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Abstract
1.	 Biodiversity inventory is among the major challenges for conservation biology 

in the face of global change. Species exist in two spaces that are linked in the 
so-called Hutchinsonian Duality: distributions in geographical space and eco-
logical niches in environmental space. We explore implications of using distinct 
methods to select locations for biodiversity inventories, based on this idea of 
two-space distributions.

2.	 We combined empirical and statistical methods to facilitate selecting locali-
ties for biodiversity inventory based on either or both of geographical and en-
vironmental considerations. These approaches were applied to select sites for 
inventory in four example countries. For one of our examples, we tested how 
effective distinct methods were in sampling biodiversity.

3.	 Random and geographically uniform selections are generally biased towards 
the most common environments in the regions; selections aiming for uniform 
sampling of environments are concentrated spatially in areas of high heteroge-
neity in geographical context. Considering disparate geographical distributions 
of environments helped to cover geographical areas more broadly when selec-
tions were environmentally uniform. Generally, sets of sites selected consider-
ing environmental conditions perform better in sampling known biodiversity in 
regions of interest.

4.	 Our results underline the benefits of considering environmental and geographi-
cal conditions when selecting sites on the effectiveness of resulting inventories. 
Our tools, implemented in the r package biosurvey, will help researchers to de-
sign biodiversity survey systems taking into account the Hutchinsonian Duality 
and the crucial considerations that it suggests.

K E Y W O R D S
biodiversity indices, environmental conditions, geographical distance, Hutchinsonian duality, 
sampling bias, species diversity
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1  |  INTRODUC TION

Biodiversity inventory represents an important task in conservation 
biology, given increasing threats related to global change processes 
(Margules & Pressey,  2000; Sarkar et al.,  2006). Although biodi-
versity can be estimated across multiple dimensions, knowledge of 
where each species is distributed, and which species occur together 
in a region (taxon diversity; Cardoso et al.,  2014) is crucial to the 
design and implementation of effective conservation strategies 
(Conroy et al., 2011; Hurlbert & Jetz, 2007). However, inventorying 
biodiversity is a challenging undertaking, requiring significant re-
sources, such that efficient and optimal design of survey and inven-
tory efforts is particularly important (Colwell et al., 1994; Peterson 
& Slade, 1998).

To date, most efforts aimed at selection of areas for survey 
and inventory efforts have been based on proxies and approxi-
mations (Hill et al., 2005); only a few efforts have been made to 
optimize sampling in both geographical and environmental spaces 
(D'Antraccoli et al., 2020; Funk et al., 2005; Hortal & Lobo, 2005; 
Medina et al.,  2013; Velásquez-Tibatá,  2019). As a result, most 
biodiversity patterns derived from inventories include different 
types of biases (Oliveira et al., 2016; Sastre & Lobo, 2009; Yang 
et al.,  2013), which could be prevented if more comprehensive 
considerations are taken when planning systems for inventory. 
Biodiversity inventory is challenging because it requires signif-
icant resources (Balmford & Gaston,  1999), not to mention time 
and effort that are often unavailable. Inventory strategies need 
to consider available resources and logistics, but also geograph-
ical and environmental conditions across the region of interest 
(Morrison et al.,  2008). Geographical conditions are commonly 
considered when planning these strategies because considerations 
of distance, accessibility and survey coverage are evident when 
seeing geographical representations of the areas to be sampled. 
Environmental conditions, however, are less visible, and too often 
are neglected when planning biodiversity inventory efforts (Hortal 
et al., 2015). This focus on geography over environment is none-
theless in contrast to most results from the field of distributional 
ecology, in which ecological niches drive major features of spe-
cies' presences across a region (Soberón & Peterson, 2005). The 
complex relationships between geographical locations and envi-
ronmental conditions underlie the Hutchinsonian Duality (Colwell 
& Rangel,  2009), and are therefore of critical importance when 
planning for systems for biodiversity survey.

Defining which areas to sample to optimize survey and inventory 
efforts is crucial to detecting and documenting more species with 
less effort and expense, thereby obtaining a more complete list of the 
species across a region (Soberón & Llorente, 1993). This efficiency 
is paramount in biodiversity inventory endeavours (Eckblad, 1991; 
Gotelli & Colwell, 2001), and considering both geographical and en-
vironmental spaces could certainly improve the efficacy of these ef-
forts (Hirzel & Guisan, 2002). An early implementation of these ideas 
on biodiversity survey was presented by Austin and Heyligers (1989), 

who proposed a method by which to select sampling transects con-
sidering classes of environmental conditions across an area. Hortal 
and Lobo (2005) proposed another approach using a rule-step site-
allocation procedure, based partially on Faith and Walker's ‘ED’ 
criterion (a framework linking species data and environmental infor-
mation to explore underlying environmental variation related to a 
biological pattern; Faith, 2003; Faith & Walker, 1996). Using similar 
considerations, Funk et al.  (2005) employed a method to comple-
ment survey systems by selecting sampling localities based on a 
survey-gap analysis (see also Medina et al., 2013). These methods 
require certain knowledge of the biodiversity in the region such that 
application in areas where biodiversity data are scarce could be diffi-
cult. More recently, D'Antraccoli et al. (2020) proposed an approach 
that combines considerations of geographical and environmen-
tal distances to select areas for sampling based on considerations 
of both dimensions. Although no previous knowledge of sampling 
in the area was required to select sampling localities, the authors 
demonstrated that the considerations made effectively led to more 
species being sampled.

Here, we present a review of conceptual frameworks, and from 
them derive new methodological approaches to design survey and 
inventory efforts. Our methods are designed to require simple input 
data to select sites efficiently for biodiversity surveys; previous 
knowledge of sampling effort in the region of interest can be used, 
but is not required. Four approaches to site selection are explored, 
represented and tested, one of which is designed specifically to con-
sider the duality of geographical and environmental spaces across 
the region of interest. To allow researchers to apply the approaches 
presented here to any region of interest, we developed software 
tools and have made them available in the r package ‘biosurvey’ 
(Nuñez-Penichet et al., 2021a).

2  |  MATERIAL S AND METHODS

2.1  |  General description

We selected four contrasting countries (Philippines, Mexico, 
Rwanda and Uruguay, roughly in order of decreasing geographical 
and environmental heterogeneity) to explore different survey site-
selection approaches. We used geographical and environmental in-
formation derived from spatial polygons and raster environmental 
layers. Given availability of high-quality distributional data, we used 
Mexico as our primary example with which to test the efficacy of our 
approaches, and to illustrate further analyses that consider reduced 
areas in the region of interest (e.g. areas with primary habitat), and 
use of localities selected a priori (e.g. existing well-surveyed sites) in 
algorithms for site selection.

All analyses described (except for some spatial processes de-
scribed below) were performed in R 4.0.5 (R Core Team, 2021). Data, 
code and guidelines to reproduce all analyses and plots are available 
at https://doi.org/10.6084/m9.figsh​are.14700819.
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2.2  |  Data

We used polygons summarizing the spatial boundaries of Mexico, 
Philippines, Rwanda and Uruguay, obtained from the Natural 
Earth database (https://www.natur​alear​thdata.com/). For Mexico, 
we excluded the two westernmost islands (Clarion Island, Socorro 
Island) to match the area across which information on species' dis-
tributions was available. We also used a mask layer summarizing 
areas of natural vegetation cover in Mexico, obtained by select-
ing categories corresponding to natural land-cover types from the 
layer of land use and vegetation (INEGI, 2016), obtained from the 
geodata portal of the Comisión Nacional para el Conocimiento y 
Uso de la Biodiversidad (CONABIO; http://www.conab​io.gob.mx/
infor​macio​n/gis/). This mask helps to exclude areas that are not 
relevant for analyses as they do not hold natural vegetation (note 
that this feature may or may not be desirable in a given analy-
sis, depending on the goals of that analysis). To reduce computa-
tional time and considering viability and integrity of small habitat 
patches, we removed polygons from this mask with areas <25 km2, 
and simplified the remaining polygons using the algorithm ‘Bend 
simplify’ (tolerance 5 km) in ArcMap 10.5.1. For Mexico, we also 
explored incorporating information on a set of six localities for 
which existing biodiversity inventories were already relatively 
complete (hereafter called ‘preselected sites’; Table S1), a situation 
that we expect will frequently be the case in biodiversity inven-
tory planning.

To represent environmental conditions across the regions of 
interest, we used the bioclimatic variables from the WorldClim da-
tabase 1.4, at a spatial resolution of 2.5′ (~4.5  km; https://www.
world​clim.org/data/v1.4/world​clim14.html; Hijmans et al.,  2005). 
Variables that combine information of temperature and precipita-
tion (i.e. mean temperature of wettest quarter, mean temperature of 
driest quarter, precipitation of warmest quarter and precipitation of 
coldest quarter) were excluded, as they are known to present spatial 
artefacts not corresponding to known discontinuities across geogra-
phy (Escobar et al., 2014).

For analyses and tests of the efficacy of our prioritization ap-
proaches, we used expert-curated species distribution model 
outputs for two target groups, birds and ‘herps’ (amphibians and 
reptiles combined). These distributional summaries were derived 
from species distribution models (SDMs) constructed at 30″ (~1 km) 
spatial resolution, and curated by experts in each of the groups 
(Flores Villela & Ochoa Ochoa, 2010; Navarro-Sigüenza & Gordillo-
Martínez, 2018). The process of curation of SDM results consisted of 
species-by-species inspection of each SDM output for each species. 
Experts in the distributions of each group of Mexican species in-
spected each map in concert, considering the distribution of known 
occurrences, as well as local topography and other geographical 
features. Based on these inspections, SDM outputs were edited to 
produce a relatively conservative view of the likely geographical dis-
tribution of each species (i.e. the equivalent of the occupied distri-
butional area, and not the potential distributional area). This set of 
distributional information is considered to be authoritative, and is 

as close to a summary of actual distributions of species in the coun-
try as is available. Bird data were in raster format, with values of 1 
(suitable) and 0 (unsuitable), whereas herp data were in GeoJSON 
format, with suitable areas represented as polygons. Bird data were 
provided by two of the authors (ATP and AGNS), who developed the 
datasets; herp data layers were obtained from the geodata portal of 
CONABIO (where the bird data are also available). We resampled 
bird data layers to a resolution of 2.5′ to reduce computational de-
mands (aggregation used the modal value of cells involved). We used 
the modal value to assure that the resulting resampled layer will be 
binary, while also avoiding overestimation of the area in which the 
species is most likely to be present. Species of birds for which ranges 
include Mexico only during non-breeding (winter) periods were ex-
cluded from analysis.

2.3  |  Pre-processing

To prepare data for analyses of sampling site selection and testing 
(Figure 1; Figure S1), we started by masking the raster bioclimatic 
variables using the polygons for each of the four countries of inter-
est. For Mexico, we also used a shapefile summarizing areas with 
natural vegetation to mask the raster data layers further (Figure 2). 
After that, a principal components analysis (PCA) was done using 
the values of the layers masked to each country (Figures S2–S6). 
Geographical coordinates derived from raster layers, the environ-
mental values associated, and the first two principal components 
were put together in a single matrix (master matrix) to be used in 
later analyses. For Mexico, the values of the environmental layers 
and the first two principal components (PCs) were also extracted 
to the six preselected sites. Additionally, we separated the environ-
mental space into blocks, this space defined in the two-dimensional 
space of the two first PCs. These blocks were delimited using a grid 
of equal-sized cells, aiming for 25 rows × 25 columns between the 
minimum and maximum of each of the two environmental dimen-
sions (see Figures S7–S8). These blocks figure in one of the analyses 
in which we were selecting regions of environmental space uni-
formly (see Considering environment and geography in selections).

We prepared four presence–absence matrices (PAMs; Arita 
et al.,  2011) for Mexico: two based on bird distributions and two 
based on herp distribution data, and with and without masking to 
areas of natural vegetation (Figures S1, S9 and S10). These PAMs 
will be used later to test effectiveness of sampling site selections 
using derived biodiversity indices (Soberón et al., 2021; Soberón & 
Cavner, 2015).

2.4  |  Selection of sites for biodiversity surveys

We used distinct approaches for sampling site selection to explore 
implications of stratification in geographical (G) and environmental 
(E) dimensions in biodiversity inventory design (Figure  1). G com-
prises the spatial arrangement of coordinates derived from the 
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F I G U R E  1  Schematic workflow of the analysis executed to prepare data and select sampling sites using four approaches. 
E = environmental space; G = geographical space; EG = combined environmental and geographical spaces
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raster layers reduced to the region of interest. E is represented by 
the two PCs deriving from the PCA performed on the bioclimatic 
variables. Our four approaches for site selection were as follows: 
(a) a spatially random selection of points across the area of inter-
est; (b) a selection of sites aiming to achieve uniform coverage of 
the geographical region of interest; (c) a selection of sites aiming to 
achieve uniformity in a two-dimensional environmental space repre-
sented by the two PCs; and (d) a selection to achieve uniformity in 
environmental space, but accounting for geographical clustering of 
environmental regions.

All four approaches to selecting sampling sites were applied 
to the four countries; these processes were applied four times to 
Mexico, to explore implications of masking to natural-vegetation 
areas and of inclusion of a priori well-inventoried sites. In all, in our 
explorations, 30 sampling sites were selected in Mexico, 24 in the 
Philippines and Uruguay, and 20 in Rwanda. The various procedures 
that we employed to explore these methods are described in greater 
detail in the paragraphs that follow.

2.4.1  |  Random selection

Random selection of sites can be achieved easily by picking randomly 
from the entire set of points available in the region. Considering the 
geographical context, under this approach, every point in geography 
has the same probability to be selected. However, seen from an en-
vironmental point of view, classes of environmental conditions (e.g. 
dry or wet, or cold or warm) that are more common in the region of 
interest will be selected with higher probability, and rarer sets of 
conditions will often be left out of the sampling plan (Figure 1). We 

performed these analyses by selecting 100 sets of random points 
and filtering them to keep the set that has the maximum median geo-
graphical distance (MMGD) among points. This step means that the 
‘random’ points are selected with an aim for spatial overdispersion; 
however, this filter is not likely to derive in sites that cover the region 
as uniformly as those from the method that aims explicitly for uni-
formity. For Mexico, an extra set of analyses assessed all 100 sets, to 
understand the variability that can arise from this type of selection 
as regards correspondence to known distributions of species (birds, 
herps). A random selection of one of the 100 sets of points from this 
last example would be an alternative way to keep a purely random 
set of selected sites.

2.4.2  |  Uniformity in geographical space

In this approach, we selected points such that they were overdis-
persed across geography, covering the region of interest as evenly 
as is possible (Figure 1). We used all available points in the master 
matrix as a base, and thinned the mass of points with increasing geo-
graphical distances until we obtained the desired number of points 
(see Thinning process for details). Geographical distances were 
measured after projecting the points with an azimuthal equidistant 
projection centred on the centroid of the region of interest. This 
process of projection makes the values measured approximate geo-
graphical distances, and potential bias increases with distance from 
the centroid. Because the order in which points are selected affects 
the final set of points, replicate analyses result in different sets of 
points. We performed 10 replicates, and used the one that had the 
MMGD among points.

F I G U R E  2  Representation of Mexico 
in geographical (top) and environmental 
spaces (bottom), for the full extent of the 
country (left) and the country masked 
to places presenting natural vegetation 
(right). The first two principal components 
(PC) of layers representing bioclimatic 
conditions in Mexico are used to 
visualize two major dimensions of the full 
environmental space
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2.4.3  |  Uniformity in environmental space

The principle of this type of selection is similar to the previous one, in 
the sense that points are selected based on distances and a thinning 
routine. However, here, the goal of this sampling is to select points 
evenly considering the environmental conditions present across the 
region of interest (Figure 1). Euclidean distances are measured in a 
space represented by two environmental axes, in this case, the two 
first PCs obtained from bioclimatic layers. Again, this analysis can be 
produced with replicates that result in distinct outcomes, so we used 
10 replicates and selected the set with the MMGD among points.

2.4.4  |  Considering environment and geography 
in selections

To perform a selection that combines considerations of environmen-
tal and geographical characteristics in the region of interest (termed 
‘EG selections’), we used a multistep procedure. First, we selected 
a predefined number of blocks (see Pre-processing) configured to 
maximize uniformity in environmental space (see Thinning process-
ing). Once environmental-space blocks were selected, the geo-
graphical pattern of all points falling in each environmental-space 
block was explored to detect whether these points were grouped in 
one or more geographical-space clusters. To this end, we measured 
geographical distances among a random sample of the points in the 
block; whenever multimodality was detected, based on a unimodal-
ity test (Hartigan, 1985), a clustered pattern was assumed. Clusters 
were then hierarchically assigned based on the distance between 
largest modes in the distribution of all geographical distances. For 
blocks with clustered geographical patterns, the two largest clusters 
(i.e. those including more points) were identified, and one point was 
selected from each (Figures 1; Figure S11)—we selected points from 
each cluster as those closest to the centroid of each group of points 
in environmental space. This process was repeated for all blocks se-
lected. The final number of sites selected can, therefore, be larger 
than the initial number of blocks defined, if geographical clusters 
are numerous within environmental-space blocks. The reasoning be-
hind using more than one point per environmental block, if several 
clusters are detected, is that similar environments can be found in 
distant, disjunct areas, which will often host distinct biotic commu-
nities. The sets of blocks selected at the beginning of this approach 
can be different if the process is replicated. We used 10 replicates, 
and selected the replicate with the set of points that had the MMGD 
in environmental space among points.

2.4.5  |  Thinning process

This process is performed in our three methods aiming to create sets 
of overdispersed points in geographical or environmental spaces. 
The cloud of points (all of them for uniformity in E or G, or only 
block centroids in EG selections) is explored to identify which points 

are too close given a threshold distance. Once groups of too-close 
points are identified, only one point of each group is retained. The 
number of points remaining is counted; if there are more points than 
is needed, the threshold distance is increased; otherwise, it is de-
creased. The value to be added to or subtracted from the threshold 
distance is adjusted if at a certain point it is not possible to reach 
the number of points needed after thinning. These processes are re-
peated until the desired number of points is reached. To find points 
that are closer than the threshold distance, we used the r package 
spatstat.geom (Baddeley et al.,  2016; Baddeley & Turner,  2005). As 
multiple distances need to be explored to obtain the number of 
points required, the analyses are performed in a conditional loop. As 
every time this algorithm is run, the points used to start measuring 
distances can change, multiple answers can be obtained if the entire 
process is repeated. We programmed this routine such that repli-
cates can be performed when selecting points for sampling.

2.4.6  |  Using preselected sites in selections

All for approaches to site selection were described in the paragraphs 
above as if preselected sites were not considered. However, in many 
or most regions, valuable information derived from previous sam-
pling efforts exists already for some areas. Such information may be 
complete enough that researchers would wish to include those areas 
in the set of sites selected, to take advantage of the already-existing 
information.

To include preselected sites when points are selected randomly, 
we randomly choose a number of points equal to the total number 
required minus the number of preselected sites. After that, random 
sites and preselected sites were combined. When sampling sites 
were selected to achieve uniformity in geographical or environmen-
tal spaces, all points closer than a certain distance from the selected 
sites (in the corresponding space) were excluded before the process 
of selection began. Exclusion of points was done based on environ-
mental blocks when environment and geography were considered 
together in selections. Excluding points around preselected sites 
guarantees that all sites selected using the approaches described 
above meet the requirement that they be distributed uniformly, but 
also are distanced enough from preselected sites to maintain that 
uniformity.

However, as preselected sites must be included and do not nec-
essarily follow the distance criterion, they may or may not be as uni-
formly distributed as if they were not included. The distance used 
to exclude points that are too close to preselected sites is selected 
using a multistep thinning process that results in the desired total 
number of points when filtering all points in the region of interest.

2.5  |  Testing effectiveness of selections

We emphasize that testing the effectiveness of our site-selection ap-
proaches can be done only in the relatively rare cases in which reliable 
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information about species' geographical distributions is available. In 
this case, we compared the completeness of inventories among dis-
tinct sets of sampling sites selected, based on the near-unique dis-
tributional summaries available for all birds and herps in Mexico. To 
perform these comparisons, we associated the sites selected to the 
cells of the PAMs that overlapped geographically. This step allowed us 
to obtain subsets of the PAMs for each set of sites selected.

Using this information, we created plots of pairwise comparisons 
of species accumulation curves (Soberón & Llorente, 1993) derived 
from the subsets of the PAMs corresponding to each of the sets of 
sites selected. The number of species and shape of these curves were 
inspected to understand which site-selection approaches resulted in 
more complete inventories. We also calculated dissimilarities (Jaccard 
indices; Faith et al.,  1987) among communities of species sampled 
using distinct sets of sites to explore patterns among results from dis-
tinct site-selection approaches. All of these analyses are presented 
for the example of birds and herps from Mexico, with and without 
masking to natural areas and with and without preselected sites.

3  |  RESULTS

3.1  |  Initial results

Using the two first principal components allowed us to summarize 
the variance from environmental conditions across the regions of 
interest (Mexico 74% with no mask, 72% with mask; Philippines 
67%; Rwanda 94%; and Uruguay 77%). For Mexico, the two-
dimensional cloud of environmental conditions had an oblong 
shape, with density focused at higher values of both principal 
components (Figure  2). This shape shifted slightly when Mexico 
was masked to areas with native vegetation (Figure 2). The other 
three countries also had odd shapes, with gaps, infoldings and 
strings of outlying points (Figures S2–S6). Distinct numbers of en-
vironmental blocks were obtained despite initial grids having the 
same number of rows and columns, owing to lack of representa-
tion of environments in some of the initial grid cells (Mexico: no 
mask 311, with mask 293; Philippines 298; Rwanda 160; Uruguay 
222; Figures S7–S8).

The PAMs created for the whole of Mexico had 3448 and 3038 
cells for the country masked to natural vegetation, respectively. 
Highest bird species richness was in the southeastern parts of the 
country (lowlands to medium elevations), whereas highest herp 
richness was associated with tropical montane areas of the country 
(Figures S9 and S10). Maximum values of species richness for birds 
were 491 (no mask) and 489 (with mask), whereas values of 207 (no 
mask) and 203 (with mask) were found for herps.

3.2  |  Selected sites

Each of the approaches resulted in different sets of sites selected, 
although relatively similar distributions of points were observed only 

in environmental space for random selections and geographical uni-
formity. Some similarity of selections was also noted between ap-
proaches aiming for environmental uniformity and the EG selections 
that consider both spaces (Figures 3 and 4; Figures S12–S17). In gen-
eral, all random selections were biased towards the most common 
environments across the region (e.g. compare the upper-left panel of 
Figure 3 with the lower panels in Figure 2), although the geographi-
cal position of points was not biased towards any particular area. 
Sites selected aiming for uniformity in geography showed the de-
sired geographical pattern in all examples, but were biased towards 
the environments most common in the region.

Selections aiming for uniformity in environmental space covered 
the set of environments present in the regions of interest uniformly. 
However, this type of selection turned out to be rather biased in 
geographical space. That is, records were highly clumped geograph-
ically, in areas of high environmental heterogeneity. The pattern of 
sites selected with EG selections resembled that of sites selected 
aiming for uniformity in environmental space, although some areas 
of this space were represented by two points instead of just one. 
In geography, EG selections still looked somewhat biased towards 
highly environmentally heterogeneous areas, but more broadly dis-
tributed compared to uniformity in environmental space (Figure 3; 
Figures S12–S17).

3.3  |  Effectiveness of selected sites

In general, bird species were represented in our selections more 
completely and efficiently than herps (Figures  5; Figures S18 and 
S19). Relating our site-selection results to observed distributional 
patterns of species for Mexico, random selections of points gen-
erally showed the worst performance in terms of total number of 
species sampled and how efficiently the species were sampled. That 
is, random selections consistently required sampling more sites 
to recover similar numbers of species than the other approaches 
(Figure 5; Figures S18 and S19). Sites selected seeking for uniform-
ity in geography performed slightly better than random selections 
in terms of effectiveness. EG selections and selections aiming for 
uniformity in environmental space generally showed the best per-
formance in our tests, for both birds and herps.

We assessed the effects of different individual random selec-
tions of sites, such that the 100 random sets of sites were compared 
with results of other selection approaches. These analyses showed 
that only a few of the random-site sets performed comparably to the 
other approaches, most again performing poorly, with fewer spe-
cies represented and more samples required (Figure S20). However, 
selecting such best-performing random selections is not feasible if 
high-quality testing data are not available, which is the case for most 
situations in which these methods will be applied. Considering com-
munity dissimilarities, sites selected randomly and those aiming for 
uniformity in G were usually more similar to each other than to sites 
selected with partial or full consideration of representation of envi-
ronments (Figures S21 and S22).
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3.4  |  Effects of mask and preselected sites

The use of a mask to restrict our analyses in Mexico reduced the 
geographical area over which analyses were performed considerably 
(by 48%), which also translated into a reduction of the environmental 
space under analysis (Figure 2). This change had two major effects: 
(a) computational time required for execution of the site-selection 
analyses decreased when using the mask. Perhaps more impor-
tantly, (b) the sets of points available for selection were restricted to 
more relevant areas for at least some biodiversity surveys (Figure 3; 

Figures S12 and S14). The effect of using a mask in terms of effi-
ciency in representing species could be observed in all of our results; 
this effect is more clearly noticeable when comparing species curves 
obtained with random selections and other methods with or without 
the mask (Figure  5; Figures S18 and S19). Regarding the effect of 
masking the region of interest on the PAMs obtained for the two 
taxa, cells with maximum values of richness were affected slightly, 
but the general pattern was similar (Figures S9 and S10).

Preselected sites affected results of selections positively, at least in 
the Mexican example that we explored in detail (i.e. if those sites were 

F I G U R E  3  Representation of 30 
sampling sites selected based on four 
different approaches for sites across 
Mexico. Sampling localities were 
selected considering the mask to natural 
vegetation cover for the country, 
and with sites selected a priori based 
on their importance for biodiversity 
monitoring. E = environmental 
space; G = geographical space; 
EG = environmental and geographical 
spaces; PC = principal component
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highly similar to one another, it could affect selection efficiency neg-
atively). When selections did not consider environmental conditions, 
sites selected a priori extended the coverage of environmental space; 
when geography did not play a major role in selections, preselected sites 
allowed site-selection results to cover some areas that were not consid-
ered otherwise (Figure 3; Figures S12 and S14). Results viewed in terms 
of effectiveness were perhaps where the effects of preselection of sites 
could be seen most clearly. The effects of using preselected sites or not 
in random selections were clear despite lower performance in general 
compared to other approaches (Figures 5; Figures S18 and S19). The use 
of preselected sites greatly improved the ability of random selections to 
sample more species with fewer sampling sites, especially for amphibi-
ans and reptiles (Figure 5), again at least in the Mexican example.

4  |  DISCUSSION

All four site-selection approaches explored in this study resulted 
in sets of selected sites that met our design expectations in terms 
of distribution in geographical and/or environmental spaces. 
Although our maximum median geographical distance (MMGD) 
approach optimized all of our selections, differences arising from 
using distinct approaches were evident. Perhaps the major takea-
way lesson is that explicit exploration of existing environmental 
conditions can give a better idea of the challenge of designing 
a system of sites that allows efficient biodiversity inventory 
and monitoring (D'Antraccoli et al.,  2020; Hortal & Lobo,  2005; 
Velásquez-Tibatá, 2019).

F I G U R E  4  Examples of sampling sites 
selected for Philippines (N = 24), Rwanda 
(N = 20) and Uruguay (N = 24) represented 
in environmental (left) and geographical 
(right) spaces. Note that distinct 
methods for site selection are shown 
for each country. Purple dots represent 
sites selected; E = environmental 
space; G = geographical space; 
EG = environmental and geographical 
spaces; PC = principal component. See 
other results in Figures S15–S17
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This observation is precisely why bringing ideas from the 
Hutchinsonian Duality (Colwell & Rangel, 2009) into consideration 
is helpful in site-selection exercises. Because species' geograph-
ical distributions and consequent biodiversity patterns are related 
closely to geographical configurations of environmental condi-
tions, considering such conditions in planning biodiversity surveys 
is logical. However, geographical patterns must not be ignored, as 
biogeographical barriers may also be important drivers of patterns 
of species' distributions in geographically complex areas (e.g. the 
Philippines). Although we do not see a scenario under which random 
selection of survey sites would be preferable over other approaches, 
researchers should explore options and make decisions based on 
their knowledge of the region of interest, the variables used to rep-
resent environmental conditions, and the biology and biogeography 
of the taxa of interest.

Although tests of site-selection effectiveness were performed 
only for Mexico, for lack of detailed species distributional informa-
tion in other regions, they illustrated how well different site selections 
would be able to sample regional biodiversity. Some approaches per-
formed better than others, but again, choice of selection approach 
should not be based on this example, but rather on the specific con-
ditions of each region and taxon under study. Our intuition is that 
biogeographically complex regions (e.g. Philippines) will be sampled 
better by site-selection approaches that consider geography (perhaps 
in tandem with environments), but that less complex regions (e.g. 
Uruguay, Rwanda) will emphasize the importance that environmental 
variation is considered. In cases in which high-quality information is 
available about species' distributions, the tests applied in the exam-
ple of Mexico offer a quantitative way to choose an approach. This 
type of data can also be used to explore the effects of using more or 

F I G U R E  5  Comparison of species accumulation curves derived from presences and absences of bird and amphibian and reptile 
species in sampling sites selected using four distinct approaches for Mexico masked to areas holding natural vegetation. Results with and 
without preselected sites are shown. E = environmental space; G = geographical space; EG = environmental and geographical spaces; 
CI = confidence intervals
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fewer points in the set of sampling sites to be selected. Our results 
of effectiveness show that, depending on the taxon of interest, using 
more points may be necessary (see herp results; Figure 5; Figure S19), 
although this parameter in the planning of biodiversity inventory ef-
forts may be restricted by resources available.

We also found that the use of preselected sites, corresponding to 
sites already well inventoried, and a mask to restrict analysis to sites 
that are interesting and/or accessible, has positive effects on the ef-
fectiveness of the set of selected sites. These ideas have been ex-
plored in previous studies (Funk et al., 2005; Hortal & Lobo, 2005; 
Medina et al., 2013), in which definition of areas suitable or unsuit-
able for surveys, and use of existing information from previous sur-
veys play critical roles in implementation of methods for sampling 
site selection (see also Gillespie et al., 2017; Hoffmann et al., 2019; 
Tessarolo et al., 2021; Xu et al., 2017). In the example presented, our 
mask was used to focus analyses in areas with natural vegetation 
in Mexico. However, many other factors that could limit surveys or 
favour selections can be considered when preparing a mask, for in-
stance, considering accessibility (e.g. distance to roads) and excluding 
developed areas or other sites that are not relevant in sampling the 
taxon of interest.

Preselected sites are perforce included as part of the final set 
of sites obtained from any of the site-selection approaches; for this 
reason, they alter selection of additional sites. An a priori selection 
of sites to be included as part of final sets of sampling sites is, there-
fore, an important task and needs to be done based on appropriate 
considerations. Depending on the taxon of interest and availability 
of data, researchers could benefit greatly from this option to im-
prove how sites are selected. Final selections will consider not only 
the environmental and/or geographical conditions across the region 
of interest, but also another filter that relates to the existing knowl-
edge of biodiversity in the area (Peterson et al., 2016).

The idea of considering both geographical and environmental di-
mensions in sampling site selection has been explored previously in 
the development of tools that facilitate this task. The main consider-
ations explored in our approaches are shared among some of these 
previous proposals, especially those of Hortal and Lobo (2005), Funk 
et al. (2005) and Medina et al. (2013). That is, a region of interest is 
explored in both relevant spaces, areas that are relevant for explora-
tion are delimited, and previous survey data are used to understand 
where the survey gaps are located. Consideration of knowledge de-
rived from previous sampling efforts is also present in a more recent 
development by Velásquez-Tibatá (2019), in which this information 
is combined with environmental data to identify environmental re-
gions underrepresented in existing inventories (see also Tessarolo 
et al., 2021). More recently, D'Antraccoli et al.  (2020) proposed an 
approach to search for environmental distance-optimized random 
points, a simple approach that also seeks for sites that could lead 
to better surveys. The approaches that we have explored and im-
plemented here differ from previous approaches in various aspects. 
First, although we also allowed the use of sites selected a priori and a 
mask for the region of interest when performing sampling site selec-
tions, these inputs are not required, so our methods can be extended 

to areas where these data are not readily available. Second, the 
analyses used to select sites than sample comprehensively in envi-
ronmental space or in both spaces are different; our implementa-
tions are based on thinning procedures that are faster than other 
statistical approaches and similarly effective. Finally, the high level 
of automation reached in the implementation of our tools in the r 
package biosurvey, makes the application of the methods presented 
here easier for researchers interested in selecting sampling sites in 
different regions of the planet.

The methods explored here were applied to examples of relatively 
large regions, but they can be applied to smaller regions (e.g. prov-
inces or river basins). However, we would expect that biogeographical 
limitations will be of reduced importance on smaller spatial extents, 
and environmental considerations will be increasingly relevant. Also, 
the environmental variables required to characterize conditions 
across such smaller regions should be selected accordingly (Storch 
et al., 2007). For instance, instead of climatic datasets that may not 
be relevant because they do not show major or pronounced variation 
across smaller regions (Peterson & Soberón,  2018), environmental 
data related to habitat, vegetation characteristics or substrate, often 
derived from remote sensing data, could be more appropriate.

One important process in performing some of the analysis is the 
filtering (thinning) of points based on geographical distances. As this 
process is executed over points converted to a geographical projec-
tion that suits distance calculations (Azimuthal Equidistant projection), 
a limitation may arise for very large areas. Because we summarize 
environmental dimensions in the region of interest using a PCA, the 
initial set of environmental layers should not be categorical or dis-
crete. Considering that some environmental factors of interest may 
be represented in categories, this limitation may be important in some 
applications. Using a mask to restrict analysis to certain categories of 
environments may offer an option to deal with this obstacle.

We consider a sampling site as each independent unit of the set 
of localities for sampling selected using the approaches presented. 
Depending on the taxa of interest and other aspects that determine 
sampling effort directly (e.g. human resources, periodicity of sam-
pling and sampling coverage), different survey (sampling) methods 
can be used (Cutko, 2009; Hill et al., 2005; Morrison et al., 2008). 
Importantly, the answers that can be obtained with these tools can 
be considered initial options and could be explored and refined 
in greater depth when defining final sets of sites for survey. For 
instance, as the geographical coordinates of selected sites derive 
from raster layers, actual geographical locations of sites could be 
modified to consider local characteristics of each area that facilitate 
accessibility and/or feasibility of sampling depending on the taxa of 
interest, resources and the methods to be used.

ACKNOWLEDG EMENTS
We thank the Comisión Nacional para el Uso y Conocimiento de la 
Biodiversidad (CONABIO), especially Raul Sierra, for providing us with 
the distributional data for Mexican herps. C.N.-P. was supported by 
the John M. Deal Entomology Scholarship Fund, the R. H. Beamer 
Scholarship Fund and the Deal Scholarship Fund, from the Entomology 

 2041210x, 2022, 7, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13869 by U
niversity O

f K
ansas, W

iley O
nline Library on [27/10/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



1606  |   Methods in Ecology and Evolu
on NUÑEZ-pENICHET et al.

Endowment Committee and the Department of Ecology and 
Evolutionary Biology, University of Kansas. The biosurvey package was 
initially developed by CNP during the 2020 Google Summer of Code 
program (R Organization). C.N.-P., M.E.C. and A.T.P. were partially sup-
ported by a grant from the National Science Foundation (IIA-1920946).

CONFLIC T OF INTERE S T
The authors declare no conflicts of interest.

AUTHORS'  CONTRIBUTIONS
C.N.-P., M.E.C., J.S. and A.T.P. participated in method design; C.N.-P., 
M.E.C., J.S., T.G., N.B., V.B. and A.T.P. participated in software design; 
A.T.P. and A.G.N.-S. created and provided data for testing methods; 
C.N.-P. and M.E.C. executed the analyses. All authors participated in 
the manuscript preparation.

PEER RE VIE W
The peer review history for this article is available at https://publo​
ns.com/publo​n/10.1111/2041-210X.13869.

DATA AVAIL ABILIT Y S TATEMENT
Data, code and a more detailed description of methods needed to 
reproduce all analyses are available at https://doi.org/10.6084/
m9.figsh​are.14700819 Nuñez-Penichet et al. (2021b).

ORCID
Claudia Nuñez-Penichet   https://orcid.org/0000-0001-7442-8593 
Marlon E. Cobos   https://orcid.org/0000-0002-2611-1767 
Jorge Soberón   https://orcid.org/0000-0003-2160-4148 
Tomer Gueta   https://orcid.org/0000-0003-1557-8596 
Narayani Barve   https://orcid.org/0000-0002-7893-8774 
Vijay Barve   https://orcid.org/0000-0002-4852-2567 
Adolfo G. Navarro-Sigüenza   https://orcid.
org/0000-0003-2652-7719 
A. Townsend Peterson   https://orcid.org/0000-0003-0243-2379 

R E FE R E N C E S
Arita, H. T., Christen, A., Rodríguez, P., & Soberón, J. (2011). The 

presence-absence matrix reloaded: The use and interpretation of 
range-diversity plots. Global Ecology and Biogeography, 21(2), 282–
292. https://doi.org/10.1111/j.1466-8238.2011.00662.x

Austin, M. P., & Heyligers, P. C. (1989). Vegetation survey design for 
conservation: Gradsect sampling of forests in North-Eastern New 
South Wales. Biological Conservation, 50(1), 13–32. https://doi.
org/10.1016/0006-3207(89)90003​-7

Baddeley, A., Rubak, E., & Turner, R. (2016). Spatial point patterns: 
Methodology and applications with R. CRC Press.

Baddeley, A., & Turner, R. (2005). Spatstat: An R package for analyzing 
spatial point patterns. Journal of Statistical Software, 12(1), 1–42. 
https://doi.org/10.18637/​jss.v012.i06

Balmford, A., & Gaston, K. J. (1999). Why biodiversity surveys are good 
value. Nature, 398(6724), 204–205. https://doi.org/10.1038/18339

Cardoso, P., Rigal, F., Borges, P. A. V., & Carvalho, J. C. (2014). A new 
frontier in biodiversity inventory: A proposal for estimators of phy-
logenetic and functional diversity. Methods in Ecology and Evolution, 
5(5), 452–461. https://doi.org/10.1111/2041-210X.12173

Colwell, R. K., Coddington, J. A., & Hawksworth, D. L. (1994). Estimating ter-
restrial biodiversity through extrapolation. Philosophical Transactions 
of the Royal Society of London B, 345(1311), 101–118. https://doi.
org/10.1098/rstb.1994.0091

Colwell, R. K., & Rangel, T. F. (2009). Hutchinson's duality: The once 
and future niche. Proceedings of the National Academy of Sciences 
of the United States of America, 106(2), 19651–19658. https://doi.
org/10.1073/pnas.09016​50106

Conroy, M. J., Runge, M. C., Nichols, J. D., Stodola, K. W., & Cooper, R. 
J. (2011). Conservation in the face of climate change: The roles of 
alternative models, monitoring, and adaptation in confronting and 
reducing uncertainty. Biological Conservation, 144(4), 1204–1213. 
https://doi.org/10.1016/j.biocon.2010.10.019

Cutko, A. (2009). Biodiversity inventory of natural lands: A how-to manual 
for foresters and biologists. NatureServe.

D'Antraccoli, M., Bacaro, G., Tordoni, E., Bedini, G., & Peruzzi, L. (2020). 
More species, less effort: Designing and comparing sampling 
strategies to draft optimised floristic inventories. Perspectives in 
Plant Ecology, Evolution and Systematics, 45, 125547. https://doi.
org/10.1016/j.ppees.2020.125547

Eckblad, J. W. (1991). How many samples should be taken? Bioscience, 
41(5), 346–348. https://doi.org/10.2307/1311590

Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G., & Peterson, A. T. (2014). 
Potential for spread of the white-nose fungus (Pseudogymnoascus 
destructans) in the Americas: Use of maxent and NicheA to assure 
strict model transference. Geospatial Health, 9(1), 221–229. https://
doi.org/10.4081/gh.2014.19

Faith, D. P. (2003). Environmental diversity (ED) as surrogate information 
for species-level biodiversity. Ecography, 26(3), 374–379. https://
doi.org/10.1034/j.1600-0587.2003.03300.x

Faith, D. P., Minchin, P. R., & Belbin, L. (1987). Compositional dissimilarity 
as a robust measure of ecological distance. Vegetatio, 69(1), 57–68. 
https://doi.org/10.1007/BF000​38687

Faith, D. P., & Walker, P. A. (1996). Environmental diversity: On the best-
possible use of surrogate data for assessing the relative biodiver-
sity of sets of areas. Biodiversity and Conservation, 5(4), 399–415. 
https://doi.org/10.1007/BF000​56387

Flores Villela, O., & Ochoa Ochoa, L. (2010). Áreas potenciales de distribu-
ción y GAP análisis de la herpetofauna de México (p. 23). Universidad 
Nacional Autónoma de México. Facultad de Ciencias. Informe final 
SNIB-CONABIO proyecto No. DS009.

Funk, V. A., Richardson, K. S., & Ferrier, S. (2005). Survey-gap analysis in expe-
ditionary research: Where do we go from here? Biological Journal of the 
Linnean Society, 85(4), 549–567. https://doi.org/10.1111/j.1095-8312.​
2005.00520.x

Gillespie, M. A. K., Baude, M., Biesmeijer, J., Boatman, N., Budge, G. E., 
Crowe, A., Memmott, J., Morton, R. D., Pietravalle, S., Potts, S. G., 
Senapathi, D., Smart, S. M., & Kunin, W. E. (2017). A method for 
the objective selection of landscape-scale study regions and sites 
at the national level. Methods in Ecology and Evolution, 8(11), 1468–
1476. https://doi.org/10.1111/2041-210X.12779

Gotelli, N. J., & Colwell, R. K. (2001). Quantifying biodiversity: Procedures 
and pitfalls in the measurement and comparison of species rich-
ness. Ecology Letters, 4(4), 379–391. https://doi.org/10.1046/
j.1461-0248.​2001.00230.x

Hartigan, P. M. (1985). Computation of the dip statistic to test for uni-
modality. Journal of the Royal Statistical Society C, 34(3), 320–325. 
https://doi.org/10.2307/2347485

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). 
Very high resolution interpolated climate surfaces for global land 
areas. International Journal of Climatology, 25(15), 1965–1978. 
https://doi.org/10.1002/joc.1276

Hill, D., Fasham, M., Tucker, G., Shewry, M., & Shaw, P. (2005). Handbook 
of biodiversity methods: Survey, evaluation and monitoring. Cambridge 
University Press.

 2041210x, 2022, 7, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13869 by U
niversity O

f K
ansas, W

iley O
nline Library on [27/10/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://publons.com/publon/10.1111/2041-210X.13869
https://publons.com/publon/10.1111/2041-210X.13869
https://doi.org/10.6084/m9.figshare.14700819
https://doi.org/10.6084/m9.figshare.14700819
https://orcid.org/0000-0001-7442-8593
https://orcid.org/0000-0001-7442-8593
https://orcid.org/0000-0002-2611-1767
https://orcid.org/0000-0002-2611-1767
https://orcid.org/0000-0003-2160-4148
https://orcid.org/0000-0003-2160-4148
https://orcid.org/0000-0003-1557-8596
https://orcid.org/0000-0003-1557-8596
https://orcid.org/0000-0002-7893-8774
https://orcid.org/0000-0002-7893-8774
https://orcid.org/0000-0002-4852-2567
https://orcid.org/0000-0002-4852-2567
https://orcid.org/0000-0003-2652-7719
https://orcid.org/0000-0003-2652-7719
https://orcid.org/0000-0003-2652-7719
https://orcid.org/0000-0003-0243-2379
https://orcid.org/0000-0003-0243-2379
https://doi.org/10.1111/j.1466-8238.2011.00662.x
https://doi.org/10.1016/0006-3207(89)90003-7
https://doi.org/10.1016/0006-3207(89)90003-7
https://doi.org/10.18637/jss.v012.i06
https://doi.org/10.1038/18339
https://doi.org/10.1111/2041-210X.12173
https://doi.org/10.1098/rstb.1994.0091
https://doi.org/10.1098/rstb.1994.0091
https://doi.org/10.1073/pnas.0901650106
https://doi.org/10.1073/pnas.0901650106
https://doi.org/10.1016/j.biocon.2010.10.019
https://doi.org/10.1016/j.ppees.2020.125547
https://doi.org/10.1016/j.ppees.2020.125547
https://doi.org/10.2307/1311590
https://doi.org/10.4081/gh.2014.19
https://doi.org/10.4081/gh.2014.19
https://doi.org/10.1034/j.1600-0587.2003.03300.x
https://doi.org/10.1034/j.1600-0587.2003.03300.x
https://doi.org/10.1007/BF00038687
https://doi.org/10.1007/BF00056387
https://doi.org/10.1111/j.1095-8312.2005.00520.x
https://doi.org/10.1111/j.1095-8312.2005.00520.x
https://doi.org/10.1111/2041-210X.12779
https://doi.org/10.1046/j.1461-0248.2001.00230.x
https://doi.org/10.1046/j.1461-0248.2001.00230.x
https://doi.org/10.2307/2347485
https://doi.org/10.1002/joc.1276


    |  1607Methods in Ecology and Evolu
onNUÑEZ-pENICHET et al.

Hirzel, A., & Guisan, A. (2002). Which is the optimal sampling strategy for 
habitat suitability modelling. Ecological Modelling, 157(2), 331–341. 
https://doi.org/10.1016/S0304​-3800(02)00203​-X

Hoffmann, S., Steiner, L., Schweiger, A. H., Chiarucci, A., & Beierkuhnlein, 
C. (2019). Optimizing sampling effort and information con-
tent of biodiversity surveys: A case study of alpine grassland. 
Ecological Informatics, 51, 112–120. https://doi.org/10.1016/j.
ecoinf.2019.03.003

Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. 
M., & Ladle, R. J. (2015). Seven shortfalls that beset large-scale 
knowledge of biodiversity. Annual Review of Ecology, Evolution, and 
Systematics, 46(1), 523–549. https://doi.org/10.1146/annur​ev-
ecols​ys-11241​4-054400

Hortal, J., & Lobo, J. M. (2005). An ED-based protocol for optimal sam-
pling of biodiversity. Biodiversity and Conservation, 14(12), 2913–
2947. https://doi.org/10.1007/s1053​1-004-0224-z

Hurlbert, A. H., & Jetz, W. (2007). Species richness, hotspots, and the 
scale dependence of range maps in ecology and conservation. 
Proceedings of the National Academy of Sciences of the United States 
of America, 104(33), 13384–13389. https://doi.org/10.1073/
pnas.07044​69104

INEGI. (2016). Conjunto de Datos Vectoriales de Uso de Suelo y Vegetación 
(1st ed.) [Map]. Instituto Nacional de Estadística y Geografía. 
Retrieved from http://www.conab​io.gob.mx/infor​macio​n/metad​
ata/gis/usv25​0s6gw.xml?_httpc​ache=yes&_xsl=/db/metad​ata/
xsl/fgdc_html.xsl&_inden​t=no

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. 
Nature, 405(6783), 243–253. https://doi.org/10.1038/35012251

Medina, N. G., Lara, F., Mazimpaka, V., & Hortal, J. (2013). Designing 
bryophyte surveys for an optimal coverage of diversity gradi-
ents. Biodiversity and Conservation, 22(13), 3121–3139. https://doi.
org/10.1007/s1053​1-013-0574-5

Morrison, M. L., Block, W. M., Strickland, M. D., Collier, B. A., & Peterson, M. 
J. (Eds.) (2008). Sample survey strategies. In Wildlife study design (pp. 
137–197). Springer. https://doi.org/10.1007/978-0-387-75528​-1_4

Navarro-Sigüenza, A. G., & Gordillo-Martínez, A. (2018). Mapas de 
distribución de las aves terrestres nativas de Mesoamérica (p. 30). 
Universidad Nacional Autónoma de México. Facultad de Ciencias. 
Informe final SNIB-CONABIO, proyecto No. JM071.

Nuñez-Penichet, C., Cobos, M. E., Soberón, J., Gueta, T., Barve, N., 
Barve, V., Navarro-Sigüenza, A. G., & Peterson, A. T. (2021a). 
Biosurvey: Tools for biological survey planning. R package. Retrieved 
from https://CRAN.R-proje​ct.org/packa​ge=biosu​rvey

Nuñez-Penichet, C., Cobos, M. E., Soberón, J., Gueta, T., Barve, N., 
Barve, V., Navarro-Sigüenza, A. G., & Peterson, A. T. (2021b). 
Data from: Supplementary material: Selection of sampling sites 
for biodiversity inventory: Effects of environmental and geo-
graphic considerations. figshare, https://doi.org/10.6084/m9.
figsh​are.14700819

Oliveira, U., Paglia, A. P., Brescovit, A. D., de Carvalho, C. J. B., Silva, 
D. P., Rezende, D. T., Leite, F. S. F., Batista, J. A. N., Barbosa, J. P. 
P. P., Stehmann, J. R., Ascher, J. S., de Vasconcelos, M. F., Marco, 
P. D., Löwenberg-Neto, P., Dias, P. G., Ferro, V. G., & Santos, A. 
J. (2016). The strong influence of collection bias on biodiversity 
knowledge shortfalls of Brazilian terrestrial biodiversity. Diversity 
and Distributions, 22(12), 1232–1244. https://doi.org/10.1111/
ddi.12489

Peterson, A. T., Navarro-Sigüenza, A. G., & Martínez-Meyer, E. (2016). 
Digital accessible knowledge and well-inventoried sites for birds 
in Mexico: Baseline sites for measuring faunistic change. PeerJ, 4, 
e2362. https://doi.org/10.7717/peerj.2362

Peterson, A. T., & Slade, N. (1998). Extrapolating inventory re-
sults into biodiversity estimates and the importance of stop-
ping rules. Diversity and Distributions, 4(3), 95–105. https://doi.
org/10.1046/j.1365-2699.1998.00021.x

Peterson, A. T., & Soberón, J. (2018). Essential biodiversity variables are 
not global. Biodiversity and Conservation, 27(5), 1277–1288. https://
doi.org/10.1007/s1053​1-017-1479-5

R Core Team. (2021). R: A language and environment for statistical comput-
ing (4.0.5). R Foundation for Statistical Computing. Retrieved from 
https://www.R-proje​ct.org/

Sarkar, S., Pressey, R. L., Faith, D. P., Margules, C. R., Fuller, T., Stoms, 
D. M., Moffett, A., Wilson, K. A., Williams, K. J., Williams, P. 
H., & Andelman, S. (2006). Biodiversity conservation plan-
ning tools: Present status and challenges for the future. Annual 
Review of Environment and Resources, 31(1), 123–159. https://doi.
org/10.1146/annur​ev.energy.31.042606.085844

Sastre, P., & Lobo, J. M. (2009). Taxonomist survey biases and the unveil-
ing of biodiversity patterns. Biological Conservation, 142(2), 462–
467. https://doi.org/10.1016/j.biocon.2008.11.002

Soberón, J., & Cavner, J. (2015). Indices of biodiversity pattern based 
on presence-absence matrices: A GIS implementation. Biodiversity 
Informatics, 10, 22–34. https://doi.org/10.17161/​bi.v10i0.4801

Soberón, J., Cobos, M. E., & Nuñez-Penichet, C. (2021). Visualizing 
species richness and site similarity from presence-absence matri-
ces. Biodiversity Informatics, 16, 20–27. https://doi.org/10.17161/​
bi.v16i1.14782

Soberón, J., & Llorente, J. (1993). The use of species accumulation func-
tions for the prediction of species richness. Conservation Biology, 
7(3), 480–488. https://doi.org/10.1046/j.1523-1739.1993.07030​
480.x

Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fun-
damental ecological niches and species' distributional areas. 
Biodiversity Informatics, 2, 1–10. https://doi.org/10.17161/​bi.v2i0.4

Storch, D., Marquet, P., & Brown, J. (Eds.). (2007). Scaling biodiversity. 
Cambridge University Press. https://doi.org/10.1017/CBO97​
80511​814938

Tessarolo, G., Ladle, R. J., Lobo, J. M., Rangel, T. F., & Hortal, J. (2021). 
Using maps of biogeographical ignorance to reveal the uncer-
tainty in distributional data hidden in species distribution models. 
Ecography, 44(12), 1743–1755. https://doi.org/10.1111/ecog.05793

Velásquez-Tibatá, J. (2019). WhereNext: Biological survey recommending 
system based on general dissimilarity modeling. R package. Retrieved 
from https://github.com/jivel​asque​zt/Where​Next-Pkg/

Xu, H., Cao, M., Wu, Y., Cai, L., Cao, Y., Ding, H., Cui, P., Wu, J., Wang, Z., 
Le, Z., Lu, X., Liu, L., & Li, J. (2017). Optimized monitoring sites for de-
tection of biodiversity trends in China. Biodiversity and Conservation, 
26(8), 1959–1971. https://doi.org/10.1007/s1053​1-017-1339-3

Yang, W., Ma, K., & Kreft, H. (2013). Geographical sampling bias in a 
large distributional database and its effects on species richness-
environment models. Journal of Biogeography, 40(8), 1415–1426. 
https://doi.org/10.1111/jbi.12108

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Nuñez-Penichet, C., Cobos, M. E., 
Soberón, J., Gueta, T., Barve, N., Barve, V., Navarro-Sigüenza, 
A. G., Peterson, A. T. (2022). Selection of sampling sites for 
biodiversity inventory: Effects of environmental and 
geographical considerations. Methods in Ecology and Evolution, 
13, 1595–1607. https://doi.org/10.1111/2041-210X.13869

 2041210x, 2022, 7, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13869 by U
niversity O

f K
ansas, W

iley O
nline Library on [27/10/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.1016/S0304-3800(02)00203-X
https://doi.org/10.1016/j.ecoinf.2019.03.003
https://doi.org/10.1016/j.ecoinf.2019.03.003
https://doi.org/10.1146/annurev-ecolsys-112414-054400
https://doi.org/10.1146/annurev-ecolsys-112414-054400
https://doi.org/10.1007/s10531-004-0224-z
https://doi.org/10.1073/pnas.0704469104
https://doi.org/10.1073/pnas.0704469104
http://www.conabio.gob.mx/informacion/metadata/gis/usv250s6gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no
http://www.conabio.gob.mx/informacion/metadata/gis/usv250s6gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no
http://www.conabio.gob.mx/informacion/metadata/gis/usv250s6gw.xml?_httpcache=yes&_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no
https://doi.org/10.1038/35012251
https://doi.org/10.1007/s10531-013-0574-5
https://doi.org/10.1007/s10531-013-0574-5
https://doi.org/10.1007/978-0-387-75528-1_4
https://CRAN.R-project.org/package=biosurvey
https://doi.org/10.6084/m9.figshare.14700819
https://doi.org/10.6084/m9.figshare.14700819
https://doi.org/10.1111/ddi.12489
https://doi.org/10.1111/ddi.12489
https://doi.org/10.7717/peerj.2362
https://doi.org/10.1046/j.1365-2699.1998.00021.x
https://doi.org/10.1046/j.1365-2699.1998.00021.x
https://doi.org/10.1007/s10531-017-1479-5
https://doi.org/10.1007/s10531-017-1479-5
https://www.r-project.org/
https://doi.org/10.1146/annurev.energy.31.042606.085844
https://doi.org/10.1146/annurev.energy.31.042606.085844
https://doi.org/10.1016/j.biocon.2008.11.002
https://doi.org/10.17161/bi.v10i0.4801
https://doi.org/10.17161/bi.v16i1.14782
https://doi.org/10.17161/bi.v16i1.14782
https://doi.org/10.1046/j.1523-1739.1993.07030480.x
https://doi.org/10.1046/j.1523-1739.1993.07030480.x
https://doi.org/10.17161/bi.v2i0.4
https://doi.org/10.1017/CBO9780511814938
https://doi.org/10.1017/CBO9780511814938
https://doi.org/10.1111/ecog.05793
https://github.com/jivelasquezt/WhereNext-Pkg/
https://doi.org/10.1007/s10531-017-1339-3
https://doi.org/10.1111/jbi.12108
https://doi.org/10.1111/2041-210X.13869

	Selection of sampling sites for biodiversity inventory: Effects of environmental and geographical considerations
	Abstract
	1|INTRODUCTION
	2|MATERIALS AND METHODS
	2.1|General description
	2.2|Data
	2.3|Pre-­processing
	2.4|Selection of sites for biodiversity surveys
	2.4.1|Random selection
	2.4.2|Uniformity in geographical space
	2.4.3|Uniformity in environmental space
	2.4.4|Considering environment and geography in selections
	2.4.5|Thinning process
	2.4.6|Using preselected sites in selections

	2.5|Testing effectiveness of selections

	3|RESULTS
	3.1|Initial results
	3.2|Selected sites
	3.3|Effectiveness of selected sites
	3.4|Effects of mask and preselected sites

	4|DISCUSSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	AUTHORS' CONTRIBUTIONS
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES


