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C H E M I S T R Y

Structure-to-process design framework for developing 
safer pesticides
Jessica M. Lewer, Zachary R. Stickelman, Jessica H. Huang, John F. Peloquin, Jakub Kostal*

Rational design of pesticides with tunable degradation properties and minimal ecotoxicity is among the grand 
challenges of green chemistry. While computational approaches have gained traction in predictive toxicology, current 
methods lack the necessary multifaceted approach and design-vectoring tools needed for system-based chemical 
development. Here, we report a tiered computational framework, which integrates kinetics and thermodynamics 
of indirect photodegradation with predictions of ecotoxicity and performance, based on cutoff values in mecha-
nistically derived physicochemical properties and electronic parameters. Extensively validated against experimental 
data and applied to 700 pesticides on the U.S. Environmental Protection Agency’s registry, our simple yet power-
ful approach can be used to screen existing molecules to identify application-ready candidates with desirable 
characteristics. By linking structural attributes to process-based outcomes and by quantifying trade-offs in safety, 
depletion, and performance, our method offers a user-friendly roadmap to rational design of novel pesticides.

INTRODUCTION
Green chemistry principles dictate industry should be developing 
safer chemicals that do not persist in the environment, to lower risk 
of adverse effects to human and environmental health (1). While 
the concept of safer chemical design was pioneered nearly 100 years 
ago (2), it is estimated that more than 85% of commercial chemicals 
introduced in the United States annually have insufficient experi-
mental health and safety data (3). The U.S. Environmental Protection 
Agency (EPA) tackles this challenge by using a variety of techniques 
to fill data gaps to evaluate chemical hazard, exposure, and risk. 
Nonetheless, the potential threat that these chemicals pose has gained 
considerable traction in recent years, along with the realization that 
animal testing methods are not pragmatic by means of speed, eco-
nomics, or ethics (3–5). In our attempts to mitigate this threat, in vitro 
and in silico models, collectively referred to as New Approach Meth-
odologies, have been promoted to inform hazard and risk assessments 
(4). These methods have successfully addressed many industry needs, 
such as streamlining toxicity testing, down-selecting compounds in 
preclinical settings, predicting drug rankings, or elucidating chemi-
cal bioaccumulation (4).

In developing new chemicals, drug discovery is a prime example 
of a sector that uses systems thinking (6), evaluating a multitude of 
factors such as potency, selectivity, and human, as well as environ-
mental safety in their approach. This type of holistic design meth-
odology has increasingly relied on computational modeling to 
alleviate costs and reduce time to market (7). In principle, a similar 
approach can be devised to inform design of commodity chemicals, 
such as cosmetics, cleaners, or pesticides (3). In our previous work, 
we have proposed a framework, akin to the drug discovery processes, 
for the design of safer chemicals, which incorporates drivers of tox-
icity, metabolism, and functionality, using a proof-of-concept model 
based on organophosphate flame retardants (5). We have also pos-
tulated that in translating methods from drug discovery to commodity-
chemical design, one must be cognizant of key sector differences (8), 
which can not only yield opportunities (e.g., most bulk chemicals 

are not designed to be biologically active) but also pose challenges (e.g., 
the pharmaceutical industry enjoys cost-benefit ratios in new product 
development vastly different from other chemical manufacturers).

Pesticides are a unique class of commodity chemicals in that they 
are, such as pharmaceuticals, intended to be biologically active or, 
more specifically, to exhibit selective toxicity. From a risk assess-
ment standpoint, this is problematic, as the use of pesticides contin-
ues to rise with increasing crop demand (up to 3.5 million metric 
tons globally in 2020) (9), while the global cost-benefit ratio has 
declined due to persistence and associated negative environmental 
effects (10). Because pesticides’ risk to humans and the environ-
ment is a function of both exposure (driven by persistence) and 
hazard (driven by intrinsic toxicity) (11, 12), elucidating the under-
lying structural drivers is necessary in developing safer alternatives.

While chemicals can be broken down by a host of biotic and 
abiotic processes, photolysis is our first line of defense against pes-
ticides. Specifically, reactions with photochemically produced reac-
tive intermediates (PPRIs) represent the most ubiquitous abiotic 
degradation pathway undertaken by agrochemicals after use (13–15). 
Zeng and Arnold (16) showed that among the various PPRI com-
pounds, oxidation via excited triplet state chromophoric dissolved 
organic matter (3CDOM*) is the most prolific. 3CDOM* accounts 
for as much as 80% of pesticide degradation due to a variety of sen-
sitizers present in the environment, with reduction potentials rang-
ing from 0.15 to 2.38 V (16, 17). Crucially, this range encompasses 
reduction potentials of other PPRI molecules, including singlet ox-
ygen (0.65 V), hydroxyl radical (2.33 V), superoxide (0.94 V), and 
hydrogen peroxide (0.32 V) (fig. S1) (16). Thus, 3CDOM* is an ef-
fective proxy system for all PPRI electron-transfer reactions and, by 
extension, the majority of abiotic degradation processes.

Failing to control pesticides’ degradation exposes us to the hazards 
that these chemicals pose to living systems, which can lead to devas-
tating consequences, as observed throughout history for chemicals 
such as DDT, bisphenol A, and paraquat (5, 9, 18). In contrast to 
other chemical classes, the intended selective toxicity of pesticides 
that defines their function spells trouble for species we intend to keep 
away from harm (9). Without adequate toxicology screening of each 
new compound, these effects can translate to nontarget organisms 
and may be found long after the chemical has been commercialized 
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(9, 18). To that end, the amended FIFRA (Federal Insecticide, Fun-
gicide, Rodenticide) Act requires extensive testing of new pesticides 
before approval for registration and use. Perturbations to the health 
of aquatic ecosystems—such as microorganisms, invertebrates, plants, 
and fish—are often the first marker of a chemical’s overuse in the 
environment (19). This is especially relevant for agrochemicals, which 
leach into surface waters as runoff after use (19).

Here, we outline a comprehensive in silico strategy for screening 
existing and designing new, safer pesticides, which represents a 
nexus of our past efforts in computational chemistry, green chemis-
try, and toxicology. We rely on acute aquatic toxicity as the primary 
end point for ecotoxicity assessments, recognizing its applicability 
in informing chronic toxicity (20–22) and in predicting toxic ef-
fects in other species by encompassing a wide range of modes and 
mechanisms of action (21, 23–25). In our model, we leverage pre-
viously developed and validated design guidelines (21, 22, 26), which 
balance mechanistic relevance with nonspecific reactivity, thus serv-
ing as a useful proxy for a general toxic potential and a descriptor 
of pesticides’ intended (biological) function. Photodegradation is 
considered using models for pesticide-3CDOM* interactions (17), 
which were augmented by computational analyses that link pesticide 
structures to process metrics (i.e., degradation, toxicity, and func-
tion) (17). The proposed framework was applied to pesticides on the 
EPA’s registry with the goal to formulate a blueprint for robust mo-
lecular design. Figure 1 illustrates the integrated design tiers, which 
guide the end user from substructural features to structural proper-
ties and, lastly, to process metrics, focusing on molecular perturba-
tions that optimize the trade-offs in designing novel analogs. We 
envision this framework to support upstream decision-making in 
new product development and to translate to other chemical classes 
and industry sectors in the pursuit of green chemistry principles and 
a more sustainable chemical design.

RESULTS
Integrated photodegradation-ecotoxicity analysis
In our previous work, we showed that cutoff values in the octanol-
water distribution coefficient (log Do/w) and the energy difference 
between the highest occupied and the lowest unoccupied molecular 
orbitals (E) can be used to identify compounds with high proba-
bility of minimal acute and chronic ecotoxicity (21, 22, 26). Here, we 
performed this analysis across 700 pesticides with PPRI-oxidizable 
cores, obtained from the EPA’s CompTox Chemical Dashboard 
(see Materials and Methods and table S1, columns 2, 3, and 8). We 
noted that only 52 compounds analyzed (ca. 7% of the dataset) ful-
filled the criteria of the “safer chemical space” (log Do/w < 1.7 and 
E > 6 eV in Fig. 2, shaded in green). A full list of pesticides that did 
meet our criteria for safety can be found in table S2. From Fig. 2A, 
the highest density of EPA pesticide data is just above the threshold 

for safer log Do/w values (>1.7) and fluctuates around the cutoff for 
E (6 eV). These results suggest that while most pesticides are likely 
not safe, they could be “made safe(r)” by perturbations of their mo-
lecular structure. Ideally, such a feat is accomplished by changes 
that satisfy both E and log Do/w cutoff values. However, bioavail-
ability (log Do/w), which is MOA independent, is expected to play a 
more substantial role simply because if a compound is not bio-
available, then its reactivity is less important. We cannot state the 
same about E, as nonreactive chemicals can be metabolized into 
potent toxicants.

We should note here that falling outside the safer space does not 
directly imply toxicity but rather that the probability of safety has 
decreased. For example, our analysis of fathead minnow acute 
toxicity data showed that ca. 50% of low-concern and 10% of no-
concern chemicals were found outside the “safe space” (21). None-
theless, the results here are troubling, yet consistent with past reports 
(27), in that most pesticides pose nontrivial hazard to environmen-
tal health. Fortunately, hazards can be, in part, alleviated by depletion, 
where compounds that easily degrade (into benign by-products) 
may be of lesser concern due to their lower bioaccumulation. To 
probe for a potential relationship between depletion and safety 
(both rely on chemical reactivity), we augmented the above analysis 
with pesticides’ average photodegradation potential across repre-
sentative 3CDOM*, mimicking mixture-like effects in nature (17). 
In Fig.  2B, photodegradation propensity was expressed using a 
composite thermodynamic and kinetic score, generated by combin-
ing percentage values of predicted rate constants (log k’s) and free 
energies of pesticide-to-3CDOM* electron transfer (Get

0’s) for 
each compound (viz. Materials and Methods). Since drivers of de-
pletion and toxicity are not entirely independent, while a majority 
of compounds analyzed here (649) falls outside the safe space, 51% 
of those compounds also have photodegradation rates above the 
50th percentile, with 100 compounds falling between the 75th 
and 89th percentile and 69 compounds above the 90th percentile 
(Fig. 2B).

From a design perspective, it is important to understand the rel-
ative contributions of the various pesticides’ classes to outcomes 
presented in Fig. 2. Focusing on phenols and anilines (fig. S2), we 
found that both classes are more reactive than the rest of the dataset 
(E = 4.81 eV and SD = 1.09 eV for phenols and E = 4.80 eV and 
SD = 1.13 eV for anilines). While they are not markedly different in 
terms of bioavailability, the spread in log Do/w values for phenols 
was greater than any other class (fig. S2), presenting an intriguing 
opportunity for design, as greater log Do/w range does not appear to 
inhibit function. In noting specific examples, 2-dimethylaminomethyl 
phenol and asulam (fig. S3) demonstrated the best-optimized trade-
offs across all three parameters (photodegradation, log Do/w, and E) 
for their respective chemical class. We posit that the electron-donating 
amine group on 2-dimethylaminomethyl phenol contributes 

Fig. 1. Design framework. Structure-to-process framework for the design of safer pesticides based on computed photodegradation (17) and ecotoxicity rules (21).
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to favorable photodegradation and, as a hydrogen-bond acceptor, 
decreases log Do/w. Similarly, in elucidating structure-activity rela-
tionship for asulam, hydrophilic sulfonamide and ester groups de-
crease log Do/w, but the competing electronic nature of sulfonamide 
(electron-withdrawing) and amine (electron-donating by resonance) 
leads to lower photodegradation rates. In general, anilines were found 
to be less likely to perform well across all parameters, as photodeg-
radation is tied to E more so than for phenols (fig. S3), suggesting 
that redesigning compounds may be easier for phenols versus ani-
lines. Exploring this further, we examined the percent breakdown 
of safety criteria met, per pesticide chemical class, across all 700 
compounds (Fig. 3), which confirmed that anilines are the least likely 
to meet our safety criteria, while aryl ethers are the most likely. Both 
anilines and phenols are reactive nucleophiles (a trait that makes them 
photodegradable); however, as nitrogen is more likely to give up 
electrons than oxygen, anilines edge phenols in reactivity, which, in 
turn, makes them least likely to meet the E cutoff. Since most toxi-
cants are electrophiles (28–30), we also compared the lowest unoc-
cupied molecular orbital (LUMO) energies across the dataset and found 
that anilines had the lowest average (−1.92 eV) as compared to phe-
nols (−1.89 eV), aryl ethers (−1.44 eV), and sulfides (−1.21 eV).

Trade-offs are intrinsic in chemical design, and while they 
cannot be avoided, they should be optimized. Above, we noted the 
“cross-talk” between photodegradation and ecotoxicity metrics, 
which both rely on FMO (frontier molecular orbital) parameters 
(viz. Materials and Methods). To probe this relationship, we con-
structed density scatterplots, which “track” key percentile ranges of 
photodegradation propensity across the ecotoxicity-defined chemical 
space (Fig. 4). From Fig. 4A, there is a correlation between increas-
ing photodegradation potential (EHOMO-SOMO) and average reac-
tivity in aquatic species (EHOMO-LUMO), as indicated by vertical 
shift along the E axis. This trend stems from the highest occupied 
molecular orbital (HOMO) energy and is the most evident at 
the highest level of photodegradation, i.e., in the shift from 60th 
to 80th percentile to 80th to 100th percentile category. While faster 
degradation may partly alleviate toxicity concerns, the goal, in 
concordance with green chemistry principles, is to reduce hazard 
and optimize depletion. To that end, the trend between photo-
degradation and ecotoxicity can be “decoupled” as HOMO energy is 

indicative of nucleophilic reactivity and thus the main driver of 
pesticide oxidation, while LUMO energy drives safety, as most 
toxicants are electrophiles (viz. fig. S4) (28–30). Substituting ELUMO 
for E in Fig. 4B (26) does just that, creating a design space for 
pesticides that perform well across both categories of degradation 
and ecotoxicity. This analysis was replicated for individual pesticide 
classes (phenols and anilines in fig. S5) with similar results, attenu-
ated by changes in bioavailability (log Do/w).

Substructural analysis
While pesticides’ electronic structure can support design based on 
established principles and chemist’s own intuition, analysis of sub-
structural properties can directly guide molecular perturbations 
necessary to achieve desired outcomes. In photodegradation, the 
rate-determining step, i.e., the electron transfer from pesticide to 
3CDOM*, is driven by the stability of the resulting radical cation 
intermediate. In phenols and anilines, the electron hole is stabilized 
by inductive and resonance effects involving ring atoms and sub-
stituents, which can withdraw electron density (= destabilizing) or 
donate it (= stabilizing). We computed these effects using second-
order perturbation theory in the natural bond orbital (NBO) basis 

Fig. 2. Density scatterplots. (A) Left: Density scatterplot of octanol-water distribution coefficient (log Do/w) versus energy difference between the highest occupied and 
lowest unoccupied molecular orbitals (E). Safer chemical space defined by the current method (mPW1PW91/MIDIX+) is highlighted in the upper left-hand quadrant (log 
Do/w < 1.7 and E > 6 eV). The average ecotoxicity point for all 700 compounds was found to be a log Do/w of 2.87 and a E of 5.29 eV, with SDs of 2.56 and 0.99, respec-
tively. (B) Right: Indirect photodegradation potential is represented by the combined thermodynamic and kinetic performance, where the darker the point, the more 
likely the molecule is to photodegrade. The average Get

0 and log k values for all 700 compounds were found to be 10.68 kcal/mol and 8.65, with SDs of 10.83 and 0.95, 
respectively. a.u., arbitrary units.

Fig. 3. Safety assessment by pesticide class. Percent (%) breakdown of pesti-
cides by safety criteria and by pesticide chemical class. Green, blue, and yellow bars 
represent % of compounds that met the overall safety cutoffs (log Do/w < 1.7 and 
E > 6 eV), predicted the bioavailability safety (log Do/w < 1.7), and predicted the 
reactivity safety (E > 6 eV), respectively.
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and by Hirschfeld population analysis (HPA) to support quantita-
tive trade-off assessment in the design process (Fig. 5).

From Fig. 5A, pesticides were grouped on the basis of substituents’ 
ability to stabilize the electron hole, leading to a statistically significant 
relationship between stabilization energy, E(2), and Get

0. A 99% con-
fidence interval for E(2) values was created for each group, 6.4 to 
9.9 kcal/mol (strongly electron-withdrawing), 14.3 to 19.2 kcal/mol 
(weakly withdrawing/donating), and 28.5 to 37.3 kcal/mol (strongly 
electron-donating). We identified a cutoff value, where stabilization 
energies greater than 24 kcal/mol corresponded to pesticides with good 
propensity to photodegrade. Alternatively, one can leverage computed 
electron density on the pesticide core (in the form of partial atomic charges) 
as both an accessible and a notably predictive approach for gauging (sub)
structure-activity relationships (Fig. 5B). From Fig. 5B, we observed a 
strong linear correlation [R2 (coefficient of determination) = 0.83] with 
Get

0 values, indicating that more electron density on the pesticide core 
corresponds to more facile photodegradation. In designing new pesti-
cides, table S1 can guide relevant substituent read-across, and our method 
serves as a quick tool to assess additional structures.

DISCUSSION
Screening pesticides for desirable properties
In the simplest sense, our models can be used either to select suitable 
pesticides that balance photodegradation and ecotoxicity outcomes 

or to perform read-across analysis for pesticides not in our dataset. 
To that end, we constructed heatmaps that offer “semaphore” cod-
ing for each design criterion based on a combined analysis of all 
16,100 pesticide interactions with a 3CDOM* mixture (viz. fig. S6, 
with representative subsets of top, middle, and bottom 10 per-
formers in Fig. 6). Because of the coupling of EHOMO-SOMO and 
EHOMO-LUMO, we encourage the application of ELUMO as the more 
useful driver of ecotoxicity in this analysis.

Guiding design of safer pesticides
The use of in silico design tools outside drug discovery is still rare 
due to the challenge of robustly relating structural attributes of 
chemicals to mechanistic events, especially with limited experimen-
tal data (8). Modern statistical solutions and adaptive-learning algo-
rithms require big data and means of generating useful analogs to 
propose new chemicals with desirable properties. Here, and in our 
previous reports (17, 31), we have taken a different approach, which 

Fig. 4. Coupling of ecotoxicity and photodegradation. (A) Top: Scatterplots of 
ecotoxicity averages (octanol-water distribution coefficient, log Do/w versus energy 
difference between the highest occupied and lowest unoccupied molecular orbitals, 
E) and spread (ellipse radii based on half SD in the x and y directions) for each per-
centile bracket of photodegradation potential (denoted in the legend on the right). 
Black arrows represent vectors between adjacent percentile averages. (B) Bottom: 
Scatterplot of electrophilic-specific ecotoxicity averages (octanol-water distribution 
coefficient, log Do/w versus energy of the LUMO, ELUMO).

Fig. 5. Substructural-tier results. (A) Top: Free energy of electron transfer with 
3-methoxyacetophenone (Get

0) (17), plotted as a function of stabilization energy, 
E(2). Cutoff values were identified as follows: (i) strongly electron withdrawing (or-
ange), (ii) weakly electron donating or withdrawing (blue), and (iii) strongly elec-
tron donating (green). Averages for each group are designated by a red diamond 
with E(2) value labeled (in kcal/mol). Horizontal bars represent a 99% confidence 
interval for each group. Vertical dashed lines signify cutoff values that separate 
groups 1 to 3. Phenols are marked as circular data points, and anilines are denoted 
by triangles. EWG, electron-withdrawing group; EDG, electron-donating group. 
(B) Bottom: A univariate correlation between a total Hirshfeld charge on the aromatic 
ring (​​∑ r​​ ​X​ C​​​​) and Get

0. R2 = 0.83, Get
0 = 146.62 × ​​∑ r​​ ​X​ C​​​​ − 38.89, P = 2.68 × 10−17, root 

mean square error = 4.50, and n = 43. Phenols are marked as circular data points, 
and anilines are denoted by triangles.
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rests on the premise that design of safer chemicals should be 
transparent and rational, i.e., rooted in fundamental axioms that 
yield predictable outcomes. It is for the sake of transparency and 
practical utility that we developed our structure-to-process design 
protocol as a tiered computational framework (Fig. 1). In Lewer et al. 
(17), we showed that computed process energetics can yield robust 
models predictive of indirect photodegradation (tier 1) while fa-
cilitating expansion of the training set, which can subsequently 
support structure-based models that rely on pesticides’ electronic 
properties (tier 2). To enable the design of novel compounds, we 
incorporated tier 3 into our framework, which relates basic proper-
ties of pesticide substructures to tier 2 and tier 1. These moieties can 
be systematically altered by the chemist to guide a compound to-
ward more favorable process metrics.

Figure 7 outlines our proposed blueprint for structure-to-process 
design of novel pesticides. Here, we offer three “design exits,” which 
users can take based on their level of expertise and desired level 

of accuracy given the type of models developed for tiers 1 to 3 
(viz. Materials and Methods). Relative confidence scores are pro-
vided on the basis of model performance to help assess trade-offs in 
choosing a specific approach. For compounds with aromatic cores, 
the user starts by analyzing the stability of the oxidized pesticide, 
making synthetically feasible substitutions and assessing their 
impact via substructural models (i.e., HPA and NBO analyses). 
Promising candidates can be validated in structural models, where 
photodegradation thermodynamics and kinetics are accurately pre-
dicted from FMO energies; relative and absolute (eco)toxicity are 
gauged from log Do/w, E, and/or ELUMO distribution of low- to no-
concern chemicals; and performance requirements are tested by 
defining chemical and functional class boundaries as well as cutoff 
values for properties correlative to the toxicity thresholds of the pes-
ticide’s MOA. Here, performance limits were identified using the 
current dataset and commercial chemicals modeled for acute and 
chronic aquatic toxicity in terms of log Do/w and E in our previous 

Fig. 6. Environmental performance of pesticides. Combined photodegradation and ecotoxicity analysis for a subset of 30 pesticides representing the top, middle, and 
bottom 10 performers in depletion. Photodegradation: Red indicates higher Get

0 values and slower reaction rates, and green indicates lower Get
0 values and faster re-

action rates. Ecotoxicity: Light green indicates within safer chemical space, and light red indicates outside safer chemical space. ELUMO (percentile of ELUMO distribution of 
no- to low-concern chemicals); purple indicates higher ELUMO values and increased safety, pink indicates lower ELUMO values, and black indicates outside ELUMO safety.
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studies (21, 22, 26), where both parameters showed significant 
correlations with toxicity thresholds across all MOAs (Table 1). Fol-
lowing structural tiers, the user can proceed to further validate out-
comes by reaction pathway modeling, computing Get

0 and ket 
values according to developed models (17). In its entirety, the above 
protocol offers a robust means for analyzing and scoring pesticide 
analogs for their safety, function, and persistence, resulting in the 
design of a new compound with a preferable profile.

Examples of pesticide (re)design
While the above protocol can be applied to any pesticide, the specific 
strategy of redesigning an existing structure is informed by the at-
tribute (ecotoxicity or persistence) that needs improving. From 
substructural-tier models, we know that adding electron-donating 
groups stabilizes the oxidized pesticide, promoting electron transfer 
to PPRIs and degradation. To drive ecotoxicity metrics toward 
greater probability of safety, we can alter electronic distribution in a 
molecule by strategically placing certain substituents on oxidizable 
cores, affecting E and ELUMO values. In addition, structures can be 
made less lipophilic (by decreasing log Do/w) to lower bioavailability. 
We should note that in designing new pesticides (versus commercial 
chemicals without selective toxicity), the balance between hydro-
philicity and lipophilicity is important. Agrochemicals may be sprayed 
as an aqueous solution (and so must be hydrophilic), but to lim-
it leaching into waterways and to ensure uptake by a plant through 

Fig. 7. Rational design strategy. Design framework for safer pesticides with controlled degradation.

Table 1. Boundary values. Performance boundary conditions in terms of 
log Do/w and E across pesticides’ functional class and mode of action 
(MOA). Functional class cutoffs were determined using pesticide active 
ingredients. For MOA-based definitions, only commercial chemicals active 
in ecotoxicity assays were used. UOP, uncoupling of oxidative 
phosphorylation; ACE, acetylcholinesterase; N, narcosis; CNS, central 
nervous system seizure or stimulant; EP, electrophile or pro-electrophile 
reactivity; NDPs, neurodepressants; PN, polar narcosis. 

Category Log Do/w 
bounds

E bounds 
(eV)

Functional class

Acaricide −0.55–8.1 3.75–6.76

Fungicide −6.1–6.34 2.51–7.13

Herbicide −1.53–6.61 3.43–7.14

Insecticide −7.44–7.19 3.97–6.96

Undefined −5.69–11.47 2.40–7.17

Mode of action

UOP −0.37–4.22 3.96–5.43

ACE 0.32–4.89 4.35–6.51

N −3.42–5.74 3.71–10.08

CNS −0.94–6.77 5.39–6.61

EP −0.88–5.18 3.62–9.41

NDP −2.12–2.1 4.54–6.43

PN −5.44–5.74 3.45–7.71
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soil/foliage (or ingestion by pest), they must also be sufficiently li-
pophilic. The latter is imperative to retain efficacy at low application 
rates. To that end, the “Briggs Rule of 3,” i.e., log Do/w < 3, is often used 
for pesticides’ active ingredients to strike balance between efficacy 
and safety (32). Thus, in addition to our MOA-defined perform
ance limits, we explored both log Do/w cutoffs (1.7 and 3) below.

In our examples, we demonstrate how these generalized rules 
can be applied in practice to redesign 2-methyl-4,6-dinitrophenol 
(DNP), capsaicin, and bromofos (Fig. 8), which were selected on the 
basis of their strong performance in one category (photodegrada-
tion or ecotoxicity) and weak performance in the other while show-
casing a variety of MOAs. From Fig. 8, DNP is an herbicide that acts 
by uncoupling oxidative phosphorylation (UOP). While DNP satis-
fies our log Do/w cutoff (as well as Briggs Rule of 3), E is below 6 eV 
and photodegradation performance is in the bottom 10th percen-
tile. Replacing nitro groups with electron-donating amines in-
creased photodegradation potential to the 90th percentile (Fig. 8) 
while raising E by 0.9 eV and increasing ELUMO from <1st to the 
50th percentile of low- to no-concern chemicals. At the same time, 
the new analog remains within performance bounds for herbicides 

(functional class), phenols (chemical class), and active UOP (MOA 
class) chemicals.

In a reverse scenario, capsaicin is readily photodegradable but is 
of concern for ecotoxicity due to log Do/w > 1.7. Capsaicin is an an-
imal repellent, often used against insects and mites. It has a target-
specific mode of action, binding a transient receptor potential 
cation channel subfamily V member 1 (TRPV1), a nonselective cation 
channel (33), which leads to depolarization of nociceptive neurons 
(34). To decrease the bioavailability of capsaicin, the hydrocarbon 
chain was truncated, resulting in a decrease in log Do/w from 3.75 to 
0.75, shifting the redesigned compound into the safer space. Alter-
natively, a subtler structural change is possible to satisfy log Do/w < 3 
to ensure better crossing of membranes in pests (viz. Briggs Rule 
of 3). In terms of performance, capsaicin must also retain its ability 
to bind TRPV1, which is dominated by a hydrogen bond between 
amide nitrogen of capsaicin and a tyrosine hydroxyl group in the 
vanillyl pocket (33). Since this part of the molecule was left un-
perturbed, it is reasonable to propose that desired activity was affected 
minimally; however, further validation can be carried out using 
target-specific modeling tools (5).

Fig. 8. Redesigned pesticides. Design charts based on protocol outlined in Figure 7 for three exemplary pesticides: DNP (top left), capsaicin (top right), and bromofos 
(bottom). According to the provided scales, the color of the structures’ outline marks the percentile of ELUMO distribution of no- to low-concern chemicals; the color of the 
dot represents percentile of photodegradation (green = highly photodegradable; red = nondegradable), and the position of the dot represents relative safety in terms of 
log Do/w and E and the fit in the class- and MOA-defined functional space. Dashed vertical line represents the log Do/w < 3 limit, i.e., Briggs Rule of 3.
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Bromofos is an insecticide acetylcholinesterase inhibitor, which 
was found to perform poorly in terms of both photodegradation and 
ecotoxicity. In our redesign effort, we substituted (persistent) halogens 
with electron-donating and hydrophilic amine and methoxy groups to 
both increase photodegradation and decrease bioavailability. Substitu-
tions with methoxy groups improved photodegradation from the 25th 
percentile to above the 40th while also decreasing log Do/w from 4.64 to 
2.95. These changes satisfy Briggs Rule of 3. Replacing halogens with 
amine groups led to further gains in both photodegradation (89th per-
centile) and log Do/w (1.61). While these changes resulted in E de-
crease from 6.06 to 5.46, ELUMO increased from the 15th to above the 
30th percentile of compounds with minimal hazard to aquatic species.

Outlook
Understanding factors that contribute to safety-performance matrices 
in pesticide design is crucial to developing next-generation analogs 
that meet increasing global demand for agricultural products. Ratio-
nal design of safer chemicals that do not persist in the environment is 
the cornerstone of green chemistry that rests our interpretation of the 
underlying structure-property relationships. Here, we showcased a 
multifaceted approach for developing new pesticides using computa-
tionally derived markers of (eco)toxicity, depletion, and function. Our 
analysis of 700 pesticides provides a wealth of knowledge to chemists 
and risk assessors alike on the structure-property relationships that 
drive each design criterion. In a tiered approach, we linked substruc-
tural features of pesticides with electronic properties and process met-
rics to equip the green chemistry community with a pragmatic means 
of either screening existing pesticides or designing all-around safer 
and high-performing new molecules.

Our approach represents a fundamental shift toward system-based 
computational models and the transformation of purely predictive 
toxicology methods into design tools. It is critical to recognize here that 
no tool can be truly all encompassing, and safety can never be guaran-
teed but only maximized in its probability. In that sense, ours is a 
design-vectoring approach that moves the dial enough to considerably 
improve safety and depletion profiles of pesticides. However, to prog-
ress further, the present model should be integrated with more refined, 
target-specific methods, such as those described by Clymer et al. (5). 
These approaches can elucidate specificity and targeted selectivity of 
biologically active molecules, addressing a common shortcoming of 
crop protection agents. In addition, we envision incorporation of tools 
that assess green process metrics (how we make pesticides), economic 
cost of production, and, in related terms, synthetic feasibility of pro-
posed analogs. The value proposition here is that an integrated model 
development paradigm, which bridges advances in predictive toxicol-
ogy with green chemistry principles, can be adopted across industry 
sectors to advance our sustainability goals in chemical design. 
DuPont’s 1935 slogan, paraphrased as “Better Living Through Chem-
istry,” still rings true in that we have entangled ourselves in needing 
chemistry to survive; yet, chemistry can also do demonstrable and 
irreparable harm to us. Humorously, the way forward appears through 
amending the motto to “Living Through Better Chemistry,” which 
can only be accomplished by designing “better” chemicals.

MATERIALS AND METHODS
Dataset
The current dataset was developed by mining the CompTox Chemicals 
Dashboard (35) for pesticides containing PPRI-oxidizable cores 

(phenols, anilines, aryl ethers, sulfides, and thiols), which were 
identified using SMARTS (SMILES arbitrary target specification) 
patterns (table S3). After removal of duplicate compounds, our search 
yielded 700 chemicals that matched either a single or multiple oxi-
dizable cores (Table 2). Photodegradation reactions were analyzed 
for each pesticide with 23 representative CDOM molecules (17), span-
ning six different functional classes (table S4) and 16,100 unique pair-
wise interactions.

Photodegradation model
We previously reported a tiered computational approach to probe 
photodegradation kinetics and thermodynamics of pesticides with 
3CDOM* (17). The tiered approach was developed to both increase 
the efficiency of computational screening for pesticide depletion as 
well as to fill experimental data gaps and broaden the model’s train-
ing set. In tier 1, our method relied on computed free energies of 
the pesticide-to-3CDOM* electron transfer as the rate-determining 
step of the degradation process, which were fitted to experimental 
cell potentials (E0

cell) and second-order rate constants (log k). Cal-
culations at the SMD-M06-2X/6-31 + G(d,p) level of theory showed 
that free energies, Get

0’s, and barriers, G⧧’s (the latter estimated 
from the Marcus theory), correlated well with experiment across a 
diverse set of 23 CDOMs and 63 pesticides (R2 > 0.7) and performed 
even better in class-specific models (R2 > 0.8) (17).

In tier 2, the method leveraged computationally economical 
electronic parameters based on FMO theory to predict reaction 
pathway energetics, thus relating electronic properties of pesticides/​
3CDOM* to observed outcomes. Specifically, the gap between HOMO 
of the pesticide and SOMO (singly occupied molecular orbital) of 
3CDOM*, computed at the mPW1PW91/MIDIX+ level of theory, 
was successfully correlated to both Get

0 and G⧧ values in univariate 
linear and nonlinear models (R2 ~ 0.9, based on ca. 1500 pairwise 
interactions between 3CDOM* and pesticides) (17).

In this study, we built on our previously validated approach and 
extended the predictions of indirect photodegradation to 700 pesti-
cides on the EPA’s registry (35). Tier 2 calculations were used to 

Table 2. Pesticides by chemical class. PPRI-oxidizable compounds from 
the EPA’s pesticide registry (35), partitioned by chemical class. 

Functional class Number of matches

Phenol 93

Aniline 115

Aryl ether 222

Sulfide 183

Thiol 3

Phenol and aniline 11

Phenol and aryl ether 14

Phenol, aniline, and aryl ether 5

Phenol and sulfide 1

Aniline and aryl ether 31

Aniline and sulfide 4

Aryl ether and sulfide 17

Sulfide and thiol 1
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estimate Get
0 and G⧧ values and, by extension, cell potentials 

(E0
cell) and second-order rate constants (log k), respectively, from 

molecular orbital energies as detailed by Lewer et al. (17). All 
electronic-structure calculations were carried out using the Gauss-
ian 16 program (36).

Ecotoxicity and performance assessment
Ecotoxicity assessments were carried out using boundary values 
of key properties related to bioavailability (octanol-water distribu-
tion coefficient, log Do/w, at physiological pH of 7.4) and reactivity 
(the HOMO-LUMO gap, E) (19). We have previously reported 
(21, 22, 26) that adverse effects to aquatic species are minimized when 
chemicals have large bandgaps (E > 6 eV at the mPW1PW91/​
MIDIX+ level of theory) and are nonlipophilic (log Do/w < 1.7). In 
general, compounds with smaller bandgaps are softer, indicating 
greater covalent reactivity (most of the metabolic processes), while 
larger bandgaps suggest hard-hard (i.e., ionic) interactions. This 
approach was found robust across all modes of action (MOAs), 
supported by significant univariate correlations between E and 
toxicity thresholds (R2 ca. 0.6 to 0.9, depending on the mechanism). 
Furthermore, this “rule of 2” has been validated on over 1600 chem-
icals and against standard test species of fish, crustaceans, and green 
algae (21, 22, 26). On the basis of these guidelines and depending on 
the species, ca. 75 to 92% of chemicals studied that were of no or low 
concern in acute and chronic aquatic toxicity tests fit into this safer 
chemical space defined by E and log Do/w. Here, log Do/w values 
were estimated using ChemAxon’s cxcalc plugin (Marvin v.6.0, 
2013; ChemAxon), and E values were calculated with the mPW-
1PW91/MIDIX+ method using Gaussian 16 software (36).

For pesticide active ingredients, we leveraged MOAs’ underlying 
molecular mechanisms as drivers of both ecotoxicity and perfor-
mance. This notion is consistent with previous reports, and was made 
possible by strong correlations identified between E/log Do/w and 
toxicity thresholds across all MOAs relevant to pesticide function 
(fig. S7) (21). To that end, molecular perturbations that keep the 
structures within the bounds of the relevant functional space, and 
concurrently shift the structures into or toward the safe space (as 
defined by E and log Do/w cutoff values), are likely to yield better 
analogs. This line of reasoning is further supported by our previous 
work, which showed compounds with increasing E, and decreas-
ing log Do/w values correspond to proportionally lower level of con-
cern to aquatic species across the entire chemical space tested (21).

Tier 3: Substructural features and design drivers
To incorporate substructure-based design guidelines, we added a third 
tier into our computational framework. Specifically, we carried out 
NBO calculations and HPAs on a representative subset of inter-
actions between 44 pesticides (28 phenols and 16 anilines) and 
3-methoxyacetophenone (table S5) (17). The NBO analysis was 
used to probe electronic configurations of oxidized (open-shell) 
forms of pesticides to derive structure-activity relationships based 
on second-order perturbation theory. NBOs are localized few-
center orbitals that describe the Lewis-like molecular bonding pat-
tern of electron pairs or of individual electrons (in the open-shell 
case of SOMO). The remaining non–Lewis-type NBOs complete 
the span of the basis and describe delocalization effects, i.e., depar-
ture from a single localized Lewis structure (37). These orbitals con-
tribute to resonance stabilization, hydrogen bonding, and other 
forms of donor-acceptor aggregation (38) and are, thus, relevant to 

describing the degree of electron-hole stabilization that occurs in 
the oxidized pesticide after reacting with 3CDOM*. Here, we as-
sessed the electron-withdrawing versus electron-donating nature of 
ring substituents in phenols and anilines by computing the stabili-
zation energy, E(2), in donor-acceptor orbital mixing. Pairwise E(2) 
values for interactions between substituent and ring atoms were 
summed to obtain the total stabilization energy acting on the elec-
tron hole, i.e., ​​E​ stab​​  = ​ ∑ subst​ ​​ E ​(2)​ subst​​​.

HPA (39) was performed across the same subset of pesticide 
cores to probe the relationship between electron density in the ring 
and the ability to stabilize the electron hole of the oxidized pesticide. 
To that end, HPA was selected over the standard Mulliken and 
Lӧwdin schemes because it provides a clear partitioning of electron 
density (viz. the Supplementary Materials) (40) and is insensitive to 
basis set size (41). Crucially, HPA produces nonnegative and, thus 
more physically realistic, condensed Fukui function values. Fukui 
functions reflect the ability of a molecule (or its part) to accept or 
donate electron density, which is important in capturing the inter-
actions between substituents and the electron-deficient (oxidized) 
pesticide core (42–48).

Combining the two analyses, NBO and HPA, affords greater 
structural understanding of substituents’ effects on photodegrada-
tion rates, thereby providing a trajectory for the design of new ana-
logs based on existing pesticide cores. All NBO and HPA calculations 
were carried out using the Gaussian 16 program (36).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn2058
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