In principle, the most obvious choice would
be to check the predictions in the absence of external
magnetization, so that the shock is certainly Weibel mediated.
However, as shown in Section 4.6, the structure of a pair-
loaded shock in the σ= 0 limit differs substantially from the
physics picture presented above and needs to be considered
separately, owing to the creation of intense magnetic cavity
structures. On the other hand, with increasing magnetization or
pair loading the shock moves toward the Larmor mediated
regime. For these reasons, the predictions (13) and (14) are best
tested in simulations with a small but finite magnetization and
for moderate pair-loading factors. This is done in Figure 6,
which shows the profiles of òB and λ for Z±= 0, 2 at
σ= 5× 10−6.

The simulations shown in Figure 6 have been evolved well
over 2000 w-

pi
1 in order to reach a steady state. To make trends

clearer, the curves have been shifted with respect to the (ion)
shock position xsh(t) and time averaged over w» -150 pi

1. The
location x* = 50 di+ xsh (vertical dashed lines in bottom
panels) is used as a proxy to determine the representative
near-upstream values of òe and ξb for use in Equations (13) and
(14).10 We compute ξb by identifying ions with βx> 0 as the
beam population. The profile of ξb is nearly independent of Z±
in the near precursor, but decays more rapidly for Z±= 2 at
larger distances because the pair-loaded shock does not
produce high-energy ions while the electron-ion shock does
(see Section 5.2). The high-energy ion beam population of the
Z± = 0 shock travels further upstream and seeds the micro-
turbulence at larger distances, leading to a more extended
region of field growth and electron preheating, as evident from
the profiles of òe.

The strength of the self-generated magnetic turbulence, as
quantified by òB(x) in Figure 6, drops almost by an order in
magnitude when the plasma is enriched with only a single pair
per ion. Similarly, the transverse coherence scales λ(x) become

smaller. Immediately ahead of the shock and in the down-
stream, the compensation by the scaling predictions (13) and
(14) nearly eliminates the difference between the results
obtained for Z±= 0 and Z±= 2. This shows that the arguments
presented above offer a sensible explanation for why the
microturbulence weakens when the upstream is loaded with
electron-positron pairs. A central feature of the model is the
screening of ion currents by the hot pair background, which
controls the coherence scale of the near-upstream Weibel
filaments and leads to the weakening of the microturbulence
with growing Z±.
We stress that the above interpretation is appropriate in the

regime Z±=mi/me where the ions dominate the energy
budget, since our estimates do not account for the fields
generated from the free energy stored in pairs. Supposing that a
fixed fraction of the far upstream pair kinetic energy is
converted into electromagnetic fields, it may be reasonably
expected that the magnetic energy actually increases with the
pair-loading factor for Z±mi/me when normalized to the
fixed kinetic energy of the ions. Figure 3 provides a possible
hint toward this regime, given that at Z±� 6 the magnetic
fields near the shock do not exhibit the sharp decline in strength
seen at moderate pair-loading factors (in fact, the strength of Bz

near the shock and in the upstream is somewhat higher for
Z±= 12 than it is for Z±= 6).

4.4. Downstream Decay of the Magnetic Field

Up to this point, we have mainly focused on the evolution of
magnetic turbulence in the near upstream of a pair-loaded
shock. Downstream of the shock, the magnetic fluctuations

Figure 6. Profiles of the magnetic energy fraction òB(x) (top) and of the
transverse field coherence scale λ(x) (middle) for Z± = 0, 2 at σ = 5 × 10−6.
The profiles are shown with no rescaling on the left. On the right, we
compensate the curves with the scaling predictions (13) and (14). The bottom
panels show the pair energy fraction òe(x) (left) and the beam parameter ξb(x)
(right).

10 We checked that the predicted value of òB(x) and λ(x) is rather insensitive to
the precise choice of the near-upstream location where òe and ξb are measured.
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appear nearly static in the frame of the shocked plasma and
decay via phase mixing of the self-consistent electric currents.
The results shown in Figure 6 (top panels) suggest that the
magnetic field decay might be only moderately dependent on
Z±. Let us consider why this might be so.

For unmagnetized particles the linear damping rate of the
fluctuations with wavenumber k is estimated as g wkck

3
pe
2( ) ˜/

(for details, see Chang et al. 2008; Lemoine 2015). Since the
typical wavenumber of the fluctuations is comparable to k*, it
is instructive to evaluate γk for k∼ k*. Using Equations (8) and
(11), this gives

g w w w x w~ ~l k d . 151 pi pi pe
2

i
3

b
1 2

pi*( ) ( ) ( )

For simplicity, we have ignored the fact that k* is estimated in
the near precursor, whereas the damping rate concerns the
downstream fluctuations. According to this crude estimate, the
damping rate at the wavenumber k* depends on Z± only
implicitly via ξb. Therefore, it seems possible that the overall
rate of magnetic field decay is indeed only weakly dependent
on Z± (as long as ξb does not change). A definite answer to this
question requires simulations with Z±? 1 evolved over
several thousands of ion plasma times, which is computation-
ally prohibitive at present. From a theoretical perspective, a
more complete treatment would have to consider the evolution
of the entire magnetic field spectrum and possible modifica-
tions of the damping due to particle trapping and nonthermal
features in their energy distribution (Chang et al. 2008; Keshet
et al. 2009; Lemoine 2015). We defer a detailed investigation
of these aspects to future studies.

4.5. Critical Magnetization for a Larmor Mediated Shock

We have shown that, as the plasma is loaded with pairs, a
weakly magnetized Weibel shock is transformed into one which is
essentially Larmor mediated. From the simulations we can infer
that the critical magnetization σL, required for the ion shock to
become Larmor mediated, roughly scales as s µ +

-Z 1L
1( ) .

For Z±= 2 and Z±= 0 we find the transition near σL≈ 3× 10−5

and σL≈ 10−4 (not shown), respectively, the latter being
consistent with earlier simulations of electron-ion shocks (e.g.,
Sironi et al. 2013). For Z±= 6 we infer σL≈ 10−5 based on the
shock structure shown in Figures 3 and 4.

To obtain a prediction for the scaling of σL one should
determine when the motion of the background ions across the
shock becomes dominated by the mean field as opposed to
random scattering in the fluctuating fields. A tentative scaling
broadly consistent with our simulations can be obtained by
adopting the scattering frequency derived by Lemoine et al.
(2019b), appropriate for particles that become trapped in the
upstream Weibel filaments. The scattering frequency of the
trapped background ions, normalized to their Larmor frequency in
the mean field ΩL0, is estimated as n s lW ~ ℓBscat L0

1 2( )/ / ,
where ℓ∥ is a characteristic longitudinal scale of the filaments
(Lemoine et al. 2019b). The mean field dominates the transport
when ΩL0 νscat. Using Equation (13), there follows the estimate

 s l l x~ ~ +
-ℓ ℓ Z 1 . 16BL

2 2
b
5 3

e
2 3 4 3 ( ) ( ) ( ) ( )

For typical values λ/ℓ∥≈ 0.1, ξb≈ 0.1, òe≈ 0.3, this yields
s ~ ´ +-


-Z10 1L

4 4 3( ) , which is in reasonable agreement
with our simulations. For reference, the ion Larmor radius in the
rest frame of the upstream Weibel filaments (“Weibel frame,”

Pelletier et al. 2019) is g g g~ -R d BL,w i
1 2

w part,w 0/ / , where γw is
the Lorentz factor of the Weibel frame (with respect to the
downstream) and γpart,w is a typical Lorentz factor of a particle in
this frame. From Equations (12) and (14) it follows that

l p x g g g~ +- - -
R Z 1L,w

1
b

2 3
e

2 3 4 3
w part,w 0 ( )/ / . A reason-

able choice of parameters (γw and γpart,w both mildly relativistic,
γ0≈ 50, ξb≈ 0.1, and òe≈ 0.3) gives l ~ +R Z 1L,w

4 3( ) .
This implies that the near-upstream background ions are margin-
ally trapped (RL,w∼ λ) in the Weibel filaments when the
composition is electron-ion and become progressively less
magnetized with growing Z±. In practice, the trapping regime
may as well extend up to Z± of a few, given that the ions are
concentrated at the shock in small-scale density filaments,
surrounded by locally intense fields with amplitudes above the
typical fluctuation strength (see Figure 10).
If instead, the background ions are unmagnetized, the usual

estimate for the critical magnetization gives s l~ dBL
2

i
2 ( )

(e.g., see Vanthieghem et al. 2020). Together with Equations (13)
and (14), this translates into s ~ ´ +-


-Z10 1L

3 4( ) for typical
values of ξb and òe. The latter is inconsistent with our numerical
results for pair-loading factors of order unity, but may become
relevant in high-Z± shocks with realistic ion-electron mass ratios,
such that 1= Z±=mi/me; a regime currently inaccessible to
long-duration PIC simulations.
It should be noted that the transport of the background

plasma over the precursor of a pair-loaded shock warrants
further investigation beyond the scope of the present work. One
aspect worth mentioning concerns the slowdown of the
background plasma under the influence of the perpendicular
current driven instability (Lemoine et al. 2014), which is not
considered in our scaling estimates, but may play an important
role in bridging the gap between the Weibel and Larmor
mediated shock regimes.11

4.6. Unmagnetized Limit

So far, we discussed the regime of small yet finite external
magnetization, probing typical values of the order of σ∼ 10−5.
We showed that the self-generated microturbulence weakens as
the plasma is loaded with pairs. As it turns out, this trend
cannot be extrapolated to arbitrarily low σ because the
unmagnetized limit exhibits features qualitatively different
from the weakly magnetized case.
In Figure 7 we show the late-time structure of an

unmagnetized shock with moderate pair loading.12 In this
case, the precursor is filled with intense magnetic structures
with near equipartition fields strengths. The structures are born
out of Weibel filaments, forming cavities in the background
plasma density. These cavities are filled with intense magnetic
fields (locally as high as òB∼ 1), the amplitude of which shows
no apparent dependence on Z±.

13 As time progresses, the
structures grow and merge, reaching scales up to several ion
skin depths in size. In the long-time regime, the magnetic

11 To our knowledge, the perpendicular current driven instability was so far
studied only in weakly magnetized pair plasma shocks (Lemoine et al. 2014;
Plotnikov et al. 2018). Its role in shocks with different particle compositions is
not well understood at present.
12 An animation showing the shock time evolution is available online at:
https://youtu.be/vHnX1n-s90Y.
13 More specifically, we also performed simulations for σ = 0 and Z± = 4, 6
up to tωpi ≈ 1500 and found no clear dependence of the local cavity field
amplitude on Z±.
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cavities penetrate toward the near precursor and build up an
intense magnetic barrier at the shock with a mean magnetic
energy fraction of the order of 〈òB〉∼ 0.1. As the particles
scatter off the intense magnetic fields, their nonthermal
acceleration becomes more efficient (see Section 5.2). The
limit of an unmagnetized pair-loaded shock is therefore
different from the weakly magnetized regime, in the sense that
a moderate pair enrichment does not lead to a reduced
efficiency of particle scattering.

Similar structures have been previously observed in a variety
of streaming unstable configurations, ranging from precursors
of relativistic electron-ion shocks (Naseri et al. 2018) to
simulations of laser-plasma experiments (e.g., Honda et al.
2000), including laser-driven shocks (Fiuza et al. 2012; Ruyer
et al. 2015a). More recently, the magnetic cavities were
analyzed in simulations of relativistic beam-plasma instabilities
(Bresci et al. 2021; Peterson et al. 2021, 2022). These authors
showed that the growth of magnetic cavities is essentially
driven by the relativistic beam electrons, streaming over an
electron-ion or electron-ion-positron background. In particular,
Peterson et al. (2021) interpret the growth of the magnetic
cavities as a secondary nonlinear instability of Weibel
filaments. In their model, the secondary instability saturates
either when the beam electrons become trapped in the cavity or
when the background ions are accelerated in the upstream rest
frame to relativistic velocities, such that they neutralize the
electron beam current. The high Lorentz factor of our simulated
shock (γ0= 50) ensures that the relativistic inertia of the beam
electrons exceeds mic (= 36mec) in the upstream frame, and
therefore the background ions neutralize the current of the
beam electrons before the latter become trapped. In our
notation, the saturation strength obtained by Peterson et al.
(2021) then becomes òB= δB2/8πn0iγ0mic

2∼ αu, where αu is
the ratio between the beam electron and background ion
density, measured in the upstream frame of the background
ions. In the far precursor αu= 1, but the ratio αu grows as the
upstream plasma is advected closer to the shock and
experiences a growing electron beam density. In the simulation
shown in Figure 7, the fields reach òB∼ 1 locally at the cavity,
implying that effectively αu∼ 1 where the amplitude saturates.

In our present understanding, the key feature that enables the
generation of equipartition field strengths is the fact that the
background plasma is evacuated from the cavity. As a result,
the screening effect that otherwise limits the field growth (see
Sections 3 and 4.3) is inhibited, because there are hardly any
background particles left to screen the current inside the cavity.
In the simulation depicted in Figure 7, the structure of the

shock is still evolving even at relatively late times. This
naturally prompts the question about the ultimate fate of the
magnetic cavities in the long time limit. Given that the
structures always appear with the same magnetic field polarity,
it is evident that an asymmetry in the inertia of the different
species is a necessary condition for the cavity generation
(Bresci et al. 2021; Peterson et al. 2022). Such asymmetry is
naturally present in a pair-loaded shock, both for the incoming
as well as the returning beam particles. For the latter, we
remind that the pairs are heated below energy equipartition
with the ions when Z± 1 (see Section 5.1). Whether this is in
fact a sufficient condition for sustained cavity generation
should be investigated further.
It should be mentioned that we observe the cavities also in

our electron-ion shock simulations, as well as in pair-loaded
shocks with a low but finite σ 3× 10−5. The key difference
from the simulations for σ= 0 is that the cavities are rather
transient in nature. At finite magnetizations, the cavities appear
at relatively early times, following the initial reflection of
plasma from the simulation wall, and typically remain confined
to within the far upstream without growing to large size. After
this initial transient, the simulations at finite values of σ

approach a steady state, apparently free from the magnetic
cavities. In electron-ion simulations at σ= 0, we as well
observe fewer cavities, but larger in size, as time progresses
(see also Naseri et al. 2018). This could potentially indicate that
the near energy equipartition between the returning beam
electrons and ions is limiting the cavity production. On the
other hand, the evolution of the structures in our electron-ion
σ= 0 simulations might be as well affected by numerical
limitations (e.g., the production of the cavities could be
constrained by the limited width of the simulation box).

Figure 7. Late-time structure of a pair-loaded shock in the absence of external magnetization (σ = 0). Shown from top to bottom are the ion density, the out-of-plane
magnetic field, the longitudinal ion and electron phase space, and the y-averaged particle density and magnetic energy fraction.
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Additional numerical experiments, beyond the scope of this
work, are needed to clarify this aspect.

4.7. Range of Applicability of the Unmagnetized Limit

We showed that the limit of an unmagnetized pair-loaded
shock differs from the regime of weak but finite external
magnetization. It is worth asking how low should σ be for the
shock to be considered unmagnetized. A common criterion
found in the literature is based on the requirement that the
upstream residence time of the returning beam particles is
controlled by scattering in the self-generated fields, rather than
by the gyration in the mean upstream magnetic field. This
amounts to s s g l~ - dBum p

2 2
i

2  ( ) for beam particles with
typical energy E∼ γ0mic

2, where γp is the Lorentz factor of the
incoming background plasma in the downstream frame (e.g.,
see Lemoine & Pelletier 2010; Lemoine et al. 2014).14

Assuming that, regardless of γ0? 1, the background plasma
decelerates from the far precursor to a typical bulk Lorentz
factor γp∼ 10, and that owing to the magnetic cavity
generation we have on average òB∼ 0.01 and λ∼ di, we obtain
σ σum∼ 10−6. This upper limit is consistent with our
simulations, showing explicitly that magnetizations as low as
σ≈ 5× 10−6 are too high for the shock to be considered
unmagnetized. In our present understanding, it is even more
likely that the unmagnetized limit requires σ= 10−6. More-
over, it is possible that σum depends on Z±. Very long-duration
simulations at extremely low but finite σ 10−6 are required to
further constrain this critical value.

5. Energy Partitioning and Particle Acceleration

So far, we focused on the kinetic-scale structure of a
relativistic shock enriched with electron-positron pairs. Now,
we discuss how the shock redistributes the incoming kinetic
energy among the ions and pairs in the post-shock plasma.

5.1. Pair Energy Fraction

For accurate modeling of the radiation emission, it is
important to determine what fraction of energy is drawn from
the ion reservoir and transferred to the pairs during their
passage across the shock. We quantify this energy exchange
with the pair energy fraction g g= +Z m m1e e e 0 i ( ) , which
we measure downstream of the shock (Figure 8). The
measurements are obtained in a slab between −150
and− 100 di behind the ion shock, around the time
tωpi≈ 1650. Quantitatively similar results are obtained at later
times. As shown in Figure 8, the pair energy fraction is robustly
in the range between 20% and 50% over the entire range of
magnetizations considered. Higher magnetizations (comparable
to σ∼ 10−4) yield somewhat lower pair energy fractions,
around 20%, compared to the lowest σ range with σ 10−5,
where the values of òe are scattered around 40%.

The mean energy per particle, g=E m ce e e
2, is obtained

directly from the definition of òe as

= +
-E Z E1 , 17e e

1
0i ( ) ( )

with 0.2 òe 0.5 and E0i= γ0mic
2. Therefore, with increas-

ing Z± the post-shock pairs become cooler. Their mean energy
scales approximately as µ +

-E Z 1e
1( ) . Apart from the pair

energy fraction, we also determine the electron-positron energy
ratio (Figure 8, bottom panel), which lies between 60% and
90%, regardless of the precise value of Z±.
It is worth elaborating further on the physics of the electron

and positron heating. In Figure 9 we show the mean work done
by the electric field on a set of tracked particles (ions, electrons,
and positrons) at σ= 5× 10−6 for Z± = 0, 2 from the far
upstream, across the shock and into the downstream. We
calculate separately the work done by the longitudinal (Ex) and
transverse (Ey) electric field. Although the post-shock electrons
are heated to nearly the same temperature as the positrons, we
find that the positrons gain most of their energy by interacting
with the shock-parallel Ex field, whereas the electrons primarily
receive energy from the transverse Ey field. The ions lose
energy through the interaction with both Ex and Ey. It is also
interesting that most of the energization for Z± = 2 occurs
relatively close to the shock (within a distance of about 50 di),
compared to the electron-ion case.
The different mechanisms of electron and positron heating

are related to strong ion density inhomogeneities near the shock
transition. As shown in Figure 10, the ions near the shock
transition form small-scale density structures with intense
fluctuations around the mean. The electrons are drawn toward
these structures as they try to compensate the ion space charge,
but their density fluctuations appear more diffuse due to
thermal effects. The positrons, on the other hand, are repelled
away from the most intense ion density fluctuations. The Ex

and Ey electric fields (bottom two panels in Figure 10) are
correlated with the ion density inhomogeneities, and therefore
the electrons receive the work by the electric field in a
qualitatively different way than the positrons.

5.2. Particle Acceleration

Previous works have shown that relativistic shocks propa-
gating into an electron-ion or electron-positron medium give
rise to efficient particle acceleration via the first-order Fermi
process (Achterberg et al. 2001), provided that the external

Figure 8. Downstream pair energy fraction (top) and the electron-positron
mean energy ratio (bottom). The dashed curve in the top panel indicates the far
upstream energy content of the pairs.

14 In contrast to the estimates for σL (Section 4.5), which concern the near-
upstream incoming background ions, the expression for σum applies to the
returning beam particles ahead of the shock (this brings in the g-

p
2 factor, see

Lemoine & Pelletier 2010; Lemoine et al. 2014).
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magnetization is sufficiently weak (Spitkovsky 2008a; Martins
et al. 2009; Sironi et al. 2013; Plotnikov et al. 2018). This
maximum magnetization is determined by the requirement that

the particle scattering in the microturbulence beats the motion
in the compressed mean magnetic field that tries to advect the
particles away from the shock toward the downstream (Pelletier
et al. 2009). Let us consider the implications of the argument
for a pair-loaded relativistic shock.
As appropriate for Fermi acceleration, we shall consider

small-angle random scatterings of untrapped particles with
RL λ, where RL; E/eδB is the Larmor radius of a particle
with energy E in the fluctuating field δB. In the near downstream,
a crude estimate based on Equations (12) and (14) gives

l p x~ +- - -
R Z E E1 3 1L

1
b

2 3
e

2 3 4 3
i( ) ( ) ( ), when the

energy E is compared to the mean of the ion distribution
~E Ei 0i, and l p x~ +- -

R Z E E1 3 1L
1

b
2 3

e
1 3 1 3

e( ) ( ) ( )
if the mean electron energy Ee is used instead.15 Assuming
ξb≈ 0.1 and òe≈ 0.3, we find that the suprathermal ions and
electrons with energies exceeding the mean (for each species)
by factors of a few are always unmagnetized (RL λ), and
even more so at higher Z±.
For the unmagnetized suprathermal particles, the downstream

scattering frequency is estimated as n lc Rscat L
2 (e.g.,

Plotnikov et al. 2011). Scattering prevails when νscat
ΩL0; eB0c/E, thereby enabling the particle to return to the
shock instead of being advected further downstream by the mean
field (Pelletier et al. 2009). The latter condition can be
conveniently written as

s s l -d E E , 18BF
2

i
2

0i
2  ( ) ( ) ( )

where E0i= γ0mic
2.16 Here, we point out two important

aspects. First, through the dependence of òB and λ on Z± (see
Section 4.3), the maximum external magnetization that allows
for Fermi acceleration becomes a function of the pair-loading
factor. And second, if the electrons (and positrons) do not reach
equipartition with the ions, as is generically the case for
Z± 1, then the condition for electron Fermi cycles is different
from the one for the ions. In particular, condition (18) becomes
less restrictive for the relatively cooler electrons near the
thermal peak due to the inverse square dependence of σF on E,
as long as this energy is high enough for a particle to remain
untrapped (see discussion above).
Using Equations (13) and (14), the condition (18) can be

expressed for ions as

s s p x +
- -Z E E1 , 19Fi

2
b
3

e
2 4

i
2  ( ) ( ) ( )

where ~E Ei 0i. Taking typical values ξb≈ 0.1 and òe≈ 0.3, we
find that nonthermal ions with energies E exceeding the mean by a
few can be produced when s s ~ ´ +-


-Z10 1Fi

4 4 ( ) . On
the other hand, for electrons we obtain

s s p x +
- -Z E E1 , 20Fe

2
b
3 2

e
2 ( ) ( ) ( )

Figure 9. Work by the electric field on a tracked set of background particles as
they stream toward and across the shock. Shown from top to bottom are the
total work W(t) = q∫E(t) · v(t)dt, the work due to the longitudinal
W∥(t) = q∫Ex(t)vx(t)dt, and transverse field W⊥(t) = q∫Ey(t)vy(t)dt.

Figure 10. Small-scale structure of the shock transition region in a moderately
pair-loaded plasma (Z± = 2). Shown are the particle density fluctuations
around the mean (top three panels) and the electric fields (bottom two panels).

15 The factor of 1/3 accounts for the magnetic field compression at the 2D
relativistic shock.
16 The estimate (18) is similar to the one used in Section 4.5 to obtain σL for
unmagnetized ions, but the question being asked is different. Here, we consider
the near-downstream motion of the (nearly) isotropic suprathermal particle
population, whereas Section 4.5 concerns the transport of the incoming
background ions with typical energy E ∼ E0i over the near precursor. We point
out that the transport of the incoming background particles need not be, and
generally is not, of the same nature as the transport of the suprathermal particle
population (e.g., the background particles may be trapped in the Weibel
filaments while the suprathermal population is not).
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with ~ +
-E Z E1e e

1
0i ( ) . Taking electrons with energy

e»E E3 e e/ , we estimate s ~ ´ +-


-Z10 1Fe
4 2( ) .

Based on the above, we envision a situation where
nonthermal ion acceleration at the weakly magnetized shock
is suppressed for Z± 1, unless σ is extremely low, such that
σ σFi. For electrons, limited acceleration remains possible as
long as σ σFe, even when the ions are thermal. However, as
soon as an electron is accelerated to energies of the order of
E∼ E0i, the nature of its transport becomes similar to that of the
thermal ions, implying that any nonthermal acceleration
beyond E∼ E0i is inhibited. Therefore, the electrons may form
a nonthermal component even when the ions are essentially
thermal, but the extent of the nonthermal tail will be in this case
limited between ~ +

-E Z E1 1
0i( ) and E∼ E0i. Finally,

following the simplified physics picture discussed above, we
expect electrons to be thermal when σ σFe (although, see
Figure 14).

We now compare the above estimates with results from PIC
simulations. Figure 11 shows the evolution of the downstream
particle energy spectrum at fixed Z±= 2 and for different
magnetizations σ. The results shown represent some of our
longest-duration simulations (in w-

pi
1 units) and are as such best

suited for probing the nature of particle acceleration. At the
time when each Z±= 2 simulation ends, we also show the
spectra obtained for Z±= 0 at the same time. In line with the
above discussion, we find that even a single electron-positron
pair per ion is enough to suppress ion acceleration at
magnetizations as low as σ= 5× 10−6. In contrast, the
electron-ion shock produces nonthermal ions up to
σ= 3× 10−5 (see also Sironi et al. 2013). These results are
consistent with the estimate (19), which gives σFi≈ 10−4, 10−6

for Z±= 0, 2, respectively. For electrons, condition (20) gives
σFe≈ 10−5 at Z±= 2, and indeed we observe the development
of a limited nonthermal electron tail in simulations with
σ= 10−5, 5× 10−6 at Z±= 2. For σ= 3× 10−5, the

nonthermal electron component (except for a minor kink in
the spectrum) is only a transient, connected to the initial
reflection of particles from the wall on the left of the simulation
domain (see also the discussion of Figure 14 in this section).
Unlike in the regimes with weak but finite σ, both ions and

electrons form distinctly nonthermal distributions in the limit of
vanishing σ (Figure 11, rightmost panels). The acceleration is
intermittent in time and correlated with the formation of the
magnetic cavities (see Section 4.6). To demonstrate the point,
we show in Figure 12 the evolution of the maximum particle
energy (i.e., the spectral cutoff) behind the shock together with
the maximum of the y-averaged magnetic energy fraction,
measured in a slab around the shock. Around the time
tωpi≈ 1700, when the first large-scale cavities appear in the
near precursor, the magnetic energy fraction at the shock is
amplified by an order of magnitude, followed by rapid growth
of the maximum particle energy. At select times, the maximum
energy grows at a rate considerably faster than

g w~ tmax pi
1 2( ) ( ) , previously reported for electron-ion and

pair plasma compositions (Sironi et al. 2013; Plotnikov et al.
2018). While the observed trend is intriguing, we note that
longer duration simulations are required for a reliable
extrapolation to astrophysically relevant timescales.
The results of PIC simulations shown in Figure 11 reveal

also a strong asymmetry between the electron and positron
energy spectra. The highest energy electrons are accelerated to
near equipartition with the highest energy ions, whereas the
positrons are not. Moreover, the nonthermal component of the
electron spectrum is much harder. To explain the origin of the
asymmetry, we consider in Figure 13 the work by the Ex and Ey

electric fields on a few representative high-energy electrons and
positrons, extracted from the simulation with σ= 5× 10−6 and
Z±= 2. The work by the shock-perpendicular Ey field is
qualitatively similar for the two species and exhibits random
kicks in the particle energy that are characteristic of diffusive

Figure 11. Energy spectrum evolution at fixed Z± = 2 and for various magnetizations σ in a slab between −150 and − 100 di behind the ion shock. Different colors
are used to represent the simulation time. Dashed curves show the late-time spectra from electron-ion simulations (Z± = 0).
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shock acceleration. On the other hand, the work by Ex is largely
mediated by a coherent field component (Figure 13, bottom left
panel) that points toward the shock in the near upstream, within
a distance of about∼ 50 di ahead of the shock.

On each cycle between the upstream and downstream, the
returning electrons interacting with Ex increase their energy by
roughly ΔE/E0i∼ 0.1, while the positrons lose an equivalent
amount. This value is consistent with the estimated drop of the
electric potential from the shock toward the far upstream,
which gives ò á ñ » -

¥
e E dx E0.14

x x 0i
sh

. The return of the
particle from the upstream back to the shock plays little role
in this energy exchange because most of the upstream residence
time is spent by the particle moving away from the shock;
when the particle turns around it is caught up by the shock
rapidly. Thus, the energy difference in the work done by Ex

accumulates upon repeated cycles, thereby favoring electron
over positron acceleration. In the presence of magnetic cavities,
some of the incoming background electrons (but not positrons)
are preaccelerated near the cavities (see the longitudinal
electron phase space in Figure 7), which promotes the
asymmetry further.

It is worth commenting on how the coherent Ex field that
favors electron over positron acceleration is generated. This
field can be attributed to the fact that the returning beam ions
carry on average higher relativistic inertia than the pairs, and
therefore they penetrate further into the upstream, leaving
behind most of the electrons and positrons with an excess
negative charge. The resulting electrostatic potential gives rise
to a near-upstream electric field that points in the negative x
direction. It should be mentioned that this coherent field is
much smaller than the fluctuating fields near the shock
transition (see Figure 10). However, because it systematically
affects the electron and positron energy gain on each Fermi
cycle it leads to an overall significant difference between the
nonthermal spectra of electrons and positrons.

For reference, we show in Figure 14 the downstream energy
spectrum evolution at fixed σ= 10−5 and for various Z±. We
caution the reader that beyond Z± of a few finite mass ratio effects
for our choice of mi/me= 36 are not to be ruled out (see
Appendix A). With this caveat in mind, we report the following.
Except when Z±= 0, the ions are essentially thermal, lacking any
substantial nonthermal component. The relatively cooler electrons
with mean energy = +

-E Z E1e e
1

0i ( ) develop a limited

nonthermal tail with a cutoff energy ~ +
-E Z E1 1

0i( ) . The
acceleration of positrons is disfavored by the mean electric field in
front of the shock (see the discussion above), such that the
positrons remain nearly thermal. The electron spectrum features as
well a high-energy spectral bump that gradually recedes with time.
Particle tracking (not shown) relates the high-energy bump with a
transient energization of electrons near the tip of the particle
precursor. The feature is therefore a remnant of the initial
reflection of plasma from the simulation wall, and does not persist
in the long-time regime of particle acceleration. To summarize,
the generic property that emerges from our simulations of weakly
magnetized pair-loaded shocks is that the ions are essentially
thermal, whereas the electrons form a nonthermal tail of limited
extent.
For Z±� 4, the magnetization of σ= 10−5 is above the

estimated range of σ (see Equation (20)) that allows for
electron Fermi cycles. An important aspect to consider here is
that for high Z± the electron shock lies ahead of the broader ion
shock (Figure 4), and the space in between is filled with a
turbulent field sheared by a transverse Ex× Bz flow (see the
discussion of Figure 5 in Section 4.2). This feature departs from
the context in which the estimate (20) is made, where the
particle scattering centers behind the shock are essentially at
rest in the downstream frame. That significant electron
energization indeed occurs behind their shock can be seen by
inspecting the spectrum at different x locations, as shown in
Figure 15. The electron spectrum immediately behind the
electron-positron shock exhibits a much softer nonthermal
component compared to the far downstream spectrum, behind
the broader ion shock. Moreover, not only the high-energy
component, but also the core of the particle distribution is
energized during the passage through the turbulent sheared
layer in between the two shocks.

6. Astrophysical Implications

The results presented in this paper are relevant for the early
phase of the GRB afterglow, when the external shock
propagates into a medium enriched with electron-positron
pairs. We provide direct estimates for the fraction of energy
carried by the post-shock pairs and constrain the maximum
external magnetization that allows for efficient particle
acceleration.

Figure 12. The maximum particle energy and magnetic energy fraction vs.
time in a σ = 0 shock with moderate pair-loading factor. We determine gmax( )
based on where g g =dN d 0.1 in the selected units of Figure 11. The
maximum of 〈òB〉y is measured at the shock in a 50 di wide slab. The scaling

w~ t pi
1 2( ) is shown for reference only.

Figure 13. Work by the longitudinal (Ex) and transverse (Ey) electric field on a
few high-energy positrons (blue lines) and electrons (red lines). The bottom left
panel shows the mean profile of Ex(x − xsh(t), y, t), averaged over y and t (time
interval matches the duration of particle tracking, Δtωpi ≈ 1000).
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GRB explosions may occur in the interstellar medium or
inside the wind of a massive progenitor star, in particular of
Wolf-Rayet type (Crowther 2007). The magnetization of the
interstellar medium is extremely low; it varies around
σ∼ 10−9. The magnetization of a Wolf-Rayet wind before
the explosion is likely much higher than the magnetization of
the interstellar medium, but its exact value is poorly known. An
upper limit may be estimated using the wind kinetic energy per
particle. This gives s ~ -w c 102 5 ( ) for typical wind
velocities w∼ 108 cm s−1.

The model of the early GRB afterglow developed by
Beloborodov et al. (2014) shows good agreement with a set of
GRB observations, assuming ambient densities typical of
Wolf-Rayet type progenitors and emission from essentially
thermal pairs behind the shock, carrying an energy fraction
òe≈ 0.3 when 1 Z±=mi/me (see also Hascoët et al. 2015).
Our first-principles kinetic simulations support these assump-
tions. We find 0.2 òe 0.5 and rather limited nonthermal

electron acceleration for magnetizations near the estimated
upper limit of Wolf-Rayet stellar winds (σ∼ 10−5). In this
case, the maximum (downstream frame) energy of the
nonthermal electrons is set by the shock Lorentz factor∼ γ0
and the ion mass as E∼ E0i= γ0mic

2. Efficient electron
acceleration beyond E∼ E0i then requires either very small
amounts of pair loading, expected at radii R> R±∼ 1017 cm
(Beloborodov 2002), or extremely low magnetizations, such as
those expected for the interstellar medium (σ∼ 10−9).

7. Summary and Conclusions

In this work, we study the microphysics of pair-loaded,
weakly magnetized relativistic shocks using 2D kinetic PIC
simulations. Our simulations focus on the regime of moderate
pair-loading factors Z± 10, where the far upstream energy is
dominated by ions. We find the following:

1. Pair loading decreases the strength and scale of the self-
generated turbulence over the weakly magnetized pre-
cursor, leading to a reduced efficiency of particle
scattering. We attribute this effect to the screening of
ion current filaments by the background pairs
(Section 4.3).

2. When the external magnetization exceeds a critical value
σL, the shock becomes mediated by the gyration of ions
in the background compressed mean magnetic field
(Sections 4.2 and 4.5). This critical value decreases with
Z±, owing to the weakening of the self-generated
turbulence, which mediates the shock for σ σL.

3. The energy fraction òe, carried by the post-shock pairs, is
robustly in the range between 20% and 50% of the
upstream ion energy (Section 5.1). These values are
favored by models of the early GRB afterglow that
account for the pair loading (e.g., Beloborodov et al.
2014; Hascoët et al. 2015). The mean electron energy

Figure 14. Energy spectrum evolution at fixed σ = 10−5 and for increasing Z± (left to right) in a slab between −150 and − 100 di behind the ion shock.

Figure 15. Electron spectrum in a 10 di wide slab at two different x locations
behind the pair shock for Z± = 12 and σ = 10−5.
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scales as  +
-E Z E1e e

1
0i ( ) , where 0.2 òe 0.5

and E0i= γ0mic
2 is the far upstream ion energy.

4. Pair loading limits nonthermal particle acceleration, most
notably for ions (Section 5.2). We estimate that acceleration
via the first-order Fermi process is possible only when the
external magnetization is below a critical, pair-loading-
dependent value s ~ ´ +-


- -Z E E10 1F

3 4
0i

2( ) ( ) ,
where E is the energy of the injected particle. Simulations
indeed show that the ions are essentially thermal at
magnetizations as low as σ≈ 5× 10−6, even when the
plasma is loaded with only single electron-positron pair per
ion. The electrons, on the other hand, form a nonthermal
component in the range between ~ +

-E Z E1 1
0i( ) and E0i.

5. The limit of vanishing external magnetization is different
from the regime with weak but finite σ (Section 4.6).
When σ= 0, the microturbulence shows no apparent
signs of weakening with growing Z±; at least not for the
order-unity values of Z± considered in our simulations.
The locally intense fields are supplied by magnetized
plasma cavities, generated over the turbulent precursor.
Then, particle acceleration of both ions and electrons is
sustained over the duration of the entire simulation. We
estimate that, under the most favorable conditions, the
external magnetization should be no larger than σ∼ 10−6

for the pair-loaded shock to be an efficient accelerator of
both electrons and ions (Section 4.7).

The subject offers a number of promising future directions. In
our setup, the pair enrichment is characterized by a single
parameter, the pair-loading factor Z±, neglecting the fact that the
pairs are injected with a finite momentum in the rest frame of the
external medium. The available free energy of the drifting pairs
is released through plasma streaming instabilities, which
preamplify magnetic fields in the far upstream (Ramirez-Ruiz
et al. 2007; Derishev & Piran 2016; Garasev & Derishev 2016;
Peterson et al. 2022). If these fields manage to survive until they
are caught up by the shock, the scale and strength of the
fluctuations at the shock and further downstream could be
modified. Pair enrichment also plays a significant role in
relativistic radiation mediated shocks, although the physics in
that case is somewhat different from the regime consider here,
owing to direct momentum exchange between the radiation and
the plasma (e.g., Levinson 2020; Vanthieghem et al. 2022). The
present work motivates as well further studies along the lines of
kinetic plasma theory. This includes, for instance, the theory for
the slowdown of the background electrons and ions over the
precursor of a pair-loaded shock, and the exact physical details
required for the persistent generation of the magnetic cavities in
low-σ pair-loaded relativistic shocks.
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Appendix A
Dependence on the Mass Ratio

In Figure 16 we compare the downstream particle energy
spectra around the time tωpi≈ 815 in a shock with Z±= 2 and
σ= 5× 10−6 for mi/me= 36, 100. To save resources, we
perform the mi/me= 100 simulation using a 17 di wide box,
with a resolution of 6.5 cells per de and four particles per cell per
species. The mi/me= 36 simulation has a 31.4 di wide box, with a
resolution of eight cells per de and 12 particles per cell per species.
As shown in Figure 16, qualitatively and quantitatively similar

results are obtained at the increased value of the ion-electron mass
ratio. We conclude that the simulations from the main text using
mi/me= 36 are reasonably converged in terms of the mass ratio
for pair-loading factors up to a few. This is consistent with Sironi
et al. (2013), who performed mass ratio scans (up to
mi/me= 1600) in simulations of relativistic electron-ion shocks at
σ= 10−5, and concluded that mass ratios as low as mi/me= 25
are sufficient for reasonably converged results. It is also worth
highlighting the excellent agreement in the thermal parts of the
electron and positron spectra in Figure 16, even though the far
upstream pair energy fraction, òe0= (Z±+ 1)me/mi, differs
significantly between the two runs.
Computational limitations currently prevent long-duration shock

simulations at mass ratios much higher than 36 for Z± beyond a
few. However, the following can be noted. In Section 5.1 we
demonstrate that the mean post-shock electron energy per particle
drops as µ +

-E Z 1e
1( ) with the pair-loading factor. The trend

ceases when g g» + »
-E Z m c m c1e e

1
0 i

2
0 e

2 ( ) , as the elec-
trons get to keep their initial far upstream energy of γ0mec

2.

Figure 16. Dependence of the post-shock particle energy spectrum on the ion-
electron mass ratio. The spectra are measured in a slab between −150 and
−100 di behind the ion shock.
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Therefore, mass ratio effects should become significant whenever
Z±+ 1∼ òemi/me. This suggests that finite mass ratio effects could
play a role in our simulations with Z±= 6, 12 and mi/me= 36. On
the other hand, it is worth noting that our results are supported by
analytical estimates, derived under the general assumption
Z±=mi/me and without specifying any particular value for
mi/me.

Appendix B
Mitigation of Numerical Cherenkov Instability

To mitigate the numerical Cherenkov instability we use a
generalized stencil for the ∇×E derivative in Maxwell’s
equations (Blinne et al. 2018), which improves the numerical
dispersion of electromagnetic waves and reduces the growth of the
numerical instability. The ∇×B stencil is not modified so as to
preserve the charge-conserving property of the current deposition
algorithm. The coefficients of the generalized stencil are listed
under the name “min. 3” in Table 1 of Blinne et al. (2018). For
this particular stencil, the grid cells must be square and the time
step should be set to Δt= 0.5Δx/c for optimal results. Our
approach provides an effective solution for avoiding the numerical
Cherenkov instability in the low wavenumber range
(  p= Dk k xmax ), whereas at high wavenumbers the instabil-
ity can be mitigated by low-pass filtering the electric currents at
each time step, as is routinely done in relativistic PIC simulations
(e.g., Spitkovsky 2005). Here, we employ a binomial filter with 20
passes in the longitudinal (x) and 10 in the transverse (y) direction.

In Figure 17 we demonstrate the performance of the Blinne
et al. (2018) “min. 3” stencil in free streaming plasma
simulations. The simulation domain is periodic with 20482 cells
and 12 particles per cell per species. Other numerical parameters
are reported in the figure. We initialize a uniform pair-loaded
plasma streaming with a bulk Lorentz factor γ0= 50 in the x-
direction and monitor the growth of the numerical Cherenkov
instability. As shown in Figure 17, the modified stencil improves
control over the numerical instability compared to the standard
(Yee) field solver. A particularly strong suppression is obtained
when the streaming plasma is initialized with a mild temperature
(T0= T0e= T0i= 8× 10−2mec

2). In that case, the numerical
Cherenkov modes (seen in the |kx|de 6, |ky|de 1.5 range of
the Bz spectrum) remain limited to low amplitudes over the
duration of the simulation. When the plasma is initially cold
(T0= 1.7× 10−3mec

2) numerical Cherenkov modes grow to an
appreciable level in about 150,000 steps; a substantial improve-
ment compared to results obtained using the standard Yee solver.
With respect to shock simulations, we note that the time when
the upstream becomes affected by spurious Cherenkov modes is
delayed by roughly a factor of 4 (compared to the free streaming
setup) when the upstream plasma is introduced gradually using a
moving particle injector.17 It is also worth mentioning that the
incoming plasma acquires a mild temperature already at
relatively large distances from the shock as a result of
interaction with the counterstreaming beam of returning
particles (e.g., Lemoine et al. 2019a). This may help reduce
the growth of the numerical Cherenkov modes further.

In Figure 18 we show the spectrum of Bz in a slab between 80
and 120 di ahead of the (electron) shock from one of our longest
simulations (in time step units) with Z±= 6 and σ= 10−5. The
spectrum is shown at a time tωpi= 1850 corresponding to 468,000
time steps in the simulation. As shown in Figure 18, the spectrum
is dominated by relatively low wavenumber modes transverse to
the shock normal. A careful look reveals a weak signature of
Cherenkov modes in the same region of wavenumber space as in
Figure 17 (|kx|de 6, |ky|de 1.5), but their relative energy content
is minor. We conclude that the numerical Cherenkov instability is
controlled in our simulations to a sufficient degree that it does not
significantly affect our results.
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