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ABSTRACT

Processor power management exploiting Dynamic Voltage and
Frequency Scaling (DVFS) plays a crucial role in improving the
data-center’s energy efficiency. However, we observe that current
power management policies in Linux (i.e., governors) often consid-
erably increase tail response time (i.e., violate a given Service Level
Objective (SLO)) and energy consumption of latency-critical appli-
cations. Furthermore, the previously proposed SLO-aware power
management policies oversimplify network request processing and
ignore the fact that network requests arrive at the application layer
in bursts. Considering the complex interplay between the OS and
network devices, we propose a power management framework ex-
ploiting network packet processing mode transitions in the OS to
quickly react to the processing demands from the received network
requests. Our proposed power management framework tracks the
transitions between polling and interrupt in the network software
stack to detect excessive packet processing on the cores and im-
mediately react to the load changes by updating the voltage and
frequency (V/F) states. Our experimental results show that our
framework does not violate SLO and reduces energy consumption
by up to 35.7% and 14.8% compared to Linux governors and state-
of-the-art SLO-aware power management techniques, respectively.
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1 INTRODUCTION
It is essential for data-center servers to provide fast response time
(i.e., low tail latency) for clients along with high energy efficiency [10,
11]. Since a processor consumes a significant portion of a server’s
electricity, power management policies (i.e., governor) that adjust
voltage and frequency states (i.e., V/F states or Performance states
(P states)) [27] as well as sleep states (i.e., C states) of processor
cores play a crucial role in improving the energy efficiency.

However, current dynamic power management governors based
on CPU utilization, such as ondemand governor [37], often increase
the tail latency (e.g., 99° h percentile (P99) latency) of network re-
quests, and consequently fail to satisfy Service Level Objectives
(SLOs) especially when bursts of network packets are received at a
server [10]. This is because the default CPU utilization based gover-
nors in Linux (e.g., ondemand governor in cpufreq driver, power-
save governor in intel_pstate driver) cannot quickly change the
P state of a core to a state that satisfies the processing demand of
the packet bursts. On the other hand, statically operating the core
at the highest performance state (i.e., PO state) is a performance
overkill and results in high power consumption and energy waste.

Prior studies propose SLO-aware DVES policies to improve en-
ergy efficiency while satisfying the SLO of latency-critical applica-
tions. We can classify these prior studies into long-term DVFS [7, 19,
24-26, 30, 34, 35] and short-term DVFS [1, 8, 16, 21, 41] depending
on the scaling period of V/F states. Long-term policies adjust the
processor’s V/F states every several hundred milliseconds. Such
V/F state adjustments are based on the feedback from the appli-
cation and state of OS. The Long-term policies can offer energy
efficiency for latency-critical applications with non-bursty traffic or
applications without tight SLO requirements. But when processing
a rapidly changing load (e.g., bursty traffic), the V/F state setting is
delayed, which often causes SLO violations or energy inefficiency
by setting processor’s V/F to a high state [21]. Since these studies
often rely on complex models for determining the next V/F states
that often require tens of milliseconds for inference, it is not feasi-
ble to decrease the decision making period of such studies [34, 35].
Meanwhile, short-term DVFS studies [8, 16, 21, 41] provide high
energy efficiency by quickly changing the V/F state in response to
the load changes. However, the proposed techniques rely on special
voltage regulators and assume that the V/F state transition time is
negligible (e.g., even several tens of nanoseconds [16]). Moreover,
these studies feed their power management model with synthetic
load and ignore the overheads of network software stack processing
as well as the complex interplay between OS and network interface
card (NIC).

Tackling limitations of prior power management techniques,
we propose NMAP, Network packet processing Mode-Aware Power
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management which is a short-term DVFS technique readily applica-
ble to the commercial processors. NMAP considers packet processing
status on each core by monitoring transitions between network
packet processing modes - interrupt and polling supported by
Linux New API (NAPI) [39]. NMAP leverages the processing mode
transitions to quickly detect the bursts in network traffic and react
to the bursts in a timely manner by adjusting the processor’s V/F
states. This is to improve energy efficiency while preventing SLO
violation. More specifically, when the number of packets processed
in the polling mode increases, it indicates that a burst of packets
is received (and continued to be received) at the NIC that requires
the processor to constantly poll the NIC. NMAP increases the V/F
state when excessive packet processing occurs in the polling mode
to prevent SLO violations. On the other hand, when the number
of packets processed in interrupt mode increases, NMAP sets the
processor’s V/F states according to the V/F state decision of a CPU
utilization based governor to reduce the unnecessary energy con-
sumption. Although polling events can happen in short successions,
NMAP only uses these events to increase V/F state at the burst’s early
part and to fall back to the CPU utilization based governor, which
uses a sufficiently long period for decision making (e.g., 10ms), at
the burst’s end. Consequently, NMAP does not require repetitive V/F
state transitions in a very short period of time while it can react to
sudden bursts in a timely manner, which enables NMAP to be readily
deployed for commodity processors.

We first introduce the simplified NMAP that implements a power
management policy that only considers the events of ksoftirqd
in polling mode. Since ksoftirqd is woken up when the packet
processing in the softirq handler is delayed, NMAP can simply exploit
the scheduling information of ksoftirqd without any prior infor-
mation from applications. Next, we propose NMAP that considers
the ratio of packets processed in interrupt and polling modes for
making power management decisions.

In addition to proposing NMAP, we discuss experimental analy-
sis of V/F state transition latency and the impact of sleep states
on the response latency of latency-critical applications. We first
demonstrate that repetitive V/F state transitions lead to additional
transition latency (i.e., re-transition latency), making it challeng-
ing to implement short-term DVFS studies on current commercial
processors. Our experimental analysis shows that the re-transition
latency increases to hundreds of microseconds depending on the
processor. Such high re-transition latency prevents quick V/F state
updates and in turn can lead to request’s latency increase and SLO
violations. Furthermore, we demonstrate that the impact of sleep
states on the tail response latency of latency-critical workloads is
negligible. We observe that the measured wake-up latency from
the deepest sleep state is tens of microseconds, which does not hurt
tail latency of the latency-critical application in a millisecond scale.
Consequently, the energy efficiency can be improved by constantly
enforcing the deepest sleep state when the core is idle.

For evaluation, we implement NMAP on a real system equipped
with Intel Xeon processor supporting per-core DVFS and use two
representative latency-critical applications, memcached [14], an in-
memory key-value store, and nginx [38], a lightweight web server.
Our experimental results show that NMAP reduces energy consump-
tion by up to 35.7% and 14.8% compared to conventional Linux
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Figure 1: Network packet processing with NAPI.

governors and state-of-the-art SLO-aware power manager [1], re-
spectively. Our results show that the end-to-end response time of
the applications is always within the SLO when NMAP is used for
power management.

2 BACKGROUND
2.1 Network Packet Processing and New API
(NAPI)

New API (NAPI) [39] is an interface implemented in Linux by default
to mitigate the number of interrupts when receiving or transmitting
network packets (i.e., Rx or Tx) through the polling mechanism.
While processing the network packets, NAPI transitions between
interrupt and polling modes based on packet processing status and
network loads. Fig. 1 illustrates Rx and Tx sequences with NAPL.
NIC notifies a core of packet arrivals (®) or transmission comple-
tion (@) using an interrupt. Subsequently, the interrupt handler
processes the interrupt (@ and @) and invokes softirq handler
that processes a packet (& and @) or repeats to process packets
waiting in Rx and Tx queues (D and @) in the interrupt or polling
mode, respectively. For Rx, the softirg handler delivers packets
to the OS networking stack by extracting packets from the Rx
buffer, whereas the softirq handler for Tx checks the completion
of Tx and cleans Tx buffers used if Tx is correctly completed. In the
polling mode, softirq handler disables the interrupt for network
I/O, it can process packets without additional interrupt delivery
and handler invocation.

However, if the kernel continuously processes packets in polling
mode as the network I/O occurs frequently, application threads can
be rarely scheduled on the core since the softirq handler has the
higher scheduling priority than the application threads. Therefore,
the Linux kernel provides ksoftirqd that has the same scheduling
priority with application threads to prevent the starvation of appli-
cation threads [33]. When the system is booted, the Linux kernel
creates a ksoftirqd thread for each core. The softirqg handler
migrates the remaining packet processing to ksoftirqd thread in
the following conditions: 1) the softirq handler overuses sched-
ule ticks more than two ticks for processing packets (e.g., 8ms in
250Hz configuration), 2) the softirq handler fails to empty Rx
and Tx queues more than a certain number of iterations (e.g., more
than ten iterations), 3) the softirq handler yields the current core
to process scheduler when reschedule flag is set by events (e.g.,
Inter-Processor Interrupt (IPI)). In terms of network I/O handling,
ksoftirqd is thus invoked when the processing of Tx/Rx packets
continuously occurs.

Such NAPI-based packet processing is performed by cores that
receive/transmit network packets. Since conventional or some of
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Figure 2: Wake-up of ksoftirqd, P state by the ondemand governor, the number of packets processed in interrupt mode and

polling mode.

recent NICs receive/transmit packets using a single core, only single
core performs the NAPI-based packet processing. However, some
other recent NICs support multiple queues that enable multiple
cores to receive/transmit the packets for the high performance
network. With the multi-queue NICs, each core processes packets
separately while transitioning between interrupt and polling mode,
and invoking ksoftirqd based on its status.

2.2 Processor Power Management

V/F State Management. Commercial processors support DVFS to
dynamically change processor’s performance states (i.e., P states)
based on the speculated future load on the processor. Linux OS
provides several power management policies (i.e., governors) to
determine processor’s P state with cpufreq driver. The cpufreq dri-
ver includes the performance, powersave, userspace, ondemand,
and conservative [6] governors. The performance and power-
save governors set and maintain the maximum and minimum V/F
state of the processor, respectively, while the userspace governor
sets and maintains the V/F state specified by the user. The onde-
mand and conservative governors dynamically set the V/F state
based on the CPU utilization that is measured periodically (e.g.,
every 10ms). While the ondemand governor determines the V/F
state based on CPU utilization only, the conservative governor
gradually adjusts the next V/F state by transitioning to a value near
the current V/F state (e.g., P1—>P0 or P1—P2).

Current Intel processors support intel_pstate driver for power
management including the performance and powersave gover-
nors!. The intel _performance governor operates cores at the
maximum V/F state similar to the performance governor in the
cpufreq driver. The intel_powersave governor determines the
next V/F state based on the CPU utilization similar to the ondemand
governor of cpufreq driver. The intel_powersave governor also
provides optimizations for improving storage I/O performance. The
optimizations include increasing V/F state when a block I/O request
completes or a new thread is dispatched to a core.

Modern server-class processors support per-core DVFS where
each core can deploy its own governor and independently set its V/F
state. Processors that do not support per-core DVFS often support
chip-wide or per-cluster DVFES. In such processors, multiple cores
share the same V/F state even though the governor on each core
determines a different V/F state for each core. The V/F state of
processors supporting chip/cluster DVES is set to the highest V/F

1To prevent confusion, we refer to the governors of intel_pstate drivers as intel_-
performance and intel_powersave from now on in the paper.
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state among the V/F states determined by the governor deployed
on each core.

Sleep State Management. Commercial processors support sleep
states that turn off some components of the processor, such as reg-
ister, cache, and memory controller, to reduce power consumption.
In modern processors, each core has multiple sleep states, called
Core C states (CC) (e.g., CCO0, CC1, CC6). In CCO (or active state),
the processor is active and executes instructions. In CC1 (or clock
gated state), the processor is halted and is not clocked. CC6 (or
deep idle state) power off the core, registers, and private caches
(i.e., L1 and L2 caches). The deeper the core C state, the lesser the
energy consumption at the cost of a higher performance penalty for
waking up and restarting execution. To reduce power consumption
without notable performance degradation, Linux deploys menu gov-
ernor [36] by default. The menu governor predicts the future idle
time of a core — based on the core’s utilization history — and sets
the core’s C state accordingly. The processor stays at a C state until
the predicted sleep time by menu governor expires or an external
event such as an interrupt wakes up the core.

3 MOTIVATION

3.1 Network Packet Processing Mode
Transition of NAPI and Network Load

NAPI processes Rx or Tx packets in either interrupt or polling mode
based on the status of Rx and Tx queues. Such mode transitions
are directly affected by the network load and the packet processing
performance. We run memcached and nginx server to quantitatively
demonstrate the correlation between mode transitions of NAPI and
network load. We send 750K and 56K requests per second (RPS)
from 20 client threads running on a separate physical machine to
the server. The client generates repetitive bursts of network packets
along with idle periods. We use 750K and 56K RPS for memcached
and nginx as a high load throughout this paper.

The right y-axis in Fig. 2(a) and Fig. 2(b) show the number of
network packets received (sampled every 1ms) on memcached and
nginx servers, respectively. The left y-axis in the figures shows the
changes in the P state of the core that runs one of the memcached or
nginx threads. We use ondemand governor for the experiments. We
split the number of packets into two stacked bars, each of which
represents the portion of network packets processed in interrupt
or polling modes. We also mark the times when ksoftirqd wakes
up. At each burst, as the load goes to the peak, the polling rate
increases proportionally to the load; however, the number of packets
processed in the interrupt mode is capped. In our experiment, the
number of packets processed in interrupt mode does not exceed
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sponse latency.

152 and 89 for memcached and nginx, respectively. This behavior
is expected as at a high network Rx rate, the NIC keeps filling
the Rx queue and the processor repetitively processes the pending
packets in the polling mode and frequently wakes ksoftirqd up.
On the contrary, as the load decreases, the core empties queues more
often, leading to termination of softirq and transition to interrupt
mode. NMAP leverages this intuitive observation and piggybacks the
existing NAPI mechanism to quickly react to the load changes on a
server running latency-critical applications (Sec. 4.2).

3.2 Limitation of CPU utilization based Power

Management

CPU utilization based governors such as ondemand and intel_-
powersave often fail to react to the bursts of network packets [1,
25] in a timely manner, leading to SLO violations. The culprit in
these governors is that the sampling period for CPU utilization and
decision making is orders of magnitudes larger than the lifetime
of an Rx packet burst (10ms vs. 100s of ys). This mismatch results
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in either not detecting short-lived bursts or late reaction to longer
bursts.

As plotted in Fig. 2, the ondemand governor mostly raises the
V/F state in the middle or later part of the packet bursts. Another
key observation from Fig. 2 is that ondemand governor does not
immediately set the processor’s P state to P0, even when it detects
an Rx burst. This means that even when ksoftirqd is woken up,
the processor is not running at the maximum V/F while the softirq
handler requires fast processing of incoming packets.

Fig. 3 plots the end-to-end response time for each memcached
and nginx requests sent over a 0.5 second interval, respectively.
The x-axis in the figures represents the time when a response is
received at the client-side. Fig. 4 plots the cumulative distribution
function (CDF) of response latency in the environment shown in
Fig. 3. We set the SLO for the applications to the inflection point of
the latency-load curve as prior studies do [25], which is 1ms and
10ms for memcached and nginx, respectively. As plotted in Fig. 3(a)
and Fig. 3(b), the ondemand governor fails to satisfy the SLO. Since
the SLO is defined as P99 response time, it mandates that 99% of the
requests should have a lower response time than the SLO. Fig. 4(a)
and Fig. 4(b) show that only 18.1% and 57.2% of the requests have
a shorter response time than 1ms and 10ms for memcached and
nginx, respectively. To validate that the improper V/F states are
the main culprit for SLO violations, we run the same experiments
with the performance governor. As shown in Fig. 3(c) and Fig. 3(d),
a server deploying performance governor significantly reduces
response time of each request during a burst. As plotted in Fig. 4(c)
and Fig. 4(d), performance governor satisfies the SLO while only
0.14% requests have a longer response time than 1ms for memcached
and all requests are processed within 10ms for nginx, i.e., P99 is
less than the target SLO.

4 NMAP: NETWORK PACKET PROCESSING
MODE AWARE POWER MANAGEMENT

In this paper, we propose NMAP, Network packet processing Mode-

Aware Power management. The key idea is to monitor network

packet processing mode transitions in NAPI and decide on the future

V/F state of the processor in a per-core basis. NMAP implements a
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“proactive” power management policy as it leverages the packet
processing delay in the NAPI for early adjustment of the processor’s
V/F states. When NMAP detects excessive packet processing on cores
based on NAPI’s mode, it maximizes the V/F state to process packets
faster. Otherwise, if NMAP detects that the cores are processing
incoming packets fast enough, it falls back to the default CPU
utilization based governor.

4.1 NMAP Architecture

Fig. 5 shows the overall architecture of NMAP. Based on the packet
processing status in NAPI, Decision Engine determines an ap-
propriate power management mode between Network Intensive
Mode and CPU Utilization based Mode. NMAP chooses the Net-
work Intensive Mode, which operates cores at the highest V/F
state (i.e., P0), when it detects that excessive packet processing
occurs on each core to satisfy the SLO of latency-critical applica-
tions. Otherwise, NMAP falls back to the CPU Utilization based
Mode that adjusts the V/F state based on the current CPU utiliza-
tion. NMAP targets multi-core processors supporting per-core DVFS,
which processes packets in parallel on each core with multi-queue
NICs. NMAP monitors the packet processing status in NAPI and de-
termines power management mode for each core.

We first introduce the simplified version of NMAP that exploits
the scheduling information of ksoftirqd to determine when it
changes the power management mode. As discussed in Section 2.1,
ksoftirqd is woken up when the softirq handler processing net-
work packets in the polling mode overuses the scheduler ticks or
fails to empty Tx/Rx queues repetitively. This means that we can
deduce that the core fails to process packets fast enough along
with excessive packet processing when ksoftirqd is woken up.
Therefore, NMAP promotes the Network Intensive Mode that max-
imizes the V/F state when ksoftirqd is woken up. On the contrary,
when ksoftirqd falls into sleep after it completes packet process-
ing, NMAP falls back to the CPU utilization based governor (e.g.,
ondemand governor) to consume power based on the loads on the
core.
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Algorithm 1: Mode Transition Monitor

1: NI_TH = threshold for Network Intensive Mode
2: pkt_poll = packets processed in polling mode

3: pkt_intr = packets processed in interrupt mode

4: if pkt_poll > NI_TH then

5: send a notification to Decision Engine

6: end if

7: poll_cnt = poll_cnt + pkt_poll

8: intr_cnt = intr_cnt + pkt_intr

9: if periodic timer is expired then

10: send poll_cnt, intr_cnt to Decision Engine
11: poll_cnt =intr_cnt =0
12: end if

Algorithm 2: Decision Engine

1: CU_TH = threshold for CPU Util. based Mode
2: if receive a notification from monitor then

3: set Network Intensive Mode

4 disable ondemand governor

5 maximize current V/F state

6: else

7 if is Network Intensive Mode then

8 if ratio of polling to interrupt < CU_TH then
9: set CPU Util. based Mode

10: enforce P state based on CPU util.
11: enable ondemand governor

12: end if

13: end if

14: end if

NMAP based on ksoftirqd is simple and readily applicable with
any workloads while not requiring profiling/monitoring running
applications’ behaviors. However, raising the V/F state when ksoft-
irqd is woken up may be not fast enough to satisfy SLOs in particu-
lar for high loads. This necessitates a more sophisticated technique
that can react to the network bursts under high load adequately.

4.2 NMAP Exploiting Network Packet

Processing Mode Transition

In this section, we propose NMAP exploiting transitions of network
packet processing mode of NAPI between interrupt and polling.
NMAP observes the current status of packet processing on each core
by monitoring the number of packets processed in interrupt mode
or polling mode. Then, NMAP calculates the ratio of the number of
packets processed in the polling mode to the number of packets
processed in interrupt mode to detect that excessive packet process-
ing occurs on the core; note that the ratio of polling to interrupt
increases as the network load increase as discussed in Section 3.1.

Fig. 6 illustrates the overall architecture of NMAP exploiting net-
work packet processing mode transitions, specifically polling to
interrupt ratio. NMAP consists of two components, Mode Transi-
tion Monitor and Decision Engine.Mode Transition Monitor
tracks mode transitions between interrupt and polling, and noti-
fies Decision Engine of the packet processing status of each core.
Based on the packet processing status delivered by the monitor,
Decision Engine chooses a power management mode between
Network Intensive Mode and CPU Utilization based Mode.

Algorithm 1 describes how the Mode Transition Monitor op-
erates to observe packet processing status. The monitor maintains
two counters, each of which counts the number of network packets
processed in polling and interrupt mode, respectively (line 2-3).
Network Intensity Detector examines network intensity by
checking the counter for polling; the increase in the polling ratio
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means the increase in the number of pending packets. Therefore,
if the number of packets processed in the polling mode exceeds a
specified threshold, the monitor sends Decision Engine a noti-
fication that a core cannot process packets fast enough with the
current V/F and it needs to raise the V/F of the core (line 4-6). The
monitor accumulates packets processed in interrupt and polling
modes (line 7-8) and also delivers the counted values to Decision
Engine and resets the counters to zero (line 9-12) periodically.

Algorithm 2 describes how Decision Engine chooses a power
management mode. Decision Engine executes the algorithm pe-
riodically or when it receives a notification from the monitor. De-
cision Engine chooses the Network Intensive Mode when it
receives the notification. For the Network Intensive Mode, De-
cision Engine disables the governor (i.e., ondemand governor)
and maximizes current V/F (line 4-5). On the contrary, Decision
Engine calculates the ratio of polling to interrupt periodically and
chooses the CPU Utilization based Mode when the ratio is
smaller than a specified threshold (line 8-12). Since the decrease
in polling ratio means that there are fewer packets pending in
queues since a core processes the packets fast enough. For the CPU
Utilization based Mode, Decision Engine enforces a CPU uti-
lization based P state and re-enables the ondemand governor (line
10-11). Since the ondemand governor usually sets the V/F state to
one lower than PO as discussed in Section 3.2, NMAP can reduce
power consumption. NMAP does not require complicated and time-
consuming profiling of applications while requiring the simple
threshold for the power management mode transition.

As described in algorithms for Mode Transition Monitor and
Decision Engine, NMAP uses two thresholds (i.e., NI_TH and
CU_TH) for the mode transition between Network Intensive
Mode and CPU Utilization based Mode. NMAP needs to reset the
threshold values when the running application changes, but it does
not need to reset the values when the running application’s load
changes. NMAP finds a threshold value that can set to Network In-
tensive Mode at the early part of the network burst before the
load reaches to the peak of the burst. NMAP also finds another value
that can fall back to CPU Intensive Mode when the load decreases
from the peak of the burst to a certain point where the core can
process the packets fast enough.

Specifically, NMAP obtains the threshold values via off-lined, but
light-weight profiling. First, NMAP chooses a specific load used to
set the target SLO (e.g., inflection point of latency-load curve). At
the chosen load, NMAP counts the number of packets processed in
the polling mode per interrupt at the early part of a request burst;
in our implementation, NMAP observes the first 100 interrupts from
the start of a request burst. Then, NMAP uses the maximum value
among the measured ones as NI_TH. For CU_TH, NMAP calculates
the average polling to interrupt ratio during a single request burst
and uses the average ratio as CU_TH.

Although NMAP obtains the threshold values by monitoring the
polling behavior of a single request burst at the specific load instead
of the exhaustive search, it requires resetting the values via the
profiling for running another application. For dynamic adjustment
of the thresholds when the running application changes, NMAP resets
the thresholds with the specific load (e.g., inflection point of latency-
load curve) before the application actually runs. We leave further
exploration of on-line profiling techniques as our future work.
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Table 1: Re-transition latency (10,000 experiments).

P state Mean | Stdev
Processor .
transition (us) (us)

Priax—Pmax-1 21.0 2.2
Prax-1—Pmax 34.6 2.2
P —Poni 27.2 5.5

Intel i7-6700 max- o min
nelt Prnin—Pmax 51| 65
Prin+1—=Pmin 25.3 1.4
Puin—Pmin+1 35.8 2.2
Prax—Pmax-1 21.7 3.8
Pmax—1_>Pmax 31.3 2.1
P —Pni 25.9 3.1

I 1i7- max min
ntel i7-7700 Pryin—Pmax 0.7 66
Pmin+ 1_)Pmin 26.3 2.9
Prin—Pmin+1 33.8 2.3
Pirax—Pmax-1 516.1 3.4
Prax-1—Pmax 516.2 3.5
Intel Xeon Priax—Pmin 520.9 5.6
E5-2620v4 | Ppin—Pmax 520.3 5.9
Prin+1—Pmin 517.2 4.3
Prin—Pmin+1 517.2 4.2
Piax—Pmax—1 525.7 5.7
Prax-1—Pmax 525.6 5.7
Intel Xeon Priax—Pmin 528.4 7.0
Gold 6134 | Pyin—Pmax 527.3 7.1
Puin+1—Pmin 526.3 6.4
Pmin—Pmin+1 526.9 6.8

5 DISCUSSION
5.1 Limitation of power management requiring

a very short latency of V/F state transition

This section investigates the limitations of power management that
requires to change the V/F state in ys scale. According to sub-tables
of ACPI (Advanced Configuration and Power Interface) including
DSDT (Differentiated System Description Table) and SSDT (System
Service Descriptor Table), the V/F transition latency of modern
processors (e.g., Intel Xeon and i7 processors) is 10us. Prior DVFS
studies [8, 16, 21, 41] for latency-critical applications require a very
short latency when changing the V/F state (as low as several tens
of nanoseconds [16]). To set the appropriate V/F state for each
request, the latency of V/F state transitions for those studies should
be at least equal to or shorter than the request’s inter-arrival times.
In case when network requests arrive continuously, as modern
NICs often deliver network packets to the CPU using interrupts,
the inter-arrival time of requests is equal to or shorter than the
minimum interrupt generation period. In other words, to adjust
the V/F state of each request level, the processor must support the
V/F state transition latency shorter than the interrupt generation
period of the NIC. For example, with the Intel 82599 NIC [17], the
transition latency of the V/F state should be at least equal to or less
than 10us since the interrupt generation period of the NIC is 10us.

However, when we set a particular V/F state and then transition
to another V/F state immediately, it requires longer latency than
specified in the ACPI tables as the transition latency of the V/F state
(i.e., 10us). This limitation makes it challenging to apply the power
management policies that require a very short V/F transitioning
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Table 2: Wake-up time (100 experiments)

C state Mean | Stdev

Processor L.

transition | (ps) (ps)

. CC6—CCoO 27.70 3.00
Inteli7-6700 | 1 .cco | o035 | o048
. CC6—CCo 27.56 4.15
Inteli7-7700 | 1 scco | o040 | 0.49
Intel Xeon | CC6—CCO 27.25 4.77
E5-2620v4 CC1—~CCo 0.50 0.50
Intel Xeon | CC6—CCO 27.43 4.05
Gold 6134 CC1—-CCo 0.56 0.50

time to current systems. For example, if we change the V/F state
from PO to P1, and then change the V/F state to P2 immediately,
it requires longer latency than the normal transition latency. We
denote this latency as re-transition latency throughout this paper.
For experimental analysis, we measure the re-transition latency
of two desktop processors (i.e., Intel i7-6700 and i7-7700) and two
server processors (i.e., Intel Xeon E5-2620v4 and Gold 6134). We
attempt to change the current V/F state by updating the ctrl reg-
ister repetitively, then measure the time until the update is actually
reflected. Table 1 shows the average and standard deviation of the
re-transition latency; we repeat the experiments 10,000 times. As
shown in Table 1, the re-transition latency of desktop processors
is much longer than 10us, which is specified in the sub-tables of
ACPI, by about 2times—5times. In addition, raising the V/F state,
especially to the state with a significant difference in the V/F from
the current state, requires a longer latency. For example, transition-
ing Pmin to Prmax (e.g., P15—P0) requires a longer latency than
transitioning Py gx—1 t0 Prax (i.e., P1—=P0). The re-transition la-
tency becomes worse in the cases of server processors (i.e., Intel
Xeon). The server processors show about 500us re-transition latency
(50x longer than 10us specified in the ACPI’s tables) for all cases
while not showing a notable difference between the cases. Such
long re-transition latency may make those processors not reflect a
considerable number of V/F state transitions performed by prior
studies requiring a very short latency for the V/F transition.

5.2 Impact of Sleep State on Latency-Critical
Workloads

Although the sleep state (i.e., C state) can considerably contribute
to the power reduction of processors, many prior studies [8, 9, 24,
29] mention that the latency-critical applications require attention
when using the sleep states because of the wake-up overhead. To
investigate the impact of the sleep state experimentally, we measure
P99 latency of memcached server with menu governor, which is
the default sleep state governor in Linux. For the experiments, we
establish a client server architecture using 10GbE links. To eliminate
the impact of the V/F state on the latency, we use the performance
governor that statically sets V/F to the maximum state.

Fig. 7 shows the number of packets processed in interrupt and
polling mode in the server for low (30KRPS) and high (750KRPS)
loads. Fig. 7 also plots when the processor enters the deepest sleep
state (i.e., CC6) by menu governor. As plotted, the processor often
enters the deepest sleep state when the processor does not process
packets or at the early stage of the burst, whereas it does not enter
the deepest state from the middle of the bursts where the CPU
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o

processes packets intensively. This means that the deepest sleep
state, which shows the longest wake-up latency, does not degrade
the performance from the middle of the bursts.

Fig. 8 shows the P99 latency and energy consumption with three
different sleep state policies, menu, disable, and c6only, respec-
tively. We disable the sleep state so that the processor never enter
the sleep state for disable, and enforce the deepest sleep state (i.e.,
CC6) when the processor falls into the sleep state for c6only. The
energy results are normalized to menu’s results. As shown in the
left of Fig. 8, there is no notable difference in P99 latency among
the sleep state policies. However, as shown in the right of Fig. 8,
compared with menu, disable consumes more energy by 53.2%
while c6only consumes less energy by 10.3%. This means that the
sleep state policies do not have a notable impact on the tail latency
while leading to considerable difference in the energy consumption.

To figure out another reason of the sleep state’s negligible impact
on the tail latency, we measure the wake-up latency of the sleep
states. To measure the wake-up latency of each sleep state, we run a
sleep thread and a wake-up thread, each of which runs on a separate
core. The wake-up thread sends a signal to the sleep thread that
puts a core into a sleep state, and measure the wake-up latency of
the core. Table 2 represents the average and standard deviation of
the wake-up latency from CC1 to CCO (i.e., active state) and from
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Figure 11: Cumulative distribution function (CDF) of re-
sponse latency.

CC6 to CCO. The wake-up latency from the deepest state (i.e., CC6)
is about 27ps.

Since CC6 state flushes all cache-lines in the private caches,
therefore, we also need to take the effect of private cache flushes
into account when measuring the overhead of waking up from CCé6
state. To figure out the cost of cache flushing, we measure the time
it takes to access all flushed cache-lines after the core is woken
up from CC6. We design a micro-benchmark that fills the private
caches, and then waits for a certain amount of time to let the core
fall into the sleep state. After that, the micro-benchmark attempts
to access all the cache-lines again. We calculate the difference in
time it takes to access all the cache-lines again between when the
core stays at CCO (i.e., not flushing caches) and when the core falls
into CC6 (i.e., flushing caches) before the accesses. We run the
experiment on two processors with different private cache sizes
(i.e., E5-2620v4 with 256KB L2 cache and Gold 6134 with 1MB L2
cache). We disable the HW prefetcher; note that the prefetcher
can prefetch the flushed cache-lines without the explicit accesses,
reducing the cost of cache flushing. As a result, the cost of cache
flushing in E5-2620v4 and Gold 6134 processors are 7us and 26.4ps,
respectively. These results are the worst case scenario since a real
application typically accesses a part of flushed cache-lines instead
of all the flushed cache-lines.

150

along with power management policies for V/F states.

6 EVALUATION

6.1 Methodology

We evaluate NMAP with Intel Xeon Gold 6134 processor consisting
of eight cores supporting per-core DVFS with 16 P states ranging
from 1.2 GHz (P15) to 3.2 GHz (P0) after disabling hyper-threading
technology. We run eight threads for a memcached and nginx server
on the eight-core processor. For NMAP, we use 10ms as the timer
interval and two thresholds (i.e., NI_TH for Network Intensive
Mode and CU_TH for CPU Utilization based Mode) through our
profiling technique described in Section 4.2.

We use an Intel 82599 NIC with ixgbe driver supporting Receive
Side Scaling (RSS) technology [18] that distributes network packets
across cores. RSS evenly distributes packets in our experimental
setup, thus each core handles almost the same amount of network
loads. We generate three different load-levels (i.e., low, medium, and
high) for memcached and nginx. For memcached, we receive 30K,
290K, and 750K requests per second (RPS) from 20 client threads, re-
spectively. We handle 18K, 48K, and 56K RPS from 20 client threads,
respectively, for nginx. We use the D-Link DXS-1210-12SC 10GbE
switch to connect the server and client. We utilize the Running
Average Power Limit (RAPL) counter that maintains the energy
consumed by a processor package.

For comparison, we use three governors ondemand and perfor-
mance offered by cpufreq driver of Linux, and intel_powersave
governor that is default governor of intel_pstate driver for Intel
processors. The ondemand and the intel_powersave governors
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dynamically adjust the current V/F based on the CPU utilization
while the performance governor statically sets the highest V/F; we
use 10ms sampling interval for ondemand and intel_powersave
governors. We also include the results of three sleep state policies,
disable, menu, and c6only described in Section 5.2.

6.2 Comparison with conventional power
management

Fig. 9 plots wake-up time of ksoftirqd, P state changes, the num-
ber of packets processed in interrupt mode, and the number of
packets processed in polling mode with NMAP. Unlike the onde-
mand governor plotted in Fig. 2, NMAP maximizes the current V/F
at the early part of bursts. Furthermore, NMAP lowers the current
V/F quickly when the ratio of polling to interrupt decreases, re-
ducing energy consumption. Fig. 10 plots the response latency of
every packets during 0.5 second with NMAP while Fig. 11 plots the
CDF of response latency with the same environment. As shown in
Fig. 11, only 0.92% and 0.06% packets with NMAP show the longer
latency than 1ms and 10ms, which are the SLOs of P99 latency for
memcached and nginx, respectively.

Fig. 12 and Fig. 13 plot P99 latency and energy consumption
of intel_powersave, ondemand, performance, and simplified ver-
sion of NMAP exploiting ksoftirqd (denoted as NMAP-simpl), and
NMAP. Those power management policies also co-operate with three
different sleep state policies, menu, disable, and c6only. While
c6only shows the most energy reduction, the sleep state policy
does not make a notable difference in P99 latency. This is because
the wake-up penalty of sleep states (i.e., 27+a(< 26.4)us) do not
have a notable impact on the latency in ms scale as discussed in
Section 5.2. Nevertheless, the sleep state management is a challenge
for latency-critical applications with us scale SLOs and we leave
that discussion to future work.

As plotted in Fig. 12, the performance governor always shows
the shortest tail latency among V/F state management policies while
showing the most energy consumption since it always sets the
highest V/F state. On the contrary, CPU utilization based DVFS gov-
ernors, intel_powersave and ondemand governors, show lower
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f energy consumption.

energy consumption than performance governor, but they violate
the SLOs at medium and high load-levels except for intel_power-
save with disable; note that intel_powersave always operates
cores at PO with disable since it calculates the CPU utilization
based on the residency time at CCO for the next V/F state. For
example, intel_powersave governor shows much longer P99 la-
tency than the SLOs with memcached and nginx by up to 13.1x
and 40.6x, respectively, and ondemand governor also shows much
longer P99 latency than the SLOs by up to 7.4x and 20.9x. NMAP-
simpl satisfies the SLOs at medium load. Compared with ondemand
governor, N\MAP-simpl improves P99 latency of memcached and ng-
inx by up to 33.3% and 31.4% respectively, while consuming more
energy by up to 1.8% and 6.5%. For memcached, compared with
performance governor, NMAP-simpl reduces energy consumption
by 34.8% and 31.8%, respectively, at low and medium load. For ng-
inx, compared with performance governor, NMAP-simpl reduces
energy consumption by 31.4% and 31.5%, respectively, at low and
medium load. However, since transitioning to the Network Inten-
sive Mode in the event of ksoftriqd wake-up is not fast enough
for high load, it fails to satisfy the SLO at the high load. Meanwhile,
NMAP satisfies the SLOs at all loads for memcached and nginx while
reducing the energy consumption considerably by quickly reacting
to the packet bursts based on the polling to interrupt ratio. For
memcached, NMAP reduces the energy consumption by 35.7%, 31.4%,
and 9.1% at low, medium, and high load, respectively, compared
with performance governor. For nginx, NMAP reduces the energy
consumption by 30.4%, 31.3%, and 28.6%, at low, medium, and high
load, respectively, compared with performance governor.

6.3 Comparison with state-of-the-arts,
SLO-aware power managements

Rubik [21] and ;DPM [8] perform long-term online profiling through
statistical models of latency-critical applications. Based on the pro-
filing results, they adjust the V/F state according to the length of
request queues. Adrenaline [16] identifies latency-critical requests
using application-level hints and sets the appropriate V/F state ac-
cording to the latency-critical request rate. These studies assume
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that fast V/F state transition is supported to set the appropriate
V/F state in response to network loads. However, as discussed in
Section 5.1, the commercial processors do not support such fast V/F
transition within several or tens of ys.

NCAP identifies latency-critical requests at programmable NICs.
It periodically measures network loads and maximizes the V/F state
of all cores when it observes the excessive load. NCAP maximizes the
V/F state in the event of network burst and gradually decreases the
V/F based on the periodic monitor, it does not require the very short
latency for V/F state transition. Since NCAP is the simulation-based
study while requiring HW modification, for comparison with NCAP,
we implement a software version of NCAP and tune parameters to
satisfy the SLOs at a high load of each application; the software ver-
sion of NCAP has a slightly longer monitoring period than hardware
implementation of NCAP. For comparison, we also plot the results
of NCAP after enabling menu governor, denoted as NCAP-menu, since
the original NCAP disables the sleep state governor when it detects
the excessive load. We also use menu governor for NMAP.

Fig. 14 and Fig. 15 show P99 latency and energy consumption of
NCAP-menu, NCAP, NMAP-simpl, and NMAP. The results of P99 latency
are normalized to the SLOs, and the results of energy consumption
are normalized to the energy consumed by performance governor
with menu. As plotted, NCAP-menu and NCAP do not show a notable
difference in P99 latency and energy consumption. This is because,
as discussed in Section 5.2, the processor rarely enters the sleep
state in the middle of a request burst.

In terms of P99 latency, NMAP-simpl fails to satisfy the SLO at
high load for both memcached and nginx, whereas NMAP and NCAP
satisfies the SLO for all loads. NMAP shows further energy reduction
than NCAP. NMAP reduces energy by 4.2%, 8.8%, and 9% respectively at
low, medium, and high load of memcached compared with NCAP. In
case of nginx, NMAP reduces energy consumption by 12%, 14.7%, and
11% compared with NCAP. Although NMAP-simpl violates the SLOs
at high load, it also shows further energy reduction compared with
NCAP. NMAP-simpl reduces energy consumption by 2.9%, 9.4%, and
28.7% at loads of memcached compared with NCAP. It also reduces
energy consumption of nginx by 13.2%, 14.8%, and 14.7% compared
with NCAP. These performance benefits are that NMAP operates as
a per-core DVEFS, thereby providing an opportunity for further
energy efficiency improvement, while NCAP operates as chip-wide
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DVES; NCAP operates based on the total network loads at the NIC
while not considering each core’s load. Besides, NMAP, unlike NCAP,
does not require additional hardware, and can be easily integrated
and applied to the commodity systems.

Lastly, we evaluate NMAP with a workload where the load is
changing while comparing NMAP with a long-term DVEFS approach,
Parties [7]; note that NMAP does not require to reset the thresh-
old values as the load changes. We choose a load among the low,
medium, and high load at random and change the load periodi-
cally while running memcached. Parties monitors the tail latency
periodically and adjusts the V/F state based on the slack that is
the difference between the SLO and the measured latency. Such
feedback-based techniques [34, 35] typically have relatively long
decision-making interval since they obtain tail response latency
from clients; Parties decides the V/F state every 500ms. Conse-
quently, such long-term DVFS techniques will fail to react to sudden
request bursts due to their long interval.

Fig. 16 plots the changes in V/F state and response latency of ev-
ery packets for 5 seconds with NMAP and Parties. NMAP maximizes
the V/F state for request bursts while not violating SLO even with
the workload where the load is changing; only 0.18% of requests
with NMAP show the longer latency than the target SLO. On the
other hand, Parties sets the V/F states not enough to handle the
load (e.g., P8) while reacting to the load every 500ms. Consequently,
26.62% of requests with Parties show the longer response latency
than the target SLO.

7 RELATED WORK

Providing energy proportionality using power management tech-
niques is important for reducing the Total Cost of Ownership
(TCO) of data-centers as the data-center servers often show low
average resource utilization (10~50% utilization across different
resources) [4, 12, 22, 28, 43]. DVFS is a representative technology
that provides energy-proportionality to a processor, and many prior
DVES studies [13, 15, 23, 32, 42] propose an approach to improve
the energy efficiency (e.g., EDP (Energy Delay Product)) of CPU
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intensive applications. Recently, with the prevalence of latency-
critical applications, many studies propose approaches to improve
the energy efficiency through DVFS while satisfying SLOs of the
latency-critical applications. We classify existing DVFS studies for
latency-critical applications into short-term DVFS and long-term
DVFS according to the period of V/F state adjustment.
Short-term DVEFS. Adrenaline [16] and TimeTrader [41] pro-
pose DVFS policies that adjust the V/F state for each request. Adren-
aline first calculates the interval between latency-critical requests
through an application-level hint and adjusts the V/F state accord-
ing to the interval. TimeTrader measures the latency of each re-
quest and adjusts the V/F state according to the slack, which is
the difference between the latency and the target SLO. Rubik [21]
and uDPM [8] propose and use the statistical model for setting the
minimum frequency under the given SLO constraints. They show
the improvement of energy efficiency through the evaluation on a
simulated per-core DVFS environment. However, in order to apply
these approaches to current latency-critical applications with high
and varying RPS, there is a limitation that the processor must sup-
port a very short re-transition latency in ys scale. On the contrary,
NMAP proposes the more coarse-grained, but practical mechanism
implemented in NAPI. Consequently, NMAP can be readily applied to
the commercial server processors (e.g., Intel Xeon processor) requir-
ing hundreds of microsecond scale re-transition latency. NCAP [1]
identifies latency-critical requests (e.g., GET requests) through a
programmable NIC and calculates their RPS. If the calculated RPS
value exceeds a certain threshold, NCAP disables the sleep states and
maximizes the V/F state of all cores. Otherwise, the CPU utiliza-
tion based DVFS governor is used. It improves energy efficiency
under the SLO constraints for the chip-wide DVFS environments.
To monitor the network bursts, NCAP requires the hardware modi-
fication and shows the efficiency through full-system simulation.
NMAP considers not only packet loads but also the current packet
processing status of each core operating at a specific P state for
power management without hardware modification. Furthermore,
NMAP inherently supports per-core DVFS processors since each core
processes packets through NAPI individually and simultaneously.
Long-term DVFS. PEGASUS [25] periodically measures the latency
of an application and the computing power of the node - instead
of CPU utilization - and adjusts V/F state by applying a long-
term feedback controller based on the measured latency and power.
SleepScale [24] determines the optimal V/F and sleep states by
predicting the number of requests for future latency-critical ap-
plications every 1 second. PowerChief [44] checks the bottleneck
of the application through the average queuing time and service
time of requests for latency-critical applications every few sec-
onds, and determines the number of instances of the application
or the increase of the V/F state. Twig [35] and Hipster [34] peri-
odically monitor application performance (e.g., latency) and Hard-
ware Performance Counter to improve the energy efficiency of
latency-critical applications, and based on the monitored values,
use reinforcement learning to adjust core allocation and DVFS.
Twig targets homogeneous architecture while Hipster targets het-
erogeneous architecture (e.g., big. LITTLE architecture). Co-PI [20]
periodically co-adjusts the interrupt generation frequency and V/F
state according to the table generated by offline profiling for en-
ergy efficiency of latency-critical applications. Heracles [26] and
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Parties [7] address resource allocation problems when deploy-
ing latency-critical applications and best effort applications with
low priority on a single node. They control not only DVFS but
also the allocation of various computing resources such as core
allocation and cache partitioning in the long term. Additionally,
Parties considers scenarios in which two or more latency-critical
applications are deployed together on a node. IX [5] proposes a
core allocation policy along with power management running on
the top of the customized OS that optimizes network performance.
For latency-critical workloads, IX adjusts the number of cores first,
and then manipulates the V/F state of all cores, i.e., chip-wide DVFS,
every 100ms based on the network queue for an application. Since
the aforementioned studies do not quickly react to load changes
on a server, it is likely to become inefficient for servers running
latency-critical applications with rapidly changing loads.

Power management exploiting sleep state. There have been
studies [2, 9, 31, 40, 45] that reduce energy consumption while
guaranteeing SLO of latency-critical applications using only the
sleep states. They deal with core scheduling for the application [2,
45], modify the sleep state governor [40], or delay the processing of
requests [9, 31], so that each core of the processor can stay in the
deep sleep state for a long time. In our experimental environment
with a few ms scale SLO, the sleep state does not show a huge
difference in tail latency, but we expect a more sophisticated sleep
state management in an environment that requires a few tens of
microsecond scale SLO [3]. We leave it as future work to consider
the sophisticated use of sleep state integrated with DVFS.

8 CONCLUSION

In this paper, we propose NMAP, Network packet processing Mode-
Aware Power management that leverages NAPI modes in the Linux
network software stack to perform SLO-aware, per-core power
management for latency-critical servers. We first investigate the
behavior of NAPI and demonstrate the limitations of the current
CPU utilization based power management techniques. Second, we
analyze the characteristics of power management on commercial
processors and show the limitations of previously proposed short-
term DVEFS techniques. Lastly, we propose and implement NMAP that
piggybacks on the existing NAPI mechanism in Linux to quickly
identify load surges on each core and adjust the V/F state of the
core accordingly. NMAP comes in two flavors: a simplified version
that triggers V/F increase based on the sleep/wake-up events of
ksoftirqd; and a more sophisticated version that makes decisions
based on the ratio of polling to interrupt in NAPI. Our experimental
results show that NMAP satisfies SLOs while consuming significantly
lesser energy compared to performance governor and state-of-the-
art power management, NCAP.
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