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CHEMISTRY

Structure-to-process design framework for developing

safer pesticides

Jessica M. Lewer, Zachary R. Stickelman, Jessica H. Huang, John F. Peloquin, Jakub Kostal*

Rational design of pesticides with tunable degradation properties and minimal ecotoxicity is among the grand
challenges of green chemistry. While computational approaches have gained traction in predictive toxicology, current
methods lack the necessary multifaceted approach and design-vectoring tools needed for system-based chemical
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development. Here, we report a tiered computational framework, which integrates kinetics and thermodynamics
of indirect photodegradation with predictions of ecotoxicity and performance, based on cutoff values in mecha-
nistically derived physicochemical properties and electronic parameters. Extensively validated against experimental
data and applied to 700 pesticides on the U.S. Environmental Protection Agency’s registry, our simple yet power-
ful approach can be used to screen existing molecules to identify application-ready candidates with desirable
characteristics. By linking structural attributes to process-based outcomes and by quantifying trade-offs in safety,
depletion, and performance, our method offers a user-friendly roadmap to rational design of novel pesticides.

INTRODUCTION

Green chemistry principles dictate industry should be developing
safer chemicals that do not persist in the environment, to lower risk
of adverse effects to human and environmental health (1). While
the concept of safer chemical design was pioneered nearly 100 years
ago (2), it is estimated that more than 85% of commercial chemicals
introduced in the United States annually have insufficient experi-
mental health and safety data (3). The U.S. Environmental Protection
Agency (EPA) tackles this challenge by using a variety of techniques
to fill data gaps to evaluate chemical hazard, exposure, and risk.
Nonetheless, the potential threat that these chemicals pose has gained
considerable traction in recent years, along with the realization that
animal testing methods are not pragmatic by means of speed, eco-
nomics, or ethics (3-5). In our attempts to mitigate this threat, in vitro
and in silico models, collectively referred to as New Approach Meth-
odologies, have been promoted to inform hazard and risk assessments
(4). These methods have successfully addressed many industry needs,
such as streamlining toxicity testing, down-selecting compounds in
preclinical settings, predicting drug rankings, or elucidating chemi-
cal bioaccumulation (4).

In developing new chemicals, drug discovery is a prime example
of a sector that uses systems thinking (6), evaluating a multitude of
factors such as potency, selectivity, and human, as well as environ-
mental safety in their approach. This type of holistic design meth-
odology has increasingly relied on computational modeling to
alleviate costs and reduce time to market (7). In principle, a similar
approach can be devised to inform design of commodity chemicals,
such as cosmetics, cleaners, or pesticides (3). In our previous work,
we have proposed a framework, akin to the drug discovery processes,
for the design of safer chemicals, which incorporates drivers of tox-
icity, metabolism, and functionality, using a proof-of-concept model
based on organophosphate flame retardants (5). We have also pos-
tulated that in translating methods from drug discovery to commodity-
chemical design, one must be cognizant of key sector differences (8),
which can not only yield opportunities (e.g., most bulk chemicals
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are not designed to be biologically active) but also pose challenges (e.g.,
the pharmaceutical industry enjoys cost-benefit ratios in new product
development vastly different from other chemical manufacturers).

Pesticides are a unique class of commodity chemicals in that they
are, such as pharmaceuticals, intended to be biologically active or,
more specifically, to exhibit selective toxicity. From a risk assess-
ment standpoint, this is problematic, as the use of pesticides contin-
ues to rise with increasing crop demand (up to 3.5 million metric
tons globally in 2020) (9), while the global cost-benefit ratio has
declined due to persistence and associated negative environmental
effects (10). Because pesticides’ risk to humans and the environ-
ment is a function of both exposure (driven by persistence) and
hazard (driven by intrinsic toxicity) (11, 12), elucidating the under-
lying structural drivers is necessary in developing safer alternatives.

While chemicals can be broken down by a host of biotic and
abiotic processes, photolysis is our first line of defense against pes-
ticides. Specifically, reactions with photochemically produced reac-
tive intermediates (PPRIs) represent the most ubiquitous abiotic
degradation pathway undertaken by agrochemicals after use (13-15).
Zeng and Arnold (16) showed that among the various PPRI com-
pounds, oxidation via excited triplet state chromophoric dissolved
organic matter (]CDOM?¥) is the most prolific. 3CDOM* accounts
for as much as 80% of pesticide degradation due to a variety of sen-
sitizers present in the environment, with reduction potentials rang-
ing from 0.15 to 2.38 V (16, 17). Crucially, this range encompasses
reduction potentials of other PPRI molecules, including singlet ox-
ygen (0.65 V), hydroxyl radical (2.33 V), superoxide (0.94 V), and
hydrogen peroxide (0.32 V) (fig. S1) (16). Thus, 3CDOM?* is an ef-
fective proxy system for all PPRI electron-transfer reactions and, by
extension, the majority of abiotic degradation processes.

Failing to control pesticides’ degradation exposes us to the hazards
that these chemicals pose to living systems, which can lead to devas-
tating consequences, as observed throughout history for chemicals
such as DDT, bisphenol A, and paraquat (5, 9, 18). In contrast to
other chemical classes, the intended selective toxicity of pesticides
that defines their function spells trouble for species we intend to keep
away from harm (9). Without adequate toxicology screening of each
new compound, these effects can translate to nontarget organisms
and may be found long after the chemical has been commercialized
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(9, 18). To that end, the amended FIFRA (Federal Insecticide, Fun-
gicide, Rodenticide) Act requires extensive testing of new pesticides
before approval for registration and use. Perturbations to the health
of aquatic ecosystems—such as microorganisms, invertebrates, plants,
and fish—are often the first marker of a chemical’s overuse in the
environment (19). This is especially relevant for agrochemicals, which
leach into surface waters as runoff after use (19).

Here, we outline a comprehensive in silico strategy for screening
existing and designing new, safer pesticides, which represents a
nexus of our past efforts in computational chemistry, green chemis-
try, and toxicology. We rely on acute aquatic toxicity as the primary
end point for ecotoxicity assessments, recognizing its applicability
in informing chronic toxicity (20-22) and in predicting toxic ef-
fects in other species by encompassing a wide range of modes and
mechanisms of action (21, 23-25). In our model, we leverage pre-
viously developed and validated design guidelines (21, 22, 26), which
balance mechanistic relevance with nonspecific reactivity, thus serv-
ing as a useful proxy for a general toxic potential and a descriptor
of pesticides’ intended (biological) function. Photodegradation is
considered using models for pesticide->*CDOM? interactions (17),
which were augmented by computational analyses that link pesticide
structures to process metrics (i.e., degradation, toxicity, and func-
tion) (17). The proposed framework was applied to pesticides on the
EPA’s registry with the goal to formulate a blueprint for robust mo-
lecular design. Figure 1 illustrates the integrated design tiers, which
guide the end user from substructural features to structural proper-
ties and, lastly, to process metrics, focusing on molecular perturba-
tions that optimize the trade-offs in designing novel analogs. We
envision this framework to support upstream decision-making in
new product development and to translate to other chemical classes
and industry sectors in the pursuit of green chemistry principles and
a more sustainable chemical design.

RESULTS

Integrated photodegradation-ecotoxicity analysis

In our previous work, we showed that cutoff values in the octanol-
water distribution coefficient (log Do) and the energy difference
between the highest occupied and the lowest unoccupied molecular
orbitals (AE) can be used to identify compounds with high proba-
bility of minimal acute and chronic ecotoxicity (21, 22, 26). Here, we
performed this analysis across 700 pesticides with PPRI-oxidizable
cores, obtained from the EPA’s CompTox Chemical Dashboard
(see Materials and Methods and table S1, columns 2, 3, and 8). We
noted that only 52 compounds analyzed (ca. 7% of the dataset) ful-
filled the criteria of the “safer chemical space” (log Dy < 1.7 and
AE > 6 eV in Fig. 2, shaded in green). A full list of pesticides that did
meet our criteria for safety can be found in table S2. From Fig. 24,
the highest density of EPA pesticide data is just above the threshold

for safer log Dy, values (>1.7) and fluctuates around the cutoff for
AE (6 eV). These results suggest that while most pesticides are likely
not safe, they could be “made safe(r)” by perturbations of their mo-
lecular structure. Ideally, such a feat is accomplished by changes
that satisfy both AE and log D,y cutoff values. However, bioavail-
ability (log Do), which is MOA independent, is expected to play a
more substantial role simply because if a compound is not bio-
available, then its reactivity is less important. We cannot state the
same about AE, as nonreactive chemicals can be metabolized into
potent toxicants.

We should note here that falling outside the safer space does not
directly imply toxicity but rather that the probability of safety has
decreased. For example, our analysis of fathead minnow acute
toxicity data showed that ca. 50% of low-concern and 10% of no-
concern chemicals were found outside the “safe space” (21). None-
theless, the results here are troubling, yet consistent with past reports
(27), in that most pesticides pose nontrivial hazard to environmen-
tal health. Fortunately, hazards can be, in part, alleviated by depletion,
where compounds that easily degrade (into benign by-products)
may be of lesser concern due to their lower bioaccumulation. To
probe for a potential relationship between depletion and safety
(both rely on chemical reactivity), we augmented the above analysis
with pesticides’ average photodegradation potential across repre-
sentative °CDOM?*, mimicking mixture-like effects in nature (17).
In Fig. 2B, photodegradation propensity was expressed using a
composite thermodynamic and kinetic score, generated by combin-
ing percentage values of predicted rate constants (log k’s) and free
energies of pesticide—to—3CDOM* electron transfer (AGe’s) for
each compound (viz. Materials and Methods). Since drivers of de-
pletion and toxicity are not entirely independent, while a majority
of compounds analyzed here (649) falls outside the safe space, 51%
of those compounds also have photodegradation rates above the
50th percentile, with 100 compounds falling between the 75th
and 89th percentile and 69 compounds above the 90th percentile
(Fig. 2B).

From a design perspective, it is important to understand the rel-
ative contributions of the various pesticides’ classes to outcomes
presented in Fig. 2. Focusing on phenols and anilines (fig. S2), we
found that both classes are more reactive than the rest of the dataset
(AE =4.81 eV and SD = 1.09 eV for phenols and AE = 4.80 eV and
SD = 1.13 eV for anilines). While they are not markedly different in
terms of bioavailability, the spread in log D,y values for phenols
was greater than any other class (fig. S2), presenting an intriguing
opportunity for design, as greater log D,,, range does not appear to
inhibit function. In noting specific examples, 2-dimethylaminomethyl
phenol and asulam (fig. S3) demonstrated the best-optimized trade-
offs across all three parameters (photodegradation, log Doy, and AE)
for their respective chemical class. We posit that the electron-donating
amine group on 2-dimethylaminomethyl phenol contributes
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Fig. 1. Design framework. Structure-to-process framework for the design of safer pesticides based on computed photodegradation (77) and ecotoxicity rules (27).
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Fig. 2. Density scatterplots. (A) Left: Density scatterplot of octanol-water distribution coefficient (log Do) versus energy difference between the highest occupied and
lowest unoccupied molecular orbitals (AE). Safer chemical space defined by the current method (mPW1PW91/MIDIX+) is highlighted in the upper left-hand quadrant (log

Do < 1.7 and AE > 6 eV). The average ecotoxicity point for all 700 compounds was

found to be a log Dy, of 2.87 and a AE of 5.29 eV, with SDs of 2.56 and 0.99, respec-

tively. (B) Right: Indirect photodegradation potential is represented by the combined thermodynamic and kinetic performance, where the darker the point, the more
likely the molecule is to photodegrade. The average AG.’ and log k values for all 700 compounds were found to be 10.68 kcal/mol and 8.65, with SDs of 10.83 and 0.95,

respectively. a.u., arbitrary units.

to favorable photodegradation and, as a hydrogen-bond acceptor,
decreases log Doy, Similarly, in elucidating structure-activity rela-
tionship for asulam, hydrophilic sulfonamide and ester groups de-
crease log Doy, but the competing electronic nature of sulfonamide
(electron-withdrawing) and amine (electron-donating by resonance)
leads to lower photodegradation rates. In general, anilines were found
to be less likely to perform well across all parameters, as photodeg-
radation is tied to AE more so than for phenols (fig. S3), suggesting
that redesigning compounds may be easier for phenols versus ani-
lines. Exploring this further, we examined the percent breakdown
of safety criteria met, per pesticide chemical class, across all 700
compounds (Fig. 3), which confirmed that anilines are the least likely
to meet our safety criteria, while aryl ethers are the most likely. Both
anilines and phenols are reactive nucleophiles (a trait that makes them
photodegradable); however, as nitrogen is more likely to give up
electrons than oxygen, anilines edge phenols in reactivity, which, in
turn, makes them least likely to meet the AE cutoff. Since most toxi-
cants are electrophiles (28-30), we also compared the lowest unoc-
cupied molecular orbital (LUMO) energies across the dataset and found
that anilines had the lowest average (-1.92 eV) as compared to phe-
nols (—1.89 eV), aryl ethers (-1.44 eV), and sulfides (-1.21 eV).
Trade-offs are intrinsic in chemical design, and while they
cannot be avoided, they should be optimized. Above, we noted the
“cross-talk” between photodegradation and ecotoxicity metrics,
which both rely on FMO (frontier molecular orbital) parameters
(viz. Materials and Methods). To probe this relationship, we con-
structed density scatterplots, which “track” key percentile ranges of
photodegradation propensity across the ecotoxicity-defined chemical
space (Fig. 4). From Fig. 4A, there is a correlation between increas-
ing photodegradation potential (AEgomo-somo) and average reac-
tivity in aquatic species (AEgomo-Lumo)» as indicated by vertical
shift along the AE axis. This trend stems from the highest occupied
molecular orbital (HOMO) energy and is the most evident at
the highest level of photodegradation, i.e., in the shift from 60th
to 80th percentile to 80th to 100th percentile category. While faster
degradation may partly alleviate toxicity concerns, the goal, in
concordance with green chemistry principles, is to reduce hazard
and optimize depletion. To that end, the trend between photo-
degradation and ecotoxicity can be “decoupled” as HOMO energy is

Lewer et al., Sci. Adv. 8, eabn2058 (2022) 30 March 2022
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Fig. 3. Safety assessment by pesticide class. Percent (%) breakdown of pesti-
cides by safety criteria and by pesticide chemical class. Green, blue, and yellow bars
represent % of compounds that met the overall safety cutoffs (log Do < 1.7 and
AE > 6 eV), predicted the bioavailability safety (log Do < 1.7), and predicted the
reactivity safety (AE > 6 eV), respectively.

indicative of nucleophilic reactivity and thus the main driver of
pesticide oxidation, while LUMO energy drives safety, as most
toxicants are electrophiles (viz. fig. S4) (28-30). Substituting Erumo
for AE in Fig. 4B (26) does just that, creating a design space for
pesticides that perform well across both categories of degradation
and ecotoxicity. This analysis was replicated for individual pesticide
classes (phenols and anilines in fig. S5) with similar results, attenu-
ated by changes in bioavailability (Alog Do)

Substructural analysis

While pesticides’ electronic structure can support design based on
established principles and chemist’s own intuition, analysis of sub-
structural properties can directly guide molecular perturbations
necessary to achieve desired outcomes. In photodegradation, the
rate-determining step, i.e., the electron transfer from pesticide to
’*CDOM?, is driven by the stability of the resulting radical cation
intermediate. In phenols and anilines, the electron hole is stabilized
by inductive and resonance effects involving ring atoms and sub-
stituents, which can withdraw electron density (= destabilizing) or
donate it (= stabilizing). We computed these effects using second-
order perturbation theory in the natural bond orbital (NBO) basis
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Fig. 4. Coupling of ecotoxicity and photodegradation. (A) Top: Scatterplots of
ecotoxicity averages (octanol-water distribution coefficient, log Doy versus energy
difference between the highest occupied and lowest unoccupied molecular orbitals,
AE) and spread (ellipse radii based on half SD in the x and y directions) for each per-
centile bracket of photodegradation potential (denoted in the legend on the right).
Black arrows represent vectors between adjacent percentile averages. (B) Bottom:
Scatterplot of electrophilic-specific ecotoxicity averages (octanol-water distribution
coefficient, log Do, versus energy of the LUMO, Ejymo)-

and by Hirschfeld population analysis (HPA) to support quantita-
tive trade-off assessment in the design process (Fig. 5).

From Fig. 5A, pesticides were grouped on the basis of substituents’
ability to stabilize the electron hole, leading to a statistically significant
relationship between stabilization energy, E(2), and AG.L. A 99% con-
fidence interval for E(2) values was created for each group, 6.4 to
9.9 kcal/mol (strongly electron-withdrawing), 14.3 to 19.2 kcal/mol
(weakly withdrawing/donating), and 28.5 to 37.3 kcal/mol (strongly
electron-donating). We identified a cutoff value, where stabilization
energies greater than 24 kcal/mol corresponded to pesticides with good
propensity to photodegrade. Alternatively, one can leverage computed
electron density on the pesticide core (in the form of partial atomic charges)
as both an accessible and a notably predictive approach for gauging (sub)
structure-activity relationships (Fig. 5B). From Fig. 5B, we observed a
strong linear correlation [R? (coefficient of determination) = 0.83] with
AG values, indicating that more electron density on the pesticide core
corresponds to more facile photodegradation. In designing new pesti-
cides, table S1 can guide relevant substituent read-across, and our method
serves as a quick tool to assess additional structures.

DISCUSSION

Screening pesticides for desirable properties

In the simplest sense, our models can be used either to select suitable
pesticides that balance photodegradation and ecotoxicity outcomes

Lewer et al., Sci. Adv. 8, eabn2058 (2022) 30 March 2022
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Fig. 5. Substructural-tier results. (A) Top: Free energy of electron transfer with
3-methoxyacetophenone (AG..) (17), plotted as a function of stabilization energy,
E(2). Cutoff values were identified as follows: (i) strongly electron withdrawing (or-
ange), (i) weakly electron donating or withdrawing (blue), and (iii) strongly elec-
tron donating (green). Averages for each group are designated by a red diamond
with E(2) value labeled (in kcal/mol). Horizontal bars represent a 99% confidence
interval for each group. Vertical dashed lines signify cutoff values that separate
groups 1 to 3. Phenols are marked as circular data points, and anilines are denoted
by triangles. EWG, electron-withdrawing group; EDG, electron-donating group.
(B) Bottom: A univariate correlation between a total Hirshfeld charge on the aromatic
ring (¥ X and AGe. R* = 0.83, AGe* = 146.62 X Y, Xc —38.89, P=2.68x 10", root
mean square error =4.50, and n=43. Phenols are marked as circular data points,
and anilines are denoted by triangles.

or to perform read-across analysis for pesticides not in our dataset.
To that end, we constructed heatmaps that offer “semaphore” cod-
ing for each design criterion based on a combined analysis of all
16,100 pesticide interactions with a *CDOM* mixture (viz. fig. 6,
with representative subsets of top, middle, and bottom 10 per-
formers in Fig. 6). Because of the coupling of AEyomo-somo and
AEnomo-Lumo, We encourage the application of Epuwmo as the more
useful driver of ecotoxicity in this analysis.

Guiding design of safer pesticides

The use of in silico design tools outside drug discovery is still rare
due to the challenge of robustly relating structural attributes of
chemicals to mechanistic events, especially with limited experimen-
tal data (8). Modern statistical solutions and adaptive-learning algo-
rithms require big data and means of generating useful analogs to
propose new chemicals with desirable properties. Here, and in our
previous reports (17, 31), we have taken a different approach, which
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Fig. 6. Environmental performance of pesticides. Combined photodegradation and ecotoxicity analysis for a subset of 30 pesticides representing the top, middle, and
bottom 10 performers in depletion. Photodegradation: Red indicates higher AG;° values and slower reaction rates, and green indicates lower AG.’ values and faster re-
action rates. Ecotoxicity: Light green indicates within safer chemical space, and light red indicates outside safer chemical space. E.ymo (percentile of E;ymo distribution of
no- to low-concern chemicals); purple indicates higher E;ymo values and increased safety, pink indicates lower E ymo values, and black indicates outside E ymo safety.

rests on the premise that design of safer chemicals should be
transparent and rational, i.e., rooted in fundamental axioms that
yield predictable outcomes. It is for the sake of transparency and
practical utility that we developed our structure-to-process design
protocol as a tiered computational framework (Fig. 1). In Lewer et al.
(17), we showed that computed process energetics can yield robust
models predictive of indirect photodegradation (tier 1) while fa-
cilitating expansion of the training set, which can subsequently
support structure-based models that rely on pesticides’ electronic
properties (tier 2). To enable the design of novel compounds, we
incorporated tier 3 into our framework, which relates basic proper-
ties of pesticide substructures to tier 2 and tier 1. These moieties can
be systematically altered by the chemist to guide a compound to-
ward more favorable process metrics.

Figure 7 outlines our proposed blueprint for structure-to-process
design of novel pesticides. Here, we offer three “design exits,” which
users can take based on their level of expertise and desired level

Lewer et al., Sci. Adv. 8, eabn2058 (2022) 30 March 2022

of accuracy given the type of models developed for tiers 1 to 3
(viz. Materials and Methods). Relative confidence scores are pro-
vided on the basis of model performance to help assess trade-offs in
choosing a specific approach. For compounds with aromatic cores,
the user starts by analyzing the stability of the oxidized pesticide,
making synthetically feasible substitutions and assessing their
impact via substructural models (i.e., HPA and NBO analyses).
Promising candidates can be validated in structural models, where
photodegradation thermodynamics and kinetics are accurately pre-
dicted from FMO energies; relative and absolute (eco)toxicity are
gauged from log Doy, AE, and/or Epyyo distribution of low- to no-
concern chemicals; and performance requirements are tested by
defining chemical and functional class boundaries as well as cutoff
values for properties correlative to the toxicity thresholds of the pes-
ticide’s MOA. Here, performance limits were identified using the
current dataset and commercial chemicals modeled for acute and
chronic aquatic toxicity in terms of log Do, and AE in our previous
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Fig. 7. Rational design strategy. Design framework for safer pesticides with controlled degradation.

studies (21, 22, 26), where both parameters showed significant
correlations with toxicity thresholds across all MOAs (Table 1). Fol-
lowing structural tiers, the user can proceed to further validate out-
comes by reaction pathway modeling, computing AG." and ke
values according to developed models (17). In its entirety, the above
protocol offers a robust means for analyzing and scoring pesticide
analogs for their safety, function, and persistence, resulting in the
design of a new compound with a preferable profile.

Examples of pesticide (re)design

While the above protocol can be applied to any pesticide, the specific
strategy of redesigning an existing structure is informed by the at-
tribute (ecotoxicity or persistence) that needs improving. From
substructural-tier models, we know that adding electron-donating
groups stabilizes the oxidized pesticide, promoting electron transfer
to PPRIs and degradation. To drive ecotoxicity metrics toward
greater probability of safety, we can alter electronic distribution in a
molecule by strategically placing certain substituents on oxidizable
cores, affecting AE and Epuypmo values. In addition, structures can be
made less lipophilic (by decreasing log D) to lower bioavailability.
We should note that in designing new pesticides (versus commercial
chemicals without selective toxicity), the balance between hydro-
philicity and lipophilicity is important. Agrochemicals may be sprayed
as an aqueous solution (and so must be hydrophilic), but to lim-
it leaching into waterways and to ensure uptake by a plant through
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Table 1. Boundary values. Performance boundary conditions in terms of
log Do and AE across pesticides’ functional class and mode of action
(MOA). Functional class cutoffs were determined using pesticide active
ingredients. For MOA-based definitions, only commercial chemicals active
in ecotoxicity assays were used. UOP, uncoupling of oxidative
phosphorylation; ACE, acetylcholinesterase; N, narcosis; CNS, central
nervous system seizure or stimulant; EP, electrophile or pro-electrophile
reactivity; NDPs, neurodepressants; PN, polar narcosis.
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soil/foliage (or ingestion by pest), they must also be sufficiently li-
pophilic. The latter is imperative to retain efficacy at low application
rates. To that end, the “Briggs Rule of 3,” i.e., log Doy < 3, is often used
for pesticides’ active ingredients to strike balance between efficacy
and safety (32). Thus, in addition to our MOA-defined perform-
ance limits, we explored both log D, cutoffs (1.7 and 3) below.
In our examples, we demonstrate how these generalized rules
can be applied in practice to redesign 2-methyl-4,6-dinitrophenol
(DNP), capsaicin, and bromofos (Fig. 8), which were selected on the
basis of their strong performance in one category (photodegrada-
tion or ecotoxicity) and weak performance in the other while show-
casing a variety of MOAs. From Fig. 8, DNP is an herbicide that acts
by uncoupling oxidative phosphorylation (UOP). While DNP satis-
fies our log D,y cutoff (as well as Briggs Rule of 3), AE is below 6 eV
and photodegradation performance is in the bottom 10th percen-
tile. Replacing nitro groups with electron-donating amines in-
creased photodegradation potential to the 90th percentile (Fig. 8)
while raising AE by 0.9 eV and increasing Eyymo from <Ist to the
50th percentile of low- to no-concern chemicals. At the same time,
the new analog remains within performance bounds for herbicides

(functional class), phenols (chemical class), and active UOP (MOA
class) chemicals.

In a reverse scenario, capsaicin is readily photodegradable but is
of concern for ecotoxicity due to log Doy > 1.7. Capsaicin is an an-
imal repellent, often used against insects and mites. It has a target-
specific mode of action, binding a transient receptor potential
cation channel subfamily V. member 1 (TRPV1), a nonselective cation
channel (33), which leads to depolarization of nociceptive neurons
(34). To decrease the bioavailability of capsaicin, the hydrocarbon
chain was truncated, resulting in a decrease in log Dy, from 3.75 to
0.75, shifting the redesigned compound into the safer space. Alter-
natively, a subtler structural change is possible to satisfy log Doy < 3
to ensure better crossing of membranes in pests (viz. Briggs Rule
of 3). In terms of performance, capsaicin must also retain its ability
to bind TRPV1, which is dominated by a hydrogen bond between
amide nitrogen of capsaicin and a tyrosine hydroxyl group in the
vanillyl pocket (33). Since this part of the molecule was left un-
perturbed, it is reasonable to propose that desired activity was affected
minimally; however, further validation can be carried out using
target-specific modeling tools (5).

2-Methyl-4,6-dinitrophenol Capsaicin
Ecotoxicityjsafeispace 8 | Ecotoxicity safe space 8
. ) Herbicide bounds He:rbicide bounds
) Phenol bounds 7 ; Phenol bounds
OH
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Fig. 8. Redesigned pesticides. Design charts based on protocol outlined in Figure 7 for three exemplary pesticides: DNP (top left), capsaicin (top right), and bromofos
(bottom). According to the provided scales, the color of the structures’ outline marks the percentile of E ymo distribution of no- to low-concern chemicals; the color of the
dot represents percentile of photodegradation (green = highly photodegradable; red = nondegradable), and the position of the dot represents relative safety in terms of
log Do and AE and the fit in the class- and MOA-defined functional space. Dashed vertical line represents the log Do, < 3 limit, i.e., Briggs Rule of 3.
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Bromofos is an insecticide acetylcholinesterase inhibitor, which
was found to perform poorly in terms of both photodegradation and
ecotoxicity. In our redesign effort, we substituted (persistent) halogens
with electron-donating and hydrophilic amine and methoxy groups to
both increase photodegradation and decrease bioavailability. Substitu-
tions with methoxy groups improved photodegradation from the 25th
percentile to above the 40th while also decreasing log Dy, from 4.64 to
2.95. These changes satisfy Briggs Rule of 3. Replacing halogens with
amine groups led to further gains in both photodegradation (89th per-
centile) and log Doy (1.61). While these changes resulted in AE de-
crease from 6.06 to 5.46, Eyymo increased from the 15th to above the
30th percentile of compounds with minimal hazard to aquatic species.

Outlook

Understanding factors that contribute to safety-performance matrices
in pesticide design is crucial to developing next-generation analogs
that meet increasing global demand for agricultural products. Ratio-
nal design of safer chemicals that do not persist in the environment is
the cornerstone of green chemistry that rests our interpretation of the
underlying structure-property relationships. Here, we showcased a
multifaceted approach for developing new pesticides using computa-
tionally derived markers of (eco)toxicity, depletion, and function. Our
analysis of 700 pesticides provides a wealth of knowledge to chemists
and risk assessors alike on the structure-property relationships that
drive each design criterion. In a tiered approach, we linked substruc-
tural features of pesticides with electronic properties and process met-
rics to equip the green chemistry community with a pragmatic means
of either screening existing pesticides or designing all-around safer
and high-performing new molecules.

Our approach represents a fundamental shift toward system-based
computational models and the transformation of purely predictive
toxicology methods into design tools. It is critical to recognize here that
no tool can be truly all encompassing, and safety can never be guaran-
teed but only maximized in its probability. In that sense, ours is a
design-vectoring approach that moves the dial enough to considerably
improve safety and depletion profiles of pesticides. However, to prog-
ress further, the present model should be integrated with more refined,
target-specific methods, such as those described by Clymer et al. (5).
These approaches can elucidate specificity and targeted selectivity of
biologically active molecules, addressing a common shortcoming of
crop protection agents. In addition, we envision incorporation of tools
that assess green process metrics (how we make pesticides), economic
cost of production, and, in related terms, synthetic feasibility of pro-
posed analogs. The value proposition here is that an integrated model
development paradigm, which bridges advances in predictive toxicol-
ogy with green chemistry principles, can be adopted across industry
sectors to advance our sustainability goals in chemical design.
DuPont’s 1935 slogan, paraphrased as “Better Living Through Chem-
istry,” still rings true in that we have entangled ourselves in needing
chemistry to survive; yet, chemistry can also do demonstrable and
irreparable harm to us. Humorously, the way forward appears through
amending the motto to “Living Through Better Chemistry,” which
can only be accomplished by designing “better” chemicals.

MATERIALS AND METHODS

Dataset

The current dataset was developed by mining the CompTox Chemicals
Dashboard (35) for pesticides containing PPRI-oxidizable cores
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(phenols, anilines, aryl ethers, sulfides, and thiols), which were
identified using SMARTS (SMILES arbitrary target specification)
patterns (table S3). After removal of duplicate compounds, our search
yielded 700 chemicals that matched either a single or multiple oxi-
dizable cores (Table 2). Photodegradation reactions were analyzed
for each pesticide with 23 representative CDOM molecules (17), span-
ning six different functional classes (table S4) and 16,100 unique pair-
wise interactions.

Photodegradation model

We previously reported a tiered computational approach to probe
photodegradation kinetics and thermodynamics of pesticides with
’CDOM* (17). The tiered approach was developed to both increase
the efficiency of computational screening for pesticide depletion as
well as to fill experimental data gaps and broaden the model’s train-
ing set. In tier 1, our method relied on computed free energies of
the pesticide-to-’CDOM? electron transfer as the rate-determining
step of the degradation process, which were fitted to experimental
cell potentials (E°e) and second-order rate constants (log k). Cal-
culations at the SMD-M06-2X/6-31 + G(d,p) level of theory showed
that free energies, AGe”s, and barriers, AGFs (the latter estimated
from the Marcus theory), correlated well with experiment across a
diverse set of 23 CDOMs and 63 pesticides (R* > 0.7) and performed
even better in class-specific models (R*>0.8) (17).

In tier 2, the method leveraged computationally economical
electronic parameters based on FMO theory to predict reaction
pathway energetics, thus relating electronic properties of pesticides/
’CDOM* to observed outcomes. Specifically, the gap between HOMO
of the pesticide and SOMO (singly occupied molecular orbital) of
*CDOM*, computed at the mPW1PW91/MIDIX+ level of theory,
was successfully correlated to both AG. and AG¥F values in univariate
linear and nonlinear models (R* ~ 0.9, based on ca. 1500 pairwise
interactions between *CDOM¥* and pesticides) (17).

In this study, we built on our previously validated approach and
extended the predictions of indirect photodegradation to 700 pesti-
cides on the EPA’s registry (35). Tier 2 calculations were used to
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Table 2. Pesticides by chemical class. PPRI-oxidizable compounds from
the EPA's pesticide registry (35), partitioned by chemical class.

Functional class Number of matches
Phenol 93
Aniline 115
Aryl ether 222
Sulfide 183
Thiol 3
Phenol and aniline 1
Phenol and aryl ether 14
Phenol, aniline, and aryl ether 5
Phenol and sulfide 1
Aniline and aryl ether 31
Aniline and sulfide 4
Aryl ether and sulfide 17
Sulfide and thiol 1
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estimate AG,’ and AG* values and, by extension, cell potentials
(E°.) and second-order rate constants (log k), respectively, from
molecular orbital energies as detailed by Lewer et al. (17). All
electronic-structure calculations were carried out using the Gauss-
ian 16 program (36).

Ecotoxicity and performance assessment

Ecotoxicity assessments were carried out using boundary values
of key properties related to bioavailability (octanol-water distribu-
tion coeftficient, log Doy, at physiological pH of 7.4) and reactivity
(the HOMO-LUMO gap, AE) (19). We have previously reported
(21, 22, 26) that adverse effects to aquatic species are minimized when
chemicals have large bandgaps (AE > 6 eV at the mPWI1PW91/
MIDIX+ level of theory) and are nonlipophilic (log Do, < 1.7). In
general, compounds with smaller bandgaps are softer, indicating
greater covalent reactivity (most of the metabolic processes), while
larger bandgaps suggest hard-hard (i.e., ionic) interactions. This
approach was found robust across all modes of action (MOAs),
supported by significant univariate correlations between AE and
toxicity thresholds (R* ca. 0.6 to 0.9, depending on the mechanism).
Furthermore, this “rule of 2” has been validated on over 1600 chem-
icals and against standard test species of fish, crustaceans, and green
algae (21, 22, 26). On the basis of these guidelines and depending on
the species, ca. 75 to 92% of chemicals studied that were of no or low
concern in acute and chronic aquatic toxicity tests fit into this safer
chemical space defined by AE and log D,,. Here, log D, values
were estimated using ChemAxon’s cxcalc plugin (Marvin v.6.0,
2013; ChemAxon), and AE values were calculated with the mPW-
1PW91/MIDIX+ method using Gaussian 16 software (36).

For pesticide active ingredients, we leveraged MOAs’ underlying
molecular mechanisms as drivers of both ecotoxicity and perfor-
mance. This notion is consistent with previous reports, and was made
possible by strong correlations identified between AE/log Do, and
toxicity thresholds across all MOAs relevant to pesticide function
(fig. S7) (21). To that end, molecular perturbations that keep the
structures within the bounds of the relevant functional space, and
concurrently shift the structures into or toward the safe space (as
defined by AE and log D, cutoff values), are likely to yield better
analogs. This line of reasoning is further supported by our previous
work, which showed compounds with increasing AE, and decreas-
ing log Do/ values correspond to proportionally lower level of con-
cern to aquatic species across the entire chemical space tested (21).

Tier 3: Substructural features and design drivers

To incorporate substructure-based design guidelines, we added a third
tier into our computational framework. Specifically, we carried out
NBO calculations and HPAs on a representative subset of inter-
actions between 44 pesticides (28 phenols and 16 anilines) and
3-methoxyacetophenone (table S5) (17). The NBO analysis was
used to probe electronic configurations of oxidized (open-shell)
forms of pesticides to derive structure-activity relationships based
on second-order perturbation theory. NBOs are localized few-
center orbitals that describe the Lewis-like molecular bonding pat-
tern of electron pairs or of individual electrons (in the open-shell
case of SOMO). The remaining non-Lewis-type NBOs complete
the span of the basis and describe delocalization effects, i.e., depar-
ture from a single localized Lewis structure (37). These orbitals con-
tribute to resonance stabilization, hydrogen bonding, and other
forms of donor-acceptor aggregation (38) and are, thus, relevant to
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describing the degree of electron-hole stabilization that occurs in
the oxidized pesticide after reacting with *CDOM?. Here, we as-
sessed the electron-withdrawing versus electron-donating nature of
ring substituents in phenols and anilines by computing the stabili-
zation energy, E(2), in donor-acceptor orbital mixing. Pairwise E(2)
values for interactions between substituent and ring atoms were
summed to obtain the total stabilization energy acting on the elec-
tron hole, i.e., Egap = ZsubstE (z)subst~

HPA (39) was performed across the same subset of pesticide
cores to probe the relationship between electron density in the ring
and the ability to stabilize the electron hole of the oxidized pesticide.
To that end, HPA was selected over the standard Mulliken and
Lowdin schemes because it provides a clear partitioning of electron
density (viz. the Supplementary Materials) (40) and is insensitive to
basis set size (41). Crucially, HPA produces nonnegative and, thus
more physically realistic, condensed Fukui function values. Fukui
functions reflect the ability of a molecule (or its part) to accept or
donate electron density, which is important in capturing the inter-
actions between substituents and the electron-deficient (oxidized)
pesticide core (42-48).

Combining the two analyses, NBO and HPA, affords greater
structural understanding of substituents’ effects on photodegrada-
tion rates, thereby providing a trajectory for the design of new ana-
logs based on existing pesticide cores. AIlNBO and HPA calculations
were carried out using the Gaussian 16 program (36).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abn2058
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